Escherichia coli Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NK‐cell responses
Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human ro...
Saved in:
Published in | European journal of immunology Vol. 46; no. 10; pp. 2426 - 2437 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0014-2980 1521-4141 1521-4141 |
DOI | 10.1002/eji.201646498 |
Cover
Abstract | Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN‐, LGG‐, and EcN + LGG‐colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK‐cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK‐cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN‐colonized pigs produced the highest levels of IL‐12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG‐colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN‐treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN‐α, IL‐12, and IL‐10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN‐mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC‐IL‐12‐NK immune axis.
Mechanistic understanding of individual and interactive immunomodulatory and anti‐infectious effects of gram‐positive (Lactobacillus rhamnosus GG, LGG) and gram‐negative (Escherichia coli Nissle 1917, EcN) probiotics is lacking. By activating the DC‐IL‐12‐NK immune axis, EcN colonization of neonatal gnotobiotic pigs mediates greater protection against human rotavirus than LGG. |
---|---|
AbstractList | Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis. Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-[alpha], IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis. Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4 super(+) mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172 super(+) MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN- alpha , IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis. Mechanistic understanding of individual and interactive immunomodulatory and anti-infectious effects of gram-positive (Lactobacillus rhamnosus GG, LGG) and gram-negative (Escherichia coli Nissle 1917, EcN) probiotics is lacking. By activating the DC-IL-12-NK immune axis, EcN colonization of neonatal gnotobiotic pigs mediates greater protection against human rotavirus than LGG. Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN‐, LGG‐, and EcN + LGG‐colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK‐cell function and decreased frequencies of apoptotic and TLR4 + mononuclear cells (MNCs). Consistent with the highest NK‐cell activity, splenic CD172 + MNCs (DC enriched fraction) of EcN‐colonized pigs produced the highest levels of IL‐12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG‐colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN‐treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN‐α, IL‐12, and IL‐10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN‐mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC‐IL‐12‐NK immune axis. Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4 mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172 MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis. Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN‐, LGG‐, and EcN + LGG‐colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK‐cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK‐cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN‐colonized pigs produced the highest levels of IL‐12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG‐colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN‐treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN‐α, IL‐12, and IL‐10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN‐mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC‐IL‐12‐NK immune axis. Mechanistic understanding of individual and interactive immunomodulatory and anti‐infectious effects of gram‐positive (Lactobacillus rhamnosus GG, LGG) and gram‐negative (Escherichia coli Nissle 1917, EcN) probiotics is lacking. By activating the DC‐IL‐12‐NK immune axis, EcN colonization of neonatal gnotobiotic pigs mediates greater protection against human rotavirus than LGG. |
Author | Langel, Stephanie N. Huang, Huang‐Chi Saif, Linda J. Rauf, Abdul Chattha, Kuldeep S. Shao, Lulu Kandasamy, Sukumar Vlasova, Anastasia N. Rajashekara, Gireesh Fischer, David D. Kumar, Anand |
Author_xml | – sequence: 1 givenname: Anastasia N. surname: Vlasova fullname: Vlasova, Anastasia N. email: vlasova.1@osu.edu organization: The Ohio State University – sequence: 2 givenname: Lulu surname: Shao fullname: Shao, Lulu organization: The Ohio State University – sequence: 3 givenname: Sukumar surname: Kandasamy fullname: Kandasamy, Sukumar organization: The Ohio State University – sequence: 4 givenname: David D. surname: Fischer fullname: Fischer, David D. organization: The Ohio State University – sequence: 5 givenname: Abdul surname: Rauf fullname: Rauf, Abdul organization: The Ohio State University – sequence: 6 givenname: Stephanie N. surname: Langel fullname: Langel, Stephanie N. organization: The Ohio State University – sequence: 7 givenname: Kuldeep S. surname: Chattha fullname: Chattha, Kuldeep S. organization: The Ohio State University – sequence: 8 givenname: Anand surname: Kumar fullname: Kumar, Anand organization: The Ohio State University – sequence: 9 givenname: Huang‐Chi surname: Huang fullname: Huang, Huang‐Chi organization: The Ohio State University – sequence: 10 givenname: Gireesh surname: Rajashekara fullname: Rajashekara, Gireesh organization: The Ohio State University – sequence: 11 givenname: Linda J. surname: Saif fullname: Saif, Linda J. organization: The Ohio State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27457183$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkb1uFDEURi2UiGwCJS2yREMzG9tjj-0SLRsIiUID9cjr8ex65bEH20PYLo_AM_IkeLVJikj8VLc539X9zj0FRz54A8ArjOYYIXJutnZOEG5oQ6V4BmaYEVxRTPERmCGEaUWkQCfgNKUtQkg2TD4HJ4RTxrGoZ-DHMumNiVZvrII6OAtvbErOQCwxh2MM2eic4NqHHFY2ZKvhaNcJqrWyPmW4mQblYcHUdxunBFc7OIRucipbv4bj-wVUvoM3V7_ufmrjHIwmjcEnk16A4165ZF7ezzPw9WL5ZfGxuv784XLx7rrSjBNUKWxohyklWggueC0F6YXseiKM1AJpjXCPJOM1UU3DddP3GjPT9Lw3XCnC6jMwP-yd_Kh2t8q5dox2UHHXYtTuFbZFYfuosATeHgKl_LfJpNwONu1vV96EKbVFGydSEsb-AyUNrxHltKBvnqDbMEVfmu8pznhDOC7U63tqWg2me7z04V8FqA-AjiGlaPpW21xcB5-jsu6PlaonqX8pIAf-1jqz-zvcLj9d1hyj-jc9nsZp |
CODEN | EJIMAF |
CitedBy_id | crossref_primary_10_1016_j_vaccine_2018_09_008 crossref_primary_10_3920_BM2016_0225 crossref_primary_10_1016_j_vetmic_2025_110401 crossref_primary_10_3390_v10020061 crossref_primary_10_1128_mSphere_00074_21 crossref_primary_10_1371_journal_pone_0178157 crossref_primary_10_1007_s12602_021_09884_3 crossref_primary_10_1186_s13099_016_0148_7 crossref_primary_10_3390_ijms222413473 crossref_primary_10_3389_fmicb_2022_940196 crossref_primary_10_1038_s41401_020_00573_5 crossref_primary_10_1371_journal_pone_0233773 crossref_primary_10_1080_10454438_2020_1871151 crossref_primary_10_3389_fmicb_2022_842437 crossref_primary_10_3390_ijms23105466 crossref_primary_10_1128_mSphere_00046_17 crossref_primary_10_3389_fimmu_2022_936300 crossref_primary_10_1128_msphere_00270_22 crossref_primary_10_1186_s40104_024_01018_3 crossref_primary_10_1016_j_jff_2018_10_036 crossref_primary_10_1016_j_lfs_2022_120330 crossref_primary_10_3920_BM2016_0157 crossref_primary_10_1080_19490976_2023_2288200 crossref_primary_10_3390_pathogens11101078 crossref_primary_10_3390_v9030048 crossref_primary_10_1128_CVI_00172_17 crossref_primary_10_1007_s10695_024_01366_x crossref_primary_10_1371_journal_pone_0246193 crossref_primary_10_3390_vaccines10010083 crossref_primary_10_1016_j_coviro_2019_05_001 crossref_primary_10_3389_fimmu_2018_00220 crossref_primary_10_3920_BM2022_0026 crossref_primary_10_3389_fimmu_2017_00334 crossref_primary_10_3390_ijms25021184 crossref_primary_10_3390_biom13030569 crossref_primary_10_1371_journal_pone_0247738 crossref_primary_10_1007_s11427_020_1721_5 |
Cites_doi | 10.1016/j.jaut.2009.11.007 10.1371/journal.pone.0094891 10.2174/138161206778743501 10.1128/am.12.4.295-300.1964 10.1007/978-3-7091-6553-9_17 10.4049/jimmunol.174.2.727 10.1007/s00384-011-1363-9 10.1016/j.vetimm.2015.09.006 10.1016/S0014-5793(04)00026-2 10.1126/science.8097338 10.1016/j.virol.2014.04.039 10.1016/S1359-6101(00)00010-1 10.1182/blood-2004-01-0380 10.4049/jimmunol.1203575 10.1111/j.1365-2567.2010.03298.x 10.1155/2015/697238 10.1038/mi.2013.55 10.1111/j.1365-2249.2010.04283.x 10.1099/0022-1317-77-7-1431 10.1016/S1473-3099(11)70253-5 10.3389/fmicb.2015.01050 10.1111/j.1440-1711.2005.01392.x 10.1111/j.1365-2796.2011.02409.x 10.1002/eji.201444885 10.1111/j.1574-695X.2012.00978.x 10.1093/tropej/fmp001 10.1128/IAI.73.3.1452-1465.2005 10.1038/nri2515 10.1111/j.1365-2036.2012.05180.x 10.1016/S0928-8244(03)00368-7 10.1182/blood.V91.1.196 10.1371/journal.pone.0000313 10.1111/j.1365-2982.2008.01258.x 10.1177/1753425910396251 10.1177/1756283X12459294 10.1146/annurev-virology-031413-085550 10.1097/MCG.0b013e3182257e98 10.3389/fimmu.2013.00512 10.1128/JVI.80.1.372-382.2006 10.1186/1471-2334-10-253 10.1042/BST0351473 10.1111/j.1574-695X.2011.00835.x 10.1017/S0007114515002408 10.1177/1756283X12454590 10.1186/1471-2180-7-86 10.1172/JCI60945 10.1111/j.1365-2249.2006.03079.x 10.1093/nutrit/nuv039 10.1128/jvi.70.5.3075-3083.1996 10.4049/jimmunol.171.8.4294 10.1128/JVI.02550-09 10.1128/IAI.01563-06 10.1177/1756283X13482996 10.1371/journal.pone.0076962 10.1146/annurev.iy.13.040195.001343 10.1128/JVI.72.1.330-338.1998 10.4049/jimmunol.1501705 10.4049/jimmunol.159.1.28 10.1002/ibd.21282 10.1128/IAI.00994-08 10.4049/jimmunol.1300678 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK 7TM 8FD FR3 H94 K9. M7N P64 RC3 7X8 7QL 7U9 C1K ADTOC UNPAY |
DOI | 10.1002/eji.201646498 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Environmental Sciences and Pollution Management Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts AIDS and Cancer Research Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1521-4141 |
EndPage | 2437 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:5201163 4210180941 27457183 10_1002_eji_201646498 EJI3710 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: R01 A1099451 – fundername: NIAID NIH HHS grantid: R01 AI099451 |
GroupedDBID | --- .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI UB1 UPT V2E VH1 W8V W99 WBKPD WHWMO WIB WIH WIK WIN WJL WOHZO WQJ WVDHM WXSBR X7M XG1 XPP XV2 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX CITATION 24P AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM RGB RWI WRC WUP 7QP 7T5 7TK 7TM 8FD FR3 H94 K9. M7N P64 RC3 7X8 7QL 7U9 C1K ADTOC UNPAY |
ID | FETCH-LOGICAL-c5720-a1e4d1442c887873982f89df28e9c80cc01f095732a667c6ffc15e6f7fe7aa253 |
IEDL.DBID | UNPAY |
ISSN | 0014-2980 1521-4141 |
IngestDate | Tue Aug 19 23:46:05 EDT 2025 Fri Jul 11 05:55:28 EDT 2025 Fri Jul 11 05:11:28 EDT 2025 Fri Jul 25 12:27:23 EDT 2025 Wed Feb 19 02:43:16 EST 2025 Wed Oct 01 01:50:14 EDT 2025 Thu Apr 24 23:12:11 EDT 2025 Sun Sep 21 06:21:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | L. rhamnosus GG Probiotics Dendritic cells Human rotavirus Childhood diarrhea Natural killer cells E. coli Nissle 1917 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5720-a1e4d1442c887873982f89df28e9c80cc01f095732a667c6ffc15e6f7fe7aa253 |
Notes | Current address Lulu Shao, University of Pittsburgh, Hillman Cancer Center, 4200 Fifth Ave, Pittsburgh, PA 15260, USA Kuldeep S. Chattha, Canadian Food Inspection Agency, 3605 Avenue 14 Nord, Lethbridge, Alberta T1H 6P7, Canada. Anand Kumar, Genomics and Systems Biology, Bioscience Division, Los Alamos National Laboratory, NM 87545, USA. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/eji.201646498 |
PMID | 27457183 |
PQID | 1827576271 |
PQPubID | 986365 |
PageCount | 12 |
ParticipantIDs | unpaywall_primary_10_1002_eji_201646498 proquest_miscellaneous_1837299255 proquest_miscellaneous_1826730474 proquest_journals_1827576271 pubmed_primary_27457183 crossref_citationtrail_10_1002_eji_201646498 crossref_primary_10_1002_eji_201646498 wiley_primary_10_1002_eji_201646498_EJI3710 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | European journal of immunology |
PublicationTitleAlternate | Eur J Immunol |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 1997; 159 2014; 139 2010; 16 2005; 174 2015; 73 2014; 462–463 2013; 123 2012; 18 1996; 70 2007; 75 2013; 8 2012; 12 2013; 6 2011; 270 2007; 35 1996; 77 2014; 1 2009; 55 2015; 45 2014; 4 2000; 11 2005; 73 2011; 63 2007; 7 1998; 91 2007; 2 2012; 27 2011; 163 2014; 9 2013; 191 2014; 7 2012; 65 2016; 196 2013; 190 2010; 34 2015; 6 2004; 40 2004; 104 2009; 21 2006; 12 2015; 168 1995; 13 1993; 260 2003; 171 2005; 83 2012; 36 2010; 84 1996; 12 2009; 77 2006; 80 2015; 114 2015; 2015 2009; 9 2010; 131 2011; 45 1998; 72 1964; 12 2004; 559 2006; 144 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 Aggarwal S. (e_1_2_7_16_1) 2014; 139 e_1_2_7_4_1 Saif L. J. (e_1_2_7_10_1) 1996; 12 e_1_2_7_8_1 Kalinski P. (e_1_2_7_41_1) 1997; 159 e_1_2_7_18_1 Yuan L. (e_1_2_7_61_1) 1996; 70 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 Meyer R. C. (e_1_2_7_60_1) 1964; 12 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 Yuan L. (e_1_2_7_59_1) 1998; 72 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 17375199 - PLoS One. 2007 Mar 21;2(3):e313 23814609 - Therap Adv Gastroenterol. 2013 Jul;6(4):295-308 8757984 - J Gen Virol. 1996 Jul;77 ( Pt 7):1431-41 24459463 - Front Immunol. 2014 Jan 14;4:512 23918983 - J Immunol. 2013 Sep 1;191(5):2446-56 14960310 - FEBS Lett. 2004 Feb 13;559(1-3):71-6 23320049 - Therap Adv Gastroenterol. 2013 Jan;6(1):39-51 9200435 - J Immunol. 1997 Jul 1;159(1):28-35 23320050 - Therap Adv Gastroenterol. 2013 Jan;6(1):53-68 26500616 - Front Microbiol. 2015 Oct 06;6:1050 26247025 - Biomed Res Int. 2015;2015:697238 22524476 - FEMS Immunol Med Microbiol. 2012 Aug;65(3):467-80 17283097 - Infect Immun. 2007 May;75(5):2399-407 21992955 - J Clin Gastroenterol. 2011 Nov;45 Suppl:S149-53 21668823 - J Intern Med. 2011 Sep;270(3):206-14 19343057 - Nat Rev Immunol. 2009 May;9(5):313-23 19203988 - J Trop Pediatr. 2009 Oct;55(5):297-301 15242871 - Blood. 2004 Nov 15;104(10):3267-75 16352562 - J Virol. 2006 Jan;80(1):372-82 20497255 - Immunology. 2010 Oct;131(2):242-56 26175488 - Nutr Rev. 2015 Aug;73 Suppl 1:32-40 10959079 - Cytokine Growth Factor Rev. 2000 Dec;11(4):321-33 19963349 - J Autoimmun. 2010 May;34(3):J220-5 14199016 - Appl Microbiol. 1964 Jul;12:295-300 23635775 - J Clin Invest. 2013 Jun;123(6):2464-74 24098572 - PLoS One. 2013 Oct 02;8(10):e76962 20164228 - J Virol. 2010 May;84(9):4543-55 9420231 - J Virol. 1998 Jan;72(1):330-8 26234407 - Br J Nutr. 2015 Sep 14;114(5):727-33 24733511 - PLoS One. 2014 Apr 14;9(4):e94891 25092461 - Virology. 2014 Aug;462-463:49-59 8097338 - Science. 1993 Apr 23;260(5107):547-9 26800875 - J Immunol. 2016 Feb 15;196 (4):1780-9 17100625 - Curr Pharm Des. 2006;12(32):4229-45 24820831 - Indian J Med Res. 2014 Mar;139(3):379-85 18031248 - Biochem Soc Trans. 2007 Dec;35(Pt 6):1473-8 16734605 - Clin Exp Immunol. 2006 Jun;144(3):376-81 22030330 - Lancet Infect Dis. 2012 Feb;12(2):136-41 22680836 - Aliment Pharmacol Ther. 2012 Aug;36(4):363-9 15731043 - Infect Immun. 2005 Mar;73(3):1452-65 8627786 - J Virol. 1996 May;70(5):3075-83 17900343 - BMC Microbiol. 2007 Sep 27;7:86 25821837 - Annu Rev Virol. 2014;1:55-69 15039098 - FEMS Immunol Med Microbiol. 2004 Apr 9;40(3):223-9 20735858 - BMC Infect Dis. 2010 Aug 25;10:253 9414285 - Blood. 1998 Jan 1;91(1):196-206 16174109 - Immunol Cell Biol. 2005 Oct;83(5):571-7 21707779 - FEMS Immunol Med Microbiol. 2011 Oct;63(1):93-107 23536630 - J Immunol. 2013 May 1;190(9):4742-53 23900194 - Mucosal Immunol. 2014 Mar;7(2):369-78 26433606 - Vet Immunol Immunopathol. 2015 Dec 15;168(3-4):193-202 21155989 - Clin Exp Immunol. 2011 Feb;163(2):242-9 20803699 - Inflamm Bowel Dis. 2010 Sep;16(9):1583-97 25773885 - Eur J Immunol. 2015 Jun;45(6):1783-93 19220758 - Neurogastroenterol Motil. 2009 May;21(5):559-66, e16-7 15634892 - J Immunol. 2005 Jan 15;174(2):727-34 14530354 - J Immunol. 2003 Oct 15;171(8):4294-303 9015112 - Arch Virol Suppl. 1996;12:153-61 22130826 - Int J Colorectal Dis. 2012 Apr;27(4):467-74 19015248 - Infect Immun. 2009 Feb;77(2):770-82 21382908 - Innate Immun. 2012 Apr;18(2):204-16 7612223 - Annu Rev Immunol. 1995;13:251-76 |
References_xml | – volume: 4 start-page: 512 year: 2014 article-title: Modulation of intestinal TLR4‐inflammatory signaling pathways by probiotic microorganisms: lessons learned from TL2937 publication-title: Front Immunol. – volume: 123 start-page: 2464 year: 2013 end-page: 2474 article-title: Plasmacytoid dendritic cells promote rotavirus‐induced human and murine B cell responses publication-title: J. Clin. Invest. – volume: 35 start-page: 1473 year: 2007 end-page: 1478 article-title: TLR4 signalling in the intestine in health and disease publication-title: Biochem. Soc. Trans. – volume: 12 start-page: 4229 year: 2006 end-page: 4245 article-title: Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease publication-title: Curr. Pharm. Des. – volume: 16 start-page: 1583 year: 2010 end-page: 1597 article-title: Toll‐like receptors in inflammatory bowel diseases: a decade later publication-title: Inflamm. Bowel Dis. – volume: 73 start-page: 32 year: 2015 end-page: 40 article-title: Potential role of the intestinal microbiota in programming health and disease publication-title: Nutr. Rev. – volume: 18 start-page: 204 year: 2012 end-page: 216 article-title: Anti‐inflammatory modulation of immune response by probiotic Escherichia coli Nissle 1917 in human blood mononuclear cells publication-title: Innate Immun. – volume: 163 start-page: 242 year: 2011 end-page: 249 article-title: Interference of or Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine publication-title: Clin. Exp. Immunol. – volume: 2015 start-page: 697238 year: 2015 article-title: Rotavirus infects human biliary epithelial cells and stimulates secretion of cytokines IL‐6 and IL‐8 via MAPK pathway publication-title: Biomed. Res. Int. – volume: 84 start-page: 4543 year: 2010 end-page: 4555 article-title: Rotavirus differentially infects and polyclonally stimulates human B cells depending on their differentiation state and tissue of origin publication-title: J. Virol. – volume: 73 start-page: 1452 year: 2005 end-page: 1465 article-title: Nissle 1917 distinctively modulates T‐cell cycling and expansion via toll‐like receptor 2 signaling publication-title: Infect Immun. – volume: 168 start-page: 193 year: 2015 end-page: 202 article-title: Age‐dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs publication-title: Vet. Immunol. Immunopathol. – volume: 190 start-page: 4742 year: 2013 end-page: 4753 article-title: Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model publication-title: J. Immunol. – volume: 75 start-page: 2399 year: 2007 end-page: 2407 article-title: Induction of human beta‐defensin 2 by the probiotic Nissle 1917 is mediated through flagellin publication-title: Infect Immun. – volume: 13 start-page: 251 year: 1995 end-page: 276 article-title: Interleukin‐12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen‐specific adaptive immunity publication-title: Annu. Rev. Immunol. – volume: 72 start-page: 330 year: 1998 end-page: 338 article-title: Antibody‐secreting cell responses and protective immunity assessed in gnotobiotic pigs inoculated orally or intramuscularly with inactivated human rotavirus publication-title: J. Virol. – volume: 27 start-page: 467 year: 2012 end-page: 474 article-title: A double‐blind placebo‐controlled trial to study therapeutic effects of probiotic Nissle 1917 in subgroups of patients with irritable bowel syndrome publication-title: Int. J. Colorectal. Dis. – volume: 6 start-page: 53 year: 2013 end-page: 68 article-title: The intestinal microbiota dysbiosis and infection: Is there a relationship with inflammatory bowel disease? publication-title: Therap. Adv. Gastroenterol. – volume: 2 start-page: e313 year: 2007 article-title: A key role of dendritic cells in probiotic functionality publication-title: PLoS One – volume: 9 start-page: 313 year: 2009 end-page: 323 article-title: The gut microbiota shapes intestinal immune responses during health and disease publication-title: Nat. Rev. Immunol. – volume: 9 start-page: e94891 year: 2014 article-title: inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic via modulation of the negative regulators and involvement of TLR2 in intestinal Caco‐2 cells and pig explants publication-title: PLoS One – volume: 21 start-page: e516 year: 2009 end-page: e557 article-title: Cell‐free supernatants of Nissle 1917 modulate human colonic motility: evidence from an in vitro organ bath study publication-title: Neurogastroenterol. Motil. – volume: 104 start-page: 3267 year: 2004 end-page: 3275 article-title: NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL‐12 polarization in DCs publication-title: Blood – volume: 270 start-page: 206 year: 2011 end-page: 214 article-title: Rotavirus vaccines: safety, efficacy and public health impact publication-title: J. Intern. Med. – volume: 91 start-page: 196 year: 1998 end-page: 206 article-title: Interleukin‐12‐activated natural killer cells recognize B7 costimulatory molecules on tumor cells and autologous dendritic cells publication-title: Blood – volume: 559 start-page: 71 year: 2004 end-page: 76 article-title: Interleukin‐12 secreted by mature dendritic cells mediates activation of NK cell function publication-title: FEBS Lett. – volume: 83 start-page: 571 year: 2005 end-page: 577 article-title: Activation of plasmacytoid dendritic cells publication-title: Immunol. Cell Biol. – volume: 80 start-page: 372 year: 2006 end-page: 382 article-title: Cytokine responses in gnotobiotic pigs after infection with virulent or attenuated human rotavirus publication-title: J. Virol. – volume: 7 start-page: 369 year: 2014 end-page: 378 article-title: TcpC protein from Nissle improves epithelial barrier function involving PKCzeta and ERK1/2 signaling in HT‐29/B6 cells publication-title: Mucosal. Immunol. – volume: 131 start-page: 242 year: 2010 end-page: 256 article-title: Innate immune responses to human rotavirus in the neonatal gnotobiotic piglet disease model publication-title: Immunology – volume: 36 start-page: 363 year: 2012 end-page: 369 article-title: Randomised clinical trial: DSM 17938 vs. placebo in children with acute diarrhoea—a double‐blind study publication-title: Aliment Pharmacol. Ther. – volume: 45 start-page: 1783 year: 2015 end-page: 1793 article-title: Dendritic cell regulation of NK‐cell responses involves lymphotoxin‐alpha, IL‐12, and TGF‐beta publication-title: Eur. J. Immunol. – volume: 77 start-page: 770 year: 2009 end-page: 782 article-title: Dendritic cell and NK cell reciprocal cross talk promotes gamma interferon‐dependent immunity to blood‐stage AS infection in mice publication-title: Infect. Immun. – volume: 12 start-page: 295 year: 1964 end-page: 300 article-title: Procurement and maintenance of germ‐free seine for microbiological investigations publication-title: Appl. Microbiol. – volume: 55 start-page: 297 year: 2009 end-page: 301 article-title: Dose‐dependent effect of on quantitative reduction of faecal rotavirus shedding in children publication-title: J. Trop. Pediatr. – volume: 196 start-page: 1780 year: 2016 end-page: 1789 article-title: Differential effects of Nissle and strain GG on human rotavirus binding, infection, and B cell immunity publication-title: J. Immunol. – volume: 6 start-page: 39 year: 2013 end-page: 51 article-title: Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation publication-title: Therap. Adv. Gastroenterol. – volume: 12 start-page: 136 year: 2012 end-page: 141 article-title: 2008 estimate of worldwide rotavirus‐associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta‐analysis publication-title: Lancet Infect Dis. – volume: 139 start-page: 379 year: 2014 end-page: 385 article-title: Lactobacillus GG for treatment of acute childhood diarrhoea: an open labelled, randomized controlled trial publication-title: Indian J. Med. Res. – volume: 1 start-page: 55 year: 2014 end-page: 69 article-title: Viruses and the microbiota publication-title: Annu. Rev. Virol. – volume: 34 start-page: J220 year: 2010 end-page: J225 article-title: Coordination of tolerogenic immune responses by the commensal microbiota publication-title: J. Autoimmun. – volume: 12 start-page: 153 year: 1996 end-page: 161 article-title: The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses publication-title: Arch. Virol. Suppl. – volume: 159 start-page: 28 year: 1997 end-page: 35 article-title: IL‐12‐deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells publication-title: J. Immunol. – volume: 65 start-page: 467 year: 2012 end-page: 480 article-title: Early administration of probiotic and/or prebiotic inulin attenuates pathogen‐mediated intestinal inflammation and Smad 7 cell signaling publication-title: FEMS Immunol. Med. Microbiol. – volume: 174 start-page: 727 year: 2005 end-page: 734 article-title: The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions publication-title: J. Immunol. – volume: 191 start-page: 2446 year: 2013 end-page: 2456 article-title: Divergent immunomodulating effects of probiotics on T cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model publication-title: J. Immunol. – volume: 171 start-page: 4294 year: 2003 end-page: 4303 article-title: A dominant role of Toll‐like receptor 4 in the signaling of apoptosis in bacteria‐faced macrophages publication-title: J. Immunol. – volume: 114 start-page: 727 year: 2015 end-page: 733 article-title: Effects of oral intake of plasmacytoid dendritic cells‐stimulative lactic acid bacterial strain on pathogenesis of influenza‐like illness and immunological response to influenza virus publication-title: Br J Nutr – volume: 70 start-page: 3075 year: 1996 end-page: 3083 article-title: Systematic and intestinal antibody‐secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease publication-title: J. Virol. – volume: 144 start-page: 376 year: 2006 end-page: 381 article-title: Expression of Toll‐like receptors and their association with cytokine responses in peripheral blood mononuclear cells of children with acute rotavirus diarrhoea publication-title: Clin. Exp. Immunol. – volume: 8 start-page: e76962 year: 2013 article-title: Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs publication-title: PLoS One – volume: 10 start-page: 253 year: 2010 article-title: Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double‐blind, controlled trial using two different probiotic preparations in Bolivian children publication-title: BMC Infect Dis. – volume: 77 start-page: 1431 year: 1996 end-page: 1441 article-title: Pathogenesis of an attenuated and a virulent strain of group A human rotavirus in neonatal gnotobiotic pigs publication-title: J. Gen. Virol. – volume: 63 start-page: 93 year: 2011 end-page: 107 article-title: Regulation of the IL‐10/IL‐12 axis in human dendritic cells with probiotic bacteria publication-title: FEMS Immunol. Med. Microbiol. – volume: 260 start-page: 547 year: 1993 end-page: 549 article-title: Development of TH1 CD4+ T cells through IL‐12 produced by Listeria‐induced macrophages publication-title: Science – volume: 40 start-page: 223 year: 2004 end-page: 229 article-title: The probiotic strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens publication-title: FEMS Immunol. Med. Microbio – volume: 7 start-page: 86 year: 2007 article-title: Effective prophylaxis against rotavirus diarrhea using a combination of GG and antibodies publication-title: BMC Microbiol. – volume: 462–463 start-page: 49 year: 2014 end-page: 59 article-title: Avian reovirus‐triggered apoptosis enhances both virus spread and the processing of the viral nonstructural muNS protein publication-title: Virology – volume: 45 start-page: S149 year: 2011 end-page: S153 article-title: Probiotics for prevention and treatment of diarrhea publication-title: J. Clin. Gastroenterol. – volume: 6 start-page: 1050 year: 2015 article-title: Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches publication-title: Front Microbiol. – volume: 6 start-page: 295 year: 2013 end-page: 308 article-title: Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ publication-title: Therap. Adv. Gastroenterol. – volume: 11 start-page: 321 year: 2000 end-page: 333 article-title: Interferon‐gamma and interleukin‐12 pathway defects and human disease publication-title: Cytokine Growth Factor Rev. – ident: e_1_2_7_2_1 doi: 10.1016/j.jaut.2009.11.007 – ident: e_1_2_7_55_1 doi: 10.1371/journal.pone.0094891 – ident: e_1_2_7_54_1 doi: 10.2174/138161206778743501 – volume: 12 start-page: 295 year: 1964 ident: e_1_2_7_60_1 article-title: Procurement and maintenance of germ‐free seine for microbiological investigations publication-title: Appl. Microbiol. doi: 10.1128/am.12.4.295-300.1964 – volume: 12 start-page: 153 year: 1996 ident: e_1_2_7_10_1 article-title: The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses publication-title: Arch. Virol. Suppl. doi: 10.1007/978-3-7091-6553-9_17 – ident: e_1_2_7_46_1 doi: 10.4049/jimmunol.174.2.727 – ident: e_1_2_7_22_1 doi: 10.1007/s00384-011-1363-9 – ident: e_1_2_7_63_1 doi: 10.1016/j.vetimm.2015.09.006 – ident: e_1_2_7_45_1 doi: 10.1016/S0014-5793(04)00026-2 – ident: e_1_2_7_44_1 doi: 10.1126/science.8097338 – ident: e_1_2_7_56_1 doi: 10.1016/j.virol.2014.04.039 – ident: e_1_2_7_42_1 doi: 10.1016/S1359-6101(00)00010-1 – ident: e_1_2_7_40_1 doi: 10.1182/blood-2004-01-0380 – ident: e_1_2_7_48_1 doi: 10.4049/jimmunol.1203575 – ident: e_1_2_7_30_1 doi: 10.1111/j.1365-2567.2010.03298.x – volume: 139 start-page: 379 year: 2014 ident: e_1_2_7_16_1 article-title: Lactobacillus GG for treatment of acute childhood diarrhoea: an open labelled, randomized controlled trial publication-title: Indian J. Med. Res. – ident: e_1_2_7_49_1 doi: 10.1155/2015/697238 – ident: e_1_2_7_23_1 doi: 10.1038/mi.2013.55 – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-2249.2010.04283.x – ident: e_1_2_7_58_1 doi: 10.1099/0022-1317-77-7-1431 – ident: e_1_2_7_11_1 doi: 10.1016/S1473-3099(11)70253-5 – ident: e_1_2_7_34_1 doi: 10.3389/fmicb.2015.01050 – ident: e_1_2_7_47_1 doi: 10.1111/j.1440-1711.2005.01392.x – ident: e_1_2_7_12_1 doi: 10.1111/j.1365-2796.2011.02409.x – ident: e_1_2_7_38_1 doi: 10.1002/eji.201444885 – ident: e_1_2_7_13_1 doi: 10.1111/j.1574-695X.2012.00978.x – ident: e_1_2_7_15_1 doi: 10.1093/tropej/fmp001 – ident: e_1_2_7_28_1 doi: 10.1128/IAI.73.3.1452-1465.2005 – ident: e_1_2_7_3_1 doi: 10.1038/nri2515 – ident: e_1_2_7_17_1 doi: 10.1111/j.1365-2036.2012.05180.x – ident: e_1_2_7_26_1 doi: 10.1016/S0928-8244(03)00368-7 – ident: e_1_2_7_39_1 doi: 10.1182/blood.V91.1.196 – ident: e_1_2_7_6_1 doi: 10.1371/journal.pone.0000313 – ident: e_1_2_7_25_1 doi: 10.1111/j.1365-2982.2008.01258.x – ident: e_1_2_7_24_1 doi: 10.1177/1753425910396251 – ident: e_1_2_7_9_1 doi: 10.1177/1756283X12459294 – ident: e_1_2_7_35_1 doi: 10.1146/annurev-virology-031413-085550 – ident: e_1_2_7_8_1 doi: 10.1097/MCG.0b013e3182257e98 – ident: e_1_2_7_33_1 doi: 10.3389/fimmu.2013.00512 – ident: e_1_2_7_62_1 doi: 10.1128/JVI.80.1.372-382.2006 – ident: e_1_2_7_14_1 doi: 10.1186/1471-2334-10-253 – ident: e_1_2_7_53_1 doi: 10.1042/BST0351473 – ident: e_1_2_7_57_1 doi: 10.1111/j.1574-695X.2011.00835.x – ident: e_1_2_7_7_1 doi: 10.1017/S0007114515002408 – ident: e_1_2_7_5_1 doi: 10.1177/1756283X12454590 – ident: e_1_2_7_20_1 doi: 10.1186/1471-2180-7-86 – ident: e_1_2_7_31_1 doi: 10.1172/JCI60945 – ident: e_1_2_7_32_1 doi: 10.1111/j.1365-2249.2006.03079.x – ident: e_1_2_7_36_1 doi: 10.1093/nutrit/nuv039 – volume: 70 start-page: 3075 year: 1996 ident: e_1_2_7_61_1 article-title: Systematic and intestinal antibody‐secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease publication-title: J. Virol. doi: 10.1128/jvi.70.5.3075-3083.1996 – ident: e_1_2_7_52_1 doi: 10.4049/jimmunol.171.8.4294 – ident: e_1_2_7_50_1 doi: 10.1128/JVI.02550-09 – ident: e_1_2_7_27_1 doi: 10.1128/IAI.01563-06 – ident: e_1_2_7_4_1 doi: 10.1177/1756283X13482996 – ident: e_1_2_7_18_1 doi: 10.1371/journal.pone.0076962 – ident: e_1_2_7_43_1 doi: 10.1146/annurev.iy.13.040195.001343 – volume: 72 start-page: 330 year: 1998 ident: e_1_2_7_59_1 article-title: Antibody‐secreting cell responses and protective immunity assessed in gnotobiotic pigs inoculated orally or intramuscularly with inactivated human rotavirus publication-title: J. Virol. doi: 10.1128/JVI.72.1.330-338.1998 – ident: e_1_2_7_29_1 doi: 10.4049/jimmunol.1501705 – volume: 159 start-page: 28 year: 1997 ident: e_1_2_7_41_1 article-title: IL‐12‐deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells publication-title: J. Immunol. doi: 10.4049/jimmunol.159.1.28 – ident: e_1_2_7_51_1 doi: 10.1002/ibd.21282 – ident: e_1_2_7_37_1 doi: 10.1128/IAI.00994-08 – ident: e_1_2_7_19_1 doi: 10.4049/jimmunol.1300678 – reference: 20735858 - BMC Infect Dis. 2010 Aug 25;10:253 – reference: 23900194 - Mucosal Immunol. 2014 Mar;7(2):369-78 – reference: 25092461 - Virology. 2014 Aug;462-463:49-59 – reference: 18031248 - Biochem Soc Trans. 2007 Dec;35(Pt 6):1473-8 – reference: 21382908 - Innate Immun. 2012 Apr;18(2):204-16 – reference: 26247025 - Biomed Res Int. 2015;2015:697238 – reference: 24098572 - PLoS One. 2013 Oct 02;8(10):e76962 – reference: 22680836 - Aliment Pharmacol Ther. 2012 Aug;36(4):363-9 – reference: 26500616 - Front Microbiol. 2015 Oct 06;6:1050 – reference: 22130826 - Int J Colorectal Dis. 2012 Apr;27(4):467-74 – reference: 25773885 - Eur J Immunol. 2015 Jun;45(6):1783-93 – reference: 21992955 - J Clin Gastroenterol. 2011 Nov;45 Suppl:S149-53 – reference: 15039098 - FEMS Immunol Med Microbiol. 2004 Apr 9;40(3):223-9 – reference: 20164228 - J Virol. 2010 May;84(9):4543-55 – reference: 9200435 - J Immunol. 1997 Jul 1;159(1):28-35 – reference: 14960310 - FEBS Lett. 2004 Feb 13;559(1-3):71-6 – reference: 14199016 - Appl Microbiol. 1964 Jul;12:295-300 – reference: 24459463 - Front Immunol. 2014 Jan 14;4:512 – reference: 24820831 - Indian J Med Res. 2014 Mar;139(3):379-85 – reference: 8097338 - Science. 1993 Apr 23;260(5107):547-9 – reference: 8757984 - J Gen Virol. 1996 Jul;77 ( Pt 7):1431-41 – reference: 21668823 - J Intern Med. 2011 Sep;270(3):206-14 – reference: 8627786 - J Virol. 1996 May;70(5):3075-83 – reference: 24733511 - PLoS One. 2014 Apr 14;9(4):e94891 – reference: 15731043 - Infect Immun. 2005 Mar;73(3):1452-65 – reference: 15634892 - J Immunol. 2005 Jan 15;174(2):727-34 – reference: 22524476 - FEMS Immunol Med Microbiol. 2012 Aug;65(3):467-80 – reference: 19203988 - J Trop Pediatr. 2009 Oct;55(5):297-301 – reference: 17100625 - Curr Pharm Des. 2006;12(32):4229-45 – reference: 25821837 - Annu Rev Virol. 2014;1:55-69 – reference: 17900343 - BMC Microbiol. 2007 Sep 27;7:86 – reference: 19220758 - Neurogastroenterol Motil. 2009 May;21(5):559-66, e16-7 – reference: 19015248 - Infect Immun. 2009 Feb;77(2):770-82 – reference: 16734605 - Clin Exp Immunol. 2006 Jun;144(3):376-81 – reference: 21155989 - Clin Exp Immunol. 2011 Feb;163(2):242-9 – reference: 17375199 - PLoS One. 2007 Mar 21;2(3):e313 – reference: 9414285 - Blood. 1998 Jan 1;91(1):196-206 – reference: 20497255 - Immunology. 2010 Oct;131(2):242-56 – reference: 7612223 - Annu Rev Immunol. 1995;13:251-76 – reference: 23635775 - J Clin Invest. 2013 Jun;123(6):2464-74 – reference: 26433606 - Vet Immunol Immunopathol. 2015 Dec 15;168(3-4):193-202 – reference: 23320050 - Therap Adv Gastroenterol. 2013 Jan;6(1):53-68 – reference: 26175488 - Nutr Rev. 2015 Aug;73 Suppl 1:32-40 – reference: 19963349 - J Autoimmun. 2010 May;34(3):J220-5 – reference: 23536630 - J Immunol. 2013 May 1;190(9):4742-53 – reference: 10959079 - Cytokine Growth Factor Rev. 2000 Dec;11(4):321-33 – reference: 23814609 - Therap Adv Gastroenterol. 2013 Jul;6(4):295-308 – reference: 16174109 - Immunol Cell Biol. 2005 Oct;83(5):571-7 – reference: 26234407 - Br J Nutr. 2015 Sep 14;114(5):727-33 – reference: 21707779 - FEMS Immunol Med Microbiol. 2011 Oct;63(1):93-107 – reference: 14530354 - J Immunol. 2003 Oct 15;171(8):4294-303 – reference: 16352562 - J Virol. 2006 Jan;80(1):372-82 – reference: 22030330 - Lancet Infect Dis. 2012 Feb;12(2):136-41 – reference: 9420231 - J Virol. 1998 Jan;72(1):330-8 – reference: 23320049 - Therap Adv Gastroenterol. 2013 Jan;6(1):39-51 – reference: 9015112 - Arch Virol Suppl. 1996;12:153-61 – reference: 15242871 - Blood. 2004 Nov 15;104(10):3267-75 – reference: 17283097 - Infect Immun. 2007 May;75(5):2399-407 – reference: 23918983 - J Immunol. 2013 Sep 1;191(5):2446-56 – reference: 26800875 - J Immunol. 2016 Feb 15;196 (4):1780-9 – reference: 19343057 - Nat Rev Immunol. 2009 May;9(5):313-23 – reference: 20803699 - Inflamm Bowel Dis. 2010 Sep;16(9):1583-97 |
SSID | ssj0009659 |
Score | 2.397211 |
Snippet | Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics... Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics... Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics... |
SourceID | unpaywall proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2426 |
SubjectTerms | Animals Cell Differentiation Cells, Cultured Childhood diarrhea Cytokines - metabolism Cytotoxicity, Immunologic Dendritic cells Dendritic Cells - immunology Dendritic Cells - virology E coli E. coli Nissle 1917 Escherichia coli Escherichia coli - immunology Escherichia coli Infections - immunology Germ-Free Life Human rotavirus Humans Immunity, Innate Inflammation Mediators - metabolism Intestinal Mucosa - immunology Killer Cells, Natural - immunology L. rhamnosus GG Lactobacillus rhamnosus Lactobacillus rhamnosus - immunology Lymphocyte Activation Natural killer cells Probiotics Reoviridae Rotavirus - immunology Rotavirus Infections - immunology Swine Viruses |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hSrwOPMorUJCREBwgbeL4kRxR2aoUsQdEpd6C7TirwJJdbTbAcuIn8Bv5JYzjbKoFUYS4JuPIsWfsbzzjbwAepWXhKr7zUFNdhiyJdKgKmYVCKFtoKgruE2TH4vCYHZ3wk77OqbsL4_khhgM3Zxndeu0MXOlm75Q01L6vXGaWYIJl7rJvnPAuTPvmlD7KkeX5lZiFNEujnmMT2-9ttN7ck34DmpfhYlvP1eqzmk43MWy3CR1chXfr7vvckw-77VLvmq-_MDv-x_9dgys9QCXPvUZdh3O23obzvmTlahsuvO6D8Tfgy6hxM165bGmC-lSRMc7i1BLnnJGeAKIhk3q2dFxP-D0yryYNURNVISglXXlAgmLqU7VoG6JX5OOs6MqJ1RMyf7FPVF2Q8asf37678AJZ-HRe29yE44PR2_3DsC_kEBou0T1VsWUFem7U4JKWyiRLaZlmRUlTm5k0MiaKS4R6MqFKCGlEWZqYW1HK0kqlKE9uwVY9q-0dIIy7SHnCtbWMSYPOaRqJSJkUYYkyQgbwbD2VuelZzl2xjWnu-ZlpjuOaD-MawONBfO7pPf4kuLPWi7y38iZH30yiv0ZlHMDD4TXapxsVVdtZ28kI6WKb7CwZFzzN0LsL4LbXuaE3VDKO-CEJ4MmghH_r6tNOr86WykdHLxOEl3f_SfoeXHLPfDbjDmwtF629j6hsqR90pvcT3kMuBQ priority: 102 providerName: Wiley-Blackwell |
Title | Escherichia coli Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NK‐cell responses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.201646498 https://www.ncbi.nlm.nih.gov/pubmed/27457183 https://www.proquest.com/docview/1827576271 https://www.proquest.com/docview/1826730474 https://www.proquest.com/docview/1837299255 http://doi.org/10.1002/eji.201646498 |
UnpaywallVersion | submittedVersion |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1521-4141 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4141 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009659 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL0anfh64GPACIzJSAgeRkbiOHbyOI1OY4gKISqNp8hxnCrQpVXTbJQnfgK_kV_CdZxGqioKb5FyYyW-1_Y5ujf3ALyI8swovoduStPcZYGXujITscu51FlKeRbaAtkBPx2ys_PwfAuWioKr6Xv6Rn8tTPkVZ5zF0TXY5iaN1IPt4eDj0Re7yTKXxo1AmjmJXOYzv22lufb86tGzhidvw826nMrFlRyPV6Fqc9ac3IX-8o8dW2Ly7bCep4fqx3oDx42fcQ_utGCTHNnouA9butyB61Z-crEDNz60ifUH8L1fGe8VpvKZYGwUZIAeGWtiiBZpmzlUZFRO5qZvE45HpsWoInIkCwSYpJH6I2gmL4tZXZF0QS4mWSMNVo7I9O0xkWVGBu9___xlUgVkZktzdfUQhif9z8enbivK4KpQINWUvmYZsjCqcHuKRBBHNI_iLKeRjlXkKeX5OcI2EVDJuVA8z5Ufap6LXAspaRg8gl45KfVjICw0We8gTLVmTCgkmpHHPakihBhSceHA66W_EtV2LDfCGePE9lqmCc5r0s2rAy8786lt1fE3w72l85N2xVYJ8iyB3IsK34Hn3W1ca2ZWZKkndWPDhclTsk02JhEaI1NzYNcGVvc2VLAQsUDgwKsu0v71qgdNHG62Svpn7wKEik_-e9yncMtc26rEPejNZ7V-huhqnu4jr_hE99sl9gdd6Bqq |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BERQOPMorUMBIiB4gbdZxbOeI2q22rz2gVuotchxnlXbJrja7wHLiJ_Ab-SWM42zKgihCnD2x_Jixv_FMvgF4JfPMVnyP_JSmuc_CIPVVJmKfc2WylPIscgmyfd47Yfun0elPf_E7foj2wc1aRn1eWwO3D9JbF6yh5qywqVmccRbLq3DNxuisae68vyCQsnR57ixmPo1l0LBsYgdbS58v30q_Qc1bsDorx2r-SQ2Hyyi2voZ274BaTMBln5xvzqbppv7yC7fj_8zwLtxuMCp555TqHlwx5Rpcd1Ur52tw46iJx9-Hz93KbnphE6YJqlRB-riRQ0Osf0YaDoiKDMrR1NI9YX9kXAwqogaqQFxK6gqBBMXUx2Iyq0g6Jx9GWV1RrByQ8c42UWVG-gffv36zEQYycRm9pnoAJ7vd4-2e39Ry8HUk0ENVHcMydN6oxlNNijCWNJdxllNpYi0DrYNOjmhPhFRxLjTPc92JDM9FboRSNAofwko5Ks1jICyywfIwSo1hTGj0T2XAA6UlIhOlufDg7WIvE90Qndt6G8PEUTTTBNc1adfVg9et-NgxfPxJcH2hGElj6FWC7plAl42Kjgcv22Y0UbsqqjSjWS3DhQ1vsstkbPw0RgfPg0dO6drRUMEihBChBxutFv5tqG9qxbpcKunu74WIMJ_8k_QLWO0dHx0mh3v9g6dw07a75MZ1WJlOZuYZgrRp-ry2wx-xQjIh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BEQUeuJRboICREH2AtFnHsZ1H1O6qF1ghRKW-BcdxVoElu9psgOWJT-Ab-RLGcTbVgihCPGdiOfaMc05mcgbgicwz2_E98lOa5j4Lg9RXmYh9zpXJUsqzyBXIDvn-MTs8iU7aPqf2XxinD9F9cLOR0ZzXNsCnWb5zKhpq3he2MoszzmJ5Hi4wjgzLoqI3p_pRVi3PHcXMp7EMWpFNHGBn5fbVl9JvSPMKXKrLqVp8VuPxKoht3kKDa_BuOX9XfPJhu56n2_rrL9KO__GA1-Fqi1DJC-dSN-CcKTfgoutZudiA9VdtNv4mfOlXdssLWy5N0KEKMsRtHBti2RlpFSAqMioncyv2hOORaTGqiBqpAlEpafoDEjRTn4pZXZF0QT5OsqafWDki071dosqMDI9-fPtu8wtk5up5TXULjgf9t7v7ftvJwdeRQH6qeoZlSN2oxjNNijCWNJdxllNpYi0DrYNejlhPhFRxLjTPc92LDM9FboRSNApvw1o5Kc1dICyyqfIwSo1hTGhkpzLggdIScYnSXHjwfLmViW5lzm23jXHiBJppguuadOvqwdPOfOr0Pf5kuLn0i6QN8ypBciaQsFHR8-BxdxkD1K6KKs2kbmy4sMlNdpaNzZ7GSO88uON8rpsNFSxCABF6sNU54d-m-qzxq7Otkv7hQYj48t4_WT-C9dd7g-TlwfDoPly2l11l4yaszWe1eYAIbZ4-bKLwJ-qKMNA |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrfjogY9CS6AgIyE4lJTEcezkWJWtShErDqxUTpHjOKu0S3a12QDLqT-B38gvYRxnI61WLNwiZWIlnrH9nmYyD-BllGdG8T10U5rmLgu81JWZiF3Opc5SyrPQFsgO-NmQnV-EF1uwVBRcTd_Tt_qyMOVXnHEWRzdgm5s0Ug-2h4NPx1_sJstcGjcCaeYkcpnP_LaV5trzq0fPGp7cgdt1OZWL73I8XoWqzVlzeg_6yz92bInJ1VE9T4_Uz_UGjhs_4z7cbcEmObbR8QC2dLkLN6385GIXbn1sE-sP4Ue_Mt4rTOUzwdgoyAA9MtbEEC3SNnOoyKiczE3fJhyPTItRReRIFggwSSP1R9BMfitmdUXSBfk6yRppsHJEpu9OiCwzMvjw-_qXSRWQmS3N1dUjGJ72P5-cua0og6tCgVRT-pplyMKowu0pEkEc0TyKs5xGOlaRp5Tn5wjbREAl50LxPFd-qHkuci2kpGGwB71yUurHQFhost5BmGrNmFBINCOPe1JFCDGk4sKBN0t_JartWG6EM8aJ7bVME5zXpJtXB1515lPbquNvhgdL5yftiq0S5FkCuRcVvgMvutu41sysyFJP6saGC5OnZJtsTCI0RqbmwL4NrO5tqGAhYoHAgdddpP3rVQ-bONxslfTP3wcIFZ_897hP4Y65tlWJB9Cbz2r9DNHVPH3eLq4_w8kZwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Escherichia+coli+Nissle+1917+protects+gnotobiotic+pigs+against+human+rotavirus+by+modulating+pDC+and+NK%E2%80%90cell+responses&rft.jtitle=European+journal+of+immunology&rft.au=Vlasova%2C+Anastasia+N.&rft.au=Shao%2C+Lulu&rft.au=Kandasamy%2C+Sukumar&rft.au=Fischer%2C+David+D.&rft.date=2016-10-01&rft.issn=0014-2980&rft.eissn=1521-4141&rft.volume=46&rft.issue=10&rft.spage=2426&rft.epage=2437&rft_id=info:doi/10.1002%2Feji.201646498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eji_201646498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon |