Disparity Between Tonic and Phasic Ethanol-Induced Dopamine Increases in the Nucleus Accumbens of Rats

Background:  Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. Methods:  We measure...

Full description

Saved in:
Bibliographic Details
Published inAlcoholism, clinical and experimental research Vol. 33; no. 7; pp. 1187 - 1196
Main Authors Robinson, Donita L., Howard, Elaina C., McConnell, Scott, Gonzales, Rueben A., Wightman, R. Mark
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2009
Wiley
Subjects
Online AccessGet full text
ISSN0145-6008
1530-0277
1530-0277
DOI10.1111/j.1530-0277.2009.00942.x

Cover

Abstract Background:  Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. Methods:  We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within‐subject cumulative dosing, 0.125 to 2 g/kg, i.v.). Results:  Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between‐site effects reflected specific pharmacology at that recording site. Conclusions:  These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
AbstractList Background:  Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. Methods:  We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within‐subject cumulative dosing, 0.125 to 2 g/kg, i.v.). Results:  Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between‐site effects reflected specific pharmacology at that recording site. Conclusions:  These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.BACKGROUNDDopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g/kg, i.v.).METHODSWe measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g/kg, i.v.).Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site.RESULTSMicrodialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site.These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.CONCLUSIONSThese data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.Methods: We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g-kg, i.v.).Results: Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g-kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site.Conclusions: These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Background:  Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. Methods:  We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within‐subject cumulative dosing, 0.125 to 2 g/kg, i.v.). Results:  Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between‐site effects reflected specific pharmacology at that recording site. Conclusions:  These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g/kg, i.v.). Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site. These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Author Robinson, Donita L.
Gonzales, Rueben A.
Wightman, R. Mark
McConnell, Scott
Howard, Elaina C.
AuthorAffiliation 2 Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
3 Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas, Austin, TX, USA
1 Bowles Center for Alcohol Studies and Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
AuthorAffiliation_xml – name: 1 Bowles Center for Alcohol Studies and Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
– name: 2 Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
– name: 3 Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas, Austin, TX, USA
Author_xml – sequence: 1
  givenname: Donita L.
  surname: Robinson
  fullname: Robinson, Donita L.
  organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas
– sequence: 2
  givenname: Elaina C.
  surname: Howard
  fullname: Howard, Elaina C.
  organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas
– sequence: 3
  givenname: Scott
  surname: McConnell
  fullname: McConnell, Scott
  organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas
– sequence: 4
  givenname: Rueben A.
  surname: Gonzales
  fullname: Gonzales, Rueben A.
  organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas
– sequence: 5
  givenname: R. Mark
  surname: Wightman
  fullname: Wightman, R. Mark
  organization: From the Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina; Department of Chemistry, University of North Carolina (RMW), Chapel Hill, North Carolina; and Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas (ECH, RAG), Austin, Texas
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21743471$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19389195$$D View this record in MEDLINE/PubMed
BookMark eNqdkV9v0zAUxSM0xLrBV0B-AZ5S_CexkweQSle2whijGuLRunVuqLvULnHC2m9PQqsOXtCEJcuW7vmde318Eh057zCKCKND1q3XyyFLBY0pV2rIKc2H3U74cPMoGhwKR9GAsiSNJaXZcXQSwpJSmmRSPomOWS6ynOXpICrPbFhDbZsteYfNHaIjN95ZQ8AV5HoBobtOmgU4X8VTV7QGC3Lm17CyDsnUmRohYCDWkWaB5Ko1FbaBjIxpV3N0gfiSzKAJT6PHJVQBn-3P0-jr-8nN-CK-_Hw-HY8uY5MqzrtZlUioKsEAM7TkZSJMkaYpzSBnc5HMy4IJlFhyRmnJqJSgUKYyAVWovnYa5Tvf1q1hewdVpde1XUG91YzqPju91H1Euo9I99np39npTce-3bHrdr7CwqBrarjnPVj9d8XZhf7uf2qeJyqTffNXe4Pa_2gxNHplg8GqAoe-DVoJISTLOO-UL_-p5JQznqS98PmfM90_Zv-BneDFXgDBQFXW4IwNBx1nKhGJ6mfLdjpT-xBqLP8jlwNqbAON9X0KtnqIwZudwZ2tcPvgxno0nsy6W8fHO96GBjcHHupbLZVQqf52da4_fZhdfMmuc_1R_AKy__Iv
CODEN ACRSDM
CitedBy_id crossref_primary_10_1080_1028415X_2020_1782613
crossref_primary_10_1111_gbb_12266
crossref_primary_10_1016_j_alcohol_2024_07_003
crossref_primary_10_1016_j_bcp_2013_07_007
crossref_primary_10_1124_pr_116_012948
crossref_primary_10_1016_j_brainres_2016_02_003
crossref_primary_10_1016_j_neubiorev_2019_10_009
crossref_primary_10_1038_nn_4252
crossref_primary_10_1111_j_1471_4159_2012_07677_x
crossref_primary_10_1152_jn_00564_2013
crossref_primary_10_1016_j_ejphar_2019_04_009
crossref_primary_10_1016_j_alcohol_2021_08_004
crossref_primary_10_3389_fnbeh_2021_795030
crossref_primary_10_1016_j_pbb_2017_06_005
crossref_primary_10_1016_j_ntt_2022_107149
crossref_primary_10_1016_j_alcohol_2015_03_003
crossref_primary_10_1016_j_neuroscience_2010_12_016
crossref_primary_10_1111_adb_13108
crossref_primary_10_1111_adb_12899
crossref_primary_10_1371_journal_pcbi_1005233
crossref_primary_10_1007_s12311_019_01074_w
crossref_primary_10_1016_j_jchemneu_2009_10_004
crossref_primary_10_1007_s40429_016_0089_8
crossref_primary_10_1021_cn400026v
crossref_primary_10_1016_j_neubiorev_2021_12_031
crossref_primary_10_1021_cn500251j
crossref_primary_10_1016_j_neuroscience_2014_12_081
crossref_primary_10_1124_pr_115_012138
crossref_primary_10_1016_j_alcohol_2015_09_001
crossref_primary_10_1038_s41398_021_01589_z
crossref_primary_10_1111_j_1530_0277_2010_01326_x
crossref_primary_10_1021_cn200119u
crossref_primary_10_1007_s13534_024_00408_w
crossref_primary_10_1021_cn300158p
crossref_primary_10_3389_fphar_2023_1076465
crossref_primary_10_1016_j_bbr_2012_09_006
crossref_primary_10_1523_JNEUROSCI_5540_10_2011
crossref_primary_10_1111_acer_12287
crossref_primary_10_1111_j_1471_4159_2011_07258_x
crossref_primary_10_1016_j_pbb_2012_01_010
crossref_primary_10_1016_j_chembiol_2021_04_005
crossref_primary_10_1016_j_pharmthera_2020_107573
crossref_primary_10_1021_cn400031v
crossref_primary_10_1016_j_neuroscience_2014_10_052
crossref_primary_10_1038_npp_2015_139
crossref_primary_10_1016_j_cobeha_2018_02_003
crossref_primary_10_1016_j_mcn_2017_09_007
crossref_primary_10_3389_fncir_2014_00114
crossref_primary_10_3389_fphar_2020_608887
crossref_primary_10_1111_acer_13246
crossref_primary_10_1111_acer_14775
crossref_primary_10_1111_ejn_14160
crossref_primary_10_1007_s00213_015_4106_8
crossref_primary_10_1146_annurev_psych_010418_103337
crossref_primary_10_1124_jpet_117_241802
crossref_primary_10_1016_j_neuron_2011_02_010
crossref_primary_10_1111_jnc_14914
crossref_primary_10_1016_j_bbr_2012_06_031
crossref_primary_10_1016_j_neuropharm_2017_03_023
crossref_primary_10_1097_FBP_0000000000000347
crossref_primary_10_1016_j_tins_2014_02_002
crossref_primary_10_1016_j_neuropharm_2010_12_028
crossref_primary_10_1371_journal_pone_0060763
crossref_primary_10_1093_alcalc_agab072
crossref_primary_10_1002_syn_21723
crossref_primary_10_1111_acer_13636
crossref_primary_10_1124_jpet_113_211490
crossref_primary_10_1111_acer_12587
crossref_primary_10_1111_acer_13354
crossref_primary_10_1007_s12640_014_9459_y
crossref_primary_10_1038_s41598_017_18706_y
crossref_primary_10_31363_2313_7053_2022_56_3_13_29
crossref_primary_10_1007_s00213_016_4259_0
Cites_doi 10.1152/jn.00682.2005
10.1039/b307024g
10.1016/S0014-2999(00)00703-2
10.1124/jpet.108.137489
10.1016/S0741-8329(99)00006-3
10.1523/JNEUROSCI.3823-03.2004
10.1016/0006-8993(84)90890-4
10.1038/sj.npp.1300619
10.1523/JNEUROSCI.20-06-02369.2000
10.1016/j.neuroscience.2008.04.014
10.1016/j.brainresrev.2007.05.004
10.1111/j.1530-0277.1992.tb00678.x
10.1152/jn.1994.72.2.1024
10.1016/S0306-4522(02)00267-1
10.1007/s00213-006-0668-9
10.1016/0301-0082(94)90025-6
10.1523/JNEUROSCI.22-23-10477.2002
10.1038/nn1243
10.1016/0006-8993(95)01200-1
10.1097/01.ALC.0000164362.21484.14
10.1016/0006-8993(90)91118-Z
10.1111/j.1530-0277.2002.tb02521.x
10.1038/nn1103
10.1038/379449a0
10.1073/pnas.0504657102
10.1113/jphysiol.2006.117069
10.1111/j.1749-6632.1986.tb23629.x
10.1021/ac9819640
10.1523/JNEUROSCI.4331-05.2006
10.1016/0306-4522(92)90076-E
10.1523/JNEUROSCI.2225-08.2008
10.1016/S0006-8993(98)01245-1
10.1016/S0306-4522(98)00054-2
10.1016/S0741-8329(00)00121-X
10.1111/j.1471-4159.2004.02559.x
10.1046/j.1471-4159.1998.71020684.x
10.1016/0024-3205(85)90448-5
10.1016/S0741-8329(96)00216-9
10.1038/sj.npp.1300326
10.1016/0006-8993(85)90381-6
10.1523/JNEUROSCI.1526-08.2008
10.1373/49.10.1763
10.1016/0006-8993(87)90988-7
10.1523/JNEUROSCI.4152-06.2007
10.1111/j.1460-9568.2008.06464.x
10.1016/S0165-0270(99)00155-7
10.1097/01.ALC.0000089959.66222.B8
10.1016/S0306-4522(99)00539-4
10.1523/JNEUROSCI.1319-03.2004
10.1016/0014-2999(87)90592-9
10.1074/jbc.M209532200
10.1523/JNEUROSCI.4901-04.2006
10.1523/JNEUROSCI.23-07-02744.2003
10.1002/syn.20301
10.1038/nn1244
10.1111/j.1460-9568.2007.05772.x
10.1016/0306-4522(92)90470-M
10.1152/jn.1998.80.1.1
10.1016/j.tins.2007.03.007
10.1038/nn1923
10.1111/j.1530-0277.2000.tb02056.x
10.1016/j.conb.2004.10.001
10.1016/j.neuropharm.2004.06.032
10.1002/syn.20294
10.1038/nature01476
10.1016/0741-8329(92)90004-T
10.1016/0091-3057(95)00097-G
10.1016/S0006-8993(97)01004-4
10.1046/j.1471-4159.2002.01005.x
ContentType Journal Article
Copyright Copyright © 2009 by the Research Society on Alcoholism
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 by the Research Society on Alcoholism
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/j.1530-0277.2009.00942.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Neurosciences Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
EISSN 1530-0277
EndPage 1196
ExternalDocumentID oai:pubmedcentral.nih.gov:2947861
PMC2947861
19389195
21743471
10_1111_j_1530_0277_2009_00942_x
ACER942
ark_67375_WNG_MJRHQ8P9_K
Genre article
Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: AA014591
– fundername: NIAAA NIH HHS
  grantid: K01 AA014591
– fundername: NIDA NIH HHS
  grantid: R01 DA010900
– fundername: NIAAA NIH HHS
  grantid: T32 AA007471
– fundername: NIAAA NIH HHS
  grantid: AA011852
– fundername: NIDA NIH HHS
  grantid: DA10900
– fundername: NIAAA NIH HHS
  grantid: R01 AA011852
– fundername: NIAAA NIH HHS
  grantid: R37 AA011852
GroupedDBID ---
-ET
-~X
.3N
.55
.GA
.Y3
05W
08G
0R~
10A
1OB
1OC
23M
31~
33P
36B
3SF
4.4
4Q1
4Q2
4Q3
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBIZ
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZCM
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFTRI
AFUWQ
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHEFC
AHMBA
AHRYX
AI.
AIACR
AIAGR
AIQQE
AITYG
AIURR
AIZYK
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
BYPQX
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DUUFO
EBD
EBS
EJD
EMB
EMOBN
ESTFP
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
KBYEO
KMI
L89
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NTWIH
O66
O9-
OAG
OAH
OIG
OL1
OMB
OPX
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
SV3
TEORI
TWZ
UAP
UB1
VH1
VVN
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XSW
XYM
YFH
ZFV
ZGI
ZZTAW
~IA
~WT
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5722-6073407faca1c0f2f43cd55508a91b34bfd13e6ef2100f1066a7e6564a7d7fd13
IEDL.DBID DR2
ISSN 0145-6008
1530-0277
IngestDate Wed Aug 20 00:18:52 EDT 2025
Tue Sep 30 16:50:25 EDT 2025
Wed Oct 01 17:20:20 EDT 2025
Mon Sep 08 16:29:28 EDT 2025
Mon Jul 21 05:29:45 EDT 2025
Mon Jul 21 09:13:32 EDT 2025
Thu Apr 24 22:53:53 EDT 2025
Wed Oct 01 04:40:27 EDT 2025
Sun Sep 21 06:20:23 EDT 2025
Sun Sep 21 06:21:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Dopamine
Ethanol
Rat
Rodentia
Central nervous system
Voltammetry
Basal ganglion
Increase
Catecholamine
Encephalon
Phasic
Nucleus accumbens
Alcoholic beverage
Vertebrata
Mammalia
Microdialysis
Cyclic
Animal
Neurotransmitter
Fast Scan Cyclic Voltammetry
Disparity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5722-6073407faca1c0f2f43cd55508a91b34bfd13e6ef2100f1066a7e6564a7d7fd13
Notes ark:/67375/WNG-MJRHQ8P9-K
istex:850A072E2F75C8AEB85C31312B5F8FA212493425
ArticleID:ACER942
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://doi.org/10.1111/j.1530-0277.2009.00942.x
PMID 19389195
PQID 20212452
PQPubID 23462
PageCount 10
ParticipantIDs unpaywall_primary_10_1111_j_1530_0277_2009_00942_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2947861
proquest_miscellaneous_733361822
proquest_miscellaneous_20212452
pubmed_primary_19389195
pascalfrancis_primary_21743471
crossref_primary_10_1111_j_1530_0277_2009_00942_x
crossref_citationtrail_10_1111_j_1530_0277_2009_00942_x
wiley_primary_10_1111_j_1530_0277_2009_00942_x_ACER942
istex_primary_ark_67375_WNG_MJRHQ8P9_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2009
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: July 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Hoboken, NJ
– name: England
PublicationTitle Alcoholism, clinical and experimental research
PublicationTitleAlternate Alcohol Clin Exp Res
PublicationYear 2009
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Mereu G, Fadda F, Gessa GL (1984) Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292:63-69.
Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475-492.
Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:449-451.
Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853-863.
Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508:65-69.
Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201-203.
Kiyatkin EA, Rebec GV (1998) Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85:1285-1309.
Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203-210.
Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024-1027.
Howard EC, Schier CJ, Wetzel JS, Duvauchelle CL, Gonzales RA (2008) The shell of the nucleus accumbens has a higher dopamine response compared with the core after non-contingent intravenous ethanol administration. Neuroscience 154:1042-1053.
Mocsary Z, Bradberry CW (1996) Effect of ethanol on extracellular dopamine in nucleus accumbens: comparison between Lewis and Fischer 344 rat strains. Brain Res 706:194-198.
Pennartz CM, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719-761.
Di Chiara G, Imperato A (1986) Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann N Y Acad Sci 473:367-381.
Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907-924.
Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR (2006) No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 60:288-294.
Robinson DL, Volz TJ, Schenk JO, Wightman RM (2005) Acute ethanol decreases dopamine transporter velocity in rat striatum: in vivo and in vitro electrochemical measurements. Alcohol Clin Exp Res 29:746-755.
Yan QS (1999) Extracellular dopamine and serotonin after ethanol monitored with 5-minute microdialysis. Alcohol 19:1-7.
Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with 'reward'. J Neurochem 82:721-735.
Kiianmaa K, Nurmi M, Nykanen I, Sinclair JD (1995) Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol-preferring AA and alcohol-avoiding ANA rats. Pharmacol Biochem Behav 52:29-34.
Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265-1271.
Church WH, Justice JB Jr, Byrd LD (1987) Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur J Pharmacol 139:345-348.
Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM (2006) Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 26:3206-3209.
Wightman RM, Heien ML, Wassum KM, Sombers LA, Aragona BJ, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Carelli RM (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046-2054.
Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78.
Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908-8913.
Samson HH, Hodge CW, Erickson HL, Niehus JS, Gerhardt GA, Kalivas PW, Floyd EA (1997) The effects of local application of ethanol in the n. accumbens on dopamine overflow and clearance. Alcohol 14:485-492.
Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614-618.
Yang H, Peters JL, Michael AC (1998) Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J Neurochem 71:684-692.
Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci 7:583-584.
Rebec GV, Christensen JR, Guerra C, Bardo MT (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61-67.
Okamoto T, Harnett MT, Morikawa H (2006) Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice. J Neurophysiol 95:619-626.
Robinson DL, Heien ML, Wightman RM (2002b) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477-10486.
Robinson DL, Brunner LJ, Gonzales RA (2002a) Effect of gender and estrous cycle on the pharmacokinetics of ethanol in the rat brain. Alcohol Clin Exp Res 26:165-172.
Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461-482.
Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90:894-903.
Logman MJ, Budygin EA, Gainetdinov RR, Wightman RM (2000) Quantitation of in vivo measurements with carbon fiber microelectrodes. J Neurosci Methods 95:95-102.
Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763-1773.
Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020-1028.
Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219-228.
Heien ML, Phillips PE, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128:1413-1419.
Avshalumov MV, Chen BT, Marshall SP, Pena DM, Rice ME (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23:2744-2750.
Doyon WM, York JL, Diaz LM, Samson HH, Czachowski CL, Gonzales RA (2003) Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol Clin Exp Res 27:1573-1582.
Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821-8831.
Robinson DL, Carelli RM (2008) Distinct subsets of nucleus accumbens neurons encode operant responding for ethanol versus water. Eur J Neurosci 28:1887-1894.
Jones SR, Mathews TA, Budygin EA (2006) Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo. Synapse 60:251-255.
Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369-2382.
Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788-2797.
Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. 4th CD-ROM Ed. Academic Press, San Diego, CA.
Wu Y, Pearl SM, Zigmond MJ, Michael AC (2000) Inhibitory glutamatergic regulation of evoked dopamine release in striatum. Neuroscience 96:65-72.
Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36:1983-1994.
Inoue H (2000) Effects of naltrexone on the accumulation of L-3, 4-dihydroxyphenylalanine and 5-hydroxy-L-tryptophan and on the firing rate induced by acute ethanol administration. Eur J Pharmacol 406:375-380.
Yoshimoto K, McBride WJ, Lumeng L, Li TK (1992a) Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats. Alcohol Clin Exp Res 16:781-785.
Freeman AS, Bunney BS (1987) Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res 405:46-55.
Michael D, Travis ER, Wightman RM (1998) Color images for fast-scan CV measurements in biological systems. Anal Chem 70:586A-592A.
Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530-536.
Yim HJ, Gonzales RA (2000) Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol 22:107-115.
Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326:76-82.
Heien ML, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Was
1996; 706
2004; 29
2002; 114
2004; 7
1990; 508
2004; 24
2000; 95
2007; 191
1998; 80
2007; 30
1998; 85
2006; 577
2005; 29
1992; 51
2006; 60
1999; 817
2003; 128
1992a; 16
1999; 19
2005; 102
2003; 6
1997; 14
2000; 96
2008; 28
2006; 26
2000; 406
2005; 30
2003; 49
1992; 49
1996; 379
2008; 154
1994; 72
1992b; 9
2007; 26
2007; 27
1986; 239
1995; 52
1997; 776
2006; 95
1986; 473
2000; 24
2004; 47
2000; 22
1987; 405
2000; 20
1998
2007
2008; 326
1985; 348
2002; 82
2004; 90
2007; 10
2007; 56
1994; 42
1984; 292
1987; 139
2004; 14
2002a; 26
2003; 27
1998; 70
2002b; 22
1998; 71
2003; 422
2003; 23
1985; 36
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Imperato A (e_1_2_6_25_1) 1986; 239
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Avshalumov MV (e_1_2_6_3_1) 2003; 23
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Robinson DL (e_1_2_6_53_1) 2007
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201-203.
– reference: Mereu G, Fadda F, Gessa GL (1984) Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292:63-69.
– reference: Heien ML, Phillips PE, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128:1413-1419.
– reference: Logman MJ, Budygin EA, Gainetdinov RR, Wightman RM (2000) Quantitation of in vivo measurements with carbon fiber microelectrodes. J Neurosci Methods 95:95-102.
– reference: Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci 7:583-584.
– reference: Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78.
– reference: Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326:76-82.
– reference: Pennartz CM, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719-761.
– reference: Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR (2006) No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 60:288-294.
– reference: Robinson DL, Heien ML, Wightman RM (2002b) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477-10486.
– reference: Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36:1983-1994.
– reference: Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853-863.
– reference: Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763-1773.
– reference: Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508:65-69.
– reference: Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369-2382.
– reference: Wightman RM, Heien ML, Wassum KM, Sombers LA, Aragona BJ, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Carelli RM (2007) Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 26:2046-2054.
– reference: Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27:791-795.
– reference: Kawagoe KT, Garris PA, Wiedemann DJ, Wightman RM (1992) Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 51:55-64.
– reference: Robinson DL, Brunner LJ, Gonzales RA (2002a) Effect of gender and estrous cycle on the pharmacokinetics of ethanol in the rat brain. Alcohol Clin Exp Res 26:165-172.
– reference: Church WH, Justice JB Jr, Byrd LD (1987) Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur J Pharmacol 139:345-348.
– reference: Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl. 1):227-241.
– reference: Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788-2797.
– reference: Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27.
– reference: Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530-536.
– reference: Freeman AS, Bunney BS (1987) Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res 405:46-55.
– reference: Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:449-451.
– reference: Yoshimoto K, McBride WJ, Lumeng L, Li TK (1992b) Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol 9:17-22.
– reference: Mocsary Z, Bradberry CW (1996) Effect of ethanol on extracellular dopamine in nucleus accumbens: comparison between Lewis and Fischer 344 rat strains. Brain Res 706:194-198.
– reference: Doyon WM, York JL, Diaz LM, Samson HH, Czachowski CL, Gonzales RA (2003) Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol Clin Exp Res 27:1573-1582.
– reference: Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265-1271.
– reference: Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90:894-903.
– reference: Kiyatkin EA, Rebec GV (1998) Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85:1285-1309.
– reference: Venton BJ, Seipel AT, Phillips PE, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM (2006) Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 26:3206-3209.
– reference: Yim HJ, Gonzales RA (2000) Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol 22:107-115.
– reference: Howard EC, Schier CJ, Wetzel JS, Duvauchelle CL, Gonzales RA (2008) The shell of the nucleus accumbens has a higher dopamine response compared with the core after non-contingent intravenous ethanol administration. Neuroscience 154:1042-1053.
– reference: Carelli RM, Wightman RM (2004) Functional microcircuitry in the accumbens underlying drug addiction: insights from real-time signaling during behavior. Curr Opin Neurobiol 14:763-768.
– reference: Rodd ZA, Melendez RI, Bell RL, Kuc KA, Zhang Y, Murphy JM, McBride WJ (2004) Intracranial self-administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons. J Neurosci 24:1050-1057.
– reference: Suaud-Chagny MF, Chergui K, Chouvet G, Gonon F (1992) Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area. Neuroscience 49:63-72.
– reference: Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614-618.
– reference: Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968-973.
– reference: Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219-228.
– reference: Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907-924.
– reference: Avshalumov MV, Chen BT, Marshall SP, Pena DM, Rice ME (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23:2744-2750.
– reference: Janak PH, Chang JY, Woodward DJ (1999) Neuronal spike activity in the nucleus accumbens of behaving rats during ethanol self-administration. Brain Res 817:172-184.
– reference: Yang H, Peters JL, Michael AC (1998) Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J Neurochem 71:684-692.
– reference: Yim HJ, Robinson DL, White ML, Jaworski JN, Randall PK, Lancaster FE, Gonzales RA (2000) Dissociation between the time course of ethanol and extracellular dopamine concentrations in the nucleus accumbens after a single intraperitoneal injection. Alcohol Clin Exp Res 24:781-788.
– reference: Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020-1028.
– reference: Kiianmaa K, Nurmi M, Nykanen I, Sinclair JD (1995) Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol-preferring AA and alcohol-avoiding ANA rats. Pharmacol Biochem Behav 52:29-34.
– reference: Di Chiara G, Imperato A (1986) Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann N Y Acad Sci 473:367-381.
– reference: Samson HH, Hodge CW, Erickson HL, Niehus JS, Gerhardt GA, Kalivas PW, Floyd EA (1997) The effects of local application of ethanol in the n. accumbens on dopamine overflow and clearance. Alcohol 14:485-492.
– reference: Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461-482.
– reference: Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908-8913.
– reference: Yoshimoto K, McBride WJ, Lumeng L, Li TK (1992a) Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats. Alcohol Clin Exp Res 16:781-785.
– reference: Michael D, Travis ER, Wightman RM (1998) Color images for fast-scan CV measurements in biological systems. Anal Chem 70:586A-592A.
– reference: Robinson DL, Volz TJ, Schenk JO, Wightman RM (2005) Acute ethanol decreases dopamine transporter velocity in rat striatum: in vivo and in vitro electrochemical measurements. Alcohol Clin Exp Res 29:746-755.
– reference: Robinson DL, Carelli RM (2008) Distinct subsets of nucleus accumbens neurons encode operant responding for ethanol versus water. Eur J Neurosci 28:1887-1894.
– reference: Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024-1027.
– reference: Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. 4th CD-ROM Ed. Academic Press, San Diego, CA.
– reference: Rebec GV, Christensen JR, Guerra C, Bardo MT (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61-67.
– reference: Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581-582.
– reference: Inoue H (2000) Effects of naltrexone on the accumulation of L-3, 4-dihydroxyphenylalanine and 5-hydroxy-L-tryptophan and on the firing rate induced by acute ethanol administration. Eur J Pharmacol 406:375-380.
– reference: Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30:203-210.
– reference: Heien ML, Khan AS, Ariansen JL, Cheer JF, Phillips PE, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci USA 102:10023-10028.
– reference: Yan QS (1999) Extracellular dopamine and serotonin after ethanol monitored with 5-minute microdialysis. Alcohol 19:1-7.
– reference: Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821-8831.
– reference: Jones SR, Mathews TA, Budygin EA (2006) Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo. Synapse 60:251-255.
– reference: Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475-492.
– reference: Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with 'reward'. J Neurochem 82:721-735.
– reference: Wu Y, Pearl SM, Zigmond MJ, Michael AC (2000) Inhibitory glutamatergic regulation of evoked dopamine release in striatum. Neuroscience 96:65-72.
– reference: Okamoto T, Harnett MT, Morikawa H (2006) Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice. J Neurophysiol 95:619-626.
– volume: 56
  start-page: 27
  year: 2007
  end-page: 78
  article-title: Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens‐olfactory tubercle complex
  publication-title: Brain Res Rev
– volume: 817
  start-page: 172
  year: 1999
  end-page: 184
  article-title: Neuronal spike activity in the nucleus accumbens of behaving rats during ethanol self‐administration
  publication-title: Brain Res
– volume: 422
  start-page: 614
  year: 2003
  end-page: 618
  article-title: Subsecond dopamine release promotes cocaine seeking
  publication-title: Nature
– volume: 22
  start-page: 10477
  year: 2002b
  end-page: 10486
  article-title: Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics
  publication-title: J Neurosci
– volume: 28
  start-page: 1887
  year: 2008
  end-page: 1894
  article-title: Distinct subsets of nucleus accumbens neurons encode operant responding for ethanol versus water
  publication-title: Eur J Neurosci
– volume: 47
  start-page: 227
  issue: Suppl. 1
  year: 2004
  end-page: 241
  article-title: Dopamine and drug addiction: the nucleus accumbens shell connection
  publication-title: Neuropharmacology
– volume: 42
  start-page: 719
  year: 1994
  end-page: 761
  article-title: The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data
  publication-title: Prog Neurobiol
– volume: 26
  start-page: 3206
  year: 2006
  end-page: 3209
  article-title: Cocaine increases dopamine release by mobilization of a synapsin‐dependent reserve pool
  publication-title: J Neurosci
– volume: 27
  start-page: 1573
  year: 2003
  end-page: 1582
  article-title: Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self‐administration
  publication-title: Alcohol Clin Exp Res
– volume: 49
  start-page: 1763
  year: 2003
  end-page: 1773
  article-title: Detecting subsecond dopamine release with fast‐scan cyclic voltammetry in vivo
  publication-title: Clin Chem
– volume: 128
  start-page: 1413
  year: 2003
  end-page: 1419
  article-title: Overoxidation of carbon‐fiber microelectrodes enhances dopamine adsorption and increases sensitivity
  publication-title: Analyst
– volume: 16
  start-page: 781
  year: 1992a
  end-page: 785
  article-title: Ethanol enhances the release of dopamine and serotonin in the nucleus accumbens of HAD and LAD lines of rats
  publication-title: Alcohol Clin Exp Res
– volume: 24
  start-page: 1050
  year: 2004
  end-page: 1057
  article-title: Intracranial self‐administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons
  publication-title: J Neurosci
– volume: 28
  start-page: 8908
  year: 2008
  end-page: 8913
  article-title: Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition
  publication-title: J Neurosci
– volume: 292
  start-page: 63
  year: 1984
  end-page: 69
  article-title: Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats
  publication-title: Brain Res
– volume: 24
  start-page: 1265
  year: 2004
  end-page: 1271
  article-title: Dopamine operates as a subsecond modulator of food seeking
  publication-title: J Neurosci
– volume: 29
  start-page: 530
  year: 2004
  end-page: 536
  article-title: Acetaldehyde increases dopaminergic neuronal activity in the VTA
  publication-title: Neuropsychopharmacology
– year: 1998
– volume: 20
  start-page: 2369
  year: 2000
  end-page: 2382
  article-title: Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum
  publication-title: J Neurosci
– volume: 26
  start-page: 165
  year: 2002a
  end-page: 172
  article-title: Effect of gender and estrous cycle on the pharmacokinetics of ethanol in the rat brain
  publication-title: Alcohol Clin Exp Res
– volume: 95
  start-page: 95
  year: 2000
  end-page: 102
  article-title: Quantitation of in vivo measurements with carbon fiber microelectrodes
  publication-title: J Neurosci Methods
– volume: 26
  start-page: 2046
  year: 2007
  end-page: 2054
  article-title: Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens
  publication-title: Eur J Neurosci
– volume: 14
  start-page: 763
  year: 2004
  end-page: 768
  article-title: Functional microcircuitry in the accumbens underlying drug addiction: insights from real‐time signaling during behavior
  publication-title: Curr Opin Neurobiol
– volume: 28
  start-page: 8821
  year: 2008
  end-page: 8831
  article-title: Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events
  publication-title: J Neurosci
– volume: 326
  start-page: 76
  year: 2008
  end-page: 82
  article-title: Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol‐induced elevation of accumbal dopamine levels
  publication-title: J Pharmacol Exp Ther
– volume: 52
  start-page: 29
  year: 1995
  end-page: 34
  article-title: Effect of ethanol on extracellular dopamine in the nucleus accumbens of alcohol‐preferring AA and alcohol‐avoiding ANA rats
  publication-title: Pharmacol Biochem Behav
– volume: 508
  start-page: 65
  year: 1990
  end-page: 69
  article-title: Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro
  publication-title: Brain Res
– volume: 49
  start-page: 63
  year: 1992
  end-page: 72
  article-title: Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area
  publication-title: Neuroscience
– volume: 26
  start-page: 2788
  year: 2006
  end-page: 2797
  article-title: Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location
  publication-title: J Neurosci
– volume: 36
  start-page: 1983
  year: 1985
  end-page: 1994
  article-title: Firing properties of substantia nigra dopaminergic neurons in freely moving rats
  publication-title: Life Sci
– volume: 72
  start-page: 1024
  year: 1994
  end-page: 1027
  article-title: Importance of unpredictability for reward responses in primate dopamine neurons
  publication-title: J Neurophysiol
– volume: 80
  start-page: 1
  year: 1998
  end-page: 27
  article-title: Predictive reward signal of dopamine neurons
  publication-title: J Neurophysiol
– volume: 405
  start-page: 46
  year: 1987
  end-page: 55
  article-title: Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin
  publication-title: Brain Res
– volume: 348
  start-page: 201
  year: 1985
  end-page: 203
  article-title: Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area
  publication-title: Brain Res
– volume: 406
  start-page: 375
  year: 2000
  end-page: 380
  article-title: Effects of naltrexone on the accumulation of L‐3, 4‐dihydroxyphenylalanine and 5‐hydroxy‐L‐tryptophan and on the firing rate induced by acute ethanol administration
  publication-title: Eur J Pharmacol
– volume: 30
  start-page: 203
  year: 2007
  end-page: 210
  article-title: Behavioral dopamine signals
  publication-title: Trends Neurosci
– volume: 9
  start-page: 17
  year: 1992b
  end-page: 22
  article-title: Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens
  publication-title: Alcohol
– volume: 239
  start-page: 219
  year: 1986
  end-page: 228
  article-title: Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol
  publication-title: J Pharmacol Exp Ther
– volume: 473
  start-page: 367
  year: 1986
  end-page: 381
  article-title: Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol, and barbiturates: studies with transcerebral dialysis in freely moving rats
  publication-title: Ann N Y Acad Sci
– volume: 19
  start-page: 1
  year: 1999
  end-page: 7
  article-title: Extracellular dopamine and serotonin after ethanol monitored with 5‐minute microdialysis
  publication-title: Alcohol
– volume: 191
  start-page: 461
  year: 2007
  end-page: 482
  article-title: Effort‐related functions of nucleus accumbens dopamine and associated forebrain circuits
  publication-title: Psychopharmacology
– volume: 10
  start-page: 1020
  year: 2007
  end-page: 1028
  article-title: Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens
  publication-title: Nat Neurosci
– volume: 60
  start-page: 251
  year: 2006
  end-page: 255
  article-title: Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo
  publication-title: Synapse
– volume: 82
  start-page: 721
  year: 2002
  end-page: 735
  article-title: Transient changes in mesolimbic dopamine and their association with ‘reward’
  publication-title: J Neurochem
– volume: 102
  start-page: 10023
  year: 2005
  end-page: 10028
  article-title: Real‐time measurement of dopamine fluctuations after cocaine in the brain of behaving rats
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 583
  year: 2004
  end-page: 584
  article-title: Nicotine amplifies reward‐related dopamine signals in striatum
  publication-title: Nat. Neurosci
– volume: 577
  start-page: 907
  year: 2006
  end-page: 924
  article-title: The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons?
  publication-title: J Physiol
– volume: 706
  start-page: 194
  year: 1996
  end-page: 198
  article-title: Effect of ethanol on extracellular dopamine in nucleus accumbens: comparison between Lewis and Fischer 344 rat strains
  publication-title: Brain Res
– start-page: 17
  year: 2007
  end-page: 34
– volume: 139
  start-page: 345
  year: 1987
  end-page: 348
  article-title: Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine
  publication-title: Eur J Pharmacol
– volume: 154
  start-page: 1042
  year: 2008
  end-page: 1053
  article-title: The shell of the nucleus accumbens has a higher dopamine response compared with the core after non‐contingent intravenous ethanol administration
  publication-title: Neuroscience
– volume: 85
  start-page: 1285
  year: 1998
  end-page: 1309
  article-title: Heterogeneity of ventral tegmental area neurons: single‐unit recording and iontophoresis in awake, unrestrained rats
  publication-title: Neuroscience
– volume: 6
  start-page: 968
  year: 2003
  end-page: 973
  article-title: Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission
  publication-title: Nat Neurosci
– volume: 60
  start-page: 288
  year: 2006
  end-page: 294
  article-title: No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics
  publication-title: Synapse
– volume: 71
  start-page: 684
  year: 1998
  end-page: 692
  article-title: Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine
  publication-title: J Neurochem
– volume: 14
  start-page: 485
  year: 1997
  end-page: 492
  article-title: The effects of local application of ethanol in the n. accumbens on dopamine overflow and clearance
  publication-title: Alcohol
– volume: 90
  start-page: 894
  year: 2004
  end-page: 903
  article-title: Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely‐moving rats
  publication-title: J Neurochem
– volume: 27
  start-page: 791
  year: 2007
  end-page: 795
  article-title: Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation
  publication-title: J Neurosci
– volume: 114
  start-page: 475
  year: 2002
  end-page: 492
  article-title: Firing modes of midbrain dopamine cells in the freely moving rat
  publication-title: Neuroscience
– volume: 95
  start-page: 619
  year: 2006
  end-page: 626
  article-title: Hyperpolarization‐activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice
  publication-title: J Neurophysiol
– volume: 23
  start-page: 2744
  year: 2003
  end-page: 2750
  article-title: Glutamate‐dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2
  publication-title: J Neurosci
– volume: 379
  start-page: 449
  year: 1996
  end-page: 451
  article-title: Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli
  publication-title: Nature
– volume: 96
  start-page: 65
  year: 2000
  end-page: 72
  article-title: Inhibitory glutamatergic regulation of evoked dopamine release in striatum
  publication-title: Neuroscience
– volume: 22
  start-page: 107
  year: 2000
  end-page: 115
  article-title: Ethanol‐induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition
  publication-title: Alcohol
– volume: 30
  start-page: 853
  year: 2005
  end-page: 863
  article-title: Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration
  publication-title: Neuropsychopharmacology
– volume: 776
  start-page: 61
  year: 1997
  end-page: 67
  article-title: Regional and temporal differences in real‐time dopamine efflux in the nucleus accumbens during free‐choice novelty
  publication-title: Brain Res
– volume: 29
  start-page: 746
  year: 2005
  end-page: 755
  article-title: Acute ethanol decreases dopamine transporter velocity in rat striatum: in vivo and in vitro electrochemical measurements
  publication-title: Alcohol Clin Exp Res
– volume: 70
  start-page: 586A
  year: 1998
  end-page: 592A
  article-title: Color images for fast‐scan CV measurements in biological systems
  publication-title: Anal Chem
– volume: 24
  start-page: 781
  year: 2000
  end-page: 788
  article-title: Dissociation between the time course of ethanol and extracellular dopamine concentrations in the nucleus accumbens after a single intraperitoneal injection
  publication-title: Alcohol Clin Exp Res
– volume: 51
  start-page: 55
  year: 1992
  end-page: 64
  article-title: Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum
  publication-title: Neuroscience
– volume: 7
  start-page: 581
  year: 2004
  end-page: 582
  article-title: Frequency‐dependent modulation of dopamine release by nicotine
  publication-title: Nat Neurosci
– volume: 239
  start-page: 219
  year: 1986
  ident: e_1_2_6_25_1
  article-title: Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol
  publication-title: J Pharmacol Exp Ther
– ident: e_1_2_6_41_1
  doi: 10.1152/jn.00682.2005
– ident: e_1_2_6_21_1
  doi: 10.1039/b307024g
– ident: e_1_2_6_26_1
  doi: 10.1016/S0014-2999(00)00703-2
– ident: e_1_2_6_12_1
  doi: 10.1124/jpet.108.137489
– ident: e_1_2_6_66_1
  doi: 10.1016/S0741-8329(99)00006-3
– ident: e_1_2_6_55_1
  doi: 10.1523/JNEUROSCI.3823-03.2004
– ident: e_1_2_6_36_1
  doi: 10.1016/0006-8993(84)90890-4
– ident: e_1_2_6_60_1
  doi: 10.1038/sj.npp.1300619
– ident: e_1_2_6_19_1
  doi: 10.1523/JNEUROSCI.20-06-02369.2000
– ident: e_1_2_6_22_1
  doi: 10.1016/j.neuroscience.2008.04.014
– ident: e_1_2_6_24_1
  doi: 10.1016/j.brainresrev.2007.05.004
– ident: e_1_2_6_70_1
  doi: 10.1111/j.1530-0277.1992.tb00678.x
– ident: e_1_2_6_38_1
  doi: 10.1152/jn.1994.72.2.1024
– ident: e_1_2_6_23_1
  doi: 10.1016/S0306-4522(02)00267-1
– ident: e_1_2_6_56_1
  doi: 10.1007/s00213-006-0668-9
– ident: e_1_2_6_43_1
  doi: 10.1016/0301-0082(94)90025-6
– ident: e_1_2_6_49_1
  doi: 10.1523/JNEUROSCI.22-23-10477.2002
– ident: e_1_2_6_72_1
  doi: 10.1038/nn1243
– ident: e_1_2_6_40_1
  doi: 10.1016/0006-8993(95)01200-1
– ident: e_1_2_6_51_1
  doi: 10.1097/01.ALC.0000164362.21484.14
– ident: e_1_2_6_4_1
  doi: 10.1016/0006-8993(90)91118-Z
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1530-0277.2002.tb02521.x
– ident: e_1_2_6_13_1
  doi: 10.1038/nn1103
– ident: e_1_2_6_39_1
  doi: 10.1038/379449a0
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.0504657102
– ident: e_1_2_6_33_1
  doi: 10.1113/jphysiol.2006.117069
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1749-6632.1986.tb23629.x
– ident: e_1_2_6_37_1
  doi: 10.1021/ac9819640
– ident: e_1_2_6_15_1
  doi: 10.1523/JNEUROSCI.4331-05.2006
– ident: e_1_2_6_61_1
  doi: 10.1016/0306-4522(92)90076-E
– ident: e_1_2_6_2_1
  doi: 10.1523/JNEUROSCI.2225-08.2008
– ident: e_1_2_6_27_1
  doi: 10.1016/S0006-8993(98)01245-1
– ident: e_1_2_6_31_1
  doi: 10.1016/S0306-4522(98)00054-2
– ident: e_1_2_6_68_1
  doi: 10.1016/S0741-8329(00)00121-X
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1471-4159.2004.02559.x
– ident: e_1_2_6_67_1
  doi: 10.1046/j.1471-4159.1998.71020684.x
– ident: e_1_2_6_17_1
  doi: 10.1016/0024-3205(85)90448-5
– ident: e_1_2_6_57_1
  doi: 10.1016/S0741-8329(96)00216-9
– ident: e_1_2_6_14_1
  doi: 10.1038/sj.npp.1300326
– ident: e_1_2_6_18_1
  doi: 10.1016/0006-8993(85)90381-6
– start-page: 17
  volume-title: Electrochemical Methods for Neuroscience
  year: 2007
  ident: e_1_2_6_53_1
– ident: e_1_2_6_34_1
  doi: 10.1523/JNEUROSCI.1526-08.2008
– ident: e_1_2_6_50_1
  doi: 10.1373/49.10.1763
– ident: e_1_2_6_16_1
  doi: 10.1016/0006-8993(87)90988-7
– ident: e_1_2_6_6_1
  doi: 10.1523/JNEUROSCI.4152-06.2007
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1460-9568.2008.06464.x
– ident: e_1_2_6_32_1
  doi: 10.1016/S0165-0270(99)00155-7
– ident: e_1_2_6_11_1
  doi: 10.1097/01.ALC.0000089959.66222.B8
– ident: e_1_2_6_65_1
  doi: 10.1016/S0306-4522(99)00539-4
– ident: e_1_2_6_54_1
  doi: 10.1523/JNEUROSCI.1319-03.2004
– ident: e_1_2_6_7_1
  doi: 10.1016/0014-2999(87)90592-9
– ident: e_1_2_6_42_1
  doi: 10.1074/jbc.M209532200
– ident: e_1_2_6_62_1
  doi: 10.1523/JNEUROSCI.4901-04.2006
– volume: 23
  start-page: 2744
  year: 2003
  ident: e_1_2_6_3_1
  article-title: Glutamate‐dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-07-02744.2003
– ident: e_1_2_6_35_1
  doi: 10.1002/syn.20301
– ident: e_1_2_6_46_1
  doi: 10.1038/nn1244
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1460-9568.2007.05772.x
– ident: e_1_2_6_29_1
  doi: 10.1016/0306-4522(92)90470-M
– ident: e_1_2_6_58_1
  doi: 10.1152/jn.1998.80.1.1
– ident: e_1_2_6_59_1
  doi: 10.1016/j.tins.2007.03.007
– ident: e_1_2_6_8_1
  doi: 10.1038/nn1923
– ident: e_1_2_6_69_1
  doi: 10.1111/j.1530-0277.2000.tb02056.x
– ident: e_1_2_6_5_1
  doi: 10.1016/j.conb.2004.10.001
– ident: e_1_2_6_9_1
  doi: 10.1016/j.neuropharm.2004.06.032
– ident: e_1_2_6_28_1
  doi: 10.1002/syn.20294
– ident: e_1_2_6_44_1
  doi: 10.1038/nature01476
– ident: e_1_2_6_71_1
  doi: 10.1016/0741-8329(92)90004-T
– ident: e_1_2_6_30_1
  doi: 10.1016/0091-3057(95)00097-G
– ident: e_1_2_6_45_1
  doi: 10.1016/S0006-8993(97)01004-4
– ident: e_1_2_6_64_1
  doi: 10.1046/j.1471-4159.2002.01005.x
SSID ssj0004866
Score 2.2585108
Snippet Background:  Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol...
Background:  Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol...
Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases...
Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1187
SubjectTerms Alcoholism and acute alcohol poisoning
Animals
Biological and medical sciences
Dopamine
Dopamine - biosynthesis
Dopamine - physiology
Dose-Response Relationship, Drug
Ethanol
Ethanol - pharmacology
Fast Scan Cyclic Voltammetry
Male
Medical sciences
Microdialysis
Microdialysis - methods
Nucleus Accumbens - drug effects
Nucleus Accumbens - metabolism
Phasic
Rats
Rats, Sprague-Dawley
Time Factors
Toxicology
Title Disparity Between Tonic and Phasic Ethanol-Induced Dopamine Increases in the Nucleus Accumbens of Rats
URI https://api.istex.fr/ark:/67375/WNG-MJRHQ8P9-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1530-0277.2009.00942.x
https://www.ncbi.nlm.nih.gov/pubmed/19389195
https://www.proquest.com/docview/20212452
https://www.proquest.com/docview/733361822
https://pubmed.ncbi.nlm.nih.gov/PMC2947861
http://doi.org/10.1111/j.1530-0277.2009.00942.x
UnpaywallVersion submittedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1530-0277
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1530-0277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004866
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hcoALlN-GlrIH1Juj2PtnH0ObEhU1KlGr9mat17tKlOBUsS1aTjwCz8iTMGMnLoYiFcQtsncc73hmdz7P-BtC3rIk9GWacvBvpjzuZORFWnFP-EakvpZSOQSKxyM5PONHF-JiVf-E38LU_BDNCzf0jGq9RgfXSd52csF6VQ5yTTsZ8aCL8aTPRJWxHd8wSfGwTlv6XHiwx4ftop5bL9Taqe6j0q-wclLnoDxXd724LSz9vbryQZld6uvPej5vR8DVFnb4mMzWk68rV2bdski65ssvvJD_Rzub5NEq0qX92jSfkHs2e0p26s-B6bmdO720dI-uDyyWs2dkcjDNsS1icU3f1QVk9BS5e6nOUnoy0WBSdIAv-xfz71-_YdsRY1N6AMD_E9wxhcUOa-xtTqcZhciWjpCtucxp3xjsfJLldOHoWBf5c3J2ODjdH3qrXhCeEQrwsoSlCLCn00b7pucCx5lJBcCrUEd-wnjiUp9ZaR1A2J4DnCu1shCrcq1ShedekI1skdktQg0LA66MMQxCXwDRYcoABgc4GGlLVYeo9XOPzYooHft1zOOfABMoN0blYhvPKK6UG191iN9IXtZkIXeQ2atMqxHQyxkW2ykRn4_ex8dH4-HH8CSKP3TIbsv2GoEKVEKM0SFv1sYYwxqBiR-d2UWZw__B_LgIOoT-YYRijEmAmjDkZW29NxOIMJUdCVBLy66bAUhQ3j6TTScVUXkQcRVKuLGg8YC_0Ius7PvOAnF_fzCGX6_-VXCbPKxThViLvUM2imVpX0PEWSS71VryA0oLbos
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtswDBaG9tBd9v-TrWt1GHpzUFuyZB-zJl3WNkEXpGhvgiJLSBDPKeIEa3faI-wZ9yQj7cSdtw7oht2CWEwsmpT4ifRHQt6yUeSLJOHg30x63InYi7XkXuibMPG1ENIhUOz1RfeMH12EF6t2QPguTMkPUR24oWcU6zU6OB5I1708ZPtFEnLNOxnzoAkB5Sam69BL24MbLikelYlLn4ce7PJRvazn1l-q7VWbqPYrrJ3UOajPlX0vbgtMf6-v3Fpml_r6s07TegxcbGKHD0m6nn5ZuzJtLhejpvnyCzPkf9LPI_JgFezSVmmdj8k9mz0h2-UbwfTcpk7PLd2j6y9m8-lTMm5PcuyMuLim78oaMjpE-l6qs4SejjVYFe3gef8s_f71G3YeMTahbcD-n-CWKax3WGZvczrJKAS3tI-EzcuctozB5idZTmeODvQif0bODjvDg663agfhmVACZBawGgH8dNpo3-y7wHFmkhAQVqRjf8T4yCU-s8I6QLH7DqCu0NJCuMq1TCRee042sllmXxJqWBRwaYxhEP0Cjo4SBkg4wMHIXCobRK4fvDIrrnRs2ZGqnzATKFehcrGTZ6wK5aqrBvErycuSL-QOMnuFbVUCej7FejsZqvP-e9U7GnQ_RqexOm6QnZrxVQIFroQwo0F219aoYJnA3I_O7GyZw__B_HgYNAj9wwjJGBOANmHIi9J8byYQYzY7DkEtNcOuBiBHef1KNhkXXOVBzGUk4MaCygX-Qi-iMPA7C6jWQWcAn179q-Au2eoOeyfq5EP_-DW5X2YOsTR7m2ws5kv7BgLQxWinWFh-ABokcqc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQJgEv_GcUxuYHtLdUTezYyWNZW8rGqlJt2t4s17HVqiWtmlZsPPER-Ix8Eu6SNiMwpIF4ixJfE1_vzveLL78j5A0bRr5IEg7-zaTHnYi9WEvuhb4JE18LIR0CxZOe6J7xo4vwYl3_hN_CFPwQ5Qs39Iw8XqODzxNXdfKQNfI9yA3tZMyDOuST21zAWUyQBtdUUjwq9i19HnqwyEfVqp4bf6myVG2j1i-xdFJnoD1XtL24KS_9vbzy3iqd66vPejqtpsD5GtZ5SCab2RelK5P6ajmsmy-_EEP-H_U8Ig_WqS5tFrb5mNyx6ROyW3wPTM_t1OmFpQd0c2K2mDwlo9Y4w76Iyyv6tqggo6dI3kt1mtD-SINN0Ta-7Z9Nv3_9hn1HjE1oC5D_J3hiCtEOi-xtRscphdSW9pCueZXRpjHY-iTN6MzRgV5mz8hZp3162PXWzSA8E0oAzAJiEYBPp432TcMFjjOThICvIh37Q8aHLvGZFdYBhm04ALpCSwvJKtcykXjtOdlKZ6l9QahhUcClMYZB7gsoOkoY4OAAByNvqawRufnflVkzpWPDjqn6CTGBchUqF_t4xipXrrqsEb-UnBdsIbeQOchNqxTQiwlW28lQnffeqZOjQfdj1I_VcY3sVWyvFMhRJSQZNbK_MUYFQQJ3fnRqZ6sM7gfz42FQI_QPIyRjTADWhCE7hfVeTyDGvew4BLVU7LocgAzl1SvpeJQzlQcxl5GABwtKD_gLvYjcvm8toJqH7QEcvfxXwX1yt9_qqA_ve8evyP1i2xDrsnfJ1nKxsq8h-1wO9_Kw8gNOSHFW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disparity+Between+Tonic+and+Phasic+Ethanol-Induced+Dopamine+Increases+in+the+Nucleus+Accumbens+of+Rats&rft.jtitle=Alcoholism%2C+clinical+and+experimental+research&rft.au=Robinson%2C+Donita+L&rft.au=Howard%2C+Elaina+C&rft.au=McConnell%2C+Scott&rft.au=Gonzales%2C+Rueben+A&rft.date=2009-07-01&rft.issn=0145-6008&rft.eissn=1530-0277&rft.volume=33&rft.issue=7&rft.spage=1187&rft.epage=1196&rft_id=info:doi/10.1111%2Fj.1530-0277.2009.00942.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-6008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-6008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-6008&client=summon