Interpretable whole-brain prediction analysis with GraphNet
Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional “mass univariate” techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of “off-the-she...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 72; pp. 304 - 321 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Inc
15.05.2013
Elsevier Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2012.12.062 |
Cover
| Abstract | Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional “mass univariate” techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of “off-the-shelf” classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI (“searchlight”) methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with “adaptive” penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 “features”), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals.
► We introduce robust, interpretable models for prediction with whole-brain fMRI data. ► These use a sparsity-inducing penalty that automatically selects important voxels. ► They also include a graph penalty to structure the solution. ► They outperform state-of-the-art classifiers on whole-brain fMRI data. ► They predict outcomes on new data collected years after the data used for training. |
|---|---|
| AbstractList | Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional amass univariatea techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of aoff-the-shelfa classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI (asearchlighta) methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with aadaptivea penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008 and Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (> 100,000 afeaturesa), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals. Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to theKnutson et al. (2007)data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals. Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional “mass univariate” techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of “off-the-shelf” classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI (“searchlight”) methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with “adaptive” penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 “features”), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals. ► We introduce robust, interpretable models for prediction with whole-brain fMRI data. ► These use a sparsity-inducing penalty that automatically selects important voxels. ► They also include a graph penalty to structure the solution. ► They outperform state-of-the-art classifiers on whole-brain fMRI data. ► They predict outcomes on new data collected years after the data used for training. Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals. Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals.Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals. |
| Author | Klingenberg, Brad Knutson, Brian Grosenick, Logan Taylor, Jonathan E. Katovich, Kiefer |
| Author_xml | – sequence: 1 givenname: Logan surname: Grosenick fullname: Grosenick, Logan email: logang@gmail.com organization: Center for Mind, Brain, and Computation, Stanford University, Stanford, CA, USA – sequence: 2 givenname: Brad surname: Klingenberg fullname: Klingenberg, Brad organization: Department of Statistics, Stanford University, Stanford, CA, USA – sequence: 3 givenname: Kiefer surname: Katovich fullname: Katovich, Kiefer organization: Department of Psychology, Stanford University, Stanford, CA, USA – sequence: 4 givenname: Brian surname: Knutson fullname: Knutson, Brian organization: Department of Psychology, Stanford University, Stanford, CA, USA – sequence: 5 givenname: Jonathan E. surname: Taylor fullname: Taylor, Jonathan E. organization: Department of Statistics, Stanford University, Stanford, CA, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27189708$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23298747$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl2LEzEUhoOsuB_6F2RABG-mnsxXEgRZXXRdWPRGr0MmOWNT08yYZCz996a0utAbKwQSwnNeTp6TS3LmR4-EFBQWFGj3erXwOIfRrtV3XFRAq0Ve0FWPyAUF0ZaiZdXZ7tzWJadUnJPLGFcAIGjDn5Dzqq4EZw27IG_ufMIwBUyqd1hslqPDsg_K-iJfGquTHX2hvHLbaGOxsWlZ3AY1LT9jekoeD8pFfHbYr8i3jx--3nwq77_c3t28uy91biOVtWmaXoBqAYGKgRoOTDRMCaiFoKypeg5CC2aQY88b0-Umq3qoWGNwACPqKyL2ubOf1HajnJNTyG8PW0lB7oTIlXwQIndCZF5ZSK59ta-dwvhzxpjk2kaNzimP4xwlbQEYA8brf6M1ZbxtBaUZfXGErsY5ZEmZ6jpOgVPRZOr5gZr7NZq_Tf-xn4GXB0BFrdwQlNc2PnCMcsGAZ-7tntNhjDHgILVNajeZlCflTrHAjwL-Q-D7fSnmCf-yGGTUFr3OfyOgTtKM9pSQ66MQ7ay3-c0_cHtaxG_SNerm |
| CitedBy_id | crossref_primary_10_3390_sym17020151 crossref_primary_10_1016_j_ymeth_2014_10_016 crossref_primary_10_1016_j_neuroimage_2014_03_067 crossref_primary_10_1109_TMI_2017_2749140 crossref_primary_10_1002_sam_11376 crossref_primary_10_3233_JAD_240098 crossref_primary_10_1186_1471_2164_14_S8_S7 crossref_primary_10_3389_fnhum_2021_641616 crossref_primary_10_1162_imag_a_00245 crossref_primary_10_1007_s12031_021_01888_6 crossref_primary_10_1016_j_neuroimage_2023_120109 crossref_primary_10_1177_1754073918765653 crossref_primary_10_1214_15_AOAS829 crossref_primary_10_1016_j_jneumeth_2017_05_004 crossref_primary_10_1093_bib_bbab121 crossref_primary_10_4103_1673_5374_297079 crossref_primary_10_1007_s00702_024_02766_2 crossref_primary_10_1137_21M1401103 crossref_primary_10_1002_sim_9553 crossref_primary_10_1371_journal_pone_0234748 crossref_primary_10_1111_acps_12964 crossref_primary_10_1111_biom_13075 crossref_primary_10_1016_j_media_2017_09_002 crossref_primary_10_1002_jmri_25682 crossref_primary_10_1016_j_jneumeth_2014_10_023 crossref_primary_10_1016_j_neuroimage_2014_10_002 crossref_primary_10_1016_j_cobeha_2015_10_012 crossref_primary_10_1016_j_media_2021_102026 crossref_primary_10_1016_j_tics_2014_04_006 crossref_primary_10_1109_TMI_2014_2374074 crossref_primary_10_1016_j_neuroimage_2018_05_051 crossref_primary_10_1016_j_neuroimage_2018_11_044 crossref_primary_10_1016_j_neuroimage_2016_01_039 crossref_primary_10_1109_TMI_2019_2918839 crossref_primary_10_1038_s41596_019_0289_5 crossref_primary_10_1016_j_neuroimage_2018_09_031 crossref_primary_10_1016_j_neuroimage_2018_05_055 crossref_primary_10_1214_16_AOAS996 crossref_primary_10_1109_TMI_2017_2735239 crossref_primary_10_1016_j_neuroimage_2015_05_018 crossref_primary_10_3934_era_2023044 crossref_primary_10_3389_fnins_2017_00062 crossref_primary_10_1214_19_AOAS1252 crossref_primary_10_1038_tp_2013_43 crossref_primary_10_1523_JNEUROSCI_2348_13_2013 crossref_primary_10_1093_cercor_bhx061 crossref_primary_10_1007_s12021_019_9415_3 crossref_primary_10_1016_j_neuroimage_2020_117708 crossref_primary_10_1007_s11002_014_9306_1 crossref_primary_10_1093_bioinformatics_btw033 crossref_primary_10_1016_j_neuroimage_2013_07_043 crossref_primary_10_1111_biom_12355 crossref_primary_10_1016_j_brainresbull_2025_111238 crossref_primary_10_1007_s12021_018_9394_9 crossref_primary_10_1038_s41598_020_67162_8 crossref_primary_10_1142_S0129065718500405 crossref_primary_10_1016_j_neuroimage_2014_10_025 crossref_primary_10_1016_j_csda_2019_106835 crossref_primary_10_1016_j_neuroimage_2017_10_005 crossref_primary_10_1038_s41598_022_26178_y crossref_primary_10_1371_journal_pone_0104586 crossref_primary_10_1109_TSIPN_2017_2679491 crossref_primary_10_1002_sim_6999 crossref_primary_10_1073_pnas_2214072119 crossref_primary_10_1016_j_neuroimage_2013_09_048 crossref_primary_10_1038_s41593_023_01259_x crossref_primary_10_1016_j_neuroimage_2019_02_057 crossref_primary_10_1016_j_nicl_2014_02_002 crossref_primary_10_3389_fnins_2016_00619 crossref_primary_10_1016_j_media_2021_102297 crossref_primary_10_1016_j_neuroimage_2017_08_018 crossref_primary_10_1109_JSEN_2020_3016402 crossref_primary_10_1016_j_cmpb_2020_105713 crossref_primary_10_1080_01621459_2016_1261710 crossref_primary_10_1093_scan_nsab010 crossref_primary_10_3389_fnhum_2021_765517 crossref_primary_10_3389_fnins_2019_01321 crossref_primary_10_1016_j_neuroimage_2013_07_026 crossref_primary_10_3389_fnins_2015_00366 crossref_primary_10_1002_mrm_27601 crossref_primary_10_1016_j_nicl_2016_12_011 crossref_primary_10_3389_fnhum_2017_00393 crossref_primary_10_1016_j_neurobiolaging_2014_07_045 crossref_primary_10_1016_j_neuron_2019_10_020 crossref_primary_10_1038_s41598_022_10942_1 crossref_primary_10_1007_s11633_022_1361_0 crossref_primary_10_1002_hbm_23953 crossref_primary_10_1109_TMI_2018_2829802 crossref_primary_10_1109_TMI_2015_2431294 crossref_primary_10_1109_JBHI_2020_2972581 crossref_primary_10_1016_j_media_2023_102913 crossref_primary_10_1089_brain_2017_0511 crossref_primary_10_1177_0963721417737877 crossref_primary_10_1016_j_neuron_2018_06_009 crossref_primary_10_1016_j_neuroimage_2019_06_017 crossref_primary_10_1186_s12918_016_0312_1 crossref_primary_10_1016_j_crmeth_2022_100227 crossref_primary_10_1016_j_tics_2022_07_003 crossref_primary_10_1016_j_neuron_2015_03_034 crossref_primary_10_1073_pnas_2412881121 crossref_primary_10_3389_fnagi_2021_817520 crossref_primary_10_1007_s12021_015_9292_3 crossref_primary_10_1016_j_neuroimage_2018_03_040 crossref_primary_10_1111_ejn_14760 crossref_primary_10_1016_j_compmedimag_2018_08_009 crossref_primary_10_1109_TMI_2017_2681966 crossref_primary_10_3389_fnhum_2020_614979 crossref_primary_10_1016_j_neuroimage_2016_10_038 crossref_primary_10_1109_TBME_2017_2756665 crossref_primary_10_1214_21_EJS1887 crossref_primary_10_1016_j_pscychresns_2016_11_005 crossref_primary_10_1016_j_neuroimage_2023_119990 crossref_primary_10_1126_sciadv_adn2776 crossref_primary_10_1109_ACCESS_2021_3059520 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1016_j_neuroimage_2014_02_008 crossref_primary_10_1016_j_neuroimage_2019_04_012 crossref_primary_10_1186_2047_217X_3_28 crossref_primary_10_1016_j_neuropsychologia_2020_107500 crossref_primary_10_1016_j_neuroimage_2014_11_021 crossref_primary_10_1007_s11682_017_9737_4 crossref_primary_10_1109_JPROC_2019_2947272 crossref_primary_10_1016_j_patrec_2018_06_006 crossref_primary_10_1016_j_neuroimage_2021_118580 |
| Cites_doi | 10.1093/bioinformatics/btn081 10.1016/j.neuroimage.2008.05.050 10.1214/08-AOS625 10.1109/TNSRE.2008.926701 10.1016/j.compbiolchem.2008.07.015 10.1023/A:1017501703105 10.1111/j.1467-9868.2005.00490.x 10.1007/s00041-008-9045-x 10.1016/j.neuroimage.2010.02.040 10.1126/science.1117645 10.1038/nature08103 10.1093/bioinformatics/btm579 10.1098/rstb.2008.0155 10.1109/TBME.2009.2025866 10.1016/j.neuroimage.2008.11.007 10.1023/A:1012487302797 10.1016/j.neucom.2008.09.024 10.1523/JNEUROSCI.21-16-j0002.2001 10.1006/cbmr.1996.0014 10.1214/07-AOAS131 10.1109/TMI.2011.2113378 10.1198/TECH.2011.08118 10.1038/nrn1931 10.1016/j.neuroimage.2008.08.020 10.1016/j.tics.2006.07.005 10.1214/aos/1176324456 10.1371/journal.pone.0001394 10.1016/j.neuron.2006.11.010 10.1111/j.2517-6161.1996.tb02080.x 10.1214/09-AOAS302 10.1523/JNEUROSCI.3420-10.2011 10.1016/j.neuroimage.2009.01.025 10.1016/j.neuroimage.2006.08.041 10.1214/009053604000000238 10.1214/009053607000000127 10.1162/jocn.2007.19.11.1735 10.1523/JNEUROSCI.1309-08.2008 10.1016/S1053-8119(09)70232-0 10.1007/BF00994018 10.1111/j.1467-9868.2010.00740.x 10.1016/j.neuroimage.2009.11.064 10.1016/j.jcss.2007.08.006 10.1073/pnas.0437847100 10.1016/j.brainres.2009.05.090 10.1080/01621459.1994.10476866 10.1111/j.1467-9868.2011.00783.x 10.1523/JNEUROSCI.0642-05.2005 10.1016/j.neuroimage.2010.04.036 10.1111/j.1467-9868.2005.00503.x 10.18637/jss.v033.i01 10.1198/016214501753382273 10.1023/B:MACH.0000035475.85309.1b 10.1002/mrm.1222 10.1016/j.neuroimage.2007.02.020 10.1002/hbm.460020402 10.1109/18.382009 10.1016/j.neuroimage.2004.07.026 10.1109/TSP.2008.2005752 10.1023/A:1009778005914 10.1198/016214506000000735 10.1007/s12021-008-9041-y 10.1137/080724265 10.1080/00401706.1970.10488635 10.1016/0167-2789(92)90242-F 10.1002/cpa.20132 10.1016/j.cub.2006.11.072 10.1111/j.1467-9868.2011.01004.x 10.1214/11-AOS878 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. 2014 INIST-CNRS Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 15, 2013 |
| Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 15, 2013 |
| DBID | 6I. AAFTH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO ADTOC UNPAY |
| DOI | 10.1016/j.neuroimage.2012.12.062 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | Engineering Research Database ProQuest One Psychology MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 321 |
| ExternalDocumentID | 10.1016/j.neuroimage.2012.12.062 3642125071 23298747 27189708 10_1016_j_neuroimage_2012_12_062 S1053811912012487 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 PUEGO R2- SEW WUQ XPP ZMT ALIPV IQODW 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c572t-3d44b90a50e019f1d807947a903991742b809c97de8eb84d691423f274def0d93 |
| IEDL.DBID | BENPR |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Aug 19 18:20:22 EDT 2025 Tue Oct 07 09:39:06 EDT 2025 Sat Sep 27 21:52:22 EDT 2025 Tue Oct 07 06:55:54 EDT 2025 Wed Feb 19 01:51:02 EST 2025 Wed Apr 02 07:23:34 EDT 2025 Thu Apr 24 23:44:17 EDT 2025 Wed Oct 01 02:58:12 EDT 2025 Fri Feb 23 02:36:05 EST 2024 Tue Oct 14 19:34:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Central nervous system Encephalon |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/3.0 https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2013 Elsevier Inc. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-3d44b90a50e019f1d807947a903991742b809c97de8eb84d691423f274def0d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2012.12.062 |
| PMID | 23298747 |
| PQID | 1668108194 |
| PQPubID | 2031077 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2012_12_062 proquest_miscellaneous_1500770783 proquest_miscellaneous_1317855911 proquest_journals_1668108194 pubmed_primary_23298747 pascalfrancis_primary_27189708 crossref_citationtrail_10_1016_j_neuroimage_2012_12_062 crossref_primary_10_1016_j_neuroimage_2012_12_062 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_12_062 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_12_062 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-05-15 |
| PublicationDateYYYYMMDD | 2013-05-15 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: United States |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc Elsevier Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
| References | Leng (bb0260) 2008; 32 O'Toole, Jiang, Abdi, Penard (bb0320) 2007; 2007 Jenatton, Audibert, Bach (bb0220) 2011; 12 Breiman, Ihaka (bb0040) 1984 Jimenez, Lazaro, Dorronsoro (bb0225) 2009; 72 Mohamed, Heller, Ghahramani (bb0300) 2011 Li, Namburi, Yu, Guan, Feng, Gu (bb0270) 2009; 56 Shinkareva, Mason, Malave, Wang, Mitchell, Just (bb0360) 2008; 3 Wipf, Nagarajan (bb0435) 2008; 20 De Martino, Gentile, Esposito, Balsi, Di Salle, Goebel, Formisano (bb0085) 2007; 34 van Gerven, Heskes (bb0410) 2012 Cortes, Vapnik (bb0075) 1995; 20 Tseng (bb0405) 2001; 109 Boyd, Vandenberghe (bb0030) 2004 Zhou, van de Geer, Bühlmann (bb0455) 2011; 5 Zou, Hastie (bb0465) 2005; 67 Candes, Wakin, Boyd (bb0050) 2003; 100 Grosenick, Klingenberg, Greer, Taylor, Knutson (bb0155) 2009 Tibshirani, Taylor (bb0380) 2011; 3 Tibshirani, Saunders, Rosset, Zhu, Knight (bb0385) 2005; 67 Clemmensen, Hastie, Witten, Ersboll (bb0070) 2011; 53 McCoy, Crowley, Haghighian, Dean, Platt (bb0275) 2003; 40 Li, Li (bb0265) 2008; 24 Candes, Wakin, Boyd (bb0055) 2008; 14 Grosenick, Anderson, Smith (bb0150) 2009 Mitchell, Hutchinson, Niculescu (bb0295) 2004; 57 Rudin, Osher, Fatemi (bb0350) 1992; 50 Huber, Ronchetti (bb0210) 2009 Tseng (bb0400) 1988 Ng, Siless, Varoquaux, Yoline, Thirion, Abugharbieh (bb0310) 2012 Pereira, Mitchell, Botvinick (bb0330) 2009; 45 van der Kooij (bb0090) 2007 Bray, Chang, Hoeft (bb0035) 2009; 3 Tibshirani, Bien, Friedman, Hastie, Simon, Taylor, Tibshirani (bb0390) 2012; 74 Hastie, Buja, Tibshirani (bb0185) 1995; 23 Guyon, Weston, Barnhill, Vapnik (bb0165) 2002; 46 Glover, Law (bb0140) 2001; 46 Stein (bb0370) 1956; vol. 1 Michel, Gramfort, Varoquaux, Eger, Thirion (bb0290) 2011; 30 Wang, Zhu, Zou (bb0425) 2008; 24 van Gerven, Cseke, de Lange, Heskes (bb0415) 2010 Tikhonov (bb0395) 1943 Adler, Taylor (bb0005) 2000 Karmarkar, U. R., Shiv, B., Knutson, B., submitted for publication. Sticker shock: the neural and behavioral impact of price primacy on purchasing. Norman, Polyn, Detre, Haxby (bb0315) 2006; 10 Ravikumar, Vu, Yu, Naselaris, Kay, Gallant (bb0340) 2009; 21 Donoho (bb0095) 1995; 41 Hanke, Halchenko, Sederberg (bb0170) 2009; 7 Knutson, Greer (bb0235) 2008; 363 Hastie, Tibshirani, Friedman (bb0190) 2009 Tibshirani (bb0375) 1996; 58 Yamashita, Sato, Yoshiika, Tong, Kamitani (bb0450) 2008; 42 Friedman (bb0115) 1997; 1 Cox (bb0080) 1996; 29 Hoerl, Kennard (bb0205) 1970; 12 Knutson, Rick, Wimmer, Prelec, Loewenstein (bb0250) 2007; 53 Allen, Grosenick, Taylor (bb0010) 2011 Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (bb0045) 2011; 56 Barbieri, Berger (bb0015) 2004; 32 Haynes, Sakai, Rees, Gilbert (bb0200) 2007; 17 Hastie, Tibshirani, Buja (bb0180) 1994; 89 Hare, O'Doherty, Camerer, Schultz, Rangel (bb0175) 2008; 28 Wager, Atlas, Leotti, Rillings (bb0420) 2011; 31 Slawski, zu Castell, Tutz (bb0365) 2010; 4 Fan, Li (bb0110) 2001; 96 Rockafellar (bb0345) 1970 Friedman, Hastie, Hofling, Tibshirani (bb0125) 2007; 1 Zou (bb0460) 2006; 101 Zou, Hastie, Tibshirani (bb0475) 2007; 35 Belkin, Niyogi (bb0020) 2008; 74 Chappell, Groves, Whitcher, Woolrich (bb0065) 2009; 57 Grosenick, Greer, Knutson (bb0145) 2008; 16 Haynes, Rees (bb0195) 2006; 7 Merchante, Grandvalet, Govaert (bb0285) 2012 Witten, Tibshirani (bb0440) 2011; 73 Belkin, Niyogi, Sindhwani (bb0025) 2006; 7 Friston, Holmes, Worsley, Poline (bb0135) 1995; 2 Worsley, Taylor, Tomaiuolo, Lerchb (bb0445) 2004; 23 Friedman, Hastie, Höfling, Tibshirani (bb0120) 2007; 1 Knutson, Adams, Fong, Hommer (bb0240) 2001; 21 Wang, Junfeng, Yin, Zhang (bb0430) 2008; 1 Carroll, Cecchi, Rish, Garg, Rao (bb0060) 2009; 44 Polyn, Natu, Cohen, Norman (bb0335) 2005; 310 Hutchinson, Niculescu, Keller, Rustandi, Mitchell (bb0215) 2009; 46 Meinshausen, Buhlmann (bb0280) 2010; 72 Mourão-Miranda, Friston, Brammer (bb0305) 2007; 36 Peelen, Fei-Fei, Kastner (bb0325) 2009; 460 Zou, Zhang (bb0470) 2009; 37 Friedman, Hastie, Tibshirani (bb0130) 2010; 33 Etzel, Gazzola, Keysers (bb0105) 2009; 1282 Lehmann, Casella (bb0255) 1998 Donoho (bb0100) 2006; 59 Knutson, Taylor, Kaufman, Peterson, Glover (bb0245) 2005; 25 Ryali, Supekar, Abrams, Menon (bb0355) 2010; 51 Allen (10.1016/j.neuroimage.2012.12.062_bb0010) 2011 Worsley (10.1016/j.neuroimage.2012.12.062_bb0445) 2004; 23 Stein (10.1016/j.neuroimage.2012.12.062_bb0370) 1956; vol. 1 Barbieri (10.1016/j.neuroimage.2012.12.062_bb0015) 2004; 32 10.1016/j.neuroimage.2012.12.062_bb0230 Li (10.1016/j.neuroimage.2012.12.062_bb0270) 2009; 56 Wang (10.1016/j.neuroimage.2012.12.062_bb0430) 2008; 1 Tikhonov (10.1016/j.neuroimage.2012.12.062_bb0395) 1943 Haynes (10.1016/j.neuroimage.2012.12.062_bb0195) 2006; 7 Norman (10.1016/j.neuroimage.2012.12.062_bb0315) 2006; 10 Slawski (10.1016/j.neuroimage.2012.12.062_bb0365) 2010; 4 Knutson (10.1016/j.neuroimage.2012.12.062_bb0240) 2001; 21 Zou (10.1016/j.neuroimage.2012.12.062_bb0465) 2005; 67 Belkin (10.1016/j.neuroimage.2012.12.062_bb0020) 2008; 74 Hanke (10.1016/j.neuroimage.2012.12.062_bb0170) 2009; 7 Ng (10.1016/j.neuroimage.2012.12.062_bb0310) 2012 Carroll (10.1016/j.neuroimage.2012.12.062_bb0060) 2009; 44 Mohamed (10.1016/j.neuroimage.2012.12.062_bb0300) 2011 O'Toole (10.1016/j.neuroimage.2012.12.062_bb0320) 2007; 2007 Hastie (10.1016/j.neuroimage.2012.12.062_bb0180) 1994; 89 Haynes (10.1016/j.neuroimage.2012.12.062_bb0200) 2007; 17 van Gerven (10.1016/j.neuroimage.2012.12.062_bb0410) 2012 Friston (10.1016/j.neuroimage.2012.12.062_bb0135) 1995; 2 Wang (10.1016/j.neuroimage.2012.12.062_bb0425) 2008; 24 Friedman (10.1016/j.neuroimage.2012.12.062_bb0120) 2007; 1 Witten (10.1016/j.neuroimage.2012.12.062_bb0440) 2011; 73 Peelen (10.1016/j.neuroimage.2012.12.062_bb0325) 2009; 460 Tseng (10.1016/j.neuroimage.2012.12.062_bb0400) 1988 Belkin (10.1016/j.neuroimage.2012.12.062_bb0025) 2006; 7 Tibshirani (10.1016/j.neuroimage.2012.12.062_bb0385) 2005; 67 Wager (10.1016/j.neuroimage.2012.12.062_bb0420) 2011; 31 Candes (10.1016/j.neuroimage.2012.12.062_bb0055) 2008; 14 Zou (10.1016/j.neuroimage.2012.12.062_bb0470) 2009; 37 Merchante (10.1016/j.neuroimage.2012.12.062_bb0285) 2012 Knutson (10.1016/j.neuroimage.2012.12.062_bb0245) 2005; 25 Fan (10.1016/j.neuroimage.2012.12.062_bb0110) 2001; 96 Huber (10.1016/j.neuroimage.2012.12.062_bb0210) 2009 Hastie (10.1016/j.neuroimage.2012.12.062_bb0190) 2009 Tibshirani (10.1016/j.neuroimage.2012.12.062_bb0390) 2012; 74 Hoerl (10.1016/j.neuroimage.2012.12.062_bb0205) 1970; 12 Grosenick (10.1016/j.neuroimage.2012.12.062_bb0155) 2009 Zhou (10.1016/j.neuroimage.2012.12.062_bb0455) 2011; 5 Meinshausen (10.1016/j.neuroimage.2012.12.062_bb0280) 2010; 72 Donoho (10.1016/j.neuroimage.2012.12.062_bb0100) 2006; 59 Wipf (10.1016/j.neuroimage.2012.12.062_bb0435) 2008; 20 van der Kooij (10.1016/j.neuroimage.2012.12.062_bb0090) 2007 Yamashita (10.1016/j.neuroimage.2012.12.062_bb0450) 2008; 42 Tibshirani (10.1016/j.neuroimage.2012.12.062_bb0380) 2011; 3 Glover (10.1016/j.neuroimage.2012.12.062_bb0140) 2001; 46 Leng (10.1016/j.neuroimage.2012.12.062_bb0260) 2008; 32 Friedman (10.1016/j.neuroimage.2012.12.062_bb0125) 2007; 1 Lehmann (10.1016/j.neuroimage.2012.12.062_bb0255) 1998 Zou (10.1016/j.neuroimage.2012.12.062_bb0475) 2007; 35 Li (10.1016/j.neuroimage.2012.12.062_bb0265) 2008; 24 Ryali (10.1016/j.neuroimage.2012.12.062_bb0355) 2010; 51 Adler (10.1016/j.neuroimage.2012.12.062_bb0005) 2000 Donoho (10.1016/j.neuroimage.2012.12.062_bb0095) 1995; 41 Chappell (10.1016/j.neuroimage.2012.12.062_bb0065) 2009; 57 Grosenick (10.1016/j.neuroimage.2012.12.062_bb0145) 2008; 16 Hare (10.1016/j.neuroimage.2012.12.062_bb0175) 2008; 28 Guyon (10.1016/j.neuroimage.2012.12.062_bb0165) 2002; 46 Boyd (10.1016/j.neuroimage.2012.12.062_bb0030) 2004 Friedman (10.1016/j.neuroimage.2012.12.062_bb0115) 1997; 1 Tibshirani (10.1016/j.neuroimage.2012.12.062_bb0375) 1996; 58 Jimenez (10.1016/j.neuroimage.2012.12.062_bb0225) 2009; 72 Cortes (10.1016/j.neuroimage.2012.12.062_bb0075) 1995; 20 van Gerven (10.1016/j.neuroimage.2012.12.062_bb0415) 2010 Rockafellar (10.1016/j.neuroimage.2012.12.062_bb0345) 1970 Friedman (10.1016/j.neuroimage.2012.12.062_bb0130) 2010; 33 Polyn (10.1016/j.neuroimage.2012.12.062_bb0335) 2005; 310 Mitchell (10.1016/j.neuroimage.2012.12.062_bb0295) 2004; 57 Clemmensen (10.1016/j.neuroimage.2012.12.062_bb0070) 2011; 53 McCoy (10.1016/j.neuroimage.2012.12.062_bb0275) 2003; 40 Pereira (10.1016/j.neuroimage.2012.12.062_bb0330) 2009; 45 Jenatton (10.1016/j.neuroimage.2012.12.062_bb0220) 2011; 12 Tseng (10.1016/j.neuroimage.2012.12.062_bb0405) 2001; 109 Zou (10.1016/j.neuroimage.2012.12.062_bb0460) 2006; 101 Mourão-Miranda (10.1016/j.neuroimage.2012.12.062_bb0305) 2007; 36 Ravikumar (10.1016/j.neuroimage.2012.12.062_bb0340) 2009; 21 Bray (10.1016/j.neuroimage.2012.12.062_bb0035) 2009; 3 Shinkareva (10.1016/j.neuroimage.2012.12.062_bb0360) 2008; 3 De Martino (10.1016/j.neuroimage.2012.12.062_bb0085) 2007; 34 Hastie (10.1016/j.neuroimage.2012.12.062_bb0185) 1995; 23 Hutchinson (10.1016/j.neuroimage.2012.12.062_bb0215) 2009; 46 Brodersen (10.1016/j.neuroimage.2012.12.062_bb0045) 2011; 56 Knutson (10.1016/j.neuroimage.2012.12.062_bb0250) 2007; 53 Cox (10.1016/j.neuroimage.2012.12.062_bb0080) 1996; 29 Grosenick (10.1016/j.neuroimage.2012.12.062_bb0150) 2009 Etzel (10.1016/j.neuroimage.2012.12.062_bb0105) 2009; 1282 Knutson (10.1016/j.neuroimage.2012.12.062_bb0235) 2008; 363 Rudin (10.1016/j.neuroimage.2012.12.062_bb0350) 1992; 50 Michel (10.1016/j.neuroimage.2012.12.062_bb0290) 2011; 30 Breiman (10.1016/j.neuroimage.2012.12.062_bb0040) 1984 Candes (10.1016/j.neuroimage.2012.12.062_bb0050) 2003; 100 |
| References_xml | – volume: 2007 start-page: 1735 year: 2007 end-page: 1752 ident: bb0320 article-title: Theoretical, statistical, and practical perspectives on pattern-based classification publication-title: J. Cogn. Neurosci. – volume: 12 start-page: 2777 year: 2011 end-page: 2824 ident: bb0220 article-title: Structured variable selection with sparsity-inducing norms publication-title: J. Mach. Learn. Res. – year: 2007 ident: bb0090 article-title: Prediction accuracy and stability of regression with optimal scaling transformations publication-title: Technical Report, Dept. Data Theory, Leiden Univ – start-page: 101 year: 2012 end-page: 104 ident: bb0310 article-title: Connectivity-informed sparse classifiers for fMRI brain decoding publication-title: Pattern Recognition in NeuroImaging (PRNI), IEEE 2012 International Workshop on – year: 2004 ident: bb0030 article-title: Convex Optimization – volume: 34 start-page: 177 year: 2007 end-page: 194 ident: bb0085 article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers publication-title: NeuroImage – volume: 35 start-page: 2173 year: 2007 end-page: 2192 ident: bb0475 article-title: On the “degrees of freedom” of the lasso publication-title: Ann. Stat. – volume: 28 start-page: 5623 year: 2008 end-page: 5630 ident: bb0175 article-title: Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors publication-title: J. Neurosci. – start-page: 150 year: 2010 end-page: 161 ident: bb0415 article-title: Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior publication-title: NeuroImage – volume: 23 start-page: S189 year: 2004 end-page: S195 ident: bb0445 article-title: Unified univariate and multivariate random field theory publication-title: NeuroImage – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: bb0025 article-title: On manifold regularization publication-title: J. Mach. Learn. Res. – volume: 56 start-page: 601 year: 2011 end-page: 615 ident: bb0045 article-title: Model-based feature construction for multivariate decoding publication-title: NeuroImage – year: 1984 ident: bb0040 article-title: Univ of California at Berkeley Technical Report: Nonlinear Discriminant Analysis via Scaling and ACE – volume: 67 start-page: 91 year: 2005 end-page: 108 ident: bb0385 article-title: Sparsity and smoothness via the fused lasso publication-title: J. R. Stat. Soc. Ser. B – volume: 53 start-page: 406 year: 2011 end-page: 413 ident: bb0070 article-title: Sparse discriminant analysis publication-title: Technometrics – volume: 363 start-page: 3771 year: 2008 end-page: 3786 ident: bb0235 article-title: Anticipatory affect: neural correlates and consequences for choice publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 25 start-page: 4806 year: 2005 end-page: 4812 ident: bb0245 article-title: Distributed neural representation of expected value publication-title: J. Neurosci. – year: 1998 ident: bb0255 article-title: Theory of Point Estimation – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bb0165 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 72 start-page: 2824 year: 2009 end-page: 2832 ident: bb0225 article-title: Finding optimal model parameters by deterministic and annealed focused grid search publication-title: Neurocomputing – year: 2011 ident: bb0300 article-title: Bayesian and L1 Approaches to Sparse Unsupervised Learning – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: bb0460 article-title: The adaptive lasso and its oracle properties publication-title: J. Am. Stat. Assoc. – year: 1943 ident: bb0395 article-title: On the Stability of Inverse Problems – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: bb0110 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. – volume: 100 start-page: 2197 year: 2003 end-page: 2202 ident: bb0050 article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization publication-title: PNAS – volume: 109 start-page: 474 year: 2001 end-page: 494 ident: bb0405 article-title: Convergence of block coordinate descent method for nondifferentiable maximation publication-title: J. Optim. Theory Appl. – volume: 12 start-page: 69 year: 1970 end-page: 82 ident: bb0205 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics – volume: 17 start-page: 323 year: 2007 end-page: 328 ident: bb0200 article-title: Reading hidden intentions in the human brain publication-title: Curr. Biol. – volume: 74 start-page: 1289 year: 2008 end-page: 1308 ident: bb0020 article-title: Towards a theoretical foundation for Laplacian-based manifold methods publication-title: J. Comput. Syst. Sci. – year: 2009 ident: bb0190 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 24 start-page: 412 year: 2008 end-page: 419 ident: bb0425 article-title: Hybrid Huberized Support Vector Machines for microarray classification and gene selection publication-title: Bioinformatics – volume: 3 start-page: 1 year: 2009 end-page: 12 ident: bb0035 article-title: Applications of multivariate pattern classification analyses in developmental neuroimaging of healthy and clinical populations publication-title: Front. Hum. Neurosci. – year: 2011 ident: bb0010 article-title: A generalized least squares matrix decomposition publication-title: Rice University Technical Report No. TR2011-03 – year: 1970 ident: bb0345 article-title: Convex Analysis – volume: 7 start-page: 523 year: 2006 end-page: 534 ident: bb0195 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. – reference: Karmarkar, U. R., Shiv, B., Knutson, B., submitted for publication. Sticker shock: the neural and behavioral impact of price primacy on purchasing. – volume: 42 start-page: 1414 year: 2008 end-page: 1429 ident: bb0450 article-title: Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns publication-title: NeuroImage – volume: 10 start-page: 424 year: 2006 end-page: 430 ident: bb0315 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. – volume: 20 year: 2008 ident: bb0435 publication-title: A new view of automatic relevance determination – volume: 1 start-page: 302 year: 2007 end-page: 332 ident: bb0120 article-title: Pathwise coordinate optimization publication-title: Ann. Appl. Stat. – volume: 45 start-page: S199 year: 2009 end-page: S209 ident: bb0330 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0075 article-title: Support-vector networks publication-title: Mach. Learn. – start-page: 1 year: 2012 end-page: 4 ident: bb0410 article-title: A linear Gaussian framework for decoding of perceived images publication-title: International Workshop on Pattern Recognition in NeuroImaging (PRNI), IEEE 2012 – volume: 44 start-page: 112 year: 2009 end-page: 122 ident: bb0060 article-title: Prediction and interpretation of distributed neural activity with sparse models publication-title: NeuroImage – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: bb0135 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – start-page: S58 year: 2009 ident: bb0155 article-title: Whole-brain sparse penalized discriminant analysis for predicting choice publication-title: NeuroImage – volume: 37 start-page: 1733 year: 2009 end-page: 1751 ident: bb0470 article-title: On the adaptive elastic-net with a diverging number of parameters publication-title: Ann. Stat. – volume: 21 start-page: 1 year: 2001 end-page: 5 ident: bb0240 article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens publication-title: J. Neurosci. – volume: 89 start-page: 1255 year: 1994 end-page: 1270 ident: bb0180 article-title: Flexible Discriminant Analysis by Optimal Scoring publication-title: J. Am. Stat. Assoc. – volume: 36 start-page: 88 year: 2007 end-page: 99 ident: bb0305 article-title: Dynamic discrimination analysis: a spatial–temporal SVM publication-title: NeuroImage – volume: 1282 start-page: 114 year: 2009 end-page: 125 ident: bb0105 article-title: An introduction to anatomical ROI-based fMRI classification analysis publication-title: Brain Res. – volume: 31 start-page: 439 year: 2011 end-page: 452 ident: bb0420 article-title: Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience publication-title: J. Neurosci. – volume: 53 start-page: 147 year: 2007 end-page: 156 ident: bb0250 article-title: Neural predictors of purchases publication-title: Neuron – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bb0375 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B – volume: 59 start-page: 797 year: 2006 end-page: 829 ident: bb0100 article-title: For most large underdetermined systems of linear equations, the minimal ℓ publication-title: Commun. Pure Appl. Math. – year: 2000 ident: bb0005 article-title: Random Fields and Geometry – volume: 23 start-page: 73 year: 1995 end-page: 102 ident: bb0185 article-title: Penalized Discriminant Analysis publication-title: Ann. Stat. – volume: 1 start-page: 302 year: 2007 end-page: 332 ident: bb0125 article-title: Pathwise coordinate optimization publication-title: Ann. Appl. Stat. – year: 2012 ident: bb0285 article-title: An efficient approach to sparse linear discriminant analysis publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 7 start-page: 37 year: 2009 end-page: 53 ident: bb0170 article-title: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics – volume: 57 start-page: 223 year: 2009 end-page: 236 ident: bb0065 article-title: Variational Bayesian inference for a nonlinear forward model publication-title: IEEE Trans. Signal Proc. – volume: 56 start-page: 2439 year: 2009 end-page: 2451 ident: bb0270 article-title: Voxel selection in fMRI bata analysis based on a sparse representation publication-title: IEEE Trans. Biomed. Eng. – volume: 14 start-page: 69 year: 2008 end-page: 82 ident: bb0055 article-title: Enhancing sparsity by reweighted l1 minimization publication-title: J. Fourier Anal. Appl. – year: 1988 ident: bb0400 article-title: Technical Report LIDS-P, 1840 publication-title: Massachusetts Institute of Technology, Laboratory for Information and Decision Systems – year: 2009 ident: bb0150 article-title: Elastic source selection for in vivo imaging of neuronal ensembles publication-title: Biomedical Imaging: From Nano to Macro, 6th IEEE International Symposium on – volume: 73 start-page: 753 year: 2011 end-page: 772 ident: bb0440 article-title: Penalized classification using Fisher's linear discriminant publication-title: J. R. Stat. Soc. Ser. B – volume: 46 start-page: 512 year: 2001 end-page: 522 ident: bb0140 article-title: Spiral in/out BOLD FMRI for increased SNR and reduced susceptibility artifacts publication-title: Magn. Reson. Med. – volume: 3 start-page: 1335 year: 2011 end-page: 1371 ident: bb0380 article-title: The solution path of the generalized lasso publication-title: Ann. Stat. – volume: 72 start-page: 417 year: 2010 end-page: 473 ident: bb0280 article-title: Stability Selection publication-title: J. R. Stat. Soc. Ser. B – volume: 50 start-page: 259 year: 1992 end-page: 268 ident: bb0350 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D – volume: 51 start-page: 752 year: 2010 end-page: 764 ident: bb0355 article-title: Sparse logistic regression for whole-brain classification of fMRI data publication-title: NeuroImage – volume: 32 start-page: 870 year: 2004 end-page: 897 ident: bb0015 article-title: Optimal predictive model selection publication-title: Ann. Stat. – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bb0080 article-title: AFNI: software for analysis and visualization of functional magnetic resonance images publication-title: Comput. Biomed. Res. – volume: 1 start-page: 55 year: 1997 end-page: 77 ident: bb0115 article-title: On bias, variance, 0/1-loss, and the curse-of-dimensionality publication-title: Data Min. Knowl. Disc. – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bb0130 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – volume: 40 start-page: 1031 year: 2003 end-page: 1040 ident: bb0275 article-title: Saccade reward signals in posterior cingulate cortex publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 310 start-page: 1963 year: 2005 end-page: 1966 ident: bb0335 article-title: Category-specific cortical activity precedes retrieval during memory search publication-title: Science – volume: 1 start-page: 248 year: 2008 end-page: 272 ident: bb0430 article-title: A new alternating minimization algorithm for Total Variation image reconstruction publication-title: SIAM J. Imaging Sci. – volume: 30 start-page: 1328 year: 2011 end-page: 1340 ident: bb0290 article-title: Total variation regularization for fMRI-based prediction of behavior publication-title: IEEE Trans. Med. Imaging – volume: 21 year: 2009 ident: bb0340 publication-title: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images – volume: 46 start-page: 87 year: 2009 end-page: 104 ident: bb0215 article-title: Modeling fMRI data generated by overlapping cognitive processes with unknown onsets using Hidden Process Models publication-title: NeuroImage – volume: 74 start-page: 245 year: 2012 end-page: 266 ident: bb0390 article-title: Strong rules for discarding predictors in lasso-type problems publication-title: J. R. Stat. Soc. Ser. B – volume: 41 start-page: 613 year: 1995 end-page: 627 ident: bb0095 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inf. Theory – volume: 57 start-page: 145 year: 2004 end-page: 175 ident: bb0295 article-title: Learning to decode cognitive states from brain images publication-title: Mach. Learn. – volume: 16 start-page: 539 year: 2008 end-page: 548 ident: bb0145 article-title: Interpretable classifiers for FMRI improve prediction of purchases publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 32 start-page: 417 year: 2008 end-page: 425 ident: bb0260 article-title: Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data publication-title: Comput. Biol. Chem. – volume: 460 start-page: 94 year: 2009 end-page: 97 ident: bb0325 article-title: Neural mechanisms of rapid natural scene categorization in human visual cortex publication-title: Nature – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bb0465 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B – volume: 24 start-page: 1175 year: 2008 end-page: 1182 ident: bb0265 article-title: Network-constrained regularization and variable selection for analysis of genomic data publication-title: Bioinformatics – volume: 3 year: 2008 ident: bb0360 article-title: Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings publication-title: PLoS One – volume: vol. 1 start-page: 197 year: 1956 end-page: 206 ident: bb0370 article-title: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution publication-title: Proc. Third Berkeley Symp. on Math. Statist. and Prob. – volume: 5 start-page: 688 year: 2011 end-page: 749 ident: bb0455 article-title: Adaptive lasso for high dimensional regression and Gaussian graphical modeling publication-title: Electron. J. Stat. – year: 2009 ident: bb0210 article-title: Robust Statistics – volume: 4 start-page: 1055 year: 2010 end-page: 1080 ident: bb0365 article-title: Feature selection guided by structural information publication-title: Ann. Appl. Stat. – volume: 3 start-page: 1 issue: 32 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0035 article-title: Applications of multivariate pattern classification analyses in developmental neuroimaging of healthy and clinical populations publication-title: Front. Hum. Neurosci. – volume: 24 start-page: 1175 issue: 9 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0265 article-title: Network-constrained regularization and variable selection for analysis of genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn081 – start-page: 101 year: 2012 ident: 10.1016/j.neuroimage.2012.12.062_bb0310 article-title: Connectivity-informed sparse classifiers for fMRI brain decoding – year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0300 – volume: 20 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0435 – volume: 42 start-page: 1414 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0450 article-title: Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.050 – volume: 37 start-page: 1733 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0470 article-title: On the adaptive elastic-net with a diverging number of parameters publication-title: Ann. Stat. doi: 10.1214/08-AOS625 – volume: 16 start-page: 539 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0145 article-title: Interpretable classifiers for FMRI improve prediction of purchases publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2008.926701 – volume: 32 start-page: 417 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0260 article-title: Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2008.07.015 – volume: 109 start-page: 474 year: 2001 ident: 10.1016/j.neuroimage.2012.12.062_bb0405 article-title: Convergence of block coordinate descent method for nondifferentiable maximation publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1017501703105 – volume: vol. 1 start-page: 197 year: 1956 ident: 10.1016/j.neuroimage.2012.12.062_bb0370 article-title: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution – volume: 67 start-page: 91 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2012.12.062_bb0385 article-title: Sparsity and smoothness via the fused lasso publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00490.x – volume: 14 start-page: 69 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0055 article-title: Enhancing sparsity by reweighted l1 minimization publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9045-x – volume: 51 start-page: 752 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2012.12.062_bb0355 article-title: Sparse logistic regression for whole-brain classification of fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.040 – year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0150 article-title: Elastic source selection for in vivo imaging of neuronal ensembles – volume: 310 start-page: 1963 issue: 5756 year: 2005 ident: 10.1016/j.neuroimage.2012.12.062_bb0335 article-title: Category-specific cortical activity precedes retrieval during memory search publication-title: Science doi: 10.1126/science.1117645 – volume: 460 start-page: 94 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0325 article-title: Neural mechanisms of rapid natural scene categorization in human visual cortex publication-title: Nature doi: 10.1038/nature08103 – year: 2000 ident: 10.1016/j.neuroimage.2012.12.062_bb0005 – volume: 24 start-page: 412 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0425 article-title: Hybrid Huberized Support Vector Machines for microarray classification and gene selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm579 – volume: 363 start-page: 3771 issue: 1511 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0235 article-title: Anticipatory affect: neural correlates and consequences for choice publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2008.0155 – volume: 56 start-page: 2439 issue: 10 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0270 article-title: Voxel selection in fMRI bata analysis based on a sparse representation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2025866 – volume: 45 start-page: S199 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0330 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.neuroimage.2012.12.062_bb0165 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 72 start-page: 2824 issue: 13–15 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0225 article-title: Finding optimal model parameters by deterministic and annealed focused grid search publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.09.024 – volume: 21 start-page: 1 issue: 16 year: 2001 ident: 10.1016/j.neuroimage.2012.12.062_bb0240 article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-16-j0002.2001 – year: 1984 ident: 10.1016/j.neuroimage.2012.12.062_bb0040 – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.neuroimage.2012.12.062_bb0080 article-title: AFNI: software for analysis and visualization of functional magnetic resonance images publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 1 start-page: 302 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0120 article-title: Pathwise coordinate optimization publication-title: Ann. Appl. Stat. doi: 10.1214/07-AOAS131 – volume: 30 start-page: 1328 issue: 7 year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0290 article-title: Total variation regularization for fMRI-based prediction of behavior publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2113378 – year: 1988 ident: 10.1016/j.neuroimage.2012.12.062_bb0400 article-title: Technical Report LIDS-P, 1840 – volume: 53 start-page: 406 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0070 article-title: Sparse discriminant analysis publication-title: Technometrics doi: 10.1198/TECH.2011.08118 – start-page: 1 year: 2012 ident: 10.1016/j.neuroimage.2012.12.062_bb0410 article-title: A linear Gaussian framework for decoding of perceived images – volume: 7 start-page: 523 year: 2006 ident: 10.1016/j.neuroimage.2012.12.062_bb0195 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1931 – year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0210 – volume: 44 start-page: 112 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0060 article-title: Prediction and interpretation of distributed neural activity with sparse models publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.08.020 – volume: 10 start-page: 424 issue: 9 year: 2006 ident: 10.1016/j.neuroimage.2012.12.062_bb0315 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.07.005 – volume: 21 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0340 – volume: 23 start-page: 73 issue: 1 year: 1995 ident: 10.1016/j.neuroimage.2012.12.062_bb0185 article-title: Penalized Discriminant Analysis publication-title: Ann. Stat. doi: 10.1214/aos/1176324456 – year: 1943 ident: 10.1016/j.neuroimage.2012.12.062_bb0395 – ident: 10.1016/j.neuroimage.2012.12.062_bb0230 – year: 2012 ident: 10.1016/j.neuroimage.2012.12.062_bb0285 article-title: An efficient approach to sparse linear discriminant analysis – year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0010 article-title: A generalized least squares matrix decomposition – year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0190 – volume: 3 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0360 article-title: Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings publication-title: PLoS One doi: 10.1371/journal.pone.0001394 – volume: 53 start-page: 147 year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0250 article-title: Neural predictors of purchases publication-title: Neuron doi: 10.1016/j.neuron.2006.11.010 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.neuroimage.2012.12.062_bb0375 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 4 start-page: 1055 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2012.12.062_bb0365 article-title: Feature selection guided by structural information publication-title: Ann. Appl. Stat. doi: 10.1214/09-AOAS302 – volume: 31 start-page: 439 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0420 article-title: Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3420-10.2011 – volume: 46 start-page: 87 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0215 article-title: Modeling fMRI data generated by overlapping cognitive processes with unknown onsets using Hidden Process Models publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.025 – year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0090 article-title: Prediction accuracy and stability of regression with optimal scaling transformations – volume: 34 start-page: 177 year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0085 article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.08.041 – volume: 1 start-page: 302 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0125 article-title: Pathwise coordinate optimization publication-title: Ann. Appl. Stat. doi: 10.1214/07-AOAS131 – volume: 32 start-page: 870 year: 2004 ident: 10.1016/j.neuroimage.2012.12.062_bb0015 article-title: Optimal predictive model selection publication-title: Ann. Stat. doi: 10.1214/009053604000000238 – volume: 35 start-page: 2173 issue: 5 year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0475 article-title: On the “degrees of freedom” of the lasso publication-title: Ann. Stat. doi: 10.1214/009053607000000127 – volume: 2007 start-page: 1735 issue: 19 year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0320 article-title: Theoretical, statistical, and practical perspectives on pattern-based classification publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2007.19.11.1735 – volume: 28 start-page: 5623 issue: 22 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0175 article-title: Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1309-08.2008 – start-page: S58 issue: Supplement 1 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0155 article-title: Whole-brain sparse penalized discriminant analysis for predicting choice publication-title: NeuroImage doi: 10.1016/S1053-8119(09)70232-0 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2012.12.062_bb0075 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 72 start-page: 417 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2012.12.062_bb0280 article-title: Stability Selection publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2010.00740.x – year: 1970 ident: 10.1016/j.neuroimage.2012.12.062_bb0345 – start-page: 150 year: 2010 ident: 10.1016/j.neuroimage.2012.12.062_bb0415 article-title: Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.11.064 – volume: 5 start-page: 688 year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0455 article-title: Adaptive lasso for high dimensional regression and Gaussian graphical modeling publication-title: Electron. J. Stat. – volume: 74 start-page: 1289 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0020 article-title: Towards a theoretical foundation for Laplacian-based manifold methods publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2007.08.006 – volume: 100 start-page: 2197 issue: 5 year: 2003 ident: 10.1016/j.neuroimage.2012.12.062_bb0050 article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization publication-title: PNAS doi: 10.1073/pnas.0437847100 – volume: 1282 start-page: 114 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0105 article-title: An introduction to anatomical ROI-based fMRI classification analysis publication-title: Brain Res. doi: 10.1016/j.brainres.2009.05.090 – year: 1998 ident: 10.1016/j.neuroimage.2012.12.062_bb0255 – volume: 89 start-page: 1255 issue: 428 year: 1994 ident: 10.1016/j.neuroimage.2012.12.062_bb0180 article-title: Flexible Discriminant Analysis by Optimal Scoring publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1994.10476866 – volume: 73 start-page: 753 issue: 5 year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0440 article-title: Penalized classification using Fisher's linear discriminant publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2011.00783.x – volume: 7 start-page: 2399 year: 2006 ident: 10.1016/j.neuroimage.2012.12.062_bb0025 article-title: On manifold regularization publication-title: J. Mach. Learn. Res. – volume: 25 start-page: 4806 year: 2005 ident: 10.1016/j.neuroimage.2012.12.062_bb0245 article-title: Distributed neural representation of expected value publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0642-05.2005 – volume: 56 start-page: 601 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0045 article-title: Model-based feature construction for multivariate decoding publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.036 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2012.12.062_bb0465 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.12.062_bb0130 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – volume: 96 start-page: 1348 issue: 456 year: 2001 ident: 10.1016/j.neuroimage.2012.12.062_bb0110 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – volume: 57 start-page: 145 issue: 1–2 year: 2004 ident: 10.1016/j.neuroimage.2012.12.062_bb0295 article-title: Learning to decode cognitive states from brain images publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 46 start-page: 512 year: 2001 ident: 10.1016/j.neuroimage.2012.12.062_bb0140 article-title: Spiral in/out BOLD FMRI for increased SNR and reduced susceptibility artifacts publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1222 – volume: 36 start-page: 88 year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0305 article-title: Dynamic discrimination analysis: a spatial–temporal SVM publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.020 – volume: 2 start-page: 189 year: 1995 ident: 10.1016/j.neuroimage.2012.12.062_bb0135 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – volume: 12 start-page: 2777 year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0220 article-title: Structured variable selection with sparsity-inducing norms publication-title: J. Mach. Learn. Res. – volume: 41 start-page: 613 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2012.12.062_bb0095 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.382009 – volume: 40 start-page: 1031 issue: 5 year: 2003 ident: 10.1016/j.neuroimage.2012.12.062_bb0275 article-title: Saccade reward signals in posterior cingulate cortex publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 23 start-page: S189 year: 2004 ident: 10.1016/j.neuroimage.2012.12.062_bb0445 article-title: Unified univariate and multivariate random field theory publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.026 – year: 2004 ident: 10.1016/j.neuroimage.2012.12.062_bb0030 – volume: 57 start-page: 223 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0065 article-title: Variational Bayesian inference for a nonlinear forward model publication-title: IEEE Trans. Signal Proc. doi: 10.1109/TSP.2008.2005752 – volume: 1 start-page: 55 year: 1997 ident: 10.1016/j.neuroimage.2012.12.062_bb0115 article-title: On bias, variance, 0/1-loss, and the curse-of-dimensionality publication-title: Data Min. Knowl. Disc. doi: 10.1023/A:1009778005914 – volume: 101 start-page: 1418 issue: 467 year: 2006 ident: 10.1016/j.neuroimage.2012.12.062_bb0460 article-title: The adaptive lasso and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – volume: 7 start-page: 37 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.12.062_bb0170 article-title: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – volume: 1 start-page: 248 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2012.12.062_bb0430 article-title: A new alternating minimization algorithm for Total Variation image reconstruction publication-title: SIAM J. Imaging Sci. doi: 10.1137/080724265 – volume: 12 start-page: 69 issue: 1 year: 1970 ident: 10.1016/j.neuroimage.2012.12.062_bb0205 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488635 – volume: 50 start-page: 259 year: 1992 ident: 10.1016/j.neuroimage.2012.12.062_bb0350 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – volume: 59 start-page: 797 issue: 6 year: 2006 ident: 10.1016/j.neuroimage.2012.12.062_bb0100 article-title: For most large underdetermined systems of linear equations, the minimal ℓ1-norm solution is also the sparsest solution publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20132 – volume: 17 start-page: 323 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2012.12.062_bb0200 article-title: Reading hidden intentions in the human brain publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.11.072 – volume: 74 start-page: 245 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2012.12.062_bb0390 article-title: Strong rules for discarding predictors in lasso-type problems publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2011.01004.x – volume: 3 start-page: 1335 year: 2011 ident: 10.1016/j.neuroimage.2012.12.062_bb0380 article-title: The solution path of the generalized lasso publication-title: Ann. Stat. doi: 10.1214/11-AOS878 |
| SSID | ssj0009148 |
| Score | 2.50531 |
| Snippet | Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional “mass univariate” techniques that... Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that... Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional amass univariatea techniques that... |
| SourceID | unpaywall proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 304 |
| SubjectTerms | Algorithms Artificial Intelligence Behavior Biological and medical sciences Brain - physiology Brain Mapping - methods Brain research Classification Fundamental and applied biological sciences. Psychology Heuristics Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging Medical imaging Methods NMR Nuclear magnetic resonance Success Vertebrates: nervous system and sense organs |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6WHNKWEtK3m2RxoVd1LVl-iJxCSBoCyaVd2JuQLBm2bJyl2SXkkt_eGVv2NtCWhYJPtgbsz6N5aF4AnxNVod7gJUsqVzNZK8NMaiwzFKLheeXzNqJ7dZ1fTOXlLJuN4LSvhaG0yiD7O5neSutwZxLQnCzn88k3tAxQ3aC_gTpMoN1NFeyyoCkGXx43aR6Ky64cLksZrQ7ZPF2OV9szcn6DO5eSvER7MJiLv6mol0tzh8DV3cSLP5mkL-DZulmah3uzWPymps73YS_Yl_FJ9wmvYOSb17B7FSLob-B4k2VoFz6-p_G4zNKciBhvunlb5hCb0KokpmPa-Cs1tb72q7cwPT_7fnrBwgAFVmWFWLHUSWlVYrLEoyVXc1cmuP0KoxI0S9AVEbbEf6UK50tvS-lyBEukNTqqzteJU-k72GluG_8BMUNPps7z2hipaHy6yjy6XsZaLipTOBlB0WOmq9BdnIZcLHSfRvZDb9DWhLbGC9GOgA-Uy67DxhY0qv8tuq8gRZmnUQ1sQXs80D7htC2px0-4YHhlgUpeFUkZwWHPFjqIgzvNc2r7hsYX4vRpeIwbmaIzpvG3a1yDllyJ_h3n_1iTUfslirxG8L5juc0LpEKV6BxGIAYe3BrQj_8FygE8F-2UkIzx7BB2Vj_X_ghttZUdt5vxF0CYPAU priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9kBT849NQ7r55KhXuNJG3TNvgk4geCiwcueE8haVLQ26uLdhH96530a1VOWYU-lDbTNjOT5DedyQzALyoyXDdYSmhmchLlQhEVKk2Uc9GwOLNx5dE968cng-j0kl_OAG33wrzw31dxWFVex6t_OLpcIFZQ_bxzk-5szBF992B20D_f_1M5NXlI8L2iOnclCHnSBu-896i3VqQvI3WHfMrrAhf_Q6CLMD8uRurhXg2Hz1alo2X43fanDkb5uzsu9W72-CrV40c6_BWWGojq79c6tQIztliFubPGCb8Ge5NART20_r2rsEu0KzXh40VzVe2U8FWT7cR3f3r9Y5cXu2_LbzA4Orw4OCFNDQaSIfdKEpoo0oIqTi2CwZyZlOIITpSgiGzQmgl0iuIWibGp1WlkYsEQoOVo6xqbUyPC79Arbgr7A-WAxlAex7lSkXAV2AW3aL0prVmQqcREHiStHGTWJCh3dTKGso1Eu5YT3kjHG4kH8sYD1lGO6iQdU9CIVtSy3YSK06ZEeUxBu9fRNkClBiBTUm-_0KzukwPECSKhqQebrarJZka5kyx2meMQvyGfdrrbOBc4B48q7M0Y2yAYTNFEZOydNtxlcHLOWw_WazWefEAYiBTtSw-CTq-nZujGZ4h-wkJQ1RfhhPFN6JW3Y7uFKK_U283AfgKMIUv0 priority: 102 providerName: Unpaywall |
| Title | Interpretable whole-brain prediction analysis with GraphNet |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912012487 https://dx.doi.org/10.1016/j.neuroimage.2012.12.062 https://www.ncbi.nlm.nih.gov/pubmed/23298747 https://www.proquest.com/docview/1668108194 https://www.proquest.com/docview/1317855911 https://www.proquest.com/docview/1500770783 https://doi.org/10.1016/j.neuroimage.2012.12.062 |
| UnpaywallVersion | publishedVersion |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9swED_aBPZgjL3nrQse7Ks2S36KMkZW2mWPmlAWyD4Z2ZKhI3PSNqH0S__23dmyvcFWAsaGxAfifNLd6U6_H8AbTxboN3jCvEKXLCilYspXOVNUouFRYaK6onucRpNZ8GUezncgbc_CUFtluybWC7VeFrRH_o5HhJyF_iv4sDpjxBpF1dWWQkNZagX9voYY24WhIGSsAQw_HqbTkx6GlwfN4bjQZzhEaXt7mo6vGkHy9BfOY2r5EvU2YST-57DurdQFqrFs-C_-FaDehdubaqWuLtVi8YfTOnoA92206Y4b83gIO6Z6BLeObT39Mez3PYf5wriXRJbLcmKNcPFHfVofenCVBS5xadPW_UQQ16lZP4HZ0eH3gwmzdAqsCGOxZr4Oglx6KvQMxnUl14mHkzFW0sMgBRMTkSf45WSsTWLyJNARKkv4Jaat2pSelv5TGFTLyjxHnWFeU0ZRqVQgiUxdhgYTMZXnXBQq1oEDcauzrLBY40R5scjaprKfWa_tjLSd4YXadoB3kqsGb2MLGdl-lqw9T4orYIZOYQvZ_U7WxhxNLLGl9OgvK-iGLNDly9hLHNhrzSKzi8NF1puyA6-7v3FaU61GVWa5wXcwrksw2-P8hndCAmOiOqwDzxqT6wfgC5lgquiA6Gxwa4W-uHnUL-GOqElBQsbDPRiszzfmFYZm63wEu2-vOd7jeTyC4fjg5NuUnp-_TtKRnYv4nKXT8Y_fk4c98Q |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ra9swED9KC-vGGHvXW9d5sH0Us2T5IUoZe7RL1yaM0UK_qZIlQ0fqZEtC6D-3v20nW7Y32Eq-FPLJ8YF8Ot39TvcCeB2JAu0GzUlUmJLwUiiiYqWJciEamhY2rSO6w1E6OOVfzpKzNfjV1sK4tMpWJ9aK2kwKd0f-lqaucxbaL_5u-oO4qVEuutqO0FB-tILZq1uM-cKOI3u1RBdutnf4Cff7DWMH-ycfB8RPGSBFkrE5iQ3nWkQqiSzCnZKaPEIZzZSI0HYjXmc6xw8SmbG51Tk3qaAIQUr05owtI-OaMaEJ2OAxF-j8bXzYH3391rf9pbwpxktigiwRPpeoyTCrO1ZeXKLecClmrL6WTNn_DOTdqZrhtpXNvI1_AeI7sLmopupqqcbjP4zkwX2459Ft-L4RxwewZquHcGvo4_ePYLfPcdRjGy7dcF6i3ZSKEB-ai7rIIlS-UUroLonDz66l9sjOH8PpjTD2CaxXk8puIc_QjyrTtFSKCze8XSQWHT-lNWWFygwPIGt5Jgvf29yN2BjLNontu-y5LR23Jf6Q2wHQjnLa9PdYgUa02yLb-lXUuBKN0Aq0ux2txzgNdlmReucvKeiWzBBiiCzKA9huxUJ6ZTST_dEJ4FX3N6oRFxtSlZ0s8B3EkTl6l5Re807imj-5uG8ATxuR6xcQM5GjaxoA62RwZYY-u37VL2FzcDI8lseHo6PncJvVA0kSQpNtWJ__XNgXCAvnesefvRDOb_q4_wYgFHJR |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9KhaqI-O1qrSvoY-gmm_0IRUSsZ2vt4YOFe4vJJguVc-_07jj6r_nXObOfClrupbBPuxnITiYzv8lMZgBeRqpAu8FzFhWuZLJUhpnYWGYoRMPTwqd1RPd0nB6dyY-TZLIFv7q7MJRW2enEWlG7WUFn5Ps8pcpZaL_kftmmRXw-HL2Z_2DUQYoirV07jUZETvzFGt23xevjQ1zrV0KM3n95d8TaDgOsSDKxZLGT0qrIJJFHqFNyl0con5lREdptxOrC5vgzKnM-9zaXLlUc4UeJnpzzZeSoEBOq_2tZHCtKJ8wm2VDwl8vmGl4SM2SGarOImtyyulbl-XfUGJRcJuoDyVT8zzTempsFLljZdNr4FxS-CddX1dxcrM10-od5HN2B2y2uDd82gngXtnx1D3ZO28j9fTgYshvt1IdrasvLLPWnCPGlO6-vV4SmLZES0vFw-IGKaY_98gGcXQlbH8J2Nav8Y-QZelBlmpbGSEVt21Xi0eUz1nJRmMzJALKOZ7poq5pTc42p7tLXvumB25q4rfFBbgfAe8p5U9ljAxrVLYvubq6irtVofjagPehpW3TToJYNqff-koJ-ygLBhcqiPIDdTix0q4YWetg0AbzoP6MCoaiQqfxshWMQQeboV3J-yZiEyj5RxDeAR43IDROIhcrRKQ1A9DK4MUOfXD7r57CDm1x_Oh6fPIUbou5EkjCe7ML28ufKP0M8uLR79cYL4etV7_Tf8JJv6w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9kBT849NQ7r55KhXuNJG3TNvgk4geCiwcueE8haVLQ26uLdhH96530a1VOWYU-lDbTNjOT5DedyQzALyoyXDdYSmhmchLlQhEVKk2Uc9GwOLNx5dE968cng-j0kl_OAG33wrzw31dxWFVex6t_OLpcIFZQ_bxzk-5szBF992B20D_f_1M5NXlI8L2iOnclCHnSBu-896i3VqQvI3WHfMrrAhf_Q6CLMD8uRurhXg2Hz1alo2X43fanDkb5uzsu9W72-CrV40c6_BWWGojq79c6tQIztliFubPGCb8Ge5NART20_r2rsEu0KzXh40VzVe2U8FWT7cR3f3r9Y5cXu2_LbzA4Orw4OCFNDQaSIfdKEpoo0oIqTi2CwZyZlOIITpSgiGzQmgl0iuIWibGp1WlkYsEQoOVo6xqbUyPC79Arbgr7A-WAxlAex7lSkXAV2AW3aL0prVmQqcREHiStHGTWJCh3dTKGso1Eu5YT3kjHG4kH8sYD1lGO6iQdU9CIVtSy3YSK06ZEeUxBu9fRNkClBiBTUm-_0KzukwPECSKhqQebrarJZka5kyx2meMQvyGfdrrbOBc4B48q7M0Y2yAYTNFEZOydNtxlcHLOWw_WazWefEAYiBTtSw-CTq-nZujGZ4h-wkJQ1RfhhPFN6JW3Y7uFKK_U283AfgKMIUv0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+whole-brain+prediction+analysis+with+GraphNet&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Grosenick%2C+Logan&rft.au=Klingenberg%2C+Brad&rft.au=Katovich%2C+Kiefer&rft.au=Knutson%2C+Brian&rft.date=2013-05-15&rft.issn=1053-8119&rft.volume=72&rft.spage=304&rft.epage=321&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.12.062&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |