Interpretable whole-brain prediction analysis with GraphNet

Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional “mass univariate” techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of “off-the-she...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 72; pp. 304 - 321
Main Authors Grosenick, Logan, Klingenberg, Brad, Katovich, Kiefer, Knutson, Brian, Taylor, Jonathan E.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.05.2013
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2012.12.062

Cover

Abstract Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional “mass univariate” techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of “off-the-shelf” classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI (“searchlight”) methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with “adaptive” penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 “features”), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals. ► We introduce robust, interpretable models for prediction with whole-brain fMRI data. ► These use a sparsity-inducing penalty that automatically selects important voxels. ► They also include a graph penalty to structure the solution. ► They outperform state-of-the-art classifiers on whole-brain fMRI data. ► They predict outcomes on new data collected years after the data used for training.
AbstractList Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional amass univariatea techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of aoff-the-shelfa classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI (asearchlighta) methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with aadaptivea penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008 and Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (> 100,000 afeaturesa), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals.
Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to theKnutson et al. (2007)data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals.
Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional “mass univariate” techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of “off-the-shelf” classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI (“searchlight”) methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with “adaptive” penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 “features”), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals. ► We introduce robust, interpretable models for prediction with whole-brain fMRI data. ► These use a sparsity-inducing penalty that automatically selects important voxels. ► They also include a graph penalty to structure the solution. ► They outperform state-of-the-art classifiers on whole-brain fMRI data. ► They predict outcomes on new data collected years after the data used for training.
Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals.
Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals.Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that fit data one voxel at a time. In the functional magnetic resonance imaging (fMRI) literature, this has led to broad application of "off-the-shelf" classification and regression methods. These generic approaches allow investigators to use ready-made algorithms to accurately decode perceptual, cognitive, or behavioral states from distributed patterns of neural activity. However, when applied to correlated whole-brain fMRI data these methods suffer from coefficient instability, are sensitive to outliers, and yield dense solutions that are hard to interpret without arbitrary thresholding. Here, we develop variants of the Graph-constrained Elastic-Net (GraphNet), a fast, whole-brain regression and classification method developed for spatially and temporally correlated data that automatically yields interpretable coefficient maps (Grosenick et al., 2009b). GraphNet methods yield sparse but structured solutions by combining structured graph constraints (based on knowledge about coefficient smoothness or connectivity) with a global sparsity-inducing prior that automatically selects important variables. Because GraphNet methods can efficiently fit regression or classification models to whole-brain, multiple time-point data sets and enhance classification accuracy relative to volume-of-interest (VOI) approaches, they eliminate the need for inherently biased VOI analyses and allow whole-brain fitting without the multiple comparison problems that plague mass univariate and roaming VOI ("searchlight") methods. As fMRI data are unlikely to be normally distributed, we (1) extend GraphNet to include robust loss functions that confer insensitivity to outliers, (2) equip them with "adaptive" penalties that asymptotically guarantee correct variable selection, and (3) develop a novel sparse structured Support Vector GraphNet classifier (SVGN). When applied to previously published data (Knutson et al., 2007), these efficient whole-brain methods significantly improved classification accuracy over previously reported VOI-based analyses on the same data (Grosenick et al., 2008; Knutson et al., 2007) while discovering task-related regions not documented in the original VOI approach. Critically, GraphNet estimates fit to the Knutson et al. (2007) data generalize well to out-of-sample data collected more than three years later on the same task but with different subjects and stimuli (Karmarkar et al., submitted for publication). By enabling robust and efficient selection of important voxels from whole-brain data taken over multiple time points (>100,000 "features"), these methods enable data-driven selection of brain areas that accurately predict single-trial behavior within and across individuals.
Author Klingenberg, Brad
Knutson, Brian
Grosenick, Logan
Taylor, Jonathan E.
Katovich, Kiefer
Author_xml – sequence: 1
  givenname: Logan
  surname: Grosenick
  fullname: Grosenick, Logan
  email: logang@gmail.com
  organization: Center for Mind, Brain, and Computation, Stanford University, Stanford, CA, USA
– sequence: 2
  givenname: Brad
  surname: Klingenberg
  fullname: Klingenberg, Brad
  organization: Department of Statistics, Stanford University, Stanford, CA, USA
– sequence: 3
  givenname: Kiefer
  surname: Katovich
  fullname: Katovich, Kiefer
  organization: Department of Psychology, Stanford University, Stanford, CA, USA
– sequence: 4
  givenname: Brian
  surname: Knutson
  fullname: Knutson, Brian
  organization: Department of Psychology, Stanford University, Stanford, CA, USA
– sequence: 5
  givenname: Jonathan E.
  surname: Taylor
  fullname: Taylor, Jonathan E.
  organization: Department of Statistics, Stanford University, Stanford, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27189708$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23298747$$D View this record in MEDLINE/PubMed
BookMark eNqVkl2LEzEUhoOsuB_6F2RABG-mnsxXEgRZXXRdWPRGr0MmOWNT08yYZCz996a0utAbKwQSwnNeTp6TS3LmR4-EFBQWFGj3erXwOIfRrtV3XFRAq0Ve0FWPyAUF0ZaiZdXZ7tzWJadUnJPLGFcAIGjDn5Dzqq4EZw27IG_ufMIwBUyqd1hslqPDsg_K-iJfGquTHX2hvHLbaGOxsWlZ3AY1LT9jekoeD8pFfHbYr8i3jx--3nwq77_c3t28uy91biOVtWmaXoBqAYGKgRoOTDRMCaiFoKypeg5CC2aQY88b0-Umq3qoWGNwACPqKyL2ubOf1HajnJNTyG8PW0lB7oTIlXwQIndCZF5ZSK59ta-dwvhzxpjk2kaNzimP4xwlbQEYA8brf6M1ZbxtBaUZfXGErsY5ZEmZ6jpOgVPRZOr5gZr7NZq_Tf-xn4GXB0BFrdwQlNc2PnCMcsGAZ-7tntNhjDHgILVNajeZlCflTrHAjwL-Q-D7fSnmCf-yGGTUFr3OfyOgTtKM9pSQ66MQ7ay3-c0_cHtaxG_SNerm
CitedBy_id crossref_primary_10_3390_sym17020151
crossref_primary_10_1016_j_ymeth_2014_10_016
crossref_primary_10_1016_j_neuroimage_2014_03_067
crossref_primary_10_1109_TMI_2017_2749140
crossref_primary_10_1002_sam_11376
crossref_primary_10_3233_JAD_240098
crossref_primary_10_1186_1471_2164_14_S8_S7
crossref_primary_10_3389_fnhum_2021_641616
crossref_primary_10_1162_imag_a_00245
crossref_primary_10_1007_s12031_021_01888_6
crossref_primary_10_1016_j_neuroimage_2023_120109
crossref_primary_10_1177_1754073918765653
crossref_primary_10_1214_15_AOAS829
crossref_primary_10_1016_j_jneumeth_2017_05_004
crossref_primary_10_1093_bib_bbab121
crossref_primary_10_4103_1673_5374_297079
crossref_primary_10_1007_s00702_024_02766_2
crossref_primary_10_1137_21M1401103
crossref_primary_10_1002_sim_9553
crossref_primary_10_1371_journal_pone_0234748
crossref_primary_10_1111_acps_12964
crossref_primary_10_1111_biom_13075
crossref_primary_10_1016_j_media_2017_09_002
crossref_primary_10_1002_jmri_25682
crossref_primary_10_1016_j_jneumeth_2014_10_023
crossref_primary_10_1016_j_neuroimage_2014_10_002
crossref_primary_10_1016_j_cobeha_2015_10_012
crossref_primary_10_1016_j_media_2021_102026
crossref_primary_10_1016_j_tics_2014_04_006
crossref_primary_10_1109_TMI_2014_2374074
crossref_primary_10_1016_j_neuroimage_2018_05_051
crossref_primary_10_1016_j_neuroimage_2018_11_044
crossref_primary_10_1016_j_neuroimage_2016_01_039
crossref_primary_10_1109_TMI_2019_2918839
crossref_primary_10_1038_s41596_019_0289_5
crossref_primary_10_1016_j_neuroimage_2018_09_031
crossref_primary_10_1016_j_neuroimage_2018_05_055
crossref_primary_10_1214_16_AOAS996
crossref_primary_10_1109_TMI_2017_2735239
crossref_primary_10_1016_j_neuroimage_2015_05_018
crossref_primary_10_3934_era_2023044
crossref_primary_10_3389_fnins_2017_00062
crossref_primary_10_1214_19_AOAS1252
crossref_primary_10_1038_tp_2013_43
crossref_primary_10_1523_JNEUROSCI_2348_13_2013
crossref_primary_10_1093_cercor_bhx061
crossref_primary_10_1007_s12021_019_9415_3
crossref_primary_10_1016_j_neuroimage_2020_117708
crossref_primary_10_1007_s11002_014_9306_1
crossref_primary_10_1093_bioinformatics_btw033
crossref_primary_10_1016_j_neuroimage_2013_07_043
crossref_primary_10_1111_biom_12355
crossref_primary_10_1016_j_brainresbull_2025_111238
crossref_primary_10_1007_s12021_018_9394_9
crossref_primary_10_1038_s41598_020_67162_8
crossref_primary_10_1142_S0129065718500405
crossref_primary_10_1016_j_neuroimage_2014_10_025
crossref_primary_10_1016_j_csda_2019_106835
crossref_primary_10_1016_j_neuroimage_2017_10_005
crossref_primary_10_1038_s41598_022_26178_y
crossref_primary_10_1371_journal_pone_0104586
crossref_primary_10_1109_TSIPN_2017_2679491
crossref_primary_10_1002_sim_6999
crossref_primary_10_1073_pnas_2214072119
crossref_primary_10_1016_j_neuroimage_2013_09_048
crossref_primary_10_1038_s41593_023_01259_x
crossref_primary_10_1016_j_neuroimage_2019_02_057
crossref_primary_10_1016_j_nicl_2014_02_002
crossref_primary_10_3389_fnins_2016_00619
crossref_primary_10_1016_j_media_2021_102297
crossref_primary_10_1016_j_neuroimage_2017_08_018
crossref_primary_10_1109_JSEN_2020_3016402
crossref_primary_10_1016_j_cmpb_2020_105713
crossref_primary_10_1080_01621459_2016_1261710
crossref_primary_10_1093_scan_nsab010
crossref_primary_10_3389_fnhum_2021_765517
crossref_primary_10_3389_fnins_2019_01321
crossref_primary_10_1016_j_neuroimage_2013_07_026
crossref_primary_10_3389_fnins_2015_00366
crossref_primary_10_1002_mrm_27601
crossref_primary_10_1016_j_nicl_2016_12_011
crossref_primary_10_3389_fnhum_2017_00393
crossref_primary_10_1016_j_neurobiolaging_2014_07_045
crossref_primary_10_1016_j_neuron_2019_10_020
crossref_primary_10_1038_s41598_022_10942_1
crossref_primary_10_1007_s11633_022_1361_0
crossref_primary_10_1002_hbm_23953
crossref_primary_10_1109_TMI_2018_2829802
crossref_primary_10_1109_TMI_2015_2431294
crossref_primary_10_1109_JBHI_2020_2972581
crossref_primary_10_1016_j_media_2023_102913
crossref_primary_10_1089_brain_2017_0511
crossref_primary_10_1177_0963721417737877
crossref_primary_10_1016_j_neuron_2018_06_009
crossref_primary_10_1016_j_neuroimage_2019_06_017
crossref_primary_10_1186_s12918_016_0312_1
crossref_primary_10_1016_j_crmeth_2022_100227
crossref_primary_10_1016_j_tics_2022_07_003
crossref_primary_10_1016_j_neuron_2015_03_034
crossref_primary_10_1073_pnas_2412881121
crossref_primary_10_3389_fnagi_2021_817520
crossref_primary_10_1007_s12021_015_9292_3
crossref_primary_10_1016_j_neuroimage_2018_03_040
crossref_primary_10_1111_ejn_14760
crossref_primary_10_1016_j_compmedimag_2018_08_009
crossref_primary_10_1109_TMI_2017_2681966
crossref_primary_10_3389_fnhum_2020_614979
crossref_primary_10_1016_j_neuroimage_2016_10_038
crossref_primary_10_1109_TBME_2017_2756665
crossref_primary_10_1214_21_EJS1887
crossref_primary_10_1016_j_pscychresns_2016_11_005
crossref_primary_10_1016_j_neuroimage_2023_119990
crossref_primary_10_1126_sciadv_adn2776
crossref_primary_10_1109_ACCESS_2021_3059520
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1016_j_neuroimage_2014_02_008
crossref_primary_10_1016_j_neuroimage_2019_04_012
crossref_primary_10_1186_2047_217X_3_28
crossref_primary_10_1016_j_neuropsychologia_2020_107500
crossref_primary_10_1016_j_neuroimage_2014_11_021
crossref_primary_10_1007_s11682_017_9737_4
crossref_primary_10_1109_JPROC_2019_2947272
crossref_primary_10_1016_j_patrec_2018_06_006
crossref_primary_10_1016_j_neuroimage_2021_118580
Cites_doi 10.1093/bioinformatics/btn081
10.1016/j.neuroimage.2008.05.050
10.1214/08-AOS625
10.1109/TNSRE.2008.926701
10.1016/j.compbiolchem.2008.07.015
10.1023/A:1017501703105
10.1111/j.1467-9868.2005.00490.x
10.1007/s00041-008-9045-x
10.1016/j.neuroimage.2010.02.040
10.1126/science.1117645
10.1038/nature08103
10.1093/bioinformatics/btm579
10.1098/rstb.2008.0155
10.1109/TBME.2009.2025866
10.1016/j.neuroimage.2008.11.007
10.1023/A:1012487302797
10.1016/j.neucom.2008.09.024
10.1523/JNEUROSCI.21-16-j0002.2001
10.1006/cbmr.1996.0014
10.1214/07-AOAS131
10.1109/TMI.2011.2113378
10.1198/TECH.2011.08118
10.1038/nrn1931
10.1016/j.neuroimage.2008.08.020
10.1016/j.tics.2006.07.005
10.1214/aos/1176324456
10.1371/journal.pone.0001394
10.1016/j.neuron.2006.11.010
10.1111/j.2517-6161.1996.tb02080.x
10.1214/09-AOAS302
10.1523/JNEUROSCI.3420-10.2011
10.1016/j.neuroimage.2009.01.025
10.1016/j.neuroimage.2006.08.041
10.1214/009053604000000238
10.1214/009053607000000127
10.1162/jocn.2007.19.11.1735
10.1523/JNEUROSCI.1309-08.2008
10.1016/S1053-8119(09)70232-0
10.1007/BF00994018
10.1111/j.1467-9868.2010.00740.x
10.1016/j.neuroimage.2009.11.064
10.1016/j.jcss.2007.08.006
10.1073/pnas.0437847100
10.1016/j.brainres.2009.05.090
10.1080/01621459.1994.10476866
10.1111/j.1467-9868.2011.00783.x
10.1523/JNEUROSCI.0642-05.2005
10.1016/j.neuroimage.2010.04.036
10.1111/j.1467-9868.2005.00503.x
10.18637/jss.v033.i01
10.1198/016214501753382273
10.1023/B:MACH.0000035475.85309.1b
10.1002/mrm.1222
10.1016/j.neuroimage.2007.02.020
10.1002/hbm.460020402
10.1109/18.382009
10.1016/j.neuroimage.2004.07.026
10.1109/TSP.2008.2005752
10.1023/A:1009778005914
10.1198/016214506000000735
10.1007/s12021-008-9041-y
10.1137/080724265
10.1080/00401706.1970.10488635
10.1016/0167-2789(92)90242-F
10.1002/cpa.20132
10.1016/j.cub.2006.11.072
10.1111/j.1467-9868.2011.01004.x
10.1214/11-AOS878
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2014 INIST-CNRS
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 15, 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 15, 2013
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2012.12.062
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
ProQuest One Psychology

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 321
ExternalDocumentID 10.1016/j.neuroimage.2012.12.062
3642125071
23298747
27189708
10_1016_j_neuroimage_2012_12_062
S1053811912012487
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
PUEGO
R2-
SEW
WUQ
XPP
ZMT
ALIPV
IQODW
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c572t-3d44b90a50e019f1d807947a903991742b809c97de8eb84d691423f274def0d93
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Tue Aug 19 18:20:22 EDT 2025
Tue Oct 07 09:39:06 EDT 2025
Sat Sep 27 21:52:22 EDT 2025
Tue Oct 07 06:55:54 EDT 2025
Wed Feb 19 01:51:02 EST 2025
Wed Apr 02 07:23:34 EDT 2025
Thu Apr 24 23:44:17 EDT 2025
Wed Oct 01 02:58:12 EDT 2025
Fri Feb 23 02:36:05 EST 2024
Tue Oct 14 19:34:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Central nervous system
Encephalon
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2013 Elsevier Inc. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-3d44b90a50e019f1d807947a903991742b809c97de8eb84d691423f274def0d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2012.12.062
PMID 23298747
PQID 1668108194
PQPubID 2031077
PageCount 18
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2012_12_062
proquest_miscellaneous_1500770783
proquest_miscellaneous_1317855911
proquest_journals_1668108194
pubmed_primary_23298747
pascalfrancis_primary_27189708
crossref_citationtrail_10_1016_j_neuroimage_2012_12_062
crossref_primary_10_1016_j_neuroimage_2012_12_062
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_12_062
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_12_062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-15
PublicationDateYYYYMMDD 2013-05-15
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Leng (bb0260) 2008; 32
O'Toole, Jiang, Abdi, Penard (bb0320) 2007; 2007
Jenatton, Audibert, Bach (bb0220) 2011; 12
Breiman, Ihaka (bb0040) 1984
Jimenez, Lazaro, Dorronsoro (bb0225) 2009; 72
Mohamed, Heller, Ghahramani (bb0300) 2011
Li, Namburi, Yu, Guan, Feng, Gu (bb0270) 2009; 56
Shinkareva, Mason, Malave, Wang, Mitchell, Just (bb0360) 2008; 3
Wipf, Nagarajan (bb0435) 2008; 20
De Martino, Gentile, Esposito, Balsi, Di Salle, Goebel, Formisano (bb0085) 2007; 34
van Gerven, Heskes (bb0410) 2012
Cortes, Vapnik (bb0075) 1995; 20
Tseng (bb0405) 2001; 109
Boyd, Vandenberghe (bb0030) 2004
Zhou, van de Geer, Bühlmann (bb0455) 2011; 5
Zou, Hastie (bb0465) 2005; 67
Candes, Wakin, Boyd (bb0050) 2003; 100
Grosenick, Klingenberg, Greer, Taylor, Knutson (bb0155) 2009
Tibshirani, Taylor (bb0380) 2011; 3
Tibshirani, Saunders, Rosset, Zhu, Knight (bb0385) 2005; 67
Clemmensen, Hastie, Witten, Ersboll (bb0070) 2011; 53
McCoy, Crowley, Haghighian, Dean, Platt (bb0275) 2003; 40
Li, Li (bb0265) 2008; 24
Candes, Wakin, Boyd (bb0055) 2008; 14
Grosenick, Anderson, Smith (bb0150) 2009
Mitchell, Hutchinson, Niculescu (bb0295) 2004; 57
Rudin, Osher, Fatemi (bb0350) 1992; 50
Huber, Ronchetti (bb0210) 2009
Tseng (bb0400) 1988
Ng, Siless, Varoquaux, Yoline, Thirion, Abugharbieh (bb0310) 2012
Pereira, Mitchell, Botvinick (bb0330) 2009; 45
van der Kooij (bb0090) 2007
Bray, Chang, Hoeft (bb0035) 2009; 3
Tibshirani, Bien, Friedman, Hastie, Simon, Taylor, Tibshirani (bb0390) 2012; 74
Hastie, Buja, Tibshirani (bb0185) 1995; 23
Guyon, Weston, Barnhill, Vapnik (bb0165) 2002; 46
Glover, Law (bb0140) 2001; 46
Stein (bb0370) 1956; vol. 1
Michel, Gramfort, Varoquaux, Eger, Thirion (bb0290) 2011; 30
Wang, Zhu, Zou (bb0425) 2008; 24
van Gerven, Cseke, de Lange, Heskes (bb0415) 2010
Tikhonov (bb0395) 1943
Adler, Taylor (bb0005) 2000
Karmarkar, U. R., Shiv, B., Knutson, B., submitted for publication. Sticker shock: the neural and behavioral impact of price primacy on purchasing.
Norman, Polyn, Detre, Haxby (bb0315) 2006; 10
Ravikumar, Vu, Yu, Naselaris, Kay, Gallant (bb0340) 2009; 21
Donoho (bb0095) 1995; 41
Hanke, Halchenko, Sederberg (bb0170) 2009; 7
Knutson, Greer (bb0235) 2008; 363
Hastie, Tibshirani, Friedman (bb0190) 2009
Tibshirani (bb0375) 1996; 58
Yamashita, Sato, Yoshiika, Tong, Kamitani (bb0450) 2008; 42
Friedman (bb0115) 1997; 1
Cox (bb0080) 1996; 29
Hoerl, Kennard (bb0205) 1970; 12
Knutson, Rick, Wimmer, Prelec, Loewenstein (bb0250) 2007; 53
Allen, Grosenick, Taylor (bb0010) 2011
Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (bb0045) 2011; 56
Barbieri, Berger (bb0015) 2004; 32
Haynes, Sakai, Rees, Gilbert (bb0200) 2007; 17
Hastie, Tibshirani, Buja (bb0180) 1994; 89
Hare, O'Doherty, Camerer, Schultz, Rangel (bb0175) 2008; 28
Wager, Atlas, Leotti, Rillings (bb0420) 2011; 31
Slawski, zu Castell, Tutz (bb0365) 2010; 4
Fan, Li (bb0110) 2001; 96
Rockafellar (bb0345) 1970
Friedman, Hastie, Hofling, Tibshirani (bb0125) 2007; 1
Zou (bb0460) 2006; 101
Zou, Hastie, Tibshirani (bb0475) 2007; 35
Belkin, Niyogi (bb0020) 2008; 74
Chappell, Groves, Whitcher, Woolrich (bb0065) 2009; 57
Grosenick, Greer, Knutson (bb0145) 2008; 16
Haynes, Rees (bb0195) 2006; 7
Merchante, Grandvalet, Govaert (bb0285) 2012
Witten, Tibshirani (bb0440) 2011; 73
Belkin, Niyogi, Sindhwani (bb0025) 2006; 7
Friston, Holmes, Worsley, Poline (bb0135) 1995; 2
Worsley, Taylor, Tomaiuolo, Lerchb (bb0445) 2004; 23
Friedman, Hastie, Höfling, Tibshirani (bb0120) 2007; 1
Knutson, Adams, Fong, Hommer (bb0240) 2001; 21
Wang, Junfeng, Yin, Zhang (bb0430) 2008; 1
Carroll, Cecchi, Rish, Garg, Rao (bb0060) 2009; 44
Polyn, Natu, Cohen, Norman (bb0335) 2005; 310
Hutchinson, Niculescu, Keller, Rustandi, Mitchell (bb0215) 2009; 46
Meinshausen, Buhlmann (bb0280) 2010; 72
Mourão-Miranda, Friston, Brammer (bb0305) 2007; 36
Peelen, Fei-Fei, Kastner (bb0325) 2009; 460
Zou, Zhang (bb0470) 2009; 37
Friedman, Hastie, Tibshirani (bb0130) 2010; 33
Etzel, Gazzola, Keysers (bb0105) 2009; 1282
Lehmann, Casella (bb0255) 1998
Donoho (bb0100) 2006; 59
Knutson, Taylor, Kaufman, Peterson, Glover (bb0245) 2005; 25
Ryali, Supekar, Abrams, Menon (bb0355) 2010; 51
Allen (10.1016/j.neuroimage.2012.12.062_bb0010) 2011
Worsley (10.1016/j.neuroimage.2012.12.062_bb0445) 2004; 23
Stein (10.1016/j.neuroimage.2012.12.062_bb0370) 1956; vol. 1
Barbieri (10.1016/j.neuroimage.2012.12.062_bb0015) 2004; 32
10.1016/j.neuroimage.2012.12.062_bb0230
Li (10.1016/j.neuroimage.2012.12.062_bb0270) 2009; 56
Wang (10.1016/j.neuroimage.2012.12.062_bb0430) 2008; 1
Tikhonov (10.1016/j.neuroimage.2012.12.062_bb0395) 1943
Haynes (10.1016/j.neuroimage.2012.12.062_bb0195) 2006; 7
Norman (10.1016/j.neuroimage.2012.12.062_bb0315) 2006; 10
Slawski (10.1016/j.neuroimage.2012.12.062_bb0365) 2010; 4
Knutson (10.1016/j.neuroimage.2012.12.062_bb0240) 2001; 21
Zou (10.1016/j.neuroimage.2012.12.062_bb0465) 2005; 67
Belkin (10.1016/j.neuroimage.2012.12.062_bb0020) 2008; 74
Hanke (10.1016/j.neuroimage.2012.12.062_bb0170) 2009; 7
Ng (10.1016/j.neuroimage.2012.12.062_bb0310) 2012
Carroll (10.1016/j.neuroimage.2012.12.062_bb0060) 2009; 44
Mohamed (10.1016/j.neuroimage.2012.12.062_bb0300) 2011
O'Toole (10.1016/j.neuroimage.2012.12.062_bb0320) 2007; 2007
Hastie (10.1016/j.neuroimage.2012.12.062_bb0180) 1994; 89
Haynes (10.1016/j.neuroimage.2012.12.062_bb0200) 2007; 17
van Gerven (10.1016/j.neuroimage.2012.12.062_bb0410) 2012
Friston (10.1016/j.neuroimage.2012.12.062_bb0135) 1995; 2
Wang (10.1016/j.neuroimage.2012.12.062_bb0425) 2008; 24
Friedman (10.1016/j.neuroimage.2012.12.062_bb0120) 2007; 1
Witten (10.1016/j.neuroimage.2012.12.062_bb0440) 2011; 73
Peelen (10.1016/j.neuroimage.2012.12.062_bb0325) 2009; 460
Tseng (10.1016/j.neuroimage.2012.12.062_bb0400) 1988
Belkin (10.1016/j.neuroimage.2012.12.062_bb0025) 2006; 7
Tibshirani (10.1016/j.neuroimage.2012.12.062_bb0385) 2005; 67
Wager (10.1016/j.neuroimage.2012.12.062_bb0420) 2011; 31
Candes (10.1016/j.neuroimage.2012.12.062_bb0055) 2008; 14
Zou (10.1016/j.neuroimage.2012.12.062_bb0470) 2009; 37
Merchante (10.1016/j.neuroimage.2012.12.062_bb0285) 2012
Knutson (10.1016/j.neuroimage.2012.12.062_bb0245) 2005; 25
Fan (10.1016/j.neuroimage.2012.12.062_bb0110) 2001; 96
Huber (10.1016/j.neuroimage.2012.12.062_bb0210) 2009
Hastie (10.1016/j.neuroimage.2012.12.062_bb0190) 2009
Tibshirani (10.1016/j.neuroimage.2012.12.062_bb0390) 2012; 74
Hoerl (10.1016/j.neuroimage.2012.12.062_bb0205) 1970; 12
Grosenick (10.1016/j.neuroimage.2012.12.062_bb0155) 2009
Zhou (10.1016/j.neuroimage.2012.12.062_bb0455) 2011; 5
Meinshausen (10.1016/j.neuroimage.2012.12.062_bb0280) 2010; 72
Donoho (10.1016/j.neuroimage.2012.12.062_bb0100) 2006; 59
Wipf (10.1016/j.neuroimage.2012.12.062_bb0435) 2008; 20
van der Kooij (10.1016/j.neuroimage.2012.12.062_bb0090) 2007
Yamashita (10.1016/j.neuroimage.2012.12.062_bb0450) 2008; 42
Tibshirani (10.1016/j.neuroimage.2012.12.062_bb0380) 2011; 3
Glover (10.1016/j.neuroimage.2012.12.062_bb0140) 2001; 46
Leng (10.1016/j.neuroimage.2012.12.062_bb0260) 2008; 32
Friedman (10.1016/j.neuroimage.2012.12.062_bb0125) 2007; 1
Lehmann (10.1016/j.neuroimage.2012.12.062_bb0255) 1998
Zou (10.1016/j.neuroimage.2012.12.062_bb0475) 2007; 35
Li (10.1016/j.neuroimage.2012.12.062_bb0265) 2008; 24
Ryali (10.1016/j.neuroimage.2012.12.062_bb0355) 2010; 51
Adler (10.1016/j.neuroimage.2012.12.062_bb0005) 2000
Donoho (10.1016/j.neuroimage.2012.12.062_bb0095) 1995; 41
Chappell (10.1016/j.neuroimage.2012.12.062_bb0065) 2009; 57
Grosenick (10.1016/j.neuroimage.2012.12.062_bb0145) 2008; 16
Hare (10.1016/j.neuroimage.2012.12.062_bb0175) 2008; 28
Guyon (10.1016/j.neuroimage.2012.12.062_bb0165) 2002; 46
Boyd (10.1016/j.neuroimage.2012.12.062_bb0030) 2004
Friedman (10.1016/j.neuroimage.2012.12.062_bb0115) 1997; 1
Tibshirani (10.1016/j.neuroimage.2012.12.062_bb0375) 1996; 58
Jimenez (10.1016/j.neuroimage.2012.12.062_bb0225) 2009; 72
Cortes (10.1016/j.neuroimage.2012.12.062_bb0075) 1995; 20
van Gerven (10.1016/j.neuroimage.2012.12.062_bb0415) 2010
Rockafellar (10.1016/j.neuroimage.2012.12.062_bb0345) 1970
Friedman (10.1016/j.neuroimage.2012.12.062_bb0130) 2010; 33
Polyn (10.1016/j.neuroimage.2012.12.062_bb0335) 2005; 310
Mitchell (10.1016/j.neuroimage.2012.12.062_bb0295) 2004; 57
Clemmensen (10.1016/j.neuroimage.2012.12.062_bb0070) 2011; 53
McCoy (10.1016/j.neuroimage.2012.12.062_bb0275) 2003; 40
Pereira (10.1016/j.neuroimage.2012.12.062_bb0330) 2009; 45
Jenatton (10.1016/j.neuroimage.2012.12.062_bb0220) 2011; 12
Tseng (10.1016/j.neuroimage.2012.12.062_bb0405) 2001; 109
Zou (10.1016/j.neuroimage.2012.12.062_bb0460) 2006; 101
Mourão-Miranda (10.1016/j.neuroimage.2012.12.062_bb0305) 2007; 36
Ravikumar (10.1016/j.neuroimage.2012.12.062_bb0340) 2009; 21
Bray (10.1016/j.neuroimage.2012.12.062_bb0035) 2009; 3
Shinkareva (10.1016/j.neuroimage.2012.12.062_bb0360) 2008; 3
De Martino (10.1016/j.neuroimage.2012.12.062_bb0085) 2007; 34
Hastie (10.1016/j.neuroimage.2012.12.062_bb0185) 1995; 23
Hutchinson (10.1016/j.neuroimage.2012.12.062_bb0215) 2009; 46
Brodersen (10.1016/j.neuroimage.2012.12.062_bb0045) 2011; 56
Knutson (10.1016/j.neuroimage.2012.12.062_bb0250) 2007; 53
Cox (10.1016/j.neuroimage.2012.12.062_bb0080) 1996; 29
Grosenick (10.1016/j.neuroimage.2012.12.062_bb0150) 2009
Etzel (10.1016/j.neuroimage.2012.12.062_bb0105) 2009; 1282
Knutson (10.1016/j.neuroimage.2012.12.062_bb0235) 2008; 363
Rudin (10.1016/j.neuroimage.2012.12.062_bb0350) 1992; 50
Michel (10.1016/j.neuroimage.2012.12.062_bb0290) 2011; 30
Breiman (10.1016/j.neuroimage.2012.12.062_bb0040) 1984
Candes (10.1016/j.neuroimage.2012.12.062_bb0050) 2003; 100
References_xml – volume: 2007
  start-page: 1735
  year: 2007
  end-page: 1752
  ident: bb0320
  article-title: Theoretical, statistical, and practical perspectives on pattern-based classification
  publication-title: J. Cogn. Neurosci.
– volume: 12
  start-page: 2777
  year: 2011
  end-page: 2824
  ident: bb0220
  article-title: Structured variable selection with sparsity-inducing norms
  publication-title: J. Mach. Learn. Res.
– year: 2007
  ident: bb0090
  article-title: Prediction accuracy and stability of regression with optimal scaling transformations
  publication-title: Technical Report, Dept. Data Theory, Leiden Univ
– start-page: 101
  year: 2012
  end-page: 104
  ident: bb0310
  article-title: Connectivity-informed sparse classifiers for fMRI brain decoding
  publication-title: Pattern Recognition in NeuroImaging (PRNI), IEEE 2012 International Workshop on
– year: 2004
  ident: bb0030
  article-title: Convex Optimization
– volume: 34
  start-page: 177
  year: 2007
  end-page: 194
  ident: bb0085
  article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers
  publication-title: NeuroImage
– volume: 35
  start-page: 2173
  year: 2007
  end-page: 2192
  ident: bb0475
  article-title: On the “degrees of freedom” of the lasso
  publication-title: Ann. Stat.
– volume: 28
  start-page: 5623
  year: 2008
  end-page: 5630
  ident: bb0175
  article-title: Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors
  publication-title: J. Neurosci.
– start-page: 150
  year: 2010
  end-page: 161
  ident: bb0415
  article-title: Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
  publication-title: NeuroImage
– volume: 23
  start-page: S189
  year: 2004
  end-page: S195
  ident: bb0445
  article-title: Unified univariate and multivariate random field theory
  publication-title: NeuroImage
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: bb0025
  article-title: On manifold regularization
  publication-title: J. Mach. Learn. Res.
– volume: 56
  start-page: 601
  year: 2011
  end-page: 615
  ident: bb0045
  article-title: Model-based feature construction for multivariate decoding
  publication-title: NeuroImage
– year: 1984
  ident: bb0040
  article-title: Univ of California at Berkeley Technical Report: Nonlinear Discriminant Analysis via Scaling and ACE
– volume: 67
  start-page: 91
  year: 2005
  end-page: 108
  ident: bb0385
  article-title: Sparsity and smoothness via the fused lasso
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 53
  start-page: 406
  year: 2011
  end-page: 413
  ident: bb0070
  article-title: Sparse discriminant analysis
  publication-title: Technometrics
– volume: 363
  start-page: 3771
  year: 2008
  end-page: 3786
  ident: bb0235
  article-title: Anticipatory affect: neural correlates and consequences for choice
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 25
  start-page: 4806
  year: 2005
  end-page: 4812
  ident: bb0245
  article-title: Distributed neural representation of expected value
  publication-title: J. Neurosci.
– year: 1998
  ident: bb0255
  article-title: Theory of Point Estimation
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bb0165
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 72
  start-page: 2824
  year: 2009
  end-page: 2832
  ident: bb0225
  article-title: Finding optimal model parameters by deterministic and annealed focused grid search
  publication-title: Neurocomputing
– year: 2011
  ident: bb0300
  article-title: Bayesian and L1 Approaches to Sparse Unsupervised Learning
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: bb0460
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– year: 1943
  ident: bb0395
  article-title: On the Stability of Inverse Problems
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: bb0110
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
– volume: 100
  start-page: 2197
  year: 2003
  end-page: 2202
  ident: bb0050
  article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
  publication-title: PNAS
– volume: 109
  start-page: 474
  year: 2001
  end-page: 494
  ident: bb0405
  article-title: Convergence of block coordinate descent method for nondifferentiable maximation
  publication-title: J. Optim. Theory Appl.
– volume: 12
  start-page: 69
  year: 1970
  end-page: 82
  ident: bb0205
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
– volume: 17
  start-page: 323
  year: 2007
  end-page: 328
  ident: bb0200
  article-title: Reading hidden intentions in the human brain
  publication-title: Curr. Biol.
– volume: 74
  start-page: 1289
  year: 2008
  end-page: 1308
  ident: bb0020
  article-title: Towards a theoretical foundation for Laplacian-based manifold methods
  publication-title: J. Comput. Syst. Sci.
– year: 2009
  ident: bb0190
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 24
  start-page: 412
  year: 2008
  end-page: 419
  ident: bb0425
  article-title: Hybrid Huberized Support Vector Machines for microarray classification and gene selection
  publication-title: Bioinformatics
– volume: 3
  start-page: 1
  year: 2009
  end-page: 12
  ident: bb0035
  article-title: Applications of multivariate pattern classification analyses in developmental neuroimaging of healthy and clinical populations
  publication-title: Front. Hum. Neurosci.
– year: 2011
  ident: bb0010
  article-title: A generalized least squares matrix decomposition
  publication-title: Rice University Technical Report No. TR2011-03
– year: 1970
  ident: bb0345
  article-title: Convex Analysis
– volume: 7
  start-page: 523
  year: 2006
  end-page: 534
  ident: bb0195
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
– reference: Karmarkar, U. R., Shiv, B., Knutson, B., submitted for publication. Sticker shock: the neural and behavioral impact of price primacy on purchasing.
– volume: 42
  start-page: 1414
  year: 2008
  end-page: 1429
  ident: bb0450
  article-title: Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
  publication-title: NeuroImage
– volume: 10
  start-page: 424
  year: 2006
  end-page: 430
  ident: bb0315
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
– volume: 20
  year: 2008
  ident: bb0435
  publication-title: A new view of automatic relevance determination
– volume: 1
  start-page: 302
  year: 2007
  end-page: 332
  ident: bb0120
  article-title: Pathwise coordinate optimization
  publication-title: Ann. Appl. Stat.
– volume: 45
  start-page: S199
  year: 2009
  end-page: S209
  ident: bb0330
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0075
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 1
  year: 2012
  end-page: 4
  ident: bb0410
  article-title: A linear Gaussian framework for decoding of perceived images
  publication-title: International Workshop on Pattern Recognition in NeuroImaging (PRNI), IEEE 2012
– volume: 44
  start-page: 112
  year: 2009
  end-page: 122
  ident: bb0060
  article-title: Prediction and interpretation of distributed neural activity with sparse models
  publication-title: NeuroImage
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: bb0135
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– start-page: S58
  year: 2009
  ident: bb0155
  article-title: Whole-brain sparse penalized discriminant analysis for predicting choice
  publication-title: NeuroImage
– volume: 37
  start-page: 1733
  year: 2009
  end-page: 1751
  ident: bb0470
  article-title: On the adaptive elastic-net with a diverging number of parameters
  publication-title: Ann. Stat.
– volume: 21
  start-page: 1
  year: 2001
  end-page: 5
  ident: bb0240
  article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens
  publication-title: J. Neurosci.
– volume: 89
  start-page: 1255
  year: 1994
  end-page: 1270
  ident: bb0180
  article-title: Flexible Discriminant Analysis by Optimal Scoring
  publication-title: J. Am. Stat. Assoc.
– volume: 36
  start-page: 88
  year: 2007
  end-page: 99
  ident: bb0305
  article-title: Dynamic discrimination analysis: a spatial–temporal SVM
  publication-title: NeuroImage
– volume: 1282
  start-page: 114
  year: 2009
  end-page: 125
  ident: bb0105
  article-title: An introduction to anatomical ROI-based fMRI classification analysis
  publication-title: Brain Res.
– volume: 31
  start-page: 439
  year: 2011
  end-page: 452
  ident: bb0420
  article-title: Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience
  publication-title: J. Neurosci.
– volume: 53
  start-page: 147
  year: 2007
  end-page: 156
  ident: bb0250
  article-title: Neural predictors of purchases
  publication-title: Neuron
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bb0375
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 59
  start-page: 797
  year: 2006
  end-page: 829
  ident: bb0100
  article-title: For most large underdetermined systems of linear equations, the minimal ℓ
  publication-title: Commun. Pure Appl. Math.
– year: 2000
  ident: bb0005
  article-title: Random Fields and Geometry
– volume: 23
  start-page: 73
  year: 1995
  end-page: 102
  ident: bb0185
  article-title: Penalized Discriminant Analysis
  publication-title: Ann. Stat.
– volume: 1
  start-page: 302
  year: 2007
  end-page: 332
  ident: bb0125
  article-title: Pathwise coordinate optimization
  publication-title: Ann. Appl. Stat.
– year: 2012
  ident: bb0285
  article-title: An efficient approach to sparse linear discriminant analysis
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 7
  start-page: 37
  year: 2009
  end-page: 53
  ident: bb0170
  article-title: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
– volume: 57
  start-page: 223
  year: 2009
  end-page: 236
  ident: bb0065
  article-title: Variational Bayesian inference for a nonlinear forward model
  publication-title: IEEE Trans. Signal Proc.
– volume: 56
  start-page: 2439
  year: 2009
  end-page: 2451
  ident: bb0270
  article-title: Voxel selection in fMRI bata analysis based on a sparse representation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 14
  start-page: 69
  year: 2008
  end-page: 82
  ident: bb0055
  article-title: Enhancing sparsity by reweighted l1 minimization
  publication-title: J. Fourier Anal. Appl.
– year: 1988
  ident: bb0400
  article-title: Technical Report LIDS-P, 1840
  publication-title: Massachusetts Institute of Technology, Laboratory for Information and Decision Systems
– year: 2009
  ident: bb0150
  article-title: Elastic source selection for in vivo imaging of neuronal ensembles
  publication-title: Biomedical Imaging: From Nano to Macro, 6th IEEE International Symposium on
– volume: 73
  start-page: 753
  year: 2011
  end-page: 772
  ident: bb0440
  article-title: Penalized classification using Fisher's linear discriminant
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 46
  start-page: 512
  year: 2001
  end-page: 522
  ident: bb0140
  article-title: Spiral in/out BOLD FMRI for increased SNR and reduced susceptibility artifacts
  publication-title: Magn. Reson. Med.
– volume: 3
  start-page: 1335
  year: 2011
  end-page: 1371
  ident: bb0380
  article-title: The solution path of the generalized lasso
  publication-title: Ann. Stat.
– volume: 72
  start-page: 417
  year: 2010
  end-page: 473
  ident: bb0280
  article-title: Stability Selection
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 50
  start-page: 259
  year: 1992
  end-page: 268
  ident: bb0350
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
– volume: 51
  start-page: 752
  year: 2010
  end-page: 764
  ident: bb0355
  article-title: Sparse logistic regression for whole-brain classification of fMRI data
  publication-title: NeuroImage
– volume: 32
  start-page: 870
  year: 2004
  end-page: 897
  ident: bb0015
  article-title: Optimal predictive model selection
  publication-title: Ann. Stat.
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: bb0080
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance images
  publication-title: Comput. Biomed. Res.
– volume: 1
  start-page: 55
  year: 1997
  end-page: 77
  ident: bb0115
  article-title: On bias, variance, 0/1-loss, and the curse-of-dimensionality
  publication-title: Data Min. Knowl. Disc.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bb0130
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 40
  start-page: 1031
  year: 2003
  end-page: 1040
  ident: bb0275
  article-title: Saccade reward signals in posterior cingulate cortex
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 310
  start-page: 1963
  year: 2005
  end-page: 1966
  ident: bb0335
  article-title: Category-specific cortical activity precedes retrieval during memory search
  publication-title: Science
– volume: 1
  start-page: 248
  year: 2008
  end-page: 272
  ident: bb0430
  article-title: A new alternating minimization algorithm for Total Variation image reconstruction
  publication-title: SIAM J. Imaging Sci.
– volume: 30
  start-page: 1328
  year: 2011
  end-page: 1340
  ident: bb0290
  article-title: Total variation regularization for fMRI-based prediction of behavior
  publication-title: IEEE Trans. Med. Imaging
– volume: 21
  year: 2009
  ident: bb0340
  publication-title: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images
– volume: 46
  start-page: 87
  year: 2009
  end-page: 104
  ident: bb0215
  article-title: Modeling fMRI data generated by overlapping cognitive processes with unknown onsets using Hidden Process Models
  publication-title: NeuroImage
– volume: 74
  start-page: 245
  year: 2012
  end-page: 266
  ident: bb0390
  article-title: Strong rules for discarding predictors in lasso-type problems
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  ident: bb0095
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inf. Theory
– volume: 57
  start-page: 145
  year: 2004
  end-page: 175
  ident: bb0295
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
– volume: 16
  start-page: 539
  year: 2008
  end-page: 548
  ident: bb0145
  article-title: Interpretable classifiers for FMRI improve prediction of purchases
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 32
  start-page: 417
  year: 2008
  end-page: 425
  ident: bb0260
  article-title: Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data
  publication-title: Comput. Biol. Chem.
– volume: 460
  start-page: 94
  year: 2009
  end-page: 97
  ident: bb0325
  article-title: Neural mechanisms of rapid natural scene categorization in human visual cortex
  publication-title: Nature
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bb0465
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 24
  start-page: 1175
  year: 2008
  end-page: 1182
  ident: bb0265
  article-title: Network-constrained regularization and variable selection for analysis of genomic data
  publication-title: Bioinformatics
– volume: 3
  year: 2008
  ident: bb0360
  article-title: Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings
  publication-title: PLoS One
– volume: vol. 1
  start-page: 197
  year: 1956
  end-page: 206
  ident: bb0370
  article-title: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution
  publication-title: Proc. Third Berkeley Symp. on Math. Statist. and Prob.
– volume: 5
  start-page: 688
  year: 2011
  end-page: 749
  ident: bb0455
  article-title: Adaptive lasso for high dimensional regression and Gaussian graphical modeling
  publication-title: Electron. J. Stat.
– year: 2009
  ident: bb0210
  article-title: Robust Statistics
– volume: 4
  start-page: 1055
  year: 2010
  end-page: 1080
  ident: bb0365
  article-title: Feature selection guided by structural information
  publication-title: Ann. Appl. Stat.
– volume: 3
  start-page: 1
  issue: 32
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0035
  article-title: Applications of multivariate pattern classification analyses in developmental neuroimaging of healthy and clinical populations
  publication-title: Front. Hum. Neurosci.
– volume: 24
  start-page: 1175
  issue: 9
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0265
  article-title: Network-constrained regularization and variable selection for analysis of genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn081
– start-page: 101
  year: 2012
  ident: 10.1016/j.neuroimage.2012.12.062_bb0310
  article-title: Connectivity-informed sparse classifiers for fMRI brain decoding
– year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0300
– volume: 20
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0435
– volume: 42
  start-page: 1414
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0450
  article-title: Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.050
– volume: 37
  start-page: 1733
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0470
  article-title: On the adaptive elastic-net with a diverging number of parameters
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS625
– volume: 16
  start-page: 539
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0145
  article-title: Interpretable classifiers for FMRI improve prediction of purchases
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2008.926701
– volume: 32
  start-page: 417
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0260
  article-title: Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2008.07.015
– volume: 109
  start-page: 474
  year: 2001
  ident: 10.1016/j.neuroimage.2012.12.062_bb0405
  article-title: Convergence of block coordinate descent method for nondifferentiable maximation
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017501703105
– volume: vol. 1
  start-page: 197
  year: 1956
  ident: 10.1016/j.neuroimage.2012.12.062_bb0370
  article-title: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution
– volume: 67
  start-page: 91
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2012.12.062_bb0385
  article-title: Sparsity and smoothness via the fused lasso
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00490.x
– volume: 14
  start-page: 69
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0055
  article-title: Enhancing sparsity by reweighted l1 minimization
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9045-x
– volume: 51
  start-page: 752
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2012.12.062_bb0355
  article-title: Sparse logistic regression for whole-brain classification of fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.040
– year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0150
  article-title: Elastic source selection for in vivo imaging of neuronal ensembles
– volume: 310
  start-page: 1963
  issue: 5756
  year: 2005
  ident: 10.1016/j.neuroimage.2012.12.062_bb0335
  article-title: Category-specific cortical activity precedes retrieval during memory search
  publication-title: Science
  doi: 10.1126/science.1117645
– volume: 460
  start-page: 94
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0325
  article-title: Neural mechanisms of rapid natural scene categorization in human visual cortex
  publication-title: Nature
  doi: 10.1038/nature08103
– year: 2000
  ident: 10.1016/j.neuroimage.2012.12.062_bb0005
– volume: 24
  start-page: 412
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0425
  article-title: Hybrid Huberized Support Vector Machines for microarray classification and gene selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm579
– volume: 363
  start-page: 3771
  issue: 1511
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0235
  article-title: Anticipatory affect: neural correlates and consequences for choice
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2008.0155
– volume: 56
  start-page: 2439
  issue: 10
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0270
  article-title: Voxel selection in fMRI bata analysis based on a sparse representation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2025866
– volume: 45
  start-page: S199
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0330
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.neuroimage.2012.12.062_bb0165
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 72
  start-page: 2824
  issue: 13–15
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0225
  article-title: Finding optimal model parameters by deterministic and annealed focused grid search
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.024
– volume: 21
  start-page: 1
  issue: 16
  year: 2001
  ident: 10.1016/j.neuroimage.2012.12.062_bb0240
  article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-16-j0002.2001
– year: 1984
  ident: 10.1016/j.neuroimage.2012.12.062_bb0040
– volume: 29
  start-page: 162
  year: 1996
  ident: 10.1016/j.neuroimage.2012.12.062_bb0080
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance images
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 1
  start-page: 302
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0120
  article-title: Pathwise coordinate optimization
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/07-AOAS131
– volume: 30
  start-page: 1328
  issue: 7
  year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0290
  article-title: Total variation regularization for fMRI-based prediction of behavior
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2113378
– year: 1988
  ident: 10.1016/j.neuroimage.2012.12.062_bb0400
  article-title: Technical Report LIDS-P, 1840
– volume: 53
  start-page: 406
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0070
  article-title: Sparse discriminant analysis
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.08118
– start-page: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2012.12.062_bb0410
  article-title: A linear Gaussian framework for decoding of perceived images
– volume: 7
  start-page: 523
  year: 2006
  ident: 10.1016/j.neuroimage.2012.12.062_bb0195
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1931
– year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0210
– volume: 44
  start-page: 112
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0060
  article-title: Prediction and interpretation of distributed neural activity with sparse models
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.08.020
– volume: 10
  start-page: 424
  issue: 9
  year: 2006
  ident: 10.1016/j.neuroimage.2012.12.062_bb0315
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.07.005
– volume: 21
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0340
– volume: 23
  start-page: 73
  issue: 1
  year: 1995
  ident: 10.1016/j.neuroimage.2012.12.062_bb0185
  article-title: Penalized Discriminant Analysis
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176324456
– year: 1943
  ident: 10.1016/j.neuroimage.2012.12.062_bb0395
– ident: 10.1016/j.neuroimage.2012.12.062_bb0230
– year: 2012
  ident: 10.1016/j.neuroimage.2012.12.062_bb0285
  article-title: An efficient approach to sparse linear discriminant analysis
– year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0010
  article-title: A generalized least squares matrix decomposition
– year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0190
– volume: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0360
  article-title: Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001394
– volume: 53
  start-page: 147
  year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0250
  article-title: Neural predictors of purchases
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.11.010
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.neuroimage.2012.12.062_bb0375
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 4
  start-page: 1055
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2012.12.062_bb0365
  article-title: Feature selection guided by structural information
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/09-AOAS302
– volume: 31
  start-page: 439
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0420
  article-title: Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3420-10.2011
– volume: 46
  start-page: 87
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0215
  article-title: Modeling fMRI data generated by overlapping cognitive processes with unknown onsets using Hidden Process Models
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.025
– year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0090
  article-title: Prediction accuracy and stability of regression with optimal scaling transformations
– volume: 34
  start-page: 177
  year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0085
  article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.08.041
– volume: 1
  start-page: 302
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0125
  article-title: Pathwise coordinate optimization
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/07-AOAS131
– volume: 32
  start-page: 870
  year: 2004
  ident: 10.1016/j.neuroimage.2012.12.062_bb0015
  article-title: Optimal predictive model selection
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000238
– volume: 35
  start-page: 2173
  issue: 5
  year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0475
  article-title: On the “degrees of freedom” of the lasso
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000127
– volume: 2007
  start-page: 1735
  issue: 19
  year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0320
  article-title: Theoretical, statistical, and practical perspectives on pattern-based classification
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2007.19.11.1735
– volume: 28
  start-page: 5623
  issue: 22
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0175
  article-title: Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1309-08.2008
– start-page: S58
  issue: Supplement 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0155
  article-title: Whole-brain sparse penalized discriminant analysis for predicting choice
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)70232-0
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2012.12.062_bb0075
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 72
  start-page: 417
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2012.12.062_bb0280
  article-title: Stability Selection
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2010.00740.x
– year: 1970
  ident: 10.1016/j.neuroimage.2012.12.062_bb0345
– start-page: 150
  year: 2010
  ident: 10.1016/j.neuroimage.2012.12.062_bb0415
  article-title: Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.11.064
– volume: 5
  start-page: 688
  year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0455
  article-title: Adaptive lasso for high dimensional regression and Gaussian graphical modeling
  publication-title: Electron. J. Stat.
– volume: 74
  start-page: 1289
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0020
  article-title: Towards a theoretical foundation for Laplacian-based manifold methods
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2007.08.006
– volume: 100
  start-page: 2197
  issue: 5
  year: 2003
  ident: 10.1016/j.neuroimage.2012.12.062_bb0050
  article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
  publication-title: PNAS
  doi: 10.1073/pnas.0437847100
– volume: 1282
  start-page: 114
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0105
  article-title: An introduction to anatomical ROI-based fMRI classification analysis
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.05.090
– year: 1998
  ident: 10.1016/j.neuroimage.2012.12.062_bb0255
– volume: 89
  start-page: 1255
  issue: 428
  year: 1994
  ident: 10.1016/j.neuroimage.2012.12.062_bb0180
  article-title: Flexible Discriminant Analysis by Optimal Scoring
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1994.10476866
– volume: 73
  start-page: 753
  issue: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0440
  article-title: Penalized classification using Fisher's linear discriminant
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2011.00783.x
– volume: 7
  start-page: 2399
  year: 2006
  ident: 10.1016/j.neuroimage.2012.12.062_bb0025
  article-title: On manifold regularization
  publication-title: J. Mach. Learn. Res.
– volume: 25
  start-page: 4806
  year: 2005
  ident: 10.1016/j.neuroimage.2012.12.062_bb0245
  article-title: Distributed neural representation of expected value
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0642-05.2005
– volume: 56
  start-page: 601
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0045
  article-title: Model-based feature construction for multivariate decoding
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.036
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2012.12.062_bb0465
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2012.12.062_bb0130
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  ident: 10.1016/j.neuroimage.2012.12.062_bb0110
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 57
  start-page: 145
  issue: 1–2
  year: 2004
  ident: 10.1016/j.neuroimage.2012.12.062_bb0295
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 46
  start-page: 512
  year: 2001
  ident: 10.1016/j.neuroimage.2012.12.062_bb0140
  article-title: Spiral in/out BOLD FMRI for increased SNR and reduced susceptibility artifacts
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1222
– volume: 36
  start-page: 88
  year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0305
  article-title: Dynamic discrimination analysis: a spatial–temporal SVM
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.020
– volume: 2
  start-page: 189
  year: 1995
  ident: 10.1016/j.neuroimage.2012.12.062_bb0135
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– volume: 12
  start-page: 2777
  year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0220
  article-title: Structured variable selection with sparsity-inducing norms
  publication-title: J. Mach. Learn. Res.
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2012.12.062_bb0095
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.382009
– volume: 40
  start-page: 1031
  issue: 5
  year: 2003
  ident: 10.1016/j.neuroimage.2012.12.062_bb0275
  article-title: Saccade reward signals in posterior cingulate cortex
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 23
  start-page: S189
  year: 2004
  ident: 10.1016/j.neuroimage.2012.12.062_bb0445
  article-title: Unified univariate and multivariate random field theory
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.026
– year: 2004
  ident: 10.1016/j.neuroimage.2012.12.062_bb0030
– volume: 57
  start-page: 223
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0065
  article-title: Variational Bayesian inference for a nonlinear forward model
  publication-title: IEEE Trans. Signal Proc.
  doi: 10.1109/TSP.2008.2005752
– volume: 1
  start-page: 55
  year: 1997
  ident: 10.1016/j.neuroimage.2012.12.062_bb0115
  article-title: On bias, variance, 0/1-loss, and the curse-of-dimensionality
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1009778005914
– volume: 101
  start-page: 1418
  issue: 467
  year: 2006
  ident: 10.1016/j.neuroimage.2012.12.062_bb0460
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214506000000735
– volume: 7
  start-page: 37
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2012.12.062_bb0170
  article-title: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– volume: 1
  start-page: 248
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2012.12.062_bb0430
  article-title: A new alternating minimization algorithm for Total Variation image reconstruction
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080724265
– volume: 12
  start-page: 69
  issue: 1
  year: 1970
  ident: 10.1016/j.neuroimage.2012.12.062_bb0205
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488635
– volume: 50
  start-page: 259
  year: 1992
  ident: 10.1016/j.neuroimage.2012.12.062_bb0350
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– volume: 59
  start-page: 797
  issue: 6
  year: 2006
  ident: 10.1016/j.neuroimage.2012.12.062_bb0100
  article-title: For most large underdetermined systems of linear equations, the minimal ℓ1-norm solution is also the sparsest solution
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20132
– volume: 17
  start-page: 323
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2012.12.062_bb0200
  article-title: Reading hidden intentions in the human brain
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.11.072
– volume: 74
  start-page: 245
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2012.12.062_bb0390
  article-title: Strong rules for discarding predictors in lasso-type problems
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2011.01004.x
– volume: 3
  start-page: 1335
  year: 2011
  ident: 10.1016/j.neuroimage.2012.12.062_bb0380
  article-title: The solution path of the generalized lasso
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS878
SSID ssj0009148
Score 2.50531
Snippet Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional “mass univariate” techniques that...
Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional "mass univariate" techniques that...
Multivariate machine learning methods are increasingly used to analyze neuroimaging data, often replacing more traditional amass univariatea techniques that...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 304
SubjectTerms Algorithms
Artificial Intelligence
Behavior
Biological and medical sciences
Brain - physiology
Brain Mapping - methods
Brain research
Classification
Fundamental and applied biological sciences. Psychology
Heuristics
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
Medical imaging
Methods
NMR
Nuclear magnetic resonance
Success
Vertebrates: nervous system and sense organs
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6WHNKWEtK3m2RxoVd1LVl-iJxCSBoCyaVd2JuQLBm2bJyl2SXkkt_eGVv2NtCWhYJPtgbsz6N5aF4AnxNVod7gJUsqVzNZK8NMaiwzFKLheeXzNqJ7dZ1fTOXlLJuN4LSvhaG0yiD7O5neSutwZxLQnCzn88k3tAxQ3aC_gTpMoN1NFeyyoCkGXx43aR6Ky64cLksZrQ7ZPF2OV9szcn6DO5eSvER7MJiLv6mol0tzh8DV3cSLP5mkL-DZulmah3uzWPymps73YS_Yl_FJ9wmvYOSb17B7FSLob-B4k2VoFz6-p_G4zNKciBhvunlb5hCb0KokpmPa-Cs1tb72q7cwPT_7fnrBwgAFVmWFWLHUSWlVYrLEoyVXc1cmuP0KoxI0S9AVEbbEf6UK50tvS-lyBEukNTqqzteJU-k72GluG_8BMUNPps7z2hipaHy6yjy6XsZaLipTOBlB0WOmq9BdnIZcLHSfRvZDb9DWhLbGC9GOgA-Uy67DxhY0qv8tuq8gRZmnUQ1sQXs80D7htC2px0-4YHhlgUpeFUkZwWHPFjqIgzvNc2r7hsYX4vRpeIwbmaIzpvG3a1yDllyJ_h3n_1iTUfslirxG8L5juc0LpEKV6BxGIAYe3BrQj_8FygE8F-2UkIzx7BB2Vj_X_ghttZUdt5vxF0CYPAU
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9kBT849NQ7r55KhXuNJG3TNvgk4geCiwcueE8haVLQ26uLdhH96530a1VOWYU-lDbTNjOT5DedyQzALyoyXDdYSmhmchLlQhEVKk2Uc9GwOLNx5dE968cng-j0kl_OAG33wrzw31dxWFVex6t_OLpcIFZQ_bxzk-5szBF992B20D_f_1M5NXlI8L2iOnclCHnSBu-896i3VqQvI3WHfMrrAhf_Q6CLMD8uRurhXg2Hz1alo2X43fanDkb5uzsu9W72-CrV40c6_BWWGojq79c6tQIztliFubPGCb8Ge5NART20_r2rsEu0KzXh40VzVe2U8FWT7cR3f3r9Y5cXu2_LbzA4Orw4OCFNDQaSIfdKEpoo0oIqTi2CwZyZlOIITpSgiGzQmgl0iuIWibGp1WlkYsEQoOVo6xqbUyPC79Arbgr7A-WAxlAex7lSkXAV2AW3aL0prVmQqcREHiStHGTWJCh3dTKGso1Eu5YT3kjHG4kH8sYD1lGO6iQdU9CIVtSy3YSK06ZEeUxBu9fRNkClBiBTUm-_0KzukwPECSKhqQebrarJZka5kyx2meMQvyGfdrrbOBc4B48q7M0Y2yAYTNFEZOydNtxlcHLOWw_WazWefEAYiBTtSw-CTq-nZujGZ4h-wkJQ1RfhhPFN6JW3Y7uFKK_U283AfgKMIUv0
  priority: 102
  providerName: Unpaywall
Title Interpretable whole-brain prediction analysis with GraphNet
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912012487
https://dx.doi.org/10.1016/j.neuroimage.2012.12.062
https://www.ncbi.nlm.nih.gov/pubmed/23298747
https://www.proquest.com/docview/1668108194
https://www.proquest.com/docview/1317855911
https://www.proquest.com/docview/1500770783
https://doi.org/10.1016/j.neuroimage.2012.12.062
UnpaywallVersion publishedVersion
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9swED_aBPZgjL3nrQse7Ks2S36KMkZW2mWPmlAWyD4Z2ZKhI3PSNqH0S__23dmyvcFWAsaGxAfifNLd6U6_H8AbTxboN3jCvEKXLCilYspXOVNUouFRYaK6onucRpNZ8GUezncgbc_CUFtluybWC7VeFrRH_o5HhJyF_iv4sDpjxBpF1dWWQkNZagX9voYY24WhIGSsAQw_HqbTkx6GlwfN4bjQZzhEaXt7mo6vGkHy9BfOY2r5EvU2YST-57DurdQFqrFs-C_-FaDehdubaqWuLtVi8YfTOnoA92206Y4b83gIO6Z6BLeObT39Mez3PYf5wriXRJbLcmKNcPFHfVofenCVBS5xadPW_UQQ16lZP4HZ0eH3gwmzdAqsCGOxZr4Oglx6KvQMxnUl14mHkzFW0sMgBRMTkSf45WSsTWLyJNARKkv4Jaat2pSelv5TGFTLyjxHnWFeU0ZRqVQgiUxdhgYTMZXnXBQq1oEDcauzrLBY40R5scjaprKfWa_tjLSd4YXadoB3kqsGb2MLGdl-lqw9T4orYIZOYQvZ_U7WxhxNLLGl9OgvK-iGLNDly9hLHNhrzSKzi8NF1puyA6-7v3FaU61GVWa5wXcwrksw2-P8hndCAmOiOqwDzxqT6wfgC5lgquiA6Gxwa4W-uHnUL-GOqElBQsbDPRiszzfmFYZm63wEu2-vOd7jeTyC4fjg5NuUnp-_TtKRnYv4nKXT8Y_fk4c98Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ra9swED9KC-vGGHvXW9d5sH0Us2T5IUoZe7RL1yaM0UK_qZIlQ0fqZEtC6D-3v20nW7Y32Eq-FPLJ8YF8Ot39TvcCeB2JAu0GzUlUmJLwUiiiYqWJciEamhY2rSO6w1E6OOVfzpKzNfjV1sK4tMpWJ9aK2kwKd0f-lqaucxbaL_5u-oO4qVEuutqO0FB-tILZq1uM-cKOI3u1RBdutnf4Cff7DWMH-ycfB8RPGSBFkrE5iQ3nWkQqiSzCnZKaPEIZzZSI0HYjXmc6xw8SmbG51Tk3qaAIQUr05owtI-OaMaEJ2OAxF-j8bXzYH3391rf9pbwpxktigiwRPpeoyTCrO1ZeXKLecClmrL6WTNn_DOTdqZrhtpXNvI1_AeI7sLmopupqqcbjP4zkwX2459Ft-L4RxwewZquHcGvo4_ePYLfPcdRjGy7dcF6i3ZSKEB-ai7rIIlS-UUroLonDz66l9sjOH8PpjTD2CaxXk8puIc_QjyrTtFSKCze8XSQWHT-lNWWFygwPIGt5Jgvf29yN2BjLNontu-y5LR23Jf6Q2wHQjnLa9PdYgUa02yLb-lXUuBKN0Aq0ux2txzgNdlmReucvKeiWzBBiiCzKA9huxUJ6ZTST_dEJ4FX3N6oRFxtSlZ0s8B3EkTl6l5Re807imj-5uG8ATxuR6xcQM5GjaxoA62RwZYY-u37VL2FzcDI8lseHo6PncJvVA0kSQpNtWJ__XNgXCAvnesefvRDOb_q4_wYgFHJR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9KhaqI-O1qrSvoY-gmm_0IRUSsZ2vt4YOFe4vJJguVc-_07jj6r_nXObOfClrupbBPuxnITiYzv8lMZgBeRqpAu8FzFhWuZLJUhpnYWGYoRMPTwqd1RPd0nB6dyY-TZLIFv7q7MJRW2enEWlG7WUFn5Ps8pcpZaL_kftmmRXw-HL2Z_2DUQYoirV07jUZETvzFGt23xevjQ1zrV0KM3n95d8TaDgOsSDKxZLGT0qrIJJFHqFNyl0con5lREdptxOrC5vgzKnM-9zaXLlUc4UeJnpzzZeSoEBOq_2tZHCtKJ8wm2VDwl8vmGl4SM2SGarOImtyyulbl-XfUGJRcJuoDyVT8zzTempsFLljZdNr4FxS-CddX1dxcrM10-od5HN2B2y2uDd82gngXtnx1D3ZO28j9fTgYshvt1IdrasvLLPWnCPGlO6-vV4SmLZES0vFw-IGKaY_98gGcXQlbH8J2Nav8Y-QZelBlmpbGSEVt21Xi0eUz1nJRmMzJALKOZ7poq5pTc42p7tLXvumB25q4rfFBbgfAe8p5U9ljAxrVLYvubq6irtVofjagPehpW3TToJYNqff-koJ-ygLBhcqiPIDdTix0q4YWetg0AbzoP6MCoaiQqfxshWMQQeboV3J-yZiEyj5RxDeAR43IDROIhcrRKQ1A9DK4MUOfXD7r57CDm1x_Oh6fPIUbou5EkjCe7ML28ufKP0M8uLR79cYL4etV7_Tf8JJv6w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9kBT849NQ7r55KhXuNJG3TNvgk4geCiwcueE8haVLQ26uLdhH96530a1VOWYU-lDbTNjOT5DedyQzALyoyXDdYSmhmchLlQhEVKk2Uc9GwOLNx5dE968cng-j0kl_OAG33wrzw31dxWFVex6t_OLpcIFZQ_bxzk-5szBF992B20D_f_1M5NXlI8L2iOnclCHnSBu-896i3VqQvI3WHfMrrAhf_Q6CLMD8uRurhXg2Hz1alo2X43fanDkb5uzsu9W72-CrV40c6_BWWGojq79c6tQIztliFubPGCb8Ge5NART20_r2rsEu0KzXh40VzVe2U8FWT7cR3f3r9Y5cXu2_LbzA4Orw4OCFNDQaSIfdKEpoo0oIqTi2CwZyZlOIITpSgiGzQmgl0iuIWibGp1WlkYsEQoOVo6xqbUyPC79Arbgr7A-WAxlAex7lSkXAV2AW3aL0prVmQqcREHiStHGTWJCh3dTKGso1Eu5YT3kjHG4kH8sYD1lGO6iQdU9CIVtSy3YSK06ZEeUxBu9fRNkClBiBTUm-_0KzukwPECSKhqQebrarJZka5kyx2meMQvyGfdrrbOBc4B48q7M0Y2yAYTNFEZOydNtxlcHLOWw_WazWefEAYiBTtSw-CTq-nZujGZ4h-wkJQ1RfhhPFN6JW3Y7uFKK_U283AfgKMIUv0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+whole-brain+prediction+analysis+with+GraphNet&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Grosenick%2C+Logan&rft.au=Klingenberg%2C+Brad&rft.au=Katovich%2C+Kiefer&rft.au=Knutson%2C+Brian&rft.date=2013-05-15&rft.issn=1053-8119&rft.volume=72&rft.spage=304&rft.epage=321&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.12.062&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon