Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography

Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resul...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 94; pp. 312 - 336
Main Authors Dhollander, Thijs, Emsell, Louise, Van Hecke, Wim, Maes, Frederik, Sunaert, Stefan, Suetens, Paul
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.07.2014
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2013.12.047

Cover

Abstract Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications. [Display omitted] •Track Orientation Density Imaging (TODI) extends TDI to the 5D spatio-angular domain.•TODI constructs the full Track Orientation Distribution (TOD) in each voxel.•TODI is amenable to spatial and angular super-resolution (or even sub-resolution).•The amplitude of a short-tracks TOD is a measure of Track-like Local Support (TLS).•A short-tracks TOD can guide tracks along continuous structure over a longer distance.
AbstractList Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications.Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications.
Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications. [Display omitted] •Track Orientation Density Imaging (TODI) extends TDI to the 5D spatio-angular domain.•TODI constructs the full Track Orientation Distribution (TOD) in each voxel.•TODI is amenable to spatial and angular super-resolution (or even sub-resolution).•The amplitude of a short-tracks TOD is a measure of Track-like Local Support (TLS).•A short-tracks TOD can guide tracks along continuous structure over a longer distance.
Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications.
Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments onin vivohuman subject data, anin siliconumerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e.where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications.
Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on human subject data, an numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution ( where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications.
Author Sunaert, Stefan
Van Hecke, Wim
Suetens, Paul
Dhollander, Thijs
Maes, Frederik
Emsell, Louise
Author_xml – sequence: 1
  givenname: Thijs
  surname: Dhollander
  fullname: Dhollander, Thijs
  email: thijs.dhollander@gmail.com
  organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Louise
  surname: Emsell
  fullname: Emsell, Louise
  organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium
– sequence: 3
  givenname: Wim
  surname: Van Hecke
  fullname: Van Hecke, Wim
  organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium
– sequence: 4
  givenname: Frederik
  surname: Maes
  fullname: Maes, Frederik
  organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium
– sequence: 5
  givenname: Stefan
  surname: Sunaert
  fullname: Sunaert, Stefan
  organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium
– sequence: 6
  givenname: Paul
  surname: Suetens
  fullname: Suetens, Paul
  organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28503434$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24389015$$D View this record in MEDLINE/PubMed
BookMark eNqVkl9r2zAUxcXoWNtsX2EYxqB9sKcrWbb1Mrq1-xMo5CXvQpavM6WOnEn2Rr59lTpbIewhQw_Shd89ujpHl-TM9Q4JSYBmQKH4sM4cjr63G73CjFHgGbCM5uULcgFUilSKkp3tz4KnFYA8J5chrCmlEvLqFTlnOa8kBXFBmqXX5iFZeItu0IPtXXKHLthhl8yjunWr5Gq5uJtfJ9o1yT9gGwZv6_Gp2JPXSa0DNskQ0aFfeb39sXtNXra6C_jmsM_I8uuX5e339H7xbX776T41cd4hzWVVQN1QYC1g3raskVRyLWrJaMs5q3PDeY5x9LIUoqhKoLEopanQ1EzzGZGT7Oi2evdbd53a-uiR3ymgam-cWqtn49TeOAVMReNi79XUu_X9zxHDoDY2GOw67bAfgwLBpBRQ8uIUNIdSAJMRfXeErvvRu-hBpOKtkBdCROrtgRrrDTZ_h_6TUgTeHwAdjO5ar52x4ZmrBOV5XDNSTZzxfQge2_95_8ejVmOniGOQtjtF4PMkgDHgXxa9CiZ-E4ON9WgG1fT2FJGbIxHTWWfjmx9wd5rEI-_g-BU
CitedBy_id crossref_primary_10_1002_mrm_30160
crossref_primary_10_1016_j_neuroimage_2019_116137
crossref_primary_10_1093_cercor_bhab184
crossref_primary_10_1007_s00429_018_1798_7
crossref_primary_10_1016_j_neuroimage_2015_05_070
crossref_primary_10_1002_nbm_3785
crossref_primary_10_1227_NEU_0000000000001840
crossref_primary_10_1016_j_media_2015_10_011
crossref_primary_10_1007_s10334_017_0608_1
crossref_primary_10_3389_fnana_2019_00024
crossref_primary_10_52294_001c_123922
crossref_primary_10_1016_j_neuroimage_2015_08_008
crossref_primary_10_1016_j_neuroimage_2020_117483
crossref_primary_10_3389_fnins_2024_1467786
crossref_primary_10_1016_j_media_2020_101760
crossref_primary_10_1016_j_media_2017_03_003
crossref_primary_10_1002_hbm_26578
crossref_primary_10_1007_s11548_022_02617_z
crossref_primary_10_1371_journal_pone_0304449
crossref_primary_10_1016_j_neuroimage_2018_11_018
crossref_primary_10_1016_j_neuroimage_2018_10_070
crossref_primary_10_1016_j_neuroimage_2023_119999
crossref_primary_10_1371_journal_pone_0138122
crossref_primary_10_1016_j_nicl_2023_103412
crossref_primary_10_1089_brain_2020_0930
crossref_primary_10_1093_neuros_nyy538
crossref_primary_10_1016_j_neuroimage_2017_12_039
Cites_doi 10.1006/jmva.1998.1757
10.1002/ima.22005
10.1016/j.neuroimage.2012.06.081
10.1002/mrm.23058
10.1002/mrm.20948
10.1016/j.media.2013.03.009
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1016/j.neuroimage.2010.09.016
10.1002/mrm.10308
10.1002/mrm.21789
10.1089/brain.2011.0033
10.1016/j.neuroimage.2012.06.005
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1016/j.neuroimage.2010.12.010
10.1109/TMI.2011.2112769
10.1007/BF03024331
10.1371/journal.pcbi.0010042
10.1016/j.jneumeth.2010.01.014
10.1016/j.neuroimage.2008.05.002
10.1073/pnas.96.18.10422
10.3171/2013.2.JNS121294
10.1109/TMI.2012.2187916
10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O
10.1016/j.neuroimage.2008.03.061
10.1016/j.neuroimage.2010.07.024
10.1016/j.neuroimage.2011.08.099
10.1016/j.neuroimage.2012.11.049
10.1016/j.neuroimage.2012.12.054
10.1007/978-3-642-38868-2_34
10.1016/j.neuroimage.2011.07.014
10.1089/brain.2011.0040
10.1016/j.neuroimage.2012.06.002
10.1016/j.neuroimage.2007.02.016
10.1016/j.neuroimage.2011.02.059
10.1016/j.neuroimage.2009.03.077
10.1002/nbm.3017
10.1016/j.neuroimage.2011.01.032
10.1016/j.neuroimage.2004.07.037
10.1016/j.neuroimage.2011.10.045
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
ContentType Journal Article
Copyright 2013 The Authors
2015 INIST-CNRS
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jul 1, 2014
Copyright_xml – notice: 2013 The Authors
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jul 1, 2014
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2013.12.047
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest One Psychology

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 336
ExternalDocumentID 10.1016/j.neuroimage.2013.12.047
3380122331
24389015
28503434
10_1016_j_neuroimage_2013_12_047
S1053811913012676
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACLOT
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
~HD
ALIPV
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ADTOC
UNPAY
ID FETCH-LOGICAL-c572t-49861bd012f1e4ff2d9093a5b920f332b4c334e389775568710e3879c8ecb2a3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Sun Sep 07 11:28:21 EDT 2025
Mon Sep 29 06:22:28 EDT 2025
Sun Sep 28 11:58:39 EDT 2025
Sat Aug 23 13:06:46 EDT 2025
Thu Apr 03 07:03:29 EDT 2025
Wed Apr 02 07:16:10 EDT 2025
Wed Oct 01 02:58:15 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Fri Feb 23 02:36:03 EST 2024
Tue Aug 26 16:31:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords TW-FC
SCP
SIFT
TW-PET
Track-weighted imaging
Fiber orientation distribution
DIST
iFOD2
KDE
DWI
FOD
IC
Track orientation distribution
PSF
TWI
TOD
TOWI
HARDI
TWM
RGB
Track orientation weighted imaging
VC
TWT
fMRI
NC
Track-like local support
RH
TOWM
DTI
FA
AFD
TOWT
CNR
Track-density imaging
Fiber tractography
PDF
CSD
SH
SNR
WM
TDI
TLS
Track orientation density imaging
CB
DEC
GCC
GM
TODI
ACT
TFCE
ATI
TRSE
iTOD2
Diffusion weighted imaging
APM
PET
Orientation
Density
Imaging
Distribution
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
CC BY 4.0
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-49861bd012f1e4ff2d9093a5b920f332b4c334e389775568710e3879c8ecb2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811913012676
PMID 24389015
PQID 1547314655
PQPubID 2031077
PageCount 25
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2013_12_047
proquest_miscellaneous_1529951736
proquest_miscellaneous_1524175129
proquest_journals_1547314655
pubmed_primary_24389015
pascalfrancis_primary_28503434
crossref_primary_10_1016_j_neuroimage_2013_12_047
crossref_citationtrail_10_1016_j_neuroimage_2013_12_047
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_12_047
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_12_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Côté, Boré, Girard, Houde, Descoteaux (bb0065) 2012
Hagmann, Cammoun, Gigandet, Gerhard, Grant, Wedeen, Meuli, Thiran, Honey, Sporns (bb0105) 2010; 194
Calamante, Tournier, Kurniawan, Yang, Gyengesi, Galloway, Reutens, Connelly (bb0045) 2012; 59
Tournier, Calamante, Connelly (bb0285) 2013
Raffelt, Tournier, Crozier, Connelly, Salvado (bb0190) 2012; 67
Savadjiev, Rathi, Bouix, Verma, Westin (bb0230) 2012
Poupon, Rieul, Kezele, Perrin, Poupon, Mangin (bb0180) 2008; 60
Smith, Nichols (bb0255) 2009; 44
Calamante, Tournier, Heidemann, Anwander, Jackson, Connelly (bb0035) 2011; 56
Fillard, Descoteaux, Goh, Gouttard, Jeurissen, Malcolm, Ramirez-Manzanares, Reisert, Sakaie, Tensaouti, Yo, Mangin, Poupon (bb0090) 2011; 56
Healy, Hendriks, Kim (bb0110) 1998; 67
Jbabdi, Johansen-Berg (bb0115) 2011; 1
Rowe, Zhang, Oxtoby, Alexander (bb0220) 2013
Close, Tournier, Calamante, Johnston, Mareels, Connelly (bb0055) 2009; 47
Reisert, Mader, Anastasopoulos, Weigel, Schnell, Kiselev (bb0215) 2011; 54
Calamante, Son, Tournier, Ryu, Oh, Connelly, Cho (bb0030) 2012
Calamante, Masterton, Tournier, Smith, Willats, Raffelt, Connelly (bb0025) 2013; 70
Calamante, Masterton, Tournier, Smith, Willats, Raffelt, Connelly (bb0020) 2012
Descoteaux, Angelino, Fitzgibbons, Deriche (bb0075) 2006; 56
Pannek, Raffelt, Salvado, Rose (bb0160) 2012
Côté, Girard, Boré, Garyfallidis, Houde, Descoteaux (bb0070) 2013; 17
Farquharson, Tournier, Calamante, Fabinyi, Schneider-Kolsky, Jackson, Connelly (bb0085) 2013; 118
Smith, Tournier, Calamante, Connelly (bb0240) 2012; 62
Reese, Heid, Weisskoff, Wedeen (bb0200) 2003; 49
Reisert, Kiselev (bb0210) 2011; 30
Basser (bb0005) 1998
Pasternak, Rathi, Shenton, Westin (bb0165) 2012
Fillard, Poupon, Mangin (bb0095) 2009
Hagmann (bb0100) 2005
Jones, Simmons, Williams, Horsfield (bb0135) 1999; 42
Poupon, Clark, Frouin, Bloch, Bihan, Mangin (bb0170) 1999
Smith, Tournier, Calamante, Connelly (bb0235) 2011
Smith, Tournier, Calamante, Connelly (bb0245) 2013
Reisert, Kellner, Kiselev (bb0205) 2012; 31
Sporns, Tononi, Kötter (bb0260) 2005; 1
Mori, Crain, Chacko, Zijl (bb0145) 1999; 45
Saff, Kuijlaars (bb0225) 1997; 19
Tournier, Calamante, Connelly (bb0280) 2013; 26
Poupon, Laribiere, Tournier, Bernard, Fournier, Fillard, Descoteaux, Mangin (bb0175) 2010
Tournier, Calamante, Connelly (bb0265) 2007; 35
Willats, Raffelt, Smith, Tournier, Connelly, Calamante (bb0305) 2012
Dhollander, Emsell, Van Hecke, Maes, Sunaert, Suetens (bb0080) 2012
Tournier, Calamante, Connelly (bb0270) 2010
Lori, Cull, Akbudak, Snyder, Shimony, Burton, Raichle, Conturo (bb0140) 1999
Vos, Viergever, Leemans (bb0300) 2012
Raffelt, Tournier, Rose, Ridgway, Henderson, Crozier, Salvado, Connelly (bb0195) 2012; 59
Pannek, Mathias, Rose (bb0155) 2011; 1
Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bb0010) 2000; 44
Jones (bb0120) 2010
Raffelt, Smith, Tournier, Ridgway, Villemagne, Rowe, Salvado, Connelly (bb0185) 2013
Bastiani, Shah, Goebel, Roebroeck (bb0015) 2012; 62
Calamante, Tournier, Jackson, Connelly (bb0040) 2010; 53
Smith, Tournier, Calamante, Connelly (bb0250) 2013; 67
Conturo, Lori, Cull, Akbudak, Snyder, Shimony, Mc Kinstry, Burton, Raichle (bb0060) 1999
Jones, Knösche, Turner (bb0130) 2013; 73
Tournier, Calamante, Connelly (bb0275) 2012; 22
Calamante, Tournier, Smith, Connelly (bb0050) 2012; 59
Tournier, Yeh, Calamante, Cho, Connelly, Lin (bb0295) 2008; 42
Jones, Horsfield, Simmons (bb0125) 1999; 42
Tournier, Calamante, Gadian, Connelly (bb0290) 2004; 23
Pannek, Mathias, Bigler, Brown, Taylor, Rose (bb0150) 2011; 55
Poupon (10.1016/j.neuroimage.2013.12.047_bb0170) 1999
Reisert (10.1016/j.neuroimage.2013.12.047_bb0215) 2011; 54
Côté (10.1016/j.neuroimage.2013.12.047_bb0065) 2012
Reisert (10.1016/j.neuroimage.2013.12.047_bb0205) 2012; 31
Saff (10.1016/j.neuroimage.2013.12.047_bb0225) 1997; 19
Tournier (10.1016/j.neuroimage.2013.12.047_bb0285) 2013
Raffelt (10.1016/j.neuroimage.2013.12.047_bb0195) 2012; 59
Tournier (10.1016/j.neuroimage.2013.12.047_bb0275) 2012; 22
Hagmann (10.1016/j.neuroimage.2013.12.047_bb0105) 2010; 194
Basser (10.1016/j.neuroimage.2013.12.047_bb0005) 1998
Fillard (10.1016/j.neuroimage.2013.12.047_bb0090) 2011; 56
Smith (10.1016/j.neuroimage.2013.12.047_bb0255) 2009; 44
Smith (10.1016/j.neuroimage.2013.12.047_bb0245) 2013
Pannek (10.1016/j.neuroimage.2013.12.047_bb0155) 2011; 1
Fillard (10.1016/j.neuroimage.2013.12.047_bb0095) 2009
Hagmann (10.1016/j.neuroimage.2013.12.047_bb0100) 2005
Mori (10.1016/j.neuroimage.2013.12.047_bb0145) 1999; 45
Smith (10.1016/j.neuroimage.2013.12.047_bb0235) 2011
Pannek (10.1016/j.neuroimage.2013.12.047_bb0160) 2012
Dhollander (10.1016/j.neuroimage.2013.12.047_bb0080) 2012
Calamante (10.1016/j.neuroimage.2013.12.047_bb0025) 2013; 70
Jbabdi (10.1016/j.neuroimage.2013.12.047_bb0115) 2011; 1
Calamante (10.1016/j.neuroimage.2013.12.047_bb0040) 2010; 53
Descoteaux (10.1016/j.neuroimage.2013.12.047_bb0075) 2006; 56
Raffelt (10.1016/j.neuroimage.2013.12.047_bb0185) 2013
Tournier (10.1016/j.neuroimage.2013.12.047_bb0290) 2004; 23
Jones (10.1016/j.neuroimage.2013.12.047_bb0135) 1999; 42
Vos (10.1016/j.neuroimage.2013.12.047_bb0300) 2012
Conturo (10.1016/j.neuroimage.2013.12.047_bb0060) 1999
Healy (10.1016/j.neuroimage.2013.12.047_bb0110) 1998; 67
Jones (10.1016/j.neuroimage.2013.12.047_bb0120) 2010
Calamante (10.1016/j.neuroimage.2013.12.047_bb0045) 2012; 59
Reese (10.1016/j.neuroimage.2013.12.047_bb0200) 2003; 49
Calamante (10.1016/j.neuroimage.2013.12.047_bb0020) 2012
Calamante (10.1016/j.neuroimage.2013.12.047_bb0030) 2012
Tournier (10.1016/j.neuroimage.2013.12.047_bb0270) 2010
Farquharson (10.1016/j.neuroimage.2013.12.047_bb0085) 2013; 118
Rowe (10.1016/j.neuroimage.2013.12.047_bb0220) 2013
Tournier (10.1016/j.neuroimage.2013.12.047_bb0265) 2007; 35
Savadjiev (10.1016/j.neuroimage.2013.12.047_bb0230) 2012
Close (10.1016/j.neuroimage.2013.12.047_bb0055) 2009; 47
Smith (10.1016/j.neuroimage.2013.12.047_bb0250) 2013; 67
Jones (10.1016/j.neuroimage.2013.12.047_bb0130) 2013; 73
Basser (10.1016/j.neuroimage.2013.12.047_bb0010) 2000; 44
Tournier (10.1016/j.neuroimage.2013.12.047_bb0280) 2013; 26
Tournier (10.1016/j.neuroimage.2013.12.047_bb0295) 2008; 42
Calamante (10.1016/j.neuroimage.2013.12.047_bb0035) 2011; 56
Pasternak (10.1016/j.neuroimage.2013.12.047_bb0165) 2012
Côté (10.1016/j.neuroimage.2013.12.047_bb0070) 2013; 17
Jones (10.1016/j.neuroimage.2013.12.047_bb0125) 1999; 42
Willats (10.1016/j.neuroimage.2013.12.047_bb0305) 2012
Raffelt (10.1016/j.neuroimage.2013.12.047_bb0190) 2012; 67
Reisert (10.1016/j.neuroimage.2013.12.047_bb0210) 2011; 30
Lori (10.1016/j.neuroimage.2013.12.047_bb0140) 1999
Smith (10.1016/j.neuroimage.2013.12.047_bb0240) 2012; 62
Bastiani (10.1016/j.neuroimage.2013.12.047_bb0015) 2012; 62
Pannek (10.1016/j.neuroimage.2013.12.047_bb0150) 2011; 55
Poupon (10.1016/j.neuroimage.2013.12.047_bb0180) 2008; 60
Calamante (10.1016/j.neuroimage.2013.12.047_bb0050) 2012; 59
Poupon (10.1016/j.neuroimage.2013.12.047_bb0175) 2010
Sporns (10.1016/j.neuroimage.2013.12.047_bb0260) 2005; 1
References_xml – volume: 56
  start-page: 395
  year: 2006
  end-page: 410
  ident: bb0075
  article-title: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications
  publication-title: Magn. Reson. Med.
– start-page: 1912
  year: 2012
  ident: bb0160
  article-title: Incorporating directional information in diffusion tractography derived maps: angular track imaging (ATI)
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 56
  start-page: 220
  year: 2011
  end-page: 234
  ident: bb0090
  article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom
  publication-title: NeuroImage
– volume: 59
  start-page: 3976
  year: 2012
  end-page: 3994
  ident: bb0195
  article-title: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images
  publication-title: NeuroImage
– start-page: 772
  year: 2013
  ident: bb0285
  article-title: A robust spherical deconvolution method for the analysis of low SNR or low angular resolution diffusion data
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 59
  start-page: 286
  year: 2012
  end-page: 296
  ident: bb0045
  article-title: Super-resolution track-density imaging studies of mouse brain: comparison to histology
  publication-title: NeuroImage
– year: 2005
  ident: bb0100
  article-title: From diffusion MRI to brain connectomics
– volume: 47
  start-page: 1288
  year: 2009
  end-page: 1300
  ident: bb0055
  article-title: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms
  publication-title: NeuroImage
– start-page: 325
  year: 1999
  ident: bb0170
  article-title: Tracking white matter fascicles with diffusion tensor imaging
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 45
  start-page: 265
  year: 1999
  end-page: 269
  ident: bb0145
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
– volume: 30
  start-page: 1274
  year: 2011
  end-page: 1283
  ident: bb0210
  article-title: Fiber continuity: an anisotropic prior for ODF estimation
  publication-title: IEEE Trans. Med. Imaging
– volume: 62
  start-page: 1732
  year: 2012
  end-page: 1749
  ident: bb0015
  article-title: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm
  publication-title: NeuroImage
– start-page: 402
  year: 2013
  end-page: 413
  ident: bb0220
  article-title: Beyond crossing fibers: tractography exploiting sub-voxel fibre dispersion and neighbourhood structure
  publication-title: Inf. Process. Med. Imaging
– volume: 22
  start-page: 53
  year: 2012
  end-page: 66
  ident: bb0275
  article-title: MRtrix: diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 56
  start-page: 1259
  year: 2011
  end-page: 1266
  ident: bb0035
  article-title: Track density imaging (TDI): validation of super resolution property
  publication-title: NeuroImage
– volume: 42
  start-page: 37
  year: 1999
  end-page: 41
  ident: bb0135
  article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI
  publication-title: Magn. Reson. Med.
– start-page: 1915
  year: 2012
  ident: bb0165
  article-title: Estimation of the angle between crossing fibers as a novel structural quantity
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– year: 2010
  ident: bb0120
  article-title: Diffusion MRI: Theory, Methods, and Applications
– start-page: 673
  year: 2011
  ident: bb0235
  article-title: A novel paradigm for automated segmentation of very large whole-brain probabilistic tractography data sets
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  ident: bb0125
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 118
  start-page: 1367
  year: 2013
  end-page: 1377
  ident: bb0085
  article-title: White matter fiber tractography: why we need to move beyond DTI
  publication-title: J. Neurosurg.
– volume: 54
  start-page: 955
  year: 2011
  end-page: 962
  ident: bb0215
  article-title: Global fiber reconstruction becomes practical
  publication-title: NeuroImage
– start-page: 1918
  year: 2012
  ident: bb0305
  article-title: Within subject reproducibility and between subject variability of super-resolution track-weighted imaging
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 44
  start-page: 625
  year: 2000
  end-page: 632
  ident: bb0010
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
– volume: 59
  start-page: 2494
  year: 2012
  end-page: 2503
  ident: bb0050
  article-title: A generalised framework for super-resolution track-weighted imaging
  publication-title: NeuroImage
– volume: 55
  start-page: 133
  year: 2011
  end-page: 141
  ident: bb0150
  article-title: The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology
  publication-title: NeuroImage
– volume: 19
  start-page: 5
  year: 1997
  end-page: 11
  ident: bb0225
  article-title: Distributing many points on a sphere
  publication-title: Math. Intell.
– start-page: 1670
  year: 2010
  ident: bb0270
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 70
  start-page: 199
  year: 2013
  end-page: 210
  ident: bb0025
  article-title: Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain
  publication-title: NeuroImage
– volume: 67
  start-page: 1
  year: 1998
  end-page: 22
  ident: bb0110
  article-title: Spherical deconvolution
  publication-title: J. Multivar. Anal.
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bb0265
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
– volume: 44
  start-page: 83
  year: 2009
  end-page: 98
  ident: bb0255
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: NeuroImage
– volume: 31
  start-page: 1240
  year: 2012
  end-page: 1249
  ident: bb0205
  article-title: About the geometry of asymmetric fiber orientation distributions
  publication-title: IEEE Trans. Med. Imaging
– volume: 62
  start-page: 1924
  year: 2012
  end-page: 1938
  ident: bb0240
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: NeuroImage
– start-page: 1226
  year: 1998
  ident: bb0005
  article-title: Fiber-tractography via diffusion tensor MRI (DT-MRI)
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 1
  start-page: e42
  year: 2005
  ident: bb0260
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
– start-page: 841
  year: 2013
  ident: bb0185
  article-title: Tractographic threshold-free cluster enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 17
  start-page: 844
  year: 2013
  end-page: 857
  ident: bb0070
  article-title: Tractometer: Towards validation of tractography pipelines
  publication-title: Med. Image Anal.
– volume: 49
  start-page: 177
  year: 2003
  end-page: 182
  ident: bb0200
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
– volume: 1
  start-page: 331
  year: 2011
  end-page: 338
  ident: bb0155
  article-title: MRI diffusion indices sampled along streamline trajectories: quantitative tractography mapping
  publication-title: Brain Connect.
– start-page: 2135
  year: 2013
  ident: bb0245
  article-title: Evidence for the improved biological interpretability of white matter connectivity derived following tractogram filtering using SIFT
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 194
  start-page: 34
  year: 2010
  end-page: 45
  ident: bb0105
  article-title: MR connectomics: principles and challenges
  publication-title: J. Neurosci. Methods
– start-page: 698
  year: 2012
  end-page: 705
  ident: bb0065
  article-title: Tractometer: online evaluation system for tractography
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 73
  start-page: 239
  year: 2013
  end-page: 254
  ident: bb0130
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: NeuroImage
– volume: 26
  start-page: 1775
  year: 2013
  end-page: 1786
  ident: bb0280
  article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging
  publication-title: NMR Biomed.
– start-page: 1919
  year: 2012
  ident: bb0030
  article-title: Fusing PET and MRI data using super-resolution track-weighted imaging
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 60
  start-page: 1276
  year: 2008
  end-page: 1283
  ident: bb0180
  article-title: New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models
  publication-title: Magn. Reson. Med.
– start-page: 34
  year: 2012
  end-page: 41
  ident: bb0230
  article-title: Multi-scale characterization of white matter tract geometry
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– start-page: 3586
  year: 2012
  ident: bb0300
  article-title: Tract coherence imaging (TCI): quantifying the intra-voxel fiber tract heterogeneity
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 53
  start-page: 1233
  year: 2010
  end-page: 1243
  ident: bb0040
  article-title: Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping
  publication-title: NeuroImage
– volume: 67
  start-page: 298
  year: 2013
  end-page: 312
  ident: bb0250
  article-title: SIFT: spherical-deconvolution informed filtering of tractograms
  publication-title: NeuroImage
– start-page: 581
  year: 2010
  ident: bb0175
  article-title: A diffusion hardware phantom looking like a coronal brain slice
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 927
  year: 2009
  end-page: 934
  ident: bb0095
  article-title: A novel global tractography algorithm based on an adaptive spin glass model
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– start-page: 324
  year: 1999
  ident: bb0140
  article-title: Tracking neuronal fibers in the living human brain with diffusion MRI
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 1920
  year: 2012
  ident: bb0080
  article-title: Track-density imaging & noise: when super-resolution quality does not yield accuracy
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 23
  start-page: 1176
  year: 2004
  end-page: 1185
  ident: bb0290
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: NeuroImage
– volume: 67
  start-page: 844
  year: 2012
  end-page: 855
  ident: bb0190
  article-title: Reorientation of fiber orientation distributions using apodized point spread functions
  publication-title: Magn. Reson. Med.
– volume: 42
  start-page: 617
  year: 2008
  end-page: 625
  ident: bb0295
  article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data
  publication-title: NeuroImage
– volume: 1
  start-page: 169
  year: 2011
  end-page: 183
  ident: bb0115
  article-title: Tractography: where do we go from here?
  publication-title: Brain Connect.
– start-page: 10422
  year: 1999
  end-page: 10427
  ident: bb0060
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 139
  year: 2012
  ident: bb0020
  article-title: Super-resolution track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 67
  start-page: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2013.12.047_bb0110
  article-title: Spherical deconvolution
  publication-title: J. Multivar. Anal.
  doi: 10.1006/jmva.1998.1757
– volume: 22
  start-page: 53
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0275
  article-title: MRtrix: diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22005
– start-page: 1912
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0160
  article-title: Incorporating directional information in diffusion tractography derived maps: angular track imaging (ATI)
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 1920
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0080
  article-title: Track-density imaging & noise: when super-resolution quality does not yield accuracy
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 698
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0065
  article-title: Tractometer: online evaluation system for tractography
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 73
  start-page: 239
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0130
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.081
– volume: 67
  start-page: 844
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0190
  article-title: Reorientation of fiber orientation distributions using apodized point spread functions
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23058
– start-page: 34
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0230
  article-title: Multi-scale characterization of white matter tract geometry
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 56
  start-page: 395
  year: 2006
  ident: 10.1016/j.neuroimage.2013.12.047_bb0075
  article-title: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20948
– volume: 17
  start-page: 844
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0070
  article-title: Tractometer: Towards validation of tractography pipelines
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.03.009
– start-page: 581
  year: 2010
  ident: 10.1016/j.neuroimage.2013.12.047_bb0175
  article-title: A diffusion hardware phantom looking like a coronal brain slice
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 45
  start-page: 265
  year: 1999
  ident: 10.1016/j.neuroimage.2013.12.047_bb0145
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 54
  start-page: 955
  year: 2011
  ident: 10.1016/j.neuroimage.2013.12.047_bb0215
  article-title: Global fiber reconstruction becomes practical
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.016
– start-page: 1670
  year: 2010
  ident: 10.1016/j.neuroimage.2013.12.047_bb0270
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 49
  start-page: 177
  year: 2003
  ident: 10.1016/j.neuroimage.2013.12.047_bb0200
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10308
– start-page: 139
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0020
  article-title: Super-resolution track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 60
  start-page: 1276
  year: 2008
  ident: 10.1016/j.neuroimage.2013.12.047_bb0180
  article-title: New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21789
– volume: 1
  start-page: 169
  year: 2011
  ident: 10.1016/j.neuroimage.2013.12.047_bb0115
  article-title: Tractography: where do we go from here?
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0033
– start-page: 324
  year: 1999
  ident: 10.1016/j.neuroimage.2013.12.047_bb0140
  article-title: Tracking neuronal fibers in the living human brain with diffusion MRI
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 62
  start-page: 1924
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0240
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.005
– volume: 44
  start-page: 625
  year: 2000
  ident: 10.1016/j.neuroimage.2013.12.047_bb0010
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– volume: 55
  start-page: 133
  year: 2011
  ident: 10.1016/j.neuroimage.2013.12.047_bb0150
  article-title: The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.12.010
– start-page: 2135
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0245
  article-title: Evidence for the improved biological interpretability of white matter connectivity derived following tractogram filtering using SIFT
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 30
  start-page: 1274
  year: 2011
  ident: 10.1016/j.neuroimage.2013.12.047_bb0210
  article-title: Fiber continuity: an anisotropic prior for ODF estimation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2112769
– volume: 19
  start-page: 5
  year: 1997
  ident: 10.1016/j.neuroimage.2013.12.047_bb0225
  article-title: Distributing many points on a sphere
  publication-title: Math. Intell.
  doi: 10.1007/BF03024331
– volume: 1
  start-page: e42
  year: 2005
  ident: 10.1016/j.neuroimage.2013.12.047_bb0260
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 194
  start-page: 34
  year: 2010
  ident: 10.1016/j.neuroimage.2013.12.047_bb0105
  article-title: MR connectomics: principles and challenges
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.01.014
– volume: 42
  start-page: 617
  year: 2008
  ident: 10.1016/j.neuroimage.2013.12.047_bb0295
  article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.002
– start-page: 10422
  year: 1999
  ident: 10.1016/j.neuroimage.2013.12.047_bb0060
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.18.10422
– start-page: 1915
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0165
  article-title: Estimation of the angle between crossing fibers as a novel structural quantity
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 673
  year: 2011
  ident: 10.1016/j.neuroimage.2013.12.047_bb0235
  article-title: A novel paradigm for automated segmentation of very large whole-brain probabilistic tractography data sets
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 118
  start-page: 1367
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0085
  article-title: White matter fiber tractography: why we need to move beyond DTI
  publication-title: J. Neurosurg.
  doi: 10.3171/2013.2.JNS121294
– volume: 31
  start-page: 1240
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0205
  article-title: About the geometry of asymmetric fiber orientation distributions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2187916
– year: 2005
  ident: 10.1016/j.neuroimage.2013.12.047_bb0100
– start-page: 1918
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0305
  article-title: Within subject reproducibility and between subject variability of super-resolution track-weighted imaging
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 42
  start-page: 37
  year: 1999
  ident: 10.1016/j.neuroimage.2013.12.047_bb0135
  article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O
– volume: 44
  start-page: 83
  year: 2009
  ident: 10.1016/j.neuroimage.2013.12.047_bb0255
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.061
– volume: 53
  start-page: 1233
  year: 2010
  ident: 10.1016/j.neuroimage.2013.12.047_bb0040
  article-title: Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.024
– volume: 59
  start-page: 2494
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0050
  article-title: A generalised framework for super-resolution track-weighted imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.099
– start-page: 1919
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0030
  article-title: Fusing PET and MRI data using super-resolution track-weighted imaging
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 927
  year: 2009
  ident: 10.1016/j.neuroimage.2013.12.047_bb0095
  article-title: A novel global tractography algorithm based on an adaptive spin glass model
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– year: 2010
  ident: 10.1016/j.neuroimage.2013.12.047_bb0120
– start-page: 841
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0185
  article-title: Tractographic threshold-free cluster enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 1226
  year: 1998
  ident: 10.1016/j.neuroimage.2013.12.047_bb0005
  article-title: Fiber-tractography via diffusion tensor MRI (DT-MRI)
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 67
  start-page: 298
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0250
  article-title: SIFT: spherical-deconvolution informed filtering of tractograms
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.11.049
– volume: 70
  start-page: 199
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0025
  article-title: Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.054
– start-page: 772
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0285
  article-title: A robust spherical deconvolution method for the analysis of low SNR or low angular resolution diffusion data
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 402
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0220
  article-title: Beyond crossing fibers: tractography exploiting sub-voxel fibre dispersion and neighbourhood structure
  publication-title: Inf. Process. Med. Imaging
  doi: 10.1007/978-3-642-38868-2_34
– volume: 59
  start-page: 286
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0045
  article-title: Super-resolution track-density imaging studies of mouse brain: comparison to histology
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.07.014
– volume: 1
  start-page: 331
  year: 2011
  ident: 10.1016/j.neuroimage.2013.12.047_bb0155
  article-title: MRI diffusion indices sampled along streamline trajectories: quantitative tractography mapping
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0040
– start-page: 325
  year: 1999
  ident: 10.1016/j.neuroimage.2013.12.047_bb0170
  article-title: Tracking white matter fascicles with diffusion tensor imaging
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 62
  start-page: 1732
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0015
  article-title: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.002
– volume: 35
  start-page: 1459
  year: 2007
  ident: 10.1016/j.neuroimage.2013.12.047_bb0265
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 56
  start-page: 1259
  year: 2011
  ident: 10.1016/j.neuroimage.2013.12.047_bb0035
  article-title: Track density imaging (TDI): validation of super resolution property
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.059
– volume: 47
  start-page: 1288
  year: 2009
  ident: 10.1016/j.neuroimage.2013.12.047_bb0055
  article-title: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.03.077
– volume: 26
  start-page: 1775
  year: 2013
  ident: 10.1016/j.neuroimage.2013.12.047_bb0280
  article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3017
– volume: 56
  start-page: 220
  year: 2011
  ident: 10.1016/j.neuroimage.2013.12.047_bb0090
  article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.032
– volume: 23
  start-page: 1176
  year: 2004
  ident: 10.1016/j.neuroimage.2013.12.047_bb0290
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.037
– start-page: 3586
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0300
  article-title: Tract coherence imaging (TCI): quantifying the intra-voxel fiber tract heterogeneity
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 59
  start-page: 3976
  year: 2012
  ident: 10.1016/j.neuroimage.2013.12.047_bb0195
  article-title: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.045
– volume: 42
  start-page: 515
  year: 1999
  ident: 10.1016/j.neuroimage.2013.12.047_bb0125
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
SSID ssj0009148
Score 2.31422
Snippet Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 312
SubjectTerms Algorithms
Biological and medical sciences
Brain - cytology
Computer Simulation
Diffusion Tensor Imaging - methods
Diffusion weighted imaging
Experiments
Fiber orientation distribution
Fiber tractography
Fundamental and applied biological sciences. Psychology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Models, Statistical
Nerve Fibers, Myelinated - ultrastructure
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Subtraction Technique
Track orientation density imaging
Track orientation distribution
Track orientation weighted imaging
Track-density imaging
Track-like local support
Track-weighted imaging
Vertebrates: nervous system and sense organs
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED62DraOMfZ7XruiwR7WB9NYki2LPZTSrrSDri8Z5E3IsgXdUidtHEb_-93ZsrNBKHk0vgOhO-k-SXf3AXwuR0641Gdxkvg8ltJXseVexql2iC-K0paO7jsufmRnP-X3SToJF26LkFbZ74ntRl3OHN2RHyREkptQt6_D-U1MrFH0uhooNB7CowShCnm1mqhV091EdqVwqYhzFAiZPF1-V9sv8uoaVy0leIn2UpBIVtaHp2dzu8BJ8x3bxTo4-hSeLOu5vftjp9N_QtTpC3gesCU76pzhJTyo6lfw-CK8nr-GEgOT-80ub69CwVHNTih_vblj59ctWxH7Mr48Od9nti7ZGmFqshv4sVrJfUZBsGQNlVqF3tdvYHz6bXx8FgeWhdilijex1DkZBQOVTyrpPS_1SAubFpqPvBC8kE4IWSGwUYralSEkwQ-lXV65glvxFrbqWV29B2bx8JNbzQs8c0qXFXlmVV6VdIb0VqsiAtXPrXGhAzkRYUxNn2r2y6ysYsgqJuEGrRJBMmjOuy4cG-jo3nymrzLFfdFgqNhA9-ugG5BIhzA21N77z1uGIfM8HQkpZAS7vfuYsGUszMrBI_g0_MbFTi84tq5mS5JBwKUIo90roxE2K5FF8K5zzdUAiOseAWAEfPDVjSf0w_2j3oFtFJZdKvMubDW3y-ojAram2GtX5V_i6j6L
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLfYIe1DaN8fZQxl0h7GQ1GbpE0jntAYgknAJh0Se4qStJEYRzlBTxP763HatIyJodseo9pV6rj2L7FjA3woE8ts5vI4TV0Rc-6qWFPH40xaxBem1KX15x17-_nOIf9ylB0tQNLfhbkRv2_zsNq6jsen-Hf5RCzWHt5xcQ8Wcx9SGsHi4f7Xze9tUDNjcZG2vTzSxLcgzESfvHPXq_7mkZam-gLl5LoGF7ch0EfwYFZP9eVPPZn85pW2n8C3_nu6ZJST9Vlj1u2vP0o9_ssHP4XHAaKSzU6nnsFCVT-H-3shCP8CSvRv9oQcnB-He0s12fJp8M0l2T1tmx6Rj-ODrd01ouuS3ELsa_WGNlst5RrxvrQkjb-xFUpov4Tx9ufxp504NGuILYq5ibks_Nqiv3NpxZ2jpUwk05mRNHGMUcMtY7xCfCSEr3qGyAYHQtqisoZq9gpG9VldvQGicQ9VaEkNbl25zU2Ra1FUpd-KOi2FiUD066VsKGTu-2lMVJ-x9kNdy1B5GaqUKpRhBOnAOe2KeczBI3uVUP1lVTSvCtdtDt6NgTcAmg6ozMm9ekMDhynTIksYZzyClV4lVbA8Fyr1zaRTXxUvgvfDY7QZPhCk6-ps5mkQtwkP9e6kkYi-BcsjeN2p-_UEOC4j4sgI6KD_cwt0-X-Y3sJDHPEuT3oFRs35rHqHaLAxq8EAXAHUhVnT
  priority: 102
  providerName: Unpaywall
Title Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913012676
https://dx.doi.org/10.1016/j.neuroimage.2013.12.047
https://www.ncbi.nlm.nih.gov/pubmed/24389015
https://www.proquest.com/docview/1547314655
https://www.proquest.com/docview/1524175129
https://www.proquest.com/docview/1529951736
https://doi.org/10.1016/j.neuroimage.2013.12.047
UnpaywallVersion publishedVersion
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250803
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250803
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg30wxr7nrQse7GF98BJLsmWxpyxtSbY1DV0K6ZOQZQuypW5oHUZf9rfvzpadFcII7CXCyR04d6e7n-z7IOR91jPMRDYOwtAmAec2DzS1PIikAXyRZjoz-LzjeBwPz_iXWTTbIYOmFgbTKp3vr3165a3dN10nze5yPu9-B2QA4QbOG2CjNBbYdhu7f4FNf_y9TvOQIa_L4SIWILXL5qlzvKqekfML2LmY5MWqB4M4aGVziHq41NcgOFtPvNgESR-Qe6tiqW9-6cXirzB19Jg8cvjS79d_4QnZyYun5O6xe4P-jGQQnMxP_-Rq7oqOCv8Ac9jLG390UU0s8j9MTw5G-74uMn8DMTbadTOyKsp9HwNh5pdYbuX6Xz8n06PD6WAYuEkLgYkELQMuE1QMyNGGObeWZrInmY5SSXuWMZpywxjPAdwIgS3LAJbAhZAmyU1KNXtBdovLIn9FfA0HoERLmsK5k5s4TWItkjzDc6TVUqQeEY1slXFdyHEYxkI16WY_1ForCrWiQqpAKx4JW85l3YljCx7ZqE81labgGxWEiy14P7W8tyxyS-7OLWtpb5kmUY9xxj2y15iPcm7jWoU4CTrElnYeedf-DBse3-LoIr9cIQ2ALoE47Z80EqCzYLFHXtamub4BnHcPINAjtLXVrQX6-r-E8obchyteZzvvkd3yapW_BUxXpp1q08KnmIkOudMfnH6b4Dr6OhzD-vlwPDmF9Ww86Z__AW-rUT8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qBauI-FHraa0rKNiHw9zu3u0dIiLGktimfYmQt2Vv7xZq00tsEkr-KP9HZ-4rCqHkpY_H7RzDztzMb3bnA-Bd1rHChi7yg8DFvpQu9w130g8Ti_gizUxm6bxjcBr1fsofo3C0BX-aWhhKq2xsYmmos4mlM_KPAQ3JDajb15fpb5-mRtHtajNCo1KL43x5jSHb7HO_i_J9z_nR9-G3nl9PFfBtqPjcl0lMTKBhdkEuneNZglG9CdOEd5wQPJVWCJmjI1eK2nOhC8YHldg4tyk3Aj97B-5K0ZHUql-N1KrHbyCryrtQ-HEQJHXiUJVOVranPL9EI0H5ZKI8g6SZLuu94cOpmaGMXDVcYx36fQA7i2JqltdmPP7HIx49hkc1lGVfK917Alt58RTuDerL-meQoR-0F-zs6ryubypYl9Ll50vWvyyHI7EPw7Nu_5CZImNrFlNP33ocV7nykJHPzdicKrvqVtu7MLyN7X8O28WkyF8AMxhrxSbhKYa40kZpHBkV5xmFrM4kKvVANXurbd3wnOZujHWT2fZLr6SiSSo64Bql4kHQUk6rph8b0CSN-HRT1IpmWKNn2oD2U0tbA58K0GxIffCftrQs8zjsCCmkB_uN-ujaQs306n_y4G37Gm0LXRiZIp8saA3iO0WQ8MY1CaJ0JSIP9irVXDEgUYyINz3gra5uvKEvb-b6Dez0hoMTfdI_PX4F95FQVlnU-7A9v1rkrxErztOD8g9loG_ZIvwF9lp5Aw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qhaqI-O1prSso2Iejud297B0iIsbQWNv6ECFvy97eLVTTS2wulPxp_nfO3O0lCqHkpY8hO8ewMzvzm935AHiTd6ywseuGUeSSUEpXhIY7GcapRXyR5Sa3dN9xfNI9_CG_juLRFvxpa2EorbK1ibWhzieW7sgPIhqSG1G3rwPn0yK-9_ofp79DmiBFL63tOI1GRY6KxSWGb7MPgx7K-i3n_S_Dz4ehnzAQ2ljxKpRpQgyhkXZRIZ3jeYoRvomzlHecEDyTVghZoFNXilp1oTvGHyq1SWEzbgR-9gbcVEIKyiZTI7Xq9xvJpgovFmESRalPImpSy-pWlWfnaDAot0zU95E032W9Z7w7NTOUl2sGbaxDwnfg1rycmsWlGY__8Y79-3DPw1r2qdHDB7BVlA9h59g_3D-CHH2i_cVOL858rVPJepQ6Xy3Y4LwelMTeDU97g31mypytWUz9ff1ornrlPiP_m7OKqrx82-3HMLyO7X8C2-WkLJ4BMxh3JSblGYa70nazpGtUUuQUvjqTqiwA1e6ttr75Oc3gGOs2y-2nXklFk1R0xDVKJYBoSTltGoBsQJO24tNtgSuaZI1eagPa90taD4IacLMh9d5_2rJkmSdxB9VUBrDbqo_21mqmV2crgNfLv9HO0OORKYvJnNYg1lMED69ckyJiV6IbwNNGNVcM4Bkh7BkAX-rqxhv6_GquX8EO2gL9bXBy9AJuI51sEqp3Ybu6mBcvETZW2V59QBnoazYIfwHca30-
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLfYIe1DaN8fZQxl0h7GQ1GbpE0jntAYgknAJh0Se4qStJEYRzlBTxP763HatIyJodseo9pV6rj2L7FjA3woE8ts5vI4TV0Rc-6qWFPH40xaxBem1KX15x17-_nOIf9ylB0tQNLfhbkRv2_zsNq6jsen-Hf5RCzWHt5xcQ8Wcx9SGsHi4f7Xze9tUDNjcZG2vTzSxLcgzESfvHPXq_7mkZam-gLl5LoGF7ch0EfwYFZP9eVPPZn85pW2n8C3_nu6ZJST9Vlj1u2vP0o9_ssHP4XHAaKSzU6nnsFCVT-H-3shCP8CSvRv9oQcnB-He0s12fJp8M0l2T1tmx6Rj-ODrd01ouuS3ELsa_WGNlst5RrxvrQkjb-xFUpov4Tx9ufxp504NGuILYq5ibks_Nqiv3NpxZ2jpUwk05mRNHGMUcMtY7xCfCSEr3qGyAYHQtqisoZq9gpG9VldvQGicQ9VaEkNbl25zU2Ra1FUpd-KOi2FiUD066VsKGTu-2lMVJ-x9kNdy1B5GaqUKpRhBOnAOe2KeczBI3uVUP1lVTSvCtdtDt6NgTcAmg6ozMm9ekMDhynTIksYZzyClV4lVbA8Fyr1zaRTXxUvgvfDY7QZPhCk6-ps5mkQtwkP9e6kkYi-BcsjeN2p-_UEOC4j4sgI6KD_cwt0-X-Y3sJDHPEuT3oFRs35rHqHaLAxq8EAXAHUhVnT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Track+Orientation+Density+Imaging+%28TODI%29+and+Track+Orientation+Distribution+%28TOD%29+based+tractography&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=DHOLLANDER%2C+Thijs&rft.au=EMSELL%2C+Louise&rft.au=VAN+HECKE%2C+Wim&rft.au=MAES%2C+Frederik&rft.date=2014-07-01&rft.pub=Elsevier&rft.issn=1053-8119&rft.volume=94&rft.spage=312&rft.epage=336&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.12.047&rft.externalDBID=n%2Fa&rft.externalDocID=28503434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon