Disparity Between Tonic and Phasic Ethanol-Induced Dopamine Increases in the Nucleus Accumbens of Rats
Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. Methods: We measure...
Saved in:
Published in | Alcoholism, clinical and experimental research Vol. 33; no. 7; pp. 1187 - 1196 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.07.2009
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0145-6008 1530-0277 1530-0277 |
DOI | 10.1111/j.1530-0277.2009.00942.x |
Cover
Abstract | Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.
Methods: We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within‐subject cumulative dosing, 0.125 to 2 g/kg, i.v.).
Results: Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between‐site effects reflected specific pharmacology at that recording site.
Conclusions: These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens. |
---|---|
AbstractList | Background:
Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.
Methods:
We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within‐subject cumulative dosing, 0.125 to 2 g/kg, i.v.).
Results:
Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between‐site effects reflected specific pharmacology at that recording site.
Conclusions:
These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens. Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.BACKGROUNDDopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g/kg, i.v.).METHODSWe measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g/kg, i.v.).Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site.RESULTSMicrodialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site.These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.CONCLUSIONSThese data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens. Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.Methods: We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g-kg, i.v.).Results: Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g-kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site.Conclusions: These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens. Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. Methods: We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within‐subject cumulative dosing, 0.125 to 2 g/kg, i.v.). Results: Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between‐site effects reflected specific pharmacology at that recording site. Conclusions: These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens. Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g/kg, i.v.). Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site. These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens. |
Author | Robinson, Donita L. Gonzales, Rueben A. Wightman, R. Mark McConnell, Scott Howard, Elaina C. |
AuthorAffiliation | 2 Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA 3 Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas, Austin, TX, USA 1 Bowles Center for Alcohol Studies and Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA |
AuthorAffiliation_xml | – name: 1 Bowles Center for Alcohol Studies and Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA – name: 2 Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA – name: 3 Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas, Austin, TX, USA |
Author_xml | – sequence: 1 givenname: Donita L. surname: Robinson fullname: Robinson, Donita L. organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas – sequence: 2 givenname: Elaina C. surname: Howard fullname: Howard, Elaina C. organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas – sequence: 3 givenname: Scott surname: McConnell fullname: McConnell, Scott organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas – sequence: 4 givenname: Rueben A. surname: Gonzales fullname: Gonzales, Rueben A. organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas – sequence: 5 givenname: R. Mark surname: Wightman fullname: Wightman, R. Mark organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21743471$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19389195$$D View this record in MEDLINE/PubMed |
BookMark | eNqdkV9v0zAUxSM0xLrBV0B-AZ5S_CexkweQSle2whijGuLRunVuqLvULnHC2m9PQqsOXtCEJcuW7vmde318Eh057zCKCKND1q3XyyFLBY0pV2rIKc2H3U74cPMoGhwKR9GAsiSNJaXZcXQSwpJSmmRSPomOWS6ynOXpICrPbFhDbZsteYfNHaIjN95ZQ8AV5HoBobtOmgU4X8VTV7QGC3Lm17CyDsnUmRohYCDWkWaB5Ko1FbaBjIxpV3N0gfiSzKAJT6PHJVQBn-3P0-jr-8nN-CK-_Hw-HY8uY5MqzrtZlUioKsEAM7TkZSJMkaYpzSBnc5HMy4IJlFhyRmnJqJSgUKYyAVWovnYa5Tvf1q1hewdVpde1XUG91YzqPju91H1Euo9I99np39npTce-3bHrdr7CwqBrarjnPVj9d8XZhf7uf2qeJyqTffNXe4Pa_2gxNHplg8GqAoe-DVoJISTLOO-UL_-p5JQznqS98PmfM90_Zv-BneDFXgDBQFXW4IwNBx1nKhGJ6mfLdjpT-xBqLP8jlwNqbAON9X0KtnqIwZudwZ2tcPvgxno0nsy6W8fHO96GBjcHHupbLZVQqf52da4_fZhdfMmuc_1R_AKy__Iv |
CODEN | ACRSDM |
CitedBy_id | crossref_primary_10_1080_1028415X_2020_1782613 crossref_primary_10_1111_gbb_12266 crossref_primary_10_1016_j_alcohol_2024_07_003 crossref_primary_10_1016_j_bcp_2013_07_007 crossref_primary_10_1124_pr_116_012948 crossref_primary_10_1016_j_brainres_2016_02_003 crossref_primary_10_1016_j_neubiorev_2019_10_009 crossref_primary_10_1038_nn_4252 crossref_primary_10_1111_j_1471_4159_2012_07677_x crossref_primary_10_1152_jn_00564_2013 crossref_primary_10_1016_j_ejphar_2019_04_009 crossref_primary_10_1016_j_alcohol_2021_08_004 crossref_primary_10_3389_fnbeh_2021_795030 crossref_primary_10_1016_j_pbb_2017_06_005 crossref_primary_10_1016_j_ntt_2022_107149 crossref_primary_10_1016_j_alcohol_2015_03_003 crossref_primary_10_1016_j_neuroscience_2010_12_016 crossref_primary_10_1111_adb_13108 crossref_primary_10_1111_adb_12899 crossref_primary_10_1371_journal_pcbi_1005233 crossref_primary_10_1007_s12311_019_01074_w crossref_primary_10_1016_j_jchemneu_2009_10_004 crossref_primary_10_1007_s40429_016_0089_8 crossref_primary_10_1021_cn400026v crossref_primary_10_1016_j_neubiorev_2021_12_031 crossref_primary_10_1021_cn500251j crossref_primary_10_1016_j_neuroscience_2014_12_081 crossref_primary_10_1124_pr_115_012138 crossref_primary_10_1016_j_alcohol_2015_09_001 crossref_primary_10_1038_s41398_021_01589_z crossref_primary_10_1111_j_1530_0277_2010_01326_x crossref_primary_10_1021_cn200119u crossref_primary_10_1007_s13534_024_00408_w crossref_primary_10_1021_cn300158p crossref_primary_10_3389_fphar_2023_1076465 crossref_primary_10_1016_j_bbr_2012_09_006 crossref_primary_10_1523_JNEUROSCI_5540_10_2011 crossref_primary_10_1111_acer_12287 crossref_primary_10_1111_j_1471_4159_2011_07258_x crossref_primary_10_1016_j_pbb_2012_01_010 crossref_primary_10_1016_j_chembiol_2021_04_005 crossref_primary_10_1016_j_pharmthera_2020_107573 crossref_primary_10_1021_cn400031v crossref_primary_10_1016_j_neuroscience_2014_10_052 crossref_primary_10_1038_npp_2015_139 crossref_primary_10_1016_j_cobeha_2018_02_003 crossref_primary_10_1016_j_mcn_2017_09_007 crossref_primary_10_3389_fncir_2014_00114 crossref_primary_10_3389_fphar_2020_608887 crossref_primary_10_1111_acer_13246 crossref_primary_10_1111_acer_14775 crossref_primary_10_1111_ejn_14160 crossref_primary_10_1007_s00213_015_4106_8 crossref_primary_10_1146_annurev_psych_010418_103337 crossref_primary_10_1124_jpet_117_241802 crossref_primary_10_1016_j_neuron_2011_02_010 crossref_primary_10_1111_jnc_14914 crossref_primary_10_1016_j_bbr_2012_06_031 crossref_primary_10_1016_j_neuropharm_2017_03_023 crossref_primary_10_1097_FBP_0000000000000347 crossref_primary_10_1016_j_tins_2014_02_002 crossref_primary_10_1016_j_neuropharm_2010_12_028 crossref_primary_10_1371_journal_pone_0060763 crossref_primary_10_1093_alcalc_agab072 crossref_primary_10_1002_syn_21723 crossref_primary_10_1111_acer_13636 crossref_primary_10_1124_jpet_113_211490 crossref_primary_10_1111_acer_12587 crossref_primary_10_1111_acer_13354 crossref_primary_10_1007_s12640_014_9459_y crossref_primary_10_1038_s41598_017_18706_y crossref_primary_10_31363_2313_7053_2022_56_3_13_29 crossref_primary_10_1007_s00213_016_4259_0 |
Cites_doi | 10.1152/jn.00682.2005 10.1039/b307024g 10.1016/S0014-2999(00)00703-2 10.1124/jpet.108.137489 10.1016/S0741-8329(99)00006-3 10.1523/JNEUROSCI.3823-03.2004 10.1016/0006-8993(84)90890-4 10.1038/sj.npp.1300619 10.1523/JNEUROSCI.20-06-02369.2000 10.1016/j.neuroscience.2008.04.014 10.1016/j.brainresrev.2007.05.004 10.1111/j.1530-0277.1992.tb00678.x 10.1152/jn.1994.72.2.1024 10.1016/S0306-4522(02)00267-1 10.1007/s00213-006-0668-9 10.1016/0301-0082(94)90025-6 10.1523/JNEUROSCI.22-23-10477.2002 10.1038/nn1243 10.1016/0006-8993(95)01200-1 10.1097/01.ALC.0000164362.21484.14 10.1016/0006-8993(90)91118-Z 10.1111/j.1530-0277.2002.tb02521.x 10.1038/nn1103 10.1038/379449a0 10.1073/pnas.0504657102 10.1113/jphysiol.2006.117069 10.1111/j.1749-6632.1986.tb23629.x 10.1021/ac9819640 10.1523/JNEUROSCI.4331-05.2006 10.1016/0306-4522(92)90076-E 10.1523/JNEUROSCI.2225-08.2008 10.1016/S0006-8993(98)01245-1 10.1016/S0306-4522(98)00054-2 10.1016/S0741-8329(00)00121-X 10.1111/j.1471-4159.2004.02559.x 10.1046/j.1471-4159.1998.71020684.x 10.1016/0024-3205(85)90448-5 10.1016/S0741-8329(96)00216-9 10.1038/sj.npp.1300326 10.1016/0006-8993(85)90381-6 10.1523/JNEUROSCI.1526-08.2008 10.1373/49.10.1763 10.1016/0006-8993(87)90988-7 10.1523/JNEUROSCI.4152-06.2007 10.1111/j.1460-9568.2008.06464.x 10.1016/S0165-0270(99)00155-7 10.1097/01.ALC.0000089959.66222.B8 10.1016/S0306-4522(99)00539-4 10.1523/JNEUROSCI.1319-03.2004 10.1016/0014-2999(87)90592-9 10.1074/jbc.M209532200 10.1523/JNEUROSCI.4901-04.2006 10.1523/JNEUROSCI.23-07-02744.2003 10.1002/syn.20301 10.1038/nn1244 10.1111/j.1460-9568.2007.05772.x 10.1016/0306-4522(92)90470-M 10.1152/jn.1998.80.1.1 10.1016/j.tins.2007.03.007 10.1038/nn1923 10.1111/j.1530-0277.2000.tb02056.x 10.1016/j.conb.2004.10.001 10.1016/j.neuropharm.2004.06.032 10.1002/syn.20294 10.1038/nature01476 10.1016/0741-8329(92)90004-T 10.1016/0091-3057(95)00097-G 10.1016/S0006-8993(97)01004-4 10.1046/j.1471-4159.2002.01005.x |
ContentType | Journal Article |
Copyright | Copyright © 2009 by the Research Society on Alcoholism 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2009 by the Research Society on Alcoholism – notice: 2009 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM ADTOC UNPAY |
DOI | 10.1111/j.1530-0277.2009.00942.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Social Welfare & Social Work |
EISSN | 1530-0277 |
EndPage | 1196 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:2947861 PMC2947861 19389195 21743471 10_1111_j_1530_0277_2009_00942_x ACER942 ark_67375_WNG_MJRHQ8P9_K |
Genre | article Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: AA014591 – fundername: NIAAA NIH HHS grantid: K01 AA014591 – fundername: NIDA NIH HHS grantid: R01 DA010900 – fundername: NIAAA NIH HHS grantid: T32 AA007471 – fundername: NIAAA NIH HHS grantid: AA011852 – fundername: NIDA NIH HHS grantid: DA10900 – fundername: NIAAA NIH HHS grantid: R01 AA011852 – fundername: NIAAA NIH HHS grantid: R37 AA011852 |
GroupedDBID | --- -ET -~X .3N .55 .GA .Y3 05W 08G 0R~ 10A 1OB 1OC 23M 31~ 33P 36B 3SF 4.4 4Q1 4Q2 4Q3 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIVO ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBIZ ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZCM ADZMN AEGXH AEIGN AEIMD AEUYR AFBPY AFFPM AFGKR AFRAH AFTRI AFUWQ AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHEFC AHMBA AHRYX AI. AIACR AIAGR AIQQE AITYG AIURR AIZYK ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 BYPQX C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DUUFO EBD EBS EJD EMB EMOBN ESTFP EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 KBYEO KMI L89 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NTWIH O66 O9- OAG OAH OIG OL1 OMB OPX OVD OWU OWV OWW OWX OWY OWZ P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ SV3 TEORI TWZ UAP UB1 VH1 VVN W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOQ WOW WQJ WVDHM WXI WXSBR X7M XG1 XSW XYM YFH ZFV ZGI ZZTAW ~IA ~WT AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c5722-6073407faca1c0f2f43cd55508a91b34bfd13e6ef2100f1066a7e6564a7d7fd13 |
IEDL.DBID | DR2 |
ISSN | 0145-6008 1530-0277 |
IngestDate | Wed Aug 20 00:18:52 EDT 2025 Tue Sep 30 16:50:25 EDT 2025 Wed Oct 01 17:20:20 EDT 2025 Mon Sep 08 16:29:28 EDT 2025 Mon Jul 21 05:29:45 EDT 2025 Mon Jul 21 09:13:32 EDT 2025 Thu Apr 24 22:53:53 EDT 2025 Wed Oct 01 04:40:27 EDT 2025 Sun Sep 21 06:20:23 EDT 2025 Sun Sep 21 06:21:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Dopamine Ethanol Rat Rodentia Central nervous system Voltammetry Basal ganglion Increase Catecholamine Encephalon Phasic Nucleus accumbens Alcoholic beverage Vertebrata Mammalia Microdialysis Cyclic Animal Neurotransmitter Fast Scan Cyclic Voltammetry Disparity |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5722-6073407faca1c0f2f43cd55508a91b34bfd13e6ef2100f1066a7e6564a7d7fd13 |
Notes | ark:/67375/WNG-MJRHQ8P9-K istex:850A072E2F75C8AEB85C31312B5F8FA212493425 ArticleID:ACER942 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://doi.org/10.1111/j.1530-0277.2009.00942.x |
PMID | 19389195 |
PQID | 20212452 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | unpaywall_primary_10_1111_j_1530_0277_2009_00942_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_2947861 proquest_miscellaneous_733361822 proquest_miscellaneous_20212452 pubmed_primary_19389195 pascalfrancis_primary_21743471 crossref_primary_10_1111_j_1530_0277_2009_00942_x crossref_citationtrail_10_1111_j_1530_0277_2009_00942_x wiley_primary_10_1111_j_1530_0277_2009_00942_x_ACER942 istex_primary_ark_67375_WNG_MJRHQ8P9_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2009 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: July 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Hoboken, NJ – name: England |
PublicationTitle | Alcoholism, clinical and experimental research |
PublicationTitleAlternate | Alcohol Clin Exp Res |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | Mereu G, Fadda F, Gessa GL (1984) Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292:63-69. Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475-492. Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:449-451. Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853-863. Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508:65-69. Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201-203. Kiyatkin EA, Rebec GV (1998) Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85:1285-1309. Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203-210. Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024-1027. Howard EC, Schier CJ, Wetzel JS, Duvauchelle CL, Gonzales RA (2008) The shell of the nucleus accumbens has a higher dopamine response compared with the core after non-contingent intravenous ethanol administration. Neuroscience 154:1042-1053. Mocsary Z, Bradberry CW (1996) Effect of ethanol on extracellular dopamine in nucleus accumbens: comparison between Lewis and Fischer 344 rat strains. Brain Res 706:194-198. Pennartz CM, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719-761. Di Chiara G, Imperato A (1986) Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann N Y Acad Sci 473:367-381. Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907-924. Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR (2006) No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 60:288-294. Robinson DL, Volz TJ, Schenk JO, Wightman RM (2005) Acute ethanol decreases dopamine transporter velocity in rat striatum: in vivo and in vitro electrochemical measurements. Alcohol Clin Exp Res 29:746-755. Yan QS (1999) Extracellular dopamine and serotonin after ethanol monitored with 5-minute microdialysis. Alcohol 19:1-7. Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with 'reward'. J Neurochem 82:721-735. Kiianmaa K, Nurmi M, Nykanen I, Sinclair JD (1995) Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol-preferring AA and alcohol-avoiding ANA rats. Pharmacol Biochem Behav 52:29-34. Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265-1271. Church WH, Justice JB Jr, Byrd LD (1987) Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur J Pharmacol 139:345-348. Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM (2006) Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 26:3206-3209. Wightman RM, Heien ML, Wassum KM, Sombers LA, Aragona BJ, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Carelli RM (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046-2054. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78. Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908-8913. Samson HH, Hodge CW, Erickson HL, Niehus JS, Gerhardt GA, Kalivas PW, Floyd EA (1997) The effects of local application of ethanol in the n. accumbens on dopamine overflow and clearance. Alcohol 14:485-492. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614-618. Yang H, Peters JL, Michael AC (1998) Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J Neurochem 71:684-692. Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci 7:583-584. Rebec GV, Christensen JR, Guerra C, Bardo MT (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61-67. Okamoto T, Harnett MT, Morikawa H (2006) Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice. J Neurophysiol 95:619-626. Robinson DL, Heien ML, Wightman RM (2002b) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477-10486. Robinson DL, Brunner LJ, Gonzales RA (2002a) Effect of gender and estrous cycle on the pharmacokinetics of ethanol in the rat brain. Alcohol Clin Exp Res 26:165-172. Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461-482. Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90:894-903. Logman MJ, Budygin EA, Gainetdinov RR, Wightman RM (2000) Quantitation of in vivo measurements with carbon fiber microelectrodes. J Neurosci Methods 95:95-102. Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763-1773. Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020-1028. Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219-228. Heien ML, Phillips PE, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128:1413-1419. Avshalumov MV, Chen BT, Marshall SP, Pena DM, Rice ME (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23:2744-2750. Doyon WM, York JL, Diaz LM, Samson HH, Czachowski CL, Gonzales RA (2003) Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol Clin Exp Res 27:1573-1582. Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821-8831. Robinson DL, Carelli RM (2008) Distinct subsets of nucleus accumbens neurons encode operant responding for ethanol versus water. Eur J Neurosci 28:1887-1894. Jones SR, Mathews TA, Budygin EA (2006) Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo. Synapse 60:251-255. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369-2382. Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788-2797. Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. 4th CD-ROM Ed. Academic Press, San Diego, CA. Wu Y, Pearl SM, Zigmond MJ, Michael AC (2000) Inhibitory glutamatergic regulation of evoked dopamine release in striatum. Neuroscience 96:65-72. Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36:1983-1994. Inoue H (2000) Effects of naltrexone on the accumulation of L-3, 4-dihydroxyphenylalanine and 5-hydroxy-L-tryptophan and on the firing rate induced by acute ethanol administration. Eur J Pharmacol 406:375-380. Yoshimoto K, McBride WJ, Lumeng L, Li TK (1992a) Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats. Alcohol Clin Exp Res 16:781-785. Freeman AS, Bunney BS (1987) Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res 405:46-55. Michael D, Travis ER, Wightman RM (1998) Color images for fast-scan CV measurements in biological systems. Anal Chem 70:586A-592A. Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530-536. Yim HJ, Gonzales RA (2000) Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol 22:107-115. Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326:76-82. Heien ML, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Was 1996; 706 2004; 29 2002; 114 2004; 7 1990; 508 2004; 24 2000; 95 2007; 191 1998; 80 2007; 30 1998; 85 2006; 577 2005; 29 1992; 51 2006; 60 1999; 817 2003; 128 1992a; 16 1999; 19 2005; 102 2003; 6 1997; 14 2000; 96 2008; 28 2006; 26 2000; 406 2005; 30 2003; 49 1992; 49 1996; 379 2008; 154 1994; 72 1992b; 9 2007; 26 2007; 27 1986; 239 1995; 52 1997; 776 2006; 95 1986; 473 2000; 24 2004; 47 2000; 22 1987; 405 2000; 20 1998 2007 2008; 326 1985; 348 2002; 82 2004; 90 2007; 10 2007; 56 1994; 42 1984; 292 1987; 139 2004; 14 2002a; 26 2003; 27 1998; 70 2002b; 22 1998; 71 2003; 422 2003; 23 1985; 36 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Imperato A (e_1_2_6_25_1) 1986; 239 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Avshalumov MV (e_1_2_6_3_1) 2003; 23 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 Robinson DL (e_1_2_6_53_1) 2007 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201-203. – reference: Mereu G, Fadda F, Gessa GL (1984) Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292:63-69. – reference: Heien ML, Phillips PE, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128:1413-1419. – reference: Logman MJ, Budygin EA, Gainetdinov RR, Wightman RM (2000) Quantitation of in vivo measurements with carbon fiber microelectrodes. J Neurosci Methods 95:95-102. – reference: Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci 7:583-584. – reference: Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78. – reference: Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326:76-82. – reference: Pennartz CM, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719-761. – reference: Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR (2006) No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 60:288-294. – reference: Robinson DL, Heien ML, Wightman RM (2002b) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477-10486. – reference: Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36:1983-1994. – reference: Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853-863. – reference: Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763-1773. – reference: Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508:65-69. – reference: Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369-2382. – reference: Wightman RM, Heien ML, Wassum KM, Sombers LA, Aragona BJ, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Carelli RM (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046-2054. – reference: Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27:791-795. – reference: Kawagoe KT, Garris PA, Wiedemann DJ, Wightman RM (1992) Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 51:55-64. – reference: Robinson DL, Brunner LJ, Gonzales RA (2002a) Effect of gender and estrous cycle on the pharmacokinetics of ethanol in the rat brain. Alcohol Clin Exp Res 26:165-172. – reference: Church WH, Justice JB Jr, Byrd LD (1987) Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur J Pharmacol 139:345-348. – reference: Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl. 1):227-241. – reference: Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788-2797. – reference: Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27. – reference: Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530-536. – reference: Freeman AS, Bunney BS (1987) Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res 405:46-55. – reference: Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:449-451. – reference: Yoshimoto K, McBride WJ, Lumeng L, Li TK (1992b) Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol 9:17-22. – reference: Mocsary Z, Bradberry CW (1996) Effect of ethanol on extracellular dopamine in nucleus accumbens: comparison between Lewis and Fischer 344 rat strains. Brain Res 706:194-198. – reference: Doyon WM, York JL, Diaz LM, Samson HH, Czachowski CL, Gonzales RA (2003) Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol Clin Exp Res 27:1573-1582. – reference: Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265-1271. – reference: Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90:894-903. – reference: Kiyatkin EA, Rebec GV (1998) Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85:1285-1309. – reference: Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM (2006) Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 26:3206-3209. – reference: Yim HJ, Gonzales RA (2000) Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol 22:107-115. – reference: Howard EC, Schier CJ, Wetzel JS, Duvauchelle CL, Gonzales RA (2008) The shell of the nucleus accumbens has a higher dopamine response compared with the core after non-contingent intravenous ethanol administration. Neuroscience 154:1042-1053. – reference: Carelli RM, Wightman RM (2004) Functional microcircuitry in the accumbens underlying drug addiction: insights from real-time signaling during behavior. Curr Opin Neurobiol 14:763-768. – reference: Rodd ZA, Melendez RI, Bell RL, Kuc KA, Zhang Y, Murphy JM, McBride WJ (2004) Intracranial self-administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons. J Neurosci 24:1050-1057. – reference: Suaud-Chagny MF, Chergui K, Chouvet G, Gonon F (1992) Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area. Neuroscience 49:63-72. – reference: Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614-618. – reference: Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968-973. – reference: Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219-228. – reference: Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907-924. – reference: Avshalumov MV, Chen BT, Marshall SP, Pena DM, Rice ME (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23:2744-2750. – reference: Janak PH, Chang JY, Woodward DJ (1999) Neuronal spike activity in the nucleus accumbens of behaving rats during ethanol self-administration. Brain Res 817:172-184. – reference: Yang H, Peters JL, Michael AC (1998) Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J Neurochem 71:684-692. – reference: Yim HJ, Robinson DL, White ML, Jaworski JN, Randall PK, Lancaster FE, Gonzales RA (2000) Dissociation between the time course of ethanol and extracellular dopamine concentrations in the nucleus accumbens after a single intraperitoneal injection. Alcohol Clin Exp Res 24:781-788. – reference: Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020-1028. – reference: Kiianmaa K, Nurmi M, Nykanen I, Sinclair JD (1995) Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol-preferring AA and alcohol-avoiding ANA rats. Pharmacol Biochem Behav 52:29-34. – reference: Di Chiara G, Imperato A (1986) Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann N Y Acad Sci 473:367-381. – reference: Samson HH, Hodge CW, Erickson HL, Niehus JS, Gerhardt GA, Kalivas PW, Floyd EA (1997) The effects of local application of ethanol in the n. accumbens on dopamine overflow and clearance. Alcohol 14:485-492. – reference: Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461-482. – reference: Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908-8913. – reference: Yoshimoto K, McBride WJ, Lumeng L, Li TK (1992a) Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats. Alcohol Clin Exp Res 16:781-785. – reference: Michael D, Travis ER, Wightman RM (1998) Color images for fast-scan CV measurements in biological systems. Anal Chem 70:586A-592A. – reference: Robinson DL, Volz TJ, Schenk JO, Wightman RM (2005) Acute ethanol decreases dopamine transporter velocity in rat striatum: in vivo and in vitro electrochemical measurements. Alcohol Clin Exp Res 29:746-755. – reference: Robinson DL, Carelli RM (2008) Distinct subsets of nucleus accumbens neurons encode operant responding for ethanol versus water. Eur J Neurosci 28:1887-1894. – reference: Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024-1027. – reference: Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. 4th CD-ROM Ed. Academic Press, San Diego, CA. – reference: Rebec GV, Christensen JR, Guerra C, Bardo MT (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61-67. – reference: Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581-582. – reference: Inoue H (2000) Effects of naltrexone on the accumulation of L-3, 4-dihydroxyphenylalanine and 5-hydroxy-L-tryptophan and on the firing rate induced by acute ethanol administration. Eur J Pharmacol 406:375-380. – reference: Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203-210. – reference: Heien ML, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci USA 102:10023-10028. – reference: Yan QS (1999) Extracellular dopamine and serotonin after ethanol monitored with 5-minute microdialysis. Alcohol 19:1-7. – reference: Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821-8831. – reference: Jones SR, Mathews TA, Budygin EA (2006) Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo. Synapse 60:251-255. – reference: Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475-492. – reference: Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with 'reward'. J Neurochem 82:721-735. – reference: Wu Y, Pearl SM, Zigmond MJ, Michael AC (2000) Inhibitory glutamatergic regulation of evoked dopamine release in striatum. Neuroscience 96:65-72. – reference: Okamoto T, Harnett MT, Morikawa H (2006) Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice. J Neurophysiol 95:619-626. – volume: 56 start-page: 27 year: 2007 end-page: 78 article-title: Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens‐olfactory tubercle complex publication-title: Brain Res Rev – volume: 817 start-page: 172 year: 1999 end-page: 184 article-title: Neuronal spike activity in the nucleus accumbens of behaving rats during ethanol self‐administration publication-title: Brain Res – volume: 422 start-page: 614 year: 2003 end-page: 618 article-title: Subsecond dopamine release promotes cocaine seeking publication-title: Nature – volume: 22 start-page: 10477 year: 2002b end-page: 10486 article-title: Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics publication-title: J Neurosci – volume: 28 start-page: 1887 year: 2008 end-page: 1894 article-title: Distinct subsets of nucleus accumbens neurons encode operant responding for ethanol versus water publication-title: Eur J Neurosci – volume: 47 start-page: 227 issue: Suppl. 1 year: 2004 end-page: 241 article-title: Dopamine and drug addiction: the nucleus accumbens shell connection publication-title: Neuropharmacology – volume: 42 start-page: 719 year: 1994 end-page: 761 article-title: The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data publication-title: Prog Neurobiol – volume: 26 start-page: 3206 year: 2006 end-page: 3209 article-title: Cocaine increases dopamine release by mobilization of a synapsin‐dependent reserve pool publication-title: J Neurosci – volume: 27 start-page: 1573 year: 2003 end-page: 1582 article-title: Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self‐administration publication-title: Alcohol Clin Exp Res – volume: 49 start-page: 1763 year: 2003 end-page: 1773 article-title: Detecting subsecond dopamine release with fast‐scan cyclic voltammetry in vivo publication-title: Clin Chem – volume: 128 start-page: 1413 year: 2003 end-page: 1419 article-title: Overoxidation of carbon‐fiber microelectrodes enhances dopamine adsorption and increases sensitivity publication-title: Analyst – volume: 16 start-page: 781 year: 1992a end-page: 785 article-title: Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats publication-title: Alcohol Clin Exp Res – volume: 24 start-page: 1050 year: 2004 end-page: 1057 article-title: Intracranial self‐administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons publication-title: J Neurosci – volume: 28 start-page: 8908 year: 2008 end-page: 8913 article-title: Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition publication-title: J Neurosci – volume: 292 start-page: 63 year: 1984 end-page: 69 article-title: Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats publication-title: Brain Res – volume: 24 start-page: 1265 year: 2004 end-page: 1271 article-title: Dopamine operates as a subsecond modulator of food seeking publication-title: J Neurosci – volume: 29 start-page: 530 year: 2004 end-page: 536 article-title: Acetaldehyde increases dopaminergic neuronal activity in the VTA publication-title: Neuropsychopharmacology – year: 1998 – volume: 20 start-page: 2369 year: 2000 end-page: 2382 article-title: Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum publication-title: J Neurosci – volume: 26 start-page: 165 year: 2002a end-page: 172 article-title: Effect of gender and estrous cycle on the pharmacokinetics of ethanol in the rat brain publication-title: Alcohol Clin Exp Res – volume: 95 start-page: 95 year: 2000 end-page: 102 article-title: Quantitation of in vivo measurements with carbon fiber microelectrodes publication-title: J Neurosci Methods – volume: 26 start-page: 2046 year: 2007 end-page: 2054 article-title: Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens publication-title: Eur J Neurosci – volume: 14 start-page: 763 year: 2004 end-page: 768 article-title: Functional microcircuitry in the accumbens underlying drug addiction: insights from real‐time signaling during behavior publication-title: Curr Opin Neurobiol – volume: 28 start-page: 8821 year: 2008 end-page: 8831 article-title: Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events publication-title: J Neurosci – volume: 326 start-page: 76 year: 2008 end-page: 82 article-title: Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol‐induced elevation of accumbal dopamine levels publication-title: J Pharmacol Exp Ther – volume: 52 start-page: 29 year: 1995 end-page: 34 article-title: Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol‐preferring AA and alcohol‐avoiding ANA rats publication-title: Pharmacol Biochem Behav – volume: 508 start-page: 65 year: 1990 end-page: 69 article-title: Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro publication-title: Brain Res – volume: 49 start-page: 63 year: 1992 end-page: 72 article-title: Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area publication-title: Neuroscience – volume: 26 start-page: 2788 year: 2006 end-page: 2797 article-title: Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location publication-title: J Neurosci – volume: 36 start-page: 1983 year: 1985 end-page: 1994 article-title: Firing properties of substantia nigra dopaminergic neurons in freely moving rats publication-title: Life Sci – volume: 72 start-page: 1024 year: 1994 end-page: 1027 article-title: Importance of unpredictability for reward responses in primate dopamine neurons publication-title: J Neurophysiol – volume: 80 start-page: 1 year: 1998 end-page: 27 article-title: Predictive reward signal of dopamine neurons publication-title: J Neurophysiol – volume: 405 start-page: 46 year: 1987 end-page: 55 article-title: Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin publication-title: Brain Res – volume: 348 start-page: 201 year: 1985 end-page: 203 article-title: Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area publication-title: Brain Res – volume: 406 start-page: 375 year: 2000 end-page: 380 article-title: Effects of naltrexone on the accumulation of L‐3, 4‐dihydroxyphenylalanine and 5‐hydroxy‐L‐tryptophan and on the firing rate induced by acute ethanol administration publication-title: Eur J Pharmacol – volume: 30 start-page: 203 year: 2007 end-page: 210 article-title: Behavioral dopamine signals publication-title: Trends Neurosci – volume: 9 start-page: 17 year: 1992b end-page: 22 article-title: Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens publication-title: Alcohol – volume: 239 start-page: 219 year: 1986 end-page: 228 article-title: Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol publication-title: J Pharmacol Exp Ther – volume: 473 start-page: 367 year: 1986 end-page: 381 article-title: Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats publication-title: Ann N Y Acad Sci – volume: 19 start-page: 1 year: 1999 end-page: 7 article-title: Extracellular dopamine and serotonin after ethanol monitored with 5‐minute microdialysis publication-title: Alcohol – volume: 191 start-page: 461 year: 2007 end-page: 482 article-title: Effort‐related functions of nucleus accumbens dopamine and associated forebrain circuits publication-title: Psychopharmacology – volume: 10 start-page: 1020 year: 2007 end-page: 1028 article-title: Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens publication-title: Nat Neurosci – volume: 60 start-page: 251 year: 2006 end-page: 255 article-title: Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo publication-title: Synapse – volume: 82 start-page: 721 year: 2002 end-page: 735 article-title: Transient changes in mesolimbic dopamine and their association with ‘reward’ publication-title: J Neurochem – volume: 102 start-page: 10023 year: 2005 end-page: 10028 article-title: Real‐time measurement of dopamine fluctuations after cocaine in the brain of behaving rats publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 583 year: 2004 end-page: 584 article-title: Nicotine amplifies reward‐related dopamine signals in striatum publication-title: Nat. Neurosci – volume: 577 start-page: 907 year: 2006 end-page: 924 article-title: The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? publication-title: J Physiol – volume: 706 start-page: 194 year: 1996 end-page: 198 article-title: Effect of ethanol on extracellular dopamine in nucleus accumbens: comparison between Lewis and Fischer 344 rat strains publication-title: Brain Res – start-page: 17 year: 2007 end-page: 34 – volume: 139 start-page: 345 year: 1987 end-page: 348 article-title: Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine publication-title: Eur J Pharmacol – volume: 154 start-page: 1042 year: 2008 end-page: 1053 article-title: The shell of the nucleus accumbens has a higher dopamine response compared with the core after non‐contingent intravenous ethanol administration publication-title: Neuroscience – volume: 85 start-page: 1285 year: 1998 end-page: 1309 article-title: Heterogeneity of ventral tegmental area neurons: single‐unit recording and iontophoresis in awake, unrestrained rats publication-title: Neuroscience – volume: 6 start-page: 968 year: 2003 end-page: 973 article-title: Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission publication-title: Nat Neurosci – volume: 60 start-page: 288 year: 2006 end-page: 294 article-title: No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics publication-title: Synapse – volume: 71 start-page: 684 year: 1998 end-page: 692 article-title: Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine publication-title: J Neurochem – volume: 14 start-page: 485 year: 1997 end-page: 492 article-title: The effects of local application of ethanol in the n. accumbens on dopamine overflow and clearance publication-title: Alcohol – volume: 90 start-page: 894 year: 2004 end-page: 903 article-title: Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely‐moving rats publication-title: J Neurochem – volume: 27 start-page: 791 year: 2007 end-page: 795 article-title: Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation publication-title: J Neurosci – volume: 114 start-page: 475 year: 2002 end-page: 492 article-title: Firing modes of midbrain dopamine cells in the freely moving rat publication-title: Neuroscience – volume: 95 start-page: 619 year: 2006 end-page: 626 article-title: Hyperpolarization‐activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice publication-title: J Neurophysiol – volume: 23 start-page: 2744 year: 2003 end-page: 2750 article-title: Glutamate‐dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2 publication-title: J Neurosci – volume: 379 start-page: 449 year: 1996 end-page: 451 article-title: Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli publication-title: Nature – volume: 96 start-page: 65 year: 2000 end-page: 72 article-title: Inhibitory glutamatergic regulation of evoked dopamine release in striatum publication-title: Neuroscience – volume: 22 start-page: 107 year: 2000 end-page: 115 article-title: Ethanol‐induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition publication-title: Alcohol – volume: 30 start-page: 853 year: 2005 end-page: 863 article-title: Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration publication-title: Neuropsychopharmacology – volume: 776 start-page: 61 year: 1997 end-page: 67 article-title: Regional and temporal differences in real‐time dopamine efflux in the nucleus accumbens during free‐choice novelty publication-title: Brain Res – volume: 29 start-page: 746 year: 2005 end-page: 755 article-title: Acute ethanol decreases dopamine transporter velocity in rat striatum: in vivo and in vitro electrochemical measurements publication-title: Alcohol Clin Exp Res – volume: 70 start-page: 586A year: 1998 end-page: 592A article-title: Color images for fast‐scan CV measurements in biological systems publication-title: Anal Chem – volume: 24 start-page: 781 year: 2000 end-page: 788 article-title: Dissociation between the time course of ethanol and extracellular dopamine concentrations in the nucleus accumbens after a single intraperitoneal injection publication-title: Alcohol Clin Exp Res – volume: 51 start-page: 55 year: 1992 end-page: 64 article-title: Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum publication-title: Neuroscience – volume: 7 start-page: 581 year: 2004 end-page: 582 article-title: Frequency‐dependent modulation of dopamine release by nicotine publication-title: Nat Neurosci – volume: 239 start-page: 219 year: 1986 ident: e_1_2_6_25_1 article-title: Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol publication-title: J Pharmacol Exp Ther – ident: e_1_2_6_41_1 doi: 10.1152/jn.00682.2005 – ident: e_1_2_6_21_1 doi: 10.1039/b307024g – ident: e_1_2_6_26_1 doi: 10.1016/S0014-2999(00)00703-2 – ident: e_1_2_6_12_1 doi: 10.1124/jpet.108.137489 – ident: e_1_2_6_66_1 doi: 10.1016/S0741-8329(99)00006-3 – ident: e_1_2_6_55_1 doi: 10.1523/JNEUROSCI.3823-03.2004 – ident: e_1_2_6_36_1 doi: 10.1016/0006-8993(84)90890-4 – ident: e_1_2_6_60_1 doi: 10.1038/sj.npp.1300619 – ident: e_1_2_6_19_1 doi: 10.1523/JNEUROSCI.20-06-02369.2000 – ident: e_1_2_6_22_1 doi: 10.1016/j.neuroscience.2008.04.014 – ident: e_1_2_6_24_1 doi: 10.1016/j.brainresrev.2007.05.004 – ident: e_1_2_6_70_1 doi: 10.1111/j.1530-0277.1992.tb00678.x – ident: e_1_2_6_38_1 doi: 10.1152/jn.1994.72.2.1024 – ident: e_1_2_6_23_1 doi: 10.1016/S0306-4522(02)00267-1 – ident: e_1_2_6_56_1 doi: 10.1007/s00213-006-0668-9 – ident: e_1_2_6_43_1 doi: 10.1016/0301-0082(94)90025-6 – ident: e_1_2_6_49_1 doi: 10.1523/JNEUROSCI.22-23-10477.2002 – ident: e_1_2_6_72_1 doi: 10.1038/nn1243 – ident: e_1_2_6_40_1 doi: 10.1016/0006-8993(95)01200-1 – ident: e_1_2_6_51_1 doi: 10.1097/01.ALC.0000164362.21484.14 – ident: e_1_2_6_4_1 doi: 10.1016/0006-8993(90)91118-Z – ident: e_1_2_6_47_1 doi: 10.1111/j.1530-0277.2002.tb02521.x – ident: e_1_2_6_13_1 doi: 10.1038/nn1103 – ident: e_1_2_6_39_1 doi: 10.1038/379449a0 – ident: e_1_2_6_20_1 doi: 10.1073/pnas.0504657102 – ident: e_1_2_6_33_1 doi: 10.1113/jphysiol.2006.117069 – ident: e_1_2_6_10_1 doi: 10.1111/j.1749-6632.1986.tb23629.x – ident: e_1_2_6_37_1 doi: 10.1021/ac9819640 – ident: e_1_2_6_15_1 doi: 10.1523/JNEUROSCI.4331-05.2006 – ident: e_1_2_6_61_1 doi: 10.1016/0306-4522(92)90076-E – ident: e_1_2_6_2_1 doi: 10.1523/JNEUROSCI.2225-08.2008 – ident: e_1_2_6_27_1 doi: 10.1016/S0006-8993(98)01245-1 – ident: e_1_2_6_31_1 doi: 10.1016/S0306-4522(98)00054-2 – ident: e_1_2_6_68_1 doi: 10.1016/S0741-8329(00)00121-X – ident: e_1_2_6_52_1 doi: 10.1111/j.1471-4159.2004.02559.x – ident: e_1_2_6_67_1 doi: 10.1046/j.1471-4159.1998.71020684.x – ident: e_1_2_6_17_1 doi: 10.1016/0024-3205(85)90448-5 – ident: e_1_2_6_57_1 doi: 10.1016/S0741-8329(96)00216-9 – ident: e_1_2_6_14_1 doi: 10.1038/sj.npp.1300326 – ident: e_1_2_6_18_1 doi: 10.1016/0006-8993(85)90381-6 – start-page: 17 volume-title: Electrochemical Methods for Neuroscience year: 2007 ident: e_1_2_6_53_1 – ident: e_1_2_6_34_1 doi: 10.1523/JNEUROSCI.1526-08.2008 – ident: e_1_2_6_50_1 doi: 10.1373/49.10.1763 – ident: e_1_2_6_16_1 doi: 10.1016/0006-8993(87)90988-7 – ident: e_1_2_6_6_1 doi: 10.1523/JNEUROSCI.4152-06.2007 – ident: e_1_2_6_48_1 doi: 10.1111/j.1460-9568.2008.06464.x – ident: e_1_2_6_32_1 doi: 10.1016/S0165-0270(99)00155-7 – ident: e_1_2_6_11_1 doi: 10.1097/01.ALC.0000089959.66222.B8 – ident: e_1_2_6_65_1 doi: 10.1016/S0306-4522(99)00539-4 – ident: e_1_2_6_54_1 doi: 10.1523/JNEUROSCI.1319-03.2004 – ident: e_1_2_6_7_1 doi: 10.1016/0014-2999(87)90592-9 – ident: e_1_2_6_42_1 doi: 10.1074/jbc.M209532200 – ident: e_1_2_6_62_1 doi: 10.1523/JNEUROSCI.4901-04.2006 – volume: 23 start-page: 2744 year: 2003 ident: e_1_2_6_3_1 article-title: Glutamate‐dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-07-02744.2003 – ident: e_1_2_6_35_1 doi: 10.1002/syn.20301 – ident: e_1_2_6_46_1 doi: 10.1038/nn1244 – ident: e_1_2_6_63_1 doi: 10.1111/j.1460-9568.2007.05772.x – ident: e_1_2_6_29_1 doi: 10.1016/0306-4522(92)90470-M – ident: e_1_2_6_58_1 doi: 10.1152/jn.1998.80.1.1 – ident: e_1_2_6_59_1 doi: 10.1016/j.tins.2007.03.007 – ident: e_1_2_6_8_1 doi: 10.1038/nn1923 – ident: e_1_2_6_69_1 doi: 10.1111/j.1530-0277.2000.tb02056.x – ident: e_1_2_6_5_1 doi: 10.1016/j.conb.2004.10.001 – ident: e_1_2_6_9_1 doi: 10.1016/j.neuropharm.2004.06.032 – ident: e_1_2_6_28_1 doi: 10.1002/syn.20294 – ident: e_1_2_6_44_1 doi: 10.1038/nature01476 – ident: e_1_2_6_71_1 doi: 10.1016/0741-8329(92)90004-T – ident: e_1_2_6_30_1 doi: 10.1016/0091-3057(95)00097-G – ident: e_1_2_6_45_1 doi: 10.1016/S0006-8993(97)01004-4 – ident: e_1_2_6_64_1 doi: 10.1046/j.1471-4159.2002.01005.x |
SSID | ssj0004866 |
Score | 2.2585108 |
Snippet | Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol... Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol... Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases... Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol... |
SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1187 |
SubjectTerms | Alcoholism and acute alcohol poisoning Animals Biological and medical sciences Dopamine Dopamine - biosynthesis Dopamine - physiology Dose-Response Relationship, Drug Ethanol Ethanol - pharmacology Fast Scan Cyclic Voltammetry Male Medical sciences Microdialysis Microdialysis - methods Nucleus Accumbens - drug effects Nucleus Accumbens - metabolism Phasic Rats Rats, Sprague-Dawley Time Factors Toxicology |
Title | Disparity Between Tonic and Phasic Ethanol-Induced Dopamine Increases in the Nucleus Accumbens of Rats |
URI | https://api.istex.fr/ark:/67375/WNG-MJRHQ8P9-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1530-0277.2009.00942.x https://www.ncbi.nlm.nih.gov/pubmed/19389195 https://www.proquest.com/docview/20212452 https://www.proquest.com/docview/733361822 https://pubmed.ncbi.nlm.nih.gov/PMC2947861 http://doi.org/10.1111/j.1530-0277.2009.00942.x |
UnpaywallVersion | submittedVersion |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1530-0277 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1530-0277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004866 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hcoALlN-GlrIH1Juj2PtnH0ObEhU1KlGr9mat17tKlOBUsS1aTjwCz8iTMGMnLoYiFcQtsncc73hmdz7P-BtC3rIk9GWacvBvpjzuZORFWnFP-EakvpZSOQSKxyM5PONHF-JiVf-E38LU_BDNCzf0jGq9RgfXSd52csF6VQ5yTTsZ8aCL8aTPRJWxHd8wSfGwTlv6XHiwx4ftop5bL9Taqe6j0q-wclLnoDxXd724LSz9vbryQZld6uvPej5vR8DVFnb4mMzWk68rV2bdski65ssvvJD_Rzub5NEq0qX92jSfkHs2e0p26s-B6bmdO720dI-uDyyWs2dkcjDNsS1icU3f1QVk9BS5e6nOUnoy0WBSdIAv-xfz71-_YdsRY1N6AMD_E9wxhcUOa-xtTqcZhciWjpCtucxp3xjsfJLldOHoWBf5c3J2ODjdH3qrXhCeEQrwsoSlCLCn00b7pucCx5lJBcCrUEd-wnjiUp9ZaR1A2J4DnCu1shCrcq1ShedekI1skdktQg0LA66MMQxCXwDRYcoABgc4GGlLVYeo9XOPzYooHft1zOOfABMoN0blYhvPKK6UG191iN9IXtZkIXeQ2atMqxHQyxkW2ykRn4_ex8dH4-HH8CSKP3TIbsv2GoEKVEKM0SFv1sYYwxqBiR-d2UWZw__B_LgIOoT-YYRijEmAmjDkZW29NxOIMJUdCVBLy66bAUhQ3j6TTScVUXkQcRVKuLGg8YC_0Ius7PvOAnF_fzCGX6_-VXCbPKxThViLvUM2imVpX0PEWSS71VryA0oLbos |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtswDBaG9tBd9v-TrWt1GHpzUFuyZB-zJl3WNkEXpGhvgiJLSBDPKeIEa3faI-wZ9yQj7cSdtw7oht2CWEwsmpT4ifRHQt6yUeSLJOHg30x63InYi7XkXuibMPG1ENIhUOz1RfeMH12EF6t2QPguTMkPUR24oWcU6zU6OB5I1708ZPtFEnLNOxnzoAkB5Sam69BL24MbLikelYlLn4ce7PJRvazn1l-q7VWbqPYrrJ3UOajPlX0vbgtMf6-v3Fpml_r6s07TegxcbGKHD0m6nn5ZuzJtLhejpvnyCzPkf9LPI_JgFezSVmmdj8k9mz0h2-UbwfTcpk7PLd2j6y9m8-lTMm5PcuyMuLim78oaMjpE-l6qs4SejjVYFe3gef8s_f71G3YeMTahbcD-n-CWKax3WGZvczrJKAS3tI-EzcuctozB5idZTmeODvQif0bODjvDg663agfhmVACZBawGgH8dNpo3-y7wHFmkhAQVqRjf8T4yCU-s8I6QLH7DqCu0NJCuMq1TCRee042sllmXxJqWBRwaYxhEP0Cjo4SBkg4wMHIXCobRK4fvDIrrnRs2ZGqnzATKFehcrGTZ6wK5aqrBvErycuSL-QOMnuFbVUCej7FejsZqvP-e9U7GnQ_RqexOm6QnZrxVQIFroQwo0F219aoYJnA3I_O7GyZw__B_HgYNAj9wwjJGBOANmHIi9J8byYQYzY7DkEtNcOuBiBHef1KNhkXXOVBzGUk4MaCygX-Qi-iMPA7C6jWQWcAn179q-Au2eoOeyfq5EP_-DW5X2YOsTR7m2ws5kv7BgLQxWinWFh-ABokcqc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQJgEv_GcUxuYHtLdUTezYyWNZW8rGqlJt2t4s17HVqiWtmlZsPPER-Ix8Eu6SNiMwpIF4ixJfE1_vzveLL78j5A0bRr5IEg7-zaTHnYi9WEvuhb4JE18LIR0CxZOe6J7xo4vwYl3_hN_CFPwQ5Qs39Iw8XqODzxNXdfKQNfI9yA3tZMyDOuST21zAWUyQBtdUUjwq9i19HnqwyEfVqp4bf6myVG2j1i-xdFJnoD1XtL24KS_9vbzy3iqd66vPejqtpsD5GtZ5SCab2RelK5P6ajmsmy-_EEP-H_U8Ig_WqS5tFrb5mNyx6ROyW3wPTM_t1OmFpQd0c2K2mDwlo9Y4w76Iyyv6tqggo6dI3kt1mtD-SINN0Ta-7Z9Nv3_9hn1HjE1oC5D_J3hiCtEOi-xtRscphdSW9pCueZXRpjHY-iTN6MzRgV5mz8hZp3162PXWzSA8E0oAzAJiEYBPp432TcMFjjOThICvIh37Q8aHLvGZFdYBhm04ALpCSwvJKtcykXjtOdlKZ6l9QahhUcClMYZB7gsoOkoY4OAAByNvqawRufnflVkzpWPDjqn6CTGBchUqF_t4xipXrrqsEb-UnBdsIbeQOchNqxTQiwlW28lQnffeqZOjQfdj1I_VcY3sVWyvFMhRJSQZNbK_MUYFQQJ3fnRqZ6sM7gfz42FQI_QPIyRjTADWhCE7hfVeTyDGvew4BLVU7LocgAzl1SvpeJQzlQcxl5GABwtKD_gLvYjcvm8toJqH7QEcvfxXwX1yt9_qqA_ve8evyP1i2xDrsnfJ1nKxsq8h-1wO9_Kw8gNOSHFW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disparity+Between+Tonic+and+Phasic+Ethanol-Induced+Dopamine+Increases+in+the+Nucleus+Accumbens+of+Rats&rft.jtitle=Alcoholism%2C+clinical+and+experimental+research&rft.au=Robinson%2C+Donita+L&rft.au=Howard%2C+Elaina+C&rft.au=McConnell%2C+Scott&rft.au=Gonzales%2C+Rueben+A&rft.date=2009-07-01&rft.issn=0145-6008&rft.eissn=1530-0277&rft.volume=33&rft.issue=7&rft.spage=1187&rft.epage=1196&rft_id=info:doi/10.1111%2Fj.1530-0277.2009.00942.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-6008&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-6008&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-6008&client=summon |