Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography
Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resul...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 94; pp. 312 - 336 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.07.2014
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2013.12.047 |
Cover
Abstract | Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications.
[Display omitted]
•Track Orientation Density Imaging (TODI) extends TDI to the 5D spatio-angular domain.•TODI constructs the full Track Orientation Distribution (TOD) in each voxel.•TODI is amenable to spatial and angular super-resolution (or even sub-resolution).•The amplitude of a short-tracks TOD is a measure of Track-like Local Support (TLS).•A short-tracks TOD can guide tracks along continuous structure over a longer distance. |
---|---|
AbstractList | Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications.Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications. Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications. [Display omitted] •Track Orientation Density Imaging (TODI) extends TDI to the 5D spatio-angular domain.•TODI constructs the full Track Orientation Distribution (TOD) in each voxel.•TODI is amenable to spatial and angular super-resolution (or even sub-resolution).•The amplitude of a short-tracks TOD is a measure of Track-like Local Support (TLS).•A short-tracks TOD can guide tracks along continuous structure over a longer distance. Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on in vivo human subject data, an in silico numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e. where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications. Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments onin vivohuman subject data, anin siliconumerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution (i.e.where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications. Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern methods can handle complex fiber architecture and take on a probabilistic approach to account for different sources of uncertainty. The resulting tractogram from any such method typically represents a finite random sample from a complex distribution of possible tracks. Generating a higher amount of tracks allows for a more accurate depiction of the underlying distribution. The recently proposed method of track-density imaging (TDI) allows to capture the spatial distribution of a tractogram. In this work, we propose an extension of TDI towards the 5D spatio-angular domain, which we name track orientation density imaging (TODI). The proposed method aims to capture the full track orientation distribution (TOD). Just as the TDI map, the TOD is amenable to spatial super-resolution (or even sub-resolution), but in addition also to angular super-resolution. Through experiments on human subject data, an numerical phantom and a challenging tractography phantom, we found that the TOD presents an increased amount of regional spatio-angular consistency, as compared to the fiber orientation distribution (FOD) from constrained spherical deconvolution (CSD). Furthermore, we explain how the amplitude of the TOD of a short-tracks distribution ( where the track length is limited) can be interpreted as a measure of track-like local support (TLS). This in turn motivated us to explore the idea of TOD-based fiber tractography. In such a setting, the short-tracks TOD is able to guide a track along directions that are more likely to correspond to continuous structure over a longer distance. This powerful concept is shown to greatly robustify targeted as well as whole-brain tractography. We conclude that the TOD is a versatile tool that can be cast in many different roles and scenarios in the expanding domain of fiber tractography based methods and their applications. |
Author | Sunaert, Stefan Van Hecke, Wim Suetens, Paul Dhollander, Thijs Maes, Frederik Emsell, Louise |
Author_xml | – sequence: 1 givenname: Thijs surname: Dhollander fullname: Dhollander, Thijs email: thijs.dhollander@gmail.com organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium – sequence: 2 givenname: Louise surname: Emsell fullname: Emsell, Louise organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium – sequence: 3 givenname: Wim surname: Van Hecke fullname: Van Hecke, Wim organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium – sequence: 4 givenname: Frederik surname: Maes fullname: Maes, Frederik organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium – sequence: 5 givenname: Stefan surname: Sunaert fullname: Sunaert, Stefan organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium – sequence: 6 givenname: Paul surname: Suetens fullname: Suetens, Paul organization: Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28503434$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24389015$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl9r2zAUxcXoWNtsX2EYxqB9sKcrWbb1Mrq1-xMo5CXvQpavM6WOnEn2Rr59lTpbIewhQw_Shd89ujpHl-TM9Q4JSYBmQKH4sM4cjr63G73CjFHgGbCM5uULcgFUilSKkp3tz4KnFYA8J5chrCmlEvLqFTlnOa8kBXFBmqXX5iFZeItu0IPtXXKHLthhl8yjunWr5Gq5uJtfJ9o1yT9gGwZv6_Gp2JPXSa0DNskQ0aFfeb39sXtNXra6C_jmsM_I8uuX5e339H7xbX776T41cd4hzWVVQN1QYC1g3raskVRyLWrJaMs5q3PDeY5x9LIUoqhKoLEopanQ1EzzGZGT7Oi2evdbd53a-uiR3ymgam-cWqtn49TeOAVMReNi79XUu_X9zxHDoDY2GOw67bAfgwLBpBRQ8uIUNIdSAJMRfXeErvvRu-hBpOKtkBdCROrtgRrrDTZ_h_6TUgTeHwAdjO5ar52x4ZmrBOV5XDNSTZzxfQge2_95_8ejVmOniGOQtjtF4PMkgDHgXxa9CiZ-E4ON9WgG1fT2FJGbIxHTWWfjmx9wd5rEI-_g-BU |
CitedBy_id | crossref_primary_10_1002_mrm_30160 crossref_primary_10_1016_j_neuroimage_2019_116137 crossref_primary_10_1093_cercor_bhab184 crossref_primary_10_1007_s00429_018_1798_7 crossref_primary_10_1016_j_neuroimage_2015_05_070 crossref_primary_10_1002_nbm_3785 crossref_primary_10_1227_NEU_0000000000001840 crossref_primary_10_1016_j_media_2015_10_011 crossref_primary_10_1007_s10334_017_0608_1 crossref_primary_10_3389_fnana_2019_00024 crossref_primary_10_52294_001c_123922 crossref_primary_10_1016_j_neuroimage_2015_08_008 crossref_primary_10_1016_j_neuroimage_2020_117483 crossref_primary_10_3389_fnins_2024_1467786 crossref_primary_10_1016_j_media_2020_101760 crossref_primary_10_1016_j_media_2017_03_003 crossref_primary_10_1002_hbm_26578 crossref_primary_10_1007_s11548_022_02617_z crossref_primary_10_1371_journal_pone_0304449 crossref_primary_10_1016_j_neuroimage_2018_11_018 crossref_primary_10_1016_j_neuroimage_2018_10_070 crossref_primary_10_1016_j_neuroimage_2023_119999 crossref_primary_10_1371_journal_pone_0138122 crossref_primary_10_1016_j_nicl_2023_103412 crossref_primary_10_1089_brain_2020_0930 crossref_primary_10_1093_neuros_nyy538 crossref_primary_10_1016_j_neuroimage_2017_12_039 |
Cites_doi | 10.1006/jmva.1998.1757 10.1002/ima.22005 10.1016/j.neuroimage.2012.06.081 10.1002/mrm.23058 10.1002/mrm.20948 10.1016/j.media.2013.03.009 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1016/j.neuroimage.2010.09.016 10.1002/mrm.10308 10.1002/mrm.21789 10.1089/brain.2011.0033 10.1016/j.neuroimage.2012.06.005 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1016/j.neuroimage.2010.12.010 10.1109/TMI.2011.2112769 10.1007/BF03024331 10.1371/journal.pcbi.0010042 10.1016/j.jneumeth.2010.01.014 10.1016/j.neuroimage.2008.05.002 10.1073/pnas.96.18.10422 10.3171/2013.2.JNS121294 10.1109/TMI.2012.2187916 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O 10.1016/j.neuroimage.2008.03.061 10.1016/j.neuroimage.2010.07.024 10.1016/j.neuroimage.2011.08.099 10.1016/j.neuroimage.2012.11.049 10.1016/j.neuroimage.2012.12.054 10.1007/978-3-642-38868-2_34 10.1016/j.neuroimage.2011.07.014 10.1089/brain.2011.0040 10.1016/j.neuroimage.2012.06.002 10.1016/j.neuroimage.2007.02.016 10.1016/j.neuroimage.2011.02.059 10.1016/j.neuroimage.2009.03.077 10.1002/nbm.3017 10.1016/j.neuroimage.2011.01.032 10.1016/j.neuroimage.2004.07.037 10.1016/j.neuroimage.2011.10.045 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q |
ContentType | Journal Article |
Copyright | 2013 The Authors 2015 INIST-CNRS Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 1, 2014 |
Copyright_xml | – notice: 2013 The Authors – notice: 2015 INIST-CNRS – notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 1, 2014 |
DBID | 6I. AAFTH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO ADTOC UNPAY |
DOI | 10.1016/j.neuroimage.2013.12.047 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 336 |
ExternalDocumentID | 10.1016/j.neuroimage.2013.12.047 3380122331 24389015 28503434 10_1016_j_neuroimage_2013_12_047 S1053811913012676 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACLOT ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT ~HD ALIPV IQODW CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO ADTOC UNPAY |
ID | FETCH-LOGICAL-c572t-49861bd012f1e4ff2d9093a5b920f332b4c334e389775568710e3879c8ecb2a3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Sun Sep 07 11:28:21 EDT 2025 Mon Sep 29 06:22:28 EDT 2025 Sun Sep 28 11:58:39 EDT 2025 Sat Aug 23 13:06:46 EDT 2025 Thu Apr 03 07:03:29 EDT 2025 Wed Apr 02 07:16:10 EDT 2025 Wed Oct 01 02:58:15 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Fri Feb 23 02:36:03 EST 2024 Tue Aug 26 16:31:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TW-FC SCP SIFT TW-PET Track-weighted imaging Fiber orientation distribution DIST iFOD2 KDE DWI FOD IC Track orientation distribution PSF TWI TOD TOWI HARDI TWM RGB Track orientation weighted imaging VC TWT fMRI NC Track-like local support RH TOWM DTI FA AFD TOWT CNR Track-density imaging Fiber tractography CSD SH SNR WM TDI TLS Track orientation density imaging CB DEC GCC GM TODI ACT TFCE ATI TRSE iTOD2 Diffusion weighted imaging APM PET Orientation Density Imaging Distribution |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 CC BY 4.0 Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-49861bd012f1e4ff2d9093a5b920f332b4c334e389775568710e3879c8ecb2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811913012676 |
PMID | 24389015 |
PQID | 1547314655 |
PQPubID | 2031077 |
PageCount | 25 |
ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2013_12_047 proquest_miscellaneous_1529951736 proquest_miscellaneous_1524175129 proquest_journals_1547314655 pubmed_primary_24389015 pascalfrancis_primary_28503434 crossref_primary_10_1016_j_neuroimage_2013_12_047 crossref_citationtrail_10_1016_j_neuroimage_2013_12_047 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_12_047 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_12_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | Côté, Boré, Girard, Houde, Descoteaux (bb0065) 2012 Hagmann, Cammoun, Gigandet, Gerhard, Grant, Wedeen, Meuli, Thiran, Honey, Sporns (bb0105) 2010; 194 Calamante, Tournier, Kurniawan, Yang, Gyengesi, Galloway, Reutens, Connelly (bb0045) 2012; 59 Tournier, Calamante, Connelly (bb0285) 2013 Raffelt, Tournier, Crozier, Connelly, Salvado (bb0190) 2012; 67 Savadjiev, Rathi, Bouix, Verma, Westin (bb0230) 2012 Poupon, Rieul, Kezele, Perrin, Poupon, Mangin (bb0180) 2008; 60 Smith, Nichols (bb0255) 2009; 44 Calamante, Tournier, Heidemann, Anwander, Jackson, Connelly (bb0035) 2011; 56 Fillard, Descoteaux, Goh, Gouttard, Jeurissen, Malcolm, Ramirez-Manzanares, Reisert, Sakaie, Tensaouti, Yo, Mangin, Poupon (bb0090) 2011; 56 Healy, Hendriks, Kim (bb0110) 1998; 67 Jbabdi, Johansen-Berg (bb0115) 2011; 1 Rowe, Zhang, Oxtoby, Alexander (bb0220) 2013 Close, Tournier, Calamante, Johnston, Mareels, Connelly (bb0055) 2009; 47 Reisert, Mader, Anastasopoulos, Weigel, Schnell, Kiselev (bb0215) 2011; 54 Calamante, Son, Tournier, Ryu, Oh, Connelly, Cho (bb0030) 2012 Calamante, Masterton, Tournier, Smith, Willats, Raffelt, Connelly (bb0025) 2013; 70 Calamante, Masterton, Tournier, Smith, Willats, Raffelt, Connelly (bb0020) 2012 Descoteaux, Angelino, Fitzgibbons, Deriche (bb0075) 2006; 56 Pannek, Raffelt, Salvado, Rose (bb0160) 2012 Côté, Girard, Boré, Garyfallidis, Houde, Descoteaux (bb0070) 2013; 17 Farquharson, Tournier, Calamante, Fabinyi, Schneider-Kolsky, Jackson, Connelly (bb0085) 2013; 118 Smith, Tournier, Calamante, Connelly (bb0240) 2012; 62 Reese, Heid, Weisskoff, Wedeen (bb0200) 2003; 49 Reisert, Kiselev (bb0210) 2011; 30 Basser (bb0005) 1998 Pasternak, Rathi, Shenton, Westin (bb0165) 2012 Fillard, Poupon, Mangin (bb0095) 2009 Hagmann (bb0100) 2005 Jones, Simmons, Williams, Horsfield (bb0135) 1999; 42 Poupon, Clark, Frouin, Bloch, Bihan, Mangin (bb0170) 1999 Smith, Tournier, Calamante, Connelly (bb0235) 2011 Smith, Tournier, Calamante, Connelly (bb0245) 2013 Reisert, Kellner, Kiselev (bb0205) 2012; 31 Sporns, Tononi, Kötter (bb0260) 2005; 1 Mori, Crain, Chacko, Zijl (bb0145) 1999; 45 Saff, Kuijlaars (bb0225) 1997; 19 Tournier, Calamante, Connelly (bb0280) 2013; 26 Poupon, Laribiere, Tournier, Bernard, Fournier, Fillard, Descoteaux, Mangin (bb0175) 2010 Tournier, Calamante, Connelly (bb0265) 2007; 35 Willats, Raffelt, Smith, Tournier, Connelly, Calamante (bb0305) 2012 Dhollander, Emsell, Van Hecke, Maes, Sunaert, Suetens (bb0080) 2012 Tournier, Calamante, Connelly (bb0270) 2010 Lori, Cull, Akbudak, Snyder, Shimony, Burton, Raichle, Conturo (bb0140) 1999 Vos, Viergever, Leemans (bb0300) 2012 Raffelt, Tournier, Rose, Ridgway, Henderson, Crozier, Salvado, Connelly (bb0195) 2012; 59 Pannek, Mathias, Rose (bb0155) 2011; 1 Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bb0010) 2000; 44 Jones (bb0120) 2010 Raffelt, Smith, Tournier, Ridgway, Villemagne, Rowe, Salvado, Connelly (bb0185) 2013 Bastiani, Shah, Goebel, Roebroeck (bb0015) 2012; 62 Calamante, Tournier, Jackson, Connelly (bb0040) 2010; 53 Smith, Tournier, Calamante, Connelly (bb0250) 2013; 67 Conturo, Lori, Cull, Akbudak, Snyder, Shimony, Mc Kinstry, Burton, Raichle (bb0060) 1999 Jones, Knösche, Turner (bb0130) 2013; 73 Tournier, Calamante, Connelly (bb0275) 2012; 22 Calamante, Tournier, Smith, Connelly (bb0050) 2012; 59 Tournier, Yeh, Calamante, Cho, Connelly, Lin (bb0295) 2008; 42 Jones, Horsfield, Simmons (bb0125) 1999; 42 Tournier, Calamante, Gadian, Connelly (bb0290) 2004; 23 Pannek, Mathias, Bigler, Brown, Taylor, Rose (bb0150) 2011; 55 Poupon (10.1016/j.neuroimage.2013.12.047_bb0170) 1999 Reisert (10.1016/j.neuroimage.2013.12.047_bb0215) 2011; 54 Côté (10.1016/j.neuroimage.2013.12.047_bb0065) 2012 Reisert (10.1016/j.neuroimage.2013.12.047_bb0205) 2012; 31 Saff (10.1016/j.neuroimage.2013.12.047_bb0225) 1997; 19 Tournier (10.1016/j.neuroimage.2013.12.047_bb0285) 2013 Raffelt (10.1016/j.neuroimage.2013.12.047_bb0195) 2012; 59 Tournier (10.1016/j.neuroimage.2013.12.047_bb0275) 2012; 22 Hagmann (10.1016/j.neuroimage.2013.12.047_bb0105) 2010; 194 Basser (10.1016/j.neuroimage.2013.12.047_bb0005) 1998 Fillard (10.1016/j.neuroimage.2013.12.047_bb0090) 2011; 56 Smith (10.1016/j.neuroimage.2013.12.047_bb0255) 2009; 44 Smith (10.1016/j.neuroimage.2013.12.047_bb0245) 2013 Pannek (10.1016/j.neuroimage.2013.12.047_bb0155) 2011; 1 Fillard (10.1016/j.neuroimage.2013.12.047_bb0095) 2009 Hagmann (10.1016/j.neuroimage.2013.12.047_bb0100) 2005 Mori (10.1016/j.neuroimage.2013.12.047_bb0145) 1999; 45 Smith (10.1016/j.neuroimage.2013.12.047_bb0235) 2011 Pannek (10.1016/j.neuroimage.2013.12.047_bb0160) 2012 Dhollander (10.1016/j.neuroimage.2013.12.047_bb0080) 2012 Calamante (10.1016/j.neuroimage.2013.12.047_bb0025) 2013; 70 Jbabdi (10.1016/j.neuroimage.2013.12.047_bb0115) 2011; 1 Calamante (10.1016/j.neuroimage.2013.12.047_bb0040) 2010; 53 Descoteaux (10.1016/j.neuroimage.2013.12.047_bb0075) 2006; 56 Raffelt (10.1016/j.neuroimage.2013.12.047_bb0185) 2013 Tournier (10.1016/j.neuroimage.2013.12.047_bb0290) 2004; 23 Jones (10.1016/j.neuroimage.2013.12.047_bb0135) 1999; 42 Vos (10.1016/j.neuroimage.2013.12.047_bb0300) 2012 Conturo (10.1016/j.neuroimage.2013.12.047_bb0060) 1999 Healy (10.1016/j.neuroimage.2013.12.047_bb0110) 1998; 67 Jones (10.1016/j.neuroimage.2013.12.047_bb0120) 2010 Calamante (10.1016/j.neuroimage.2013.12.047_bb0045) 2012; 59 Reese (10.1016/j.neuroimage.2013.12.047_bb0200) 2003; 49 Calamante (10.1016/j.neuroimage.2013.12.047_bb0020) 2012 Calamante (10.1016/j.neuroimage.2013.12.047_bb0030) 2012 Tournier (10.1016/j.neuroimage.2013.12.047_bb0270) 2010 Farquharson (10.1016/j.neuroimage.2013.12.047_bb0085) 2013; 118 Rowe (10.1016/j.neuroimage.2013.12.047_bb0220) 2013 Tournier (10.1016/j.neuroimage.2013.12.047_bb0265) 2007; 35 Savadjiev (10.1016/j.neuroimage.2013.12.047_bb0230) 2012 Close (10.1016/j.neuroimage.2013.12.047_bb0055) 2009; 47 Smith (10.1016/j.neuroimage.2013.12.047_bb0250) 2013; 67 Jones (10.1016/j.neuroimage.2013.12.047_bb0130) 2013; 73 Basser (10.1016/j.neuroimage.2013.12.047_bb0010) 2000; 44 Tournier (10.1016/j.neuroimage.2013.12.047_bb0280) 2013; 26 Tournier (10.1016/j.neuroimage.2013.12.047_bb0295) 2008; 42 Calamante (10.1016/j.neuroimage.2013.12.047_bb0035) 2011; 56 Pasternak (10.1016/j.neuroimage.2013.12.047_bb0165) 2012 Côté (10.1016/j.neuroimage.2013.12.047_bb0070) 2013; 17 Jones (10.1016/j.neuroimage.2013.12.047_bb0125) 1999; 42 Willats (10.1016/j.neuroimage.2013.12.047_bb0305) 2012 Raffelt (10.1016/j.neuroimage.2013.12.047_bb0190) 2012; 67 Reisert (10.1016/j.neuroimage.2013.12.047_bb0210) 2011; 30 Lori (10.1016/j.neuroimage.2013.12.047_bb0140) 1999 Smith (10.1016/j.neuroimage.2013.12.047_bb0240) 2012; 62 Bastiani (10.1016/j.neuroimage.2013.12.047_bb0015) 2012; 62 Pannek (10.1016/j.neuroimage.2013.12.047_bb0150) 2011; 55 Poupon (10.1016/j.neuroimage.2013.12.047_bb0180) 2008; 60 Calamante (10.1016/j.neuroimage.2013.12.047_bb0050) 2012; 59 Poupon (10.1016/j.neuroimage.2013.12.047_bb0175) 2010 Sporns (10.1016/j.neuroimage.2013.12.047_bb0260) 2005; 1 |
References_xml | – volume: 56 start-page: 395 year: 2006 end-page: 410 ident: bb0075 article-title: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications publication-title: Magn. Reson. Med. – start-page: 1912 year: 2012 ident: bb0160 article-title: Incorporating directional information in diffusion tractography derived maps: angular track imaging (ATI) publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 56 start-page: 220 year: 2011 end-page: 234 ident: bb0090 article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom publication-title: NeuroImage – volume: 59 start-page: 3976 year: 2012 end-page: 3994 ident: bb0195 article-title: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images publication-title: NeuroImage – start-page: 772 year: 2013 ident: bb0285 article-title: A robust spherical deconvolution method for the analysis of low SNR or low angular resolution diffusion data publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 59 start-page: 286 year: 2012 end-page: 296 ident: bb0045 article-title: Super-resolution track-density imaging studies of mouse brain: comparison to histology publication-title: NeuroImage – year: 2005 ident: bb0100 article-title: From diffusion MRI to brain connectomics – volume: 47 start-page: 1288 year: 2009 end-page: 1300 ident: bb0055 article-title: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms publication-title: NeuroImage – start-page: 325 year: 1999 ident: bb0170 article-title: Tracking white matter fascicles with diffusion tensor imaging publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 45 start-page: 265 year: 1999 end-page: 269 ident: bb0145 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann. Neurol. – volume: 30 start-page: 1274 year: 2011 end-page: 1283 ident: bb0210 article-title: Fiber continuity: an anisotropic prior for ODF estimation publication-title: IEEE Trans. Med. Imaging – volume: 62 start-page: 1732 year: 2012 end-page: 1749 ident: bb0015 article-title: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm publication-title: NeuroImage – start-page: 402 year: 2013 end-page: 413 ident: bb0220 article-title: Beyond crossing fibers: tractography exploiting sub-voxel fibre dispersion and neighbourhood structure publication-title: Inf. Process. Med. Imaging – volume: 22 start-page: 53 year: 2012 end-page: 66 ident: bb0275 article-title: MRtrix: diffusion tractography in crossing fiber regions publication-title: Int. J. Imaging Syst. Technol. – volume: 56 start-page: 1259 year: 2011 end-page: 1266 ident: bb0035 article-title: Track density imaging (TDI): validation of super resolution property publication-title: NeuroImage – volume: 42 start-page: 37 year: 1999 end-page: 41 ident: bb0135 article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI publication-title: Magn. Reson. Med. – start-page: 1915 year: 2012 ident: bb0165 article-title: Estimation of the angle between crossing fibers as a novel structural quantity publication-title: Proc. Int. Soc. Magn. Reson. Med. – year: 2010 ident: bb0120 article-title: Diffusion MRI: Theory, Methods, and Applications – start-page: 673 year: 2011 ident: bb0235 article-title: A novel paradigm for automated segmentation of very large whole-brain probabilistic tractography data sets publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 42 start-page: 515 year: 1999 end-page: 525 ident: bb0125 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 118 start-page: 1367 year: 2013 end-page: 1377 ident: bb0085 article-title: White matter fiber tractography: why we need to move beyond DTI publication-title: J. Neurosurg. – volume: 54 start-page: 955 year: 2011 end-page: 962 ident: bb0215 article-title: Global fiber reconstruction becomes practical publication-title: NeuroImage – start-page: 1918 year: 2012 ident: bb0305 article-title: Within subject reproducibility and between subject variability of super-resolution track-weighted imaging publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 44 start-page: 625 year: 2000 end-page: 632 ident: bb0010 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. – volume: 59 start-page: 2494 year: 2012 end-page: 2503 ident: bb0050 article-title: A generalised framework for super-resolution track-weighted imaging publication-title: NeuroImage – volume: 55 start-page: 133 year: 2011 end-page: 141 ident: bb0150 article-title: The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology publication-title: NeuroImage – volume: 19 start-page: 5 year: 1997 end-page: 11 ident: bb0225 article-title: Distributing many points on a sphere publication-title: Math. Intell. – start-page: 1670 year: 2010 ident: bb0270 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 70 start-page: 199 year: 2013 end-page: 210 ident: bb0025 article-title: Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain publication-title: NeuroImage – volume: 67 start-page: 1 year: 1998 end-page: 22 ident: bb0110 article-title: Spherical deconvolution publication-title: J. Multivar. Anal. – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bb0265 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage – volume: 44 start-page: 83 year: 2009 end-page: 98 ident: bb0255 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: NeuroImage – volume: 31 start-page: 1240 year: 2012 end-page: 1249 ident: bb0205 article-title: About the geometry of asymmetric fiber orientation distributions publication-title: IEEE Trans. Med. Imaging – volume: 62 start-page: 1924 year: 2012 end-page: 1938 ident: bb0240 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: NeuroImage – start-page: 1226 year: 1998 ident: bb0005 article-title: Fiber-tractography via diffusion tensor MRI (DT-MRI) publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 1 start-page: e42 year: 2005 ident: bb0260 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. – start-page: 841 year: 2013 ident: bb0185 article-title: Tractographic threshold-free cluster enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 17 start-page: 844 year: 2013 end-page: 857 ident: bb0070 article-title: Tractometer: Towards validation of tractography pipelines publication-title: Med. Image Anal. – volume: 49 start-page: 177 year: 2003 end-page: 182 ident: bb0200 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. – volume: 1 start-page: 331 year: 2011 end-page: 338 ident: bb0155 article-title: MRI diffusion indices sampled along streamline trajectories: quantitative tractography mapping publication-title: Brain Connect. – start-page: 2135 year: 2013 ident: bb0245 article-title: Evidence for the improved biological interpretability of white matter connectivity derived following tractogram filtering using SIFT publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 194 start-page: 34 year: 2010 end-page: 45 ident: bb0105 article-title: MR connectomics: principles and challenges publication-title: J. Neurosci. Methods – start-page: 698 year: 2012 end-page: 705 ident: bb0065 article-title: Tractometer: online evaluation system for tractography publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 73 start-page: 239 year: 2013 end-page: 254 ident: bb0130 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: NeuroImage – volume: 26 start-page: 1775 year: 2013 end-page: 1786 ident: bb0280 article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging publication-title: NMR Biomed. – start-page: 1919 year: 2012 ident: bb0030 article-title: Fusing PET and MRI data using super-resolution track-weighted imaging publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 60 start-page: 1276 year: 2008 end-page: 1283 ident: bb0180 article-title: New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models publication-title: Magn. Reson. Med. – start-page: 34 year: 2012 end-page: 41 ident: bb0230 article-title: Multi-scale characterization of white matter tract geometry publication-title: Med. Image Comput. Comput. Assist. Interv. – start-page: 3586 year: 2012 ident: bb0300 article-title: Tract coherence imaging (TCI): quantifying the intra-voxel fiber tract heterogeneity publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 53 start-page: 1233 year: 2010 end-page: 1243 ident: bb0040 article-title: Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping publication-title: NeuroImage – volume: 67 start-page: 298 year: 2013 end-page: 312 ident: bb0250 article-title: SIFT: spherical-deconvolution informed filtering of tractograms publication-title: NeuroImage – start-page: 581 year: 2010 ident: bb0175 article-title: A diffusion hardware phantom looking like a coronal brain slice publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 927 year: 2009 end-page: 934 ident: bb0095 article-title: A novel global tractography algorithm based on an adaptive spin glass model publication-title: Med. Image Comput. Comput. Assist. Interv. – start-page: 324 year: 1999 ident: bb0140 article-title: Tracking neuronal fibers in the living human brain with diffusion MRI publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 1920 year: 2012 ident: bb0080 article-title: Track-density imaging & noise: when super-resolution quality does not yield accuracy publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 23 start-page: 1176 year: 2004 end-page: 1185 ident: bb0290 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: NeuroImage – volume: 67 start-page: 844 year: 2012 end-page: 855 ident: bb0190 article-title: Reorientation of fiber orientation distributions using apodized point spread functions publication-title: Magn. Reson. Med. – volume: 42 start-page: 617 year: 2008 end-page: 625 ident: bb0295 article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data publication-title: NeuroImage – volume: 1 start-page: 169 year: 2011 end-page: 183 ident: bb0115 article-title: Tractography: where do we go from here? publication-title: Brain Connect. – start-page: 10422 year: 1999 end-page: 10427 ident: bb0060 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 139 year: 2012 ident: bb0020 article-title: Super-resolution track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 67 start-page: 1 year: 1998 ident: 10.1016/j.neuroimage.2013.12.047_bb0110 article-title: Spherical deconvolution publication-title: J. Multivar. Anal. doi: 10.1006/jmva.1998.1757 – volume: 22 start-page: 53 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0275 article-title: MRtrix: diffusion tractography in crossing fiber regions publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22005 – start-page: 1912 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0160 article-title: Incorporating directional information in diffusion tractography derived maps: angular track imaging (ATI) publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 1920 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0080 article-title: Track-density imaging & noise: when super-resolution quality does not yield accuracy publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 698 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0065 article-title: Tractometer: online evaluation system for tractography publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 73 start-page: 239 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0130 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.081 – volume: 67 start-page: 844 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0190 article-title: Reorientation of fiber orientation distributions using apodized point spread functions publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23058 – start-page: 34 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0230 article-title: Multi-scale characterization of white matter tract geometry publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 56 start-page: 395 year: 2006 ident: 10.1016/j.neuroimage.2013.12.047_bb0075 article-title: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20948 – volume: 17 start-page: 844 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0070 article-title: Tractometer: Towards validation of tractography pipelines publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.03.009 – start-page: 581 year: 2010 ident: 10.1016/j.neuroimage.2013.12.047_bb0175 article-title: A diffusion hardware phantom looking like a coronal brain slice publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 45 start-page: 265 year: 1999 ident: 10.1016/j.neuroimage.2013.12.047_bb0145 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann. Neurol. doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 54 start-page: 955 year: 2011 ident: 10.1016/j.neuroimage.2013.12.047_bb0215 article-title: Global fiber reconstruction becomes practical publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.016 – start-page: 1670 year: 2010 ident: 10.1016/j.neuroimage.2013.12.047_bb0270 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 49 start-page: 177 year: 2003 ident: 10.1016/j.neuroimage.2013.12.047_bb0200 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10308 – start-page: 139 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0020 article-title: Super-resolution track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 60 start-page: 1276 year: 2008 ident: 10.1016/j.neuroimage.2013.12.047_bb0180 article-title: New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21789 – volume: 1 start-page: 169 year: 2011 ident: 10.1016/j.neuroimage.2013.12.047_bb0115 article-title: Tractography: where do we go from here? publication-title: Brain Connect. doi: 10.1089/brain.2011.0033 – start-page: 324 year: 1999 ident: 10.1016/j.neuroimage.2013.12.047_bb0140 article-title: Tracking neuronal fibers in the living human brain with diffusion MRI publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 62 start-page: 1924 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0240 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 44 start-page: 625 year: 2000 ident: 10.1016/j.neuroimage.2013.12.047_bb0010 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – volume: 55 start-page: 133 year: 2011 ident: 10.1016/j.neuroimage.2013.12.047_bb0150 article-title: The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.010 – start-page: 2135 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0245 article-title: Evidence for the improved biological interpretability of white matter connectivity derived following tractogram filtering using SIFT publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 30 start-page: 1274 year: 2011 ident: 10.1016/j.neuroimage.2013.12.047_bb0210 article-title: Fiber continuity: an anisotropic prior for ODF estimation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2112769 – volume: 19 start-page: 5 year: 1997 ident: 10.1016/j.neuroimage.2013.12.047_bb0225 article-title: Distributing many points on a sphere publication-title: Math. Intell. doi: 10.1007/BF03024331 – volume: 1 start-page: e42 year: 2005 ident: 10.1016/j.neuroimage.2013.12.047_bb0260 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 194 start-page: 34 year: 2010 ident: 10.1016/j.neuroimage.2013.12.047_bb0105 article-title: MR connectomics: principles and challenges publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.01.014 – volume: 42 start-page: 617 year: 2008 ident: 10.1016/j.neuroimage.2013.12.047_bb0295 article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.002 – start-page: 10422 year: 1999 ident: 10.1016/j.neuroimage.2013.12.047_bb0060 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.18.10422 – start-page: 1915 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0165 article-title: Estimation of the angle between crossing fibers as a novel structural quantity publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 673 year: 2011 ident: 10.1016/j.neuroimage.2013.12.047_bb0235 article-title: A novel paradigm for automated segmentation of very large whole-brain probabilistic tractography data sets publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 118 start-page: 1367 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0085 article-title: White matter fiber tractography: why we need to move beyond DTI publication-title: J. Neurosurg. doi: 10.3171/2013.2.JNS121294 – volume: 31 start-page: 1240 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0205 article-title: About the geometry of asymmetric fiber orientation distributions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2187916 – year: 2005 ident: 10.1016/j.neuroimage.2013.12.047_bb0100 – start-page: 1918 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0305 article-title: Within subject reproducibility and between subject variability of super-resolution track-weighted imaging publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 42 start-page: 37 year: 1999 ident: 10.1016/j.neuroimage.2013.12.047_bb0135 article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O – volume: 44 start-page: 83 year: 2009 ident: 10.1016/j.neuroimage.2013.12.047_bb0255 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.061 – volume: 53 start-page: 1233 year: 2010 ident: 10.1016/j.neuroimage.2013.12.047_bb0040 article-title: Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.024 – volume: 59 start-page: 2494 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0050 article-title: A generalised framework for super-resolution track-weighted imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.099 – start-page: 1919 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0030 article-title: Fusing PET and MRI data using super-resolution track-weighted imaging publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 927 year: 2009 ident: 10.1016/j.neuroimage.2013.12.047_bb0095 article-title: A novel global tractography algorithm based on an adaptive spin glass model publication-title: Med. Image Comput. Comput. Assist. Interv. – year: 2010 ident: 10.1016/j.neuroimage.2013.12.047_bb0120 – start-page: 841 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0185 article-title: Tractographic threshold-free cluster enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 1226 year: 1998 ident: 10.1016/j.neuroimage.2013.12.047_bb0005 article-title: Fiber-tractography via diffusion tensor MRI (DT-MRI) publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 67 start-page: 298 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0250 article-title: SIFT: spherical-deconvolution informed filtering of tractograms publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.11.049 – volume: 70 start-page: 199 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0025 article-title: Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.054 – start-page: 772 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0285 article-title: A robust spherical deconvolution method for the analysis of low SNR or low angular resolution diffusion data publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 402 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0220 article-title: Beyond crossing fibers: tractography exploiting sub-voxel fibre dispersion and neighbourhood structure publication-title: Inf. Process. Med. Imaging doi: 10.1007/978-3-642-38868-2_34 – volume: 59 start-page: 286 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0045 article-title: Super-resolution track-density imaging studies of mouse brain: comparison to histology publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.07.014 – volume: 1 start-page: 331 year: 2011 ident: 10.1016/j.neuroimage.2013.12.047_bb0155 article-title: MRI diffusion indices sampled along streamline trajectories: quantitative tractography mapping publication-title: Brain Connect. doi: 10.1089/brain.2011.0040 – start-page: 325 year: 1999 ident: 10.1016/j.neuroimage.2013.12.047_bb0170 article-title: Tracking white matter fascicles with diffusion tensor imaging publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 62 start-page: 1732 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0015 article-title: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.002 – volume: 35 start-page: 1459 year: 2007 ident: 10.1016/j.neuroimage.2013.12.047_bb0265 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 56 start-page: 1259 year: 2011 ident: 10.1016/j.neuroimage.2013.12.047_bb0035 article-title: Track density imaging (TDI): validation of super resolution property publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.059 – volume: 47 start-page: 1288 year: 2009 ident: 10.1016/j.neuroimage.2013.12.047_bb0055 article-title: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.03.077 – volume: 26 start-page: 1775 year: 2013 ident: 10.1016/j.neuroimage.2013.12.047_bb0280 article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging publication-title: NMR Biomed. doi: 10.1002/nbm.3017 – volume: 56 start-page: 220 year: 2011 ident: 10.1016/j.neuroimage.2013.12.047_bb0090 article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.032 – volume: 23 start-page: 1176 year: 2004 ident: 10.1016/j.neuroimage.2013.12.047_bb0290 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.037 – start-page: 3586 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0300 article-title: Tract coherence imaging (TCI): quantifying the intra-voxel fiber tract heterogeneity publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 59 start-page: 3976 year: 2012 ident: 10.1016/j.neuroimage.2013.12.047_bb0195 article-title: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.045 – volume: 42 start-page: 515 year: 1999 ident: 10.1016/j.neuroimage.2013.12.047_bb0125 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q |
SSID | ssj0009148 |
Score | 2.31422 |
Snippet | Ever since the introduction of the concept of fiber tractography, methods to generate better and more plausible tractograms have become available. Many modern... |
SourceID | unpaywall proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 312 |
SubjectTerms | Algorithms Biological and medical sciences Brain - cytology Computer Simulation Diffusion Tensor Imaging - methods Diffusion weighted imaging Experiments Fiber orientation distribution Fiber tractography Fundamental and applied biological sciences. Psychology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Models, Statistical Nerve Fibers, Myelinated - ultrastructure Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Subtraction Technique Track orientation density imaging Track orientation distribution Track orientation weighted imaging Track-density imaging Track-like local support Track-weighted imaging Vertebrates: nervous system and sense organs |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED62DraOMfZ7XruiwR7WB9NYki2LPZTSrrSDri8Z5E3IsgXdUidtHEb_-93ZsrNBKHk0vgOhO-k-SXf3AXwuR0641Gdxkvg8ltJXseVexql2iC-K0paO7jsufmRnP-X3SToJF26LkFbZ74ntRl3OHN2RHyREkptQt6_D-U1MrFH0uhooNB7CowShCnm1mqhV091EdqVwqYhzFAiZPF1-V9sv8uoaVy0leIn2UpBIVtaHp2dzu8BJ8x3bxTo4-hSeLOu5vftjp9N_QtTpC3gesCU76pzhJTyo6lfw-CK8nr-GEgOT-80ub69CwVHNTih_vblj59ctWxH7Mr48Od9nti7ZGmFqshv4sVrJfUZBsGQNlVqF3tdvYHz6bXx8FgeWhdilijex1DkZBQOVTyrpPS_1SAubFpqPvBC8kE4IWSGwUYralSEkwQ-lXV65glvxFrbqWV29B2bx8JNbzQs8c0qXFXlmVV6VdIb0VqsiAtXPrXGhAzkRYUxNn2r2y6ysYsgqJuEGrRJBMmjOuy4cG-jo3nymrzLFfdFgqNhA9-ugG5BIhzA21N77z1uGIfM8HQkpZAS7vfuYsGUszMrBI_g0_MbFTi84tq5mS5JBwKUIo90roxE2K5FF8K5zzdUAiOseAWAEfPDVjSf0w_2j3oFtFJZdKvMubDW3y-ojAram2GtX5V_i6j6L priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLfYIe1DaN8fZQxl0h7GQ1GbpE0jntAYgknAJh0Se4qStJEYRzlBTxP763HatIyJodseo9pV6rj2L7FjA3woE8ts5vI4TV0Rc-6qWFPH40xaxBem1KX15x17-_nOIf9ylB0tQNLfhbkRv2_zsNq6jsen-Hf5RCzWHt5xcQ8Wcx9SGsHi4f7Xze9tUDNjcZG2vTzSxLcgzESfvHPXq_7mkZam-gLl5LoGF7ch0EfwYFZP9eVPPZn85pW2n8C3_nu6ZJST9Vlj1u2vP0o9_ssHP4XHAaKSzU6nnsFCVT-H-3shCP8CSvRv9oQcnB-He0s12fJp8M0l2T1tmx6Rj-ODrd01ouuS3ELsa_WGNlst5RrxvrQkjb-xFUpov4Tx9ufxp504NGuILYq5ibks_Nqiv3NpxZ2jpUwk05mRNHGMUcMtY7xCfCSEr3qGyAYHQtqisoZq9gpG9VldvQGicQ9VaEkNbl25zU2Ra1FUpd-KOi2FiUD066VsKGTu-2lMVJ-x9kNdy1B5GaqUKpRhBOnAOe2KeczBI3uVUP1lVTSvCtdtDt6NgTcAmg6ozMm9ekMDhynTIksYZzyClV4lVbA8Fyr1zaRTXxUvgvfDY7QZPhCk6-ps5mkQtwkP9e6kkYi-BcsjeN2p-_UEOC4j4sgI6KD_cwt0-X-Y3sJDHPEuT3oFRs35rHqHaLAxq8EAXAHUhVnT priority: 102 providerName: Unpaywall |
Title | Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913012676 https://dx.doi.org/10.1016/j.neuroimage.2013.12.047 https://www.ncbi.nlm.nih.gov/pubmed/24389015 https://www.proquest.com/docview/1547314655 https://www.proquest.com/docview/1524175129 https://www.proquest.com/docview/1529951736 https://doi.org/10.1016/j.neuroimage.2013.12.047 |
UnpaywallVersion | publishedVersion |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250803 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250803 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg30wxr7nrQse7GF98BJLsmWxpyxtSbY1DV0K6ZOQZQuypW5oHUZf9rfvzpadFcII7CXCyR04d6e7n-z7IOR91jPMRDYOwtAmAec2DzS1PIikAXyRZjoz-LzjeBwPz_iXWTTbIYOmFgbTKp3vr3165a3dN10nze5yPu9-B2QA4QbOG2CjNBbYdhu7f4FNf_y9TvOQIa_L4SIWILXL5qlzvKqekfML2LmY5MWqB4M4aGVziHq41NcgOFtPvNgESR-Qe6tiqW9-6cXirzB19Jg8cvjS79d_4QnZyYun5O6xe4P-jGQQnMxP_-Rq7oqOCv8Ac9jLG390UU0s8j9MTw5G-74uMn8DMTbadTOyKsp9HwNh5pdYbuX6Xz8n06PD6WAYuEkLgYkELQMuE1QMyNGGObeWZrInmY5SSXuWMZpywxjPAdwIgS3LAJbAhZAmyU1KNXtBdovLIn9FfA0HoERLmsK5k5s4TWItkjzDc6TVUqQeEY1slXFdyHEYxkI16WY_1ForCrWiQqpAKx4JW85l3YljCx7ZqE81labgGxWEiy14P7W8tyxyS-7OLWtpb5kmUY9xxj2y15iPcm7jWoU4CTrElnYeedf-DBse3-LoIr9cIQ2ALoE47Z80EqCzYLFHXtamub4BnHcPINAjtLXVrQX6-r-E8obchyteZzvvkd3yapW_BUxXpp1q08KnmIkOudMfnH6b4Dr6OhzD-vlwPDmF9Ww86Z__AW-rUT8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qBauI-FHraa0rKNiHw9zu3u0dIiLGktimfYmQt2Vv7xZq00tsEkr-KP9HZ-4rCqHkpY_H7RzDztzMb3bnA-Bd1rHChi7yg8DFvpQu9w130g8Ti_gizUxm6bxjcBr1fsofo3C0BX-aWhhKq2xsYmmos4mlM_KPAQ3JDajb15fpb5-mRtHtajNCo1KL43x5jSHb7HO_i_J9z_nR9-G3nl9PFfBtqPjcl0lMTKBhdkEuneNZglG9CdOEd5wQPJVWCJmjI1eK2nOhC8YHldg4tyk3Aj97B-5K0ZHUql-N1KrHbyCryrtQ-HEQJHXiUJVOVranPL9EI0H5ZKI8g6SZLuu94cOpmaGMXDVcYx36fQA7i2JqltdmPP7HIx49hkc1lGVfK917Alt58RTuDerL-meQoR-0F-zs6ryubypYl9Ll50vWvyyHI7EPw7Nu_5CZImNrFlNP33ocV7nykJHPzdicKrvqVtu7MLyN7X8O28WkyF8AMxhrxSbhKYa40kZpHBkV5xmFrM4kKvVANXurbd3wnOZujHWT2fZLr6SiSSo64Bql4kHQUk6rph8b0CSN-HRT1IpmWKNn2oD2U0tbA58K0GxIffCftrQs8zjsCCmkB_uN-ujaQs306n_y4G37Gm0LXRiZIp8saA3iO0WQ8MY1CaJ0JSIP9irVXDEgUYyINz3gra5uvKEvb-b6Dez0hoMTfdI_PX4F95FQVlnU-7A9v1rkrxErztOD8g9loG_ZIvwF9lp5Aw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qhaqI-O1prSso2Iejud297B0iIsbQWNv6ECFvy97eLVTTS2wulPxp_nfO3O0lCqHkpY8hO8ewMzvzm935AHiTd6ywseuGUeSSUEpXhIY7GcapRXyR5Sa3dN9xfNI9_CG_juLRFvxpa2EorbK1ibWhzieW7sgPIhqSG1G3rwPn0yK-9_ofp79DmiBFL63tOI1GRY6KxSWGb7MPgx7K-i3n_S_Dz4ehnzAQ2ljxKpRpQgyhkXZRIZ3jeYoRvomzlHecEDyTVghZoFNXilp1oTvGHyq1SWEzbgR-9gbcVEIKyiZTI7Xq9xvJpgovFmESRalPImpSy-pWlWfnaDAot0zU95E032W9Z7w7NTOUl2sGbaxDwnfg1rycmsWlGY__8Y79-3DPw1r2qdHDB7BVlA9h59g_3D-CHH2i_cVOL858rVPJepQ6Xy3Y4LwelMTeDU97g31mypytWUz9ff1ornrlPiP_m7OKqrx82-3HMLyO7X8C2-WkLJ4BMxh3JSblGYa70nazpGtUUuQUvjqTqiwA1e6ttr75Oc3gGOs2y-2nXklFk1R0xDVKJYBoSTltGoBsQJO24tNtgSuaZI1eagPa90taD4IacLMh9d5_2rJkmSdxB9VUBrDbqo_21mqmV2crgNfLv9HO0OORKYvJnNYg1lMED69ckyJiV6IbwNNGNVcM4Bkh7BkAX-rqxhv6_GquX8EO2gL9bXBy9AJuI51sEqp3Ybu6mBcvETZW2V59QBnoazYIfwHca30- |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLfYIe1DaN8fZQxl0h7GQ1GbpE0jntAYgknAJh0Se4qStJEYRzlBTxP763HatIyJodseo9pV6rj2L7FjA3woE8ts5vI4TV0Rc-6qWFPH40xaxBem1KX15x17-_nOIf9ylB0tQNLfhbkRv2_zsNq6jsen-Hf5RCzWHt5xcQ8Wcx9SGsHi4f7Xze9tUDNjcZG2vTzSxLcgzESfvHPXq_7mkZam-gLl5LoGF7ch0EfwYFZP9eVPPZn85pW2n8C3_nu6ZJST9Vlj1u2vP0o9_ssHP4XHAaKSzU6nnsFCVT-H-3shCP8CSvRv9oQcnB-He0s12fJp8M0l2T1tmx6Rj-ODrd01ouuS3ELsa_WGNlst5RrxvrQkjb-xFUpov4Tx9ufxp504NGuILYq5ibks_Nqiv3NpxZ2jpUwk05mRNHGMUcMtY7xCfCSEr3qGyAYHQtqisoZq9gpG9VldvQGicQ9VaEkNbl25zU2Ra1FUpd-KOi2FiUD066VsKGTu-2lMVJ-x9kNdy1B5GaqUKpRhBOnAOe2KeczBI3uVUP1lVTSvCtdtDt6NgTcAmg6ozMm9ekMDhynTIksYZzyClV4lVbA8Fyr1zaRTXxUvgvfDY7QZPhCk6-ps5mkQtwkP9e6kkYi-BcsjeN2p-_UEOC4j4sgI6KD_cwt0-X-Y3sJDHPEuT3oFRs35rHqHaLAxq8EAXAHUhVnT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Track+Orientation+Density+Imaging+%28TODI%29+and+Track+Orientation+Distribution+%28TOD%29+based+tractography&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=DHOLLANDER%2C+Thijs&rft.au=EMSELL%2C+Louise&rft.au=VAN+HECKE%2C+Wim&rft.au=MAES%2C+Frederik&rft.date=2014-07-01&rft.pub=Elsevier&rft.issn=1053-8119&rft.volume=94&rft.spage=312&rft.epage=336&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.12.047&rft.externalDBID=n%2Fa&rft.externalDocID=28503434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |