Escherichia coli Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NK‐cell responses

Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human ro...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of immunology Vol. 46; no. 10; pp. 2426 - 2437
Main Authors Vlasova, Anastasia N., Shao, Lulu, Kandasamy, Sukumar, Fischer, David D., Rauf, Abdul, Langel, Stephanie N., Chattha, Kuldeep S., Kumar, Anand, Huang, Huang‐Chi, Rajashekara, Gireesh, Saif, Linda J.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2016
Subjects
Online AccessGet full text
ISSN0014-2980
1521-4141
1521-4141
DOI10.1002/eji.201646498

Cover

Abstract Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN‐, LGG‐, and EcN + LGG‐colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK‐cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK‐cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN‐colonized pigs produced the highest levels of IL‐12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG‐colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN‐treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN‐α, IL‐12, and IL‐10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN‐mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC‐IL‐12‐NK immune axis. Mechanistic understanding of individual and interactive immunomodulatory and anti‐infectious effects of gram‐positive (Lactobacillus rhamnosus GG, LGG) and gram‐negative (Escherichia coli Nissle 1917, EcN) probiotics is lacking. By activating the DC‐IL‐12‐NK immune axis, EcN colonization of neonatal gnotobiotic pigs mediates greater protection against human rotavirus than LGG.
AbstractList Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.
Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-[alpha], IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.
Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4 super(+) mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172 super(+) MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN- alpha , IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis. Mechanistic understanding of individual and interactive immunomodulatory and anti-infectious effects of gram-positive (Lactobacillus rhamnosus GG, LGG) and gram-negative (Escherichia coli Nissle 1917, EcN) probiotics is lacking. By activating the DC-IL-12-NK immune axis, EcN colonization of neonatal gnotobiotic pigs mediates greater protection against human rotavirus than LGG.
Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN‐, LGG‐, and EcN + LGG‐colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK‐cell function and decreased frequencies of apoptotic and TLR4 + mononuclear cells (MNCs). Consistent with the highest NK‐cell activity, splenic CD172 + MNCs (DC enriched fraction) of EcN‐colonized pigs produced the highest levels of IL‐12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG‐colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN‐treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN‐α, IL‐12, and IL‐10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN‐mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC‐IL‐12‐NK immune axis.
Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4 mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172 MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.
Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN‐, LGG‐, and EcN + LGG‐colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK‐cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK‐cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN‐colonized pigs produced the highest levels of IL‐12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG‐colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN‐treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN‐α, IL‐12, and IL‐10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN‐mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC‐IL‐12‐NK immune axis. Mechanistic understanding of individual and interactive immunomodulatory and anti‐infectious effects of gram‐positive (Lactobacillus rhamnosus GG, LGG) and gram‐negative (Escherichia coli Nissle 1917, EcN) probiotics is lacking. By activating the DC‐IL‐12‐NK immune axis, EcN colonization of neonatal gnotobiotic pigs mediates greater protection against human rotavirus than LGG.
Author Langel, Stephanie N.
Huang, Huang‐Chi
Saif, Linda J.
Rauf, Abdul
Chattha, Kuldeep S.
Shao, Lulu
Kandasamy, Sukumar
Vlasova, Anastasia N.
Rajashekara, Gireesh
Fischer, David D.
Kumar, Anand
Author_xml – sequence: 1
  givenname: Anastasia N.
  surname: Vlasova
  fullname: Vlasova, Anastasia N.
  email: vlasova.1@osu.edu
  organization: The Ohio State University
– sequence: 2
  givenname: Lulu
  surname: Shao
  fullname: Shao, Lulu
  organization: The Ohio State University
– sequence: 3
  givenname: Sukumar
  surname: Kandasamy
  fullname: Kandasamy, Sukumar
  organization: The Ohio State University
– sequence: 4
  givenname: David D.
  surname: Fischer
  fullname: Fischer, David D.
  organization: The Ohio State University
– sequence: 5
  givenname: Abdul
  surname: Rauf
  fullname: Rauf, Abdul
  organization: The Ohio State University
– sequence: 6
  givenname: Stephanie N.
  surname: Langel
  fullname: Langel, Stephanie N.
  organization: The Ohio State University
– sequence: 7
  givenname: Kuldeep S.
  surname: Chattha
  fullname: Chattha, Kuldeep S.
  organization: The Ohio State University
– sequence: 8
  givenname: Anand
  surname: Kumar
  fullname: Kumar, Anand
  organization: The Ohio State University
– sequence: 9
  givenname: Huang‐Chi
  surname: Huang
  fullname: Huang, Huang‐Chi
  organization: The Ohio State University
– sequence: 10
  givenname: Gireesh
  surname: Rajashekara
  fullname: Rajashekara, Gireesh
  organization: The Ohio State University
– sequence: 11
  givenname: Linda J.
  surname: Saif
  fullname: Saif, Linda J.
  organization: The Ohio State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27457183$$D View this record in MEDLINE/PubMed
BookMark eNqNkb1uFDEURi2UiGwCJS2yREMzG9tjj-0SLRsIiUID9cjr8ex65bEH20PYLo_AM_IkeLVJikj8VLc539X9zj0FRz54A8ArjOYYIXJutnZOEG5oQ6V4BmaYEVxRTPERmCGEaUWkQCfgNKUtQkg2TD4HJ4RTxrGoZ-DHMumNiVZvrII6OAtvbErOQCwxh2MM2eic4NqHHFY2ZKvhaNcJqrWyPmW4mQblYcHUdxunBFc7OIRucipbv4bj-wVUvoM3V7_ufmrjHIwmjcEnk16A4165ZF7ezzPw9WL5ZfGxuv784XLx7rrSjBNUKWxohyklWggueC0F6YXseiKM1AJpjXCPJOM1UU3DddP3GjPT9Lw3XCnC6jMwP-yd_Kh2t8q5dox2UHHXYtTuFbZFYfuosATeHgKl_LfJpNwONu1vV96EKbVFGydSEsb-AyUNrxHltKBvnqDbMEVfmu8pznhDOC7U63tqWg2me7z04V8FqA-AjiGlaPpW21xcB5-jsu6PlaonqX8pIAf-1jqz-zvcLj9d1hyj-jc9nsZp
CODEN EJIMAF
CitedBy_id crossref_primary_10_1016_j_vaccine_2018_09_008
crossref_primary_10_3920_BM2016_0225
crossref_primary_10_1016_j_vetmic_2025_110401
crossref_primary_10_3390_v10020061
crossref_primary_10_1128_mSphere_00074_21
crossref_primary_10_1371_journal_pone_0178157
crossref_primary_10_1007_s12602_021_09884_3
crossref_primary_10_1186_s13099_016_0148_7
crossref_primary_10_3390_ijms222413473
crossref_primary_10_3389_fmicb_2022_940196
crossref_primary_10_1038_s41401_020_00573_5
crossref_primary_10_1371_journal_pone_0233773
crossref_primary_10_1080_10454438_2020_1871151
crossref_primary_10_3389_fmicb_2022_842437
crossref_primary_10_3390_ijms23105466
crossref_primary_10_1128_mSphere_00046_17
crossref_primary_10_3389_fimmu_2022_936300
crossref_primary_10_1128_msphere_00270_22
crossref_primary_10_1186_s40104_024_01018_3
crossref_primary_10_1016_j_jff_2018_10_036
crossref_primary_10_1016_j_lfs_2022_120330
crossref_primary_10_3920_BM2016_0157
crossref_primary_10_1080_19490976_2023_2288200
crossref_primary_10_3390_pathogens11101078
crossref_primary_10_3390_v9030048
crossref_primary_10_1128_CVI_00172_17
crossref_primary_10_1007_s10695_024_01366_x
crossref_primary_10_1371_journal_pone_0246193
crossref_primary_10_3390_vaccines10010083
crossref_primary_10_1016_j_coviro_2019_05_001
crossref_primary_10_3389_fimmu_2018_00220
crossref_primary_10_3920_BM2022_0026
crossref_primary_10_3389_fimmu_2017_00334
crossref_primary_10_3390_ijms25021184
crossref_primary_10_3390_biom13030569
crossref_primary_10_1371_journal_pone_0247738
crossref_primary_10_1007_s11427_020_1721_5
Cites_doi 10.1016/j.jaut.2009.11.007
10.1371/journal.pone.0094891
10.2174/138161206778743501
10.1128/am.12.4.295-300.1964
10.1007/978-3-7091-6553-9_17
10.4049/jimmunol.174.2.727
10.1007/s00384-011-1363-9
10.1016/j.vetimm.2015.09.006
10.1016/S0014-5793(04)00026-2
10.1126/science.8097338
10.1016/j.virol.2014.04.039
10.1016/S1359-6101(00)00010-1
10.1182/blood-2004-01-0380
10.4049/jimmunol.1203575
10.1111/j.1365-2567.2010.03298.x
10.1155/2015/697238
10.1038/mi.2013.55
10.1111/j.1365-2249.2010.04283.x
10.1099/0022-1317-77-7-1431
10.1016/S1473-3099(11)70253-5
10.3389/fmicb.2015.01050
10.1111/j.1440-1711.2005.01392.x
10.1111/j.1365-2796.2011.02409.x
10.1002/eji.201444885
10.1111/j.1574-695X.2012.00978.x
10.1093/tropej/fmp001
10.1128/IAI.73.3.1452-1465.2005
10.1038/nri2515
10.1111/j.1365-2036.2012.05180.x
10.1016/S0928-8244(03)00368-7
10.1182/blood.V91.1.196
10.1371/journal.pone.0000313
10.1111/j.1365-2982.2008.01258.x
10.1177/1753425910396251
10.1177/1756283X12459294
10.1146/annurev-virology-031413-085550
10.1097/MCG.0b013e3182257e98
10.3389/fimmu.2013.00512
10.1128/JVI.80.1.372-382.2006
10.1186/1471-2334-10-253
10.1042/BST0351473
10.1111/j.1574-695X.2011.00835.x
10.1017/S0007114515002408
10.1177/1756283X12454590
10.1186/1471-2180-7-86
10.1172/JCI60945
10.1111/j.1365-2249.2006.03079.x
10.1093/nutrit/nuv039
10.1128/jvi.70.5.3075-3083.1996
10.4049/jimmunol.171.8.4294
10.1128/JVI.02550-09
10.1128/IAI.01563-06
10.1177/1756283X13482996
10.1371/journal.pone.0076962
10.1146/annurev.iy.13.040195.001343
10.1128/JVI.72.1.330-338.1998
10.4049/jimmunol.1501705
10.4049/jimmunol.159.1.28
10.1002/ibd.21282
10.1128/IAI.00994-08
10.4049/jimmunol.1300678
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TK
7TM
8FD
FR3
H94
K9.
M7N
P64
RC3
7X8
7QL
7U9
C1K
ADTOC
UNPAY
DOI 10.1002/eji.201646498
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Virology and AIDS Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
AIDS and Cancer Research Abstracts
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1521-4141
EndPage 2437
ExternalDocumentID oai:pubmedcentral.nih.gov:5201163
4210180941
27457183
10_1002_eji_201646498
EJI3710
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01 A1099451
– fundername: NIAID NIH HHS
  grantid: R01 AI099451
GroupedDBID ---
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UPT
V2E
VH1
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXSBR
X7M
XG1
XPP
XV2
Y6R
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
24P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RGB
RWI
WRC
WUP
7QP
7T5
7TK
7TM
8FD
FR3
H94
K9.
M7N
P64
RC3
7X8
7QL
7U9
C1K
ADTOC
UNPAY
ID FETCH-LOGICAL-c5720-a1e4d1442c887873982f89df28e9c80cc01f095732a667c6ffc15e6f7fe7aa253
IEDL.DBID UNPAY
ISSN 0014-2980
1521-4141
IngestDate Tue Aug 19 23:46:05 EDT 2025
Fri Jul 11 05:55:28 EDT 2025
Fri Jul 11 05:11:28 EDT 2025
Fri Jul 25 12:27:23 EDT 2025
Wed Feb 19 02:43:16 EST 2025
Wed Oct 01 01:50:14 EDT 2025
Thu Apr 24 23:12:11 EDT 2025
Sun Sep 21 06:21:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords L. rhamnosus GG
Probiotics
Dendritic cells
Human rotavirus
Childhood diarrhea
Natural killer cells
E. coli Nissle 1917
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5720-a1e4d1442c887873982f89df28e9c80cc01f095732a667c6ffc15e6f7fe7aa253
Notes Current address
Lulu Shao, University of Pittsburgh, Hillman Cancer Center, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
Kuldeep S. Chattha, Canadian Food Inspection Agency, 3605 Avenue 14 Nord, Lethbridge, Alberta T1H 6P7, Canada.
Anand Kumar, Genomics and Systems Biology, Bioscience Division, Los Alamos National Laboratory, NM 87545, USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/eji.201646498
PMID 27457183
PQID 1827576271
PQPubID 986365
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_eji_201646498
proquest_miscellaneous_1837299255
proquest_miscellaneous_1826730474
proquest_journals_1827576271
pubmed_primary_27457183
crossref_citationtrail_10_1002_eji_201646498
crossref_primary_10_1002_eji_201646498
wiley_primary_10_1002_eji_201646498_EJI3710
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle European journal of immunology
PublicationTitleAlternate Eur J Immunol
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
1997; 159
2014; 139
2010; 16
2005; 174
2015; 73
2014; 462–463
2013; 123
2012; 18
1996; 70
2007; 75
2013; 8
2012; 12
2013; 6
2011; 270
2007; 35
1996; 77
2014; 1
2009; 55
2015; 45
2014; 4
2000; 11
2005; 73
2011; 63
2007; 7
1998; 91
2007; 2
2012; 27
2011; 163
2014; 9
2013; 191
2014; 7
2012; 65
2016; 196
2013; 190
2010; 34
2015; 6
2004; 40
2004; 104
2009; 21
2006; 12
2015; 168
1995; 13
1993; 260
2003; 171
2005; 83
2012; 36
2010; 84
1996; 12
2009; 77
2006; 80
2015; 114
2015; 2015
2009; 9
2010; 131
2011; 45
1998; 72
1964; 12
2004; 559
2006; 144
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
Aggarwal S. (e_1_2_7_16_1) 2014; 139
e_1_2_7_4_1
Saif L. J. (e_1_2_7_10_1) 1996; 12
e_1_2_7_8_1
Kalinski P. (e_1_2_7_41_1) 1997; 159
e_1_2_7_18_1
Yuan L. (e_1_2_7_61_1) 1996; 70
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
Meyer R. C. (e_1_2_7_60_1) 1964; 12
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
Yuan L. (e_1_2_7_59_1) 1998; 72
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
17375199 - PLoS One. 2007 Mar 21;2(3):e313
23814609 - Therap Adv Gastroenterol. 2013 Jul;6(4):295-308
8757984 - J Gen Virol. 1996 Jul;77 ( Pt 7):1431-41
24459463 - Front Immunol. 2014 Jan 14;4:512
23918983 - J Immunol. 2013 Sep 1;191(5):2446-56
14960310 - FEBS Lett. 2004 Feb 13;559(1-3):71-6
23320049 - Therap Adv Gastroenterol. 2013 Jan;6(1):39-51
9200435 - J Immunol. 1997 Jul 1;159(1):28-35
23320050 - Therap Adv Gastroenterol. 2013 Jan;6(1):53-68
26500616 - Front Microbiol. 2015 Oct 06;6:1050
26247025 - Biomed Res Int. 2015;2015:697238
22524476 - FEMS Immunol Med Microbiol. 2012 Aug;65(3):467-80
17283097 - Infect Immun. 2007 May;75(5):2399-407
21992955 - J Clin Gastroenterol. 2011 Nov;45 Suppl:S149-53
21668823 - J Intern Med. 2011 Sep;270(3):206-14
19343057 - Nat Rev Immunol. 2009 May;9(5):313-23
19203988 - J Trop Pediatr. 2009 Oct;55(5):297-301
15242871 - Blood. 2004 Nov 15;104(10):3267-75
16352562 - J Virol. 2006 Jan;80(1):372-82
20497255 - Immunology. 2010 Oct;131(2):242-56
26175488 - Nutr Rev. 2015 Aug;73 Suppl 1:32-40
10959079 - Cytokine Growth Factor Rev. 2000 Dec;11(4):321-33
19963349 - J Autoimmun. 2010 May;34(3):J220-5
14199016 - Appl Microbiol. 1964 Jul;12:295-300
23635775 - J Clin Invest. 2013 Jun;123(6):2464-74
24098572 - PLoS One. 2013 Oct 02;8(10):e76962
20164228 - J Virol. 2010 May;84(9):4543-55
9420231 - J Virol. 1998 Jan;72(1):330-8
26234407 - Br J Nutr. 2015 Sep 14;114(5):727-33
24733511 - PLoS One. 2014 Apr 14;9(4):e94891
25092461 - Virology. 2014 Aug;462-463:49-59
8097338 - Science. 1993 Apr 23;260(5107):547-9
26800875 - J Immunol. 2016 Feb 15;196 (4):1780-9
17100625 - Curr Pharm Des. 2006;12(32):4229-45
24820831 - Indian J Med Res. 2014 Mar;139(3):379-85
18031248 - Biochem Soc Trans. 2007 Dec;35(Pt 6):1473-8
16734605 - Clin Exp Immunol. 2006 Jun;144(3):376-81
22030330 - Lancet Infect Dis. 2012 Feb;12(2):136-41
22680836 - Aliment Pharmacol Ther. 2012 Aug;36(4):363-9
15731043 - Infect Immun. 2005 Mar;73(3):1452-65
8627786 - J Virol. 1996 May;70(5):3075-83
17900343 - BMC Microbiol. 2007 Sep 27;7:86
25821837 - Annu Rev Virol. 2014;1:55-69
15039098 - FEMS Immunol Med Microbiol. 2004 Apr 9;40(3):223-9
20735858 - BMC Infect Dis. 2010 Aug 25;10:253
9414285 - Blood. 1998 Jan 1;91(1):196-206
16174109 - Immunol Cell Biol. 2005 Oct;83(5):571-7
21707779 - FEMS Immunol Med Microbiol. 2011 Oct;63(1):93-107
23536630 - J Immunol. 2013 May 1;190(9):4742-53
23900194 - Mucosal Immunol. 2014 Mar;7(2):369-78
26433606 - Vet Immunol Immunopathol. 2015 Dec 15;168(3-4):193-202
21155989 - Clin Exp Immunol. 2011 Feb;163(2):242-9
20803699 - Inflamm Bowel Dis. 2010 Sep;16(9):1583-97
25773885 - Eur J Immunol. 2015 Jun;45(6):1783-93
19220758 - Neurogastroenterol Motil. 2009 May;21(5):559-66, e16-7
15634892 - J Immunol. 2005 Jan 15;174(2):727-34
14530354 - J Immunol. 2003 Oct 15;171(8):4294-303
9015112 - Arch Virol Suppl. 1996;12:153-61
22130826 - Int J Colorectal Dis. 2012 Apr;27(4):467-74
19015248 - Infect Immun. 2009 Feb;77(2):770-82
21382908 - Innate Immun. 2012 Apr;18(2):204-16
7612223 - Annu Rev Immunol. 1995;13:251-76
References_xml – volume: 4
  start-page: 512
  year: 2014
  article-title: Modulation of intestinal TLR4‐inflammatory signaling pathways by probiotic microorganisms: lessons learned from TL2937
  publication-title: Front Immunol.
– volume: 123
  start-page: 2464
  year: 2013
  end-page: 2474
  article-title: Plasmacytoid dendritic cells promote rotavirus‐induced human and murine B cell responses
  publication-title: J. Clin. Invest.
– volume: 35
  start-page: 1473
  year: 2007
  end-page: 1478
  article-title: TLR4 signalling in the intestine in health and disease
  publication-title: Biochem. Soc. Trans.
– volume: 12
  start-page: 4229
  year: 2006
  end-page: 4245
  article-title: Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease
  publication-title: Curr. Pharm. Des.
– volume: 16
  start-page: 1583
  year: 2010
  end-page: 1597
  article-title: Toll‐like receptors in inflammatory bowel diseases: a decade later
  publication-title: Inflamm. Bowel Dis.
– volume: 73
  start-page: 32
  year: 2015
  end-page: 40
  article-title: Potential role of the intestinal microbiota in programming health and disease
  publication-title: Nutr. Rev.
– volume: 18
  start-page: 204
  year: 2012
  end-page: 216
  article-title: Anti‐inflammatory modulation of immune response by probiotic Escherichia coli Nissle 1917 in human blood mononuclear cells
  publication-title: Innate Immun.
– volume: 163
  start-page: 242
  year: 2011
  end-page: 249
  article-title: Interference of or Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine
  publication-title: Clin. Exp. Immunol.
– volume: 2015
  start-page: 697238
  year: 2015
  article-title: Rotavirus infects human biliary epithelial cells and stimulates secretion of cytokines IL‐6 and IL‐8 via MAPK pathway
  publication-title: Biomed. Res. Int.
– volume: 84
  start-page: 4543
  year: 2010
  end-page: 4555
  article-title: Rotavirus differentially infects and polyclonally stimulates human B cells depending on their differentiation state and tissue of origin
  publication-title: J. Virol.
– volume: 73
  start-page: 1452
  year: 2005
  end-page: 1465
  article-title: Nissle 1917 distinctively modulates T‐cell cycling and expansion via toll‐like receptor 2 signaling
  publication-title: Infect Immun.
– volume: 168
  start-page: 193
  year: 2015
  end-page: 202
  article-title: Age‐dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs
  publication-title: Vet. Immunol. Immunopathol.
– volume: 190
  start-page: 4742
  year: 2013
  end-page: 4753
  article-title: Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model
  publication-title: J. Immunol.
– volume: 75
  start-page: 2399
  year: 2007
  end-page: 2407
  article-title: Induction of human beta‐defensin 2 by the probiotic Nissle 1917 is mediated through flagellin
  publication-title: Infect Immun.
– volume: 13
  start-page: 251
  year: 1995
  end-page: 276
  article-title: Interleukin‐12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen‐specific adaptive immunity
  publication-title: Annu. Rev. Immunol.
– volume: 72
  start-page: 330
  year: 1998
  end-page: 338
  article-title: Antibody‐secreting cell responses and protective immunity assessed in gnotobiotic pigs inoculated orally or intramuscularly with inactivated human rotavirus
  publication-title: J. Virol.
– volume: 27
  start-page: 467
  year: 2012
  end-page: 474
  article-title: A double‐blind placebo‐controlled trial to study therapeutic effects of probiotic Nissle 1917 in subgroups of patients with irritable bowel syndrome
  publication-title: Int. J. Colorectal. Dis.
– volume: 6
  start-page: 53
  year: 2013
  end-page: 68
  article-title: The intestinal microbiota dysbiosis and infection: Is there a relationship with inflammatory bowel disease?
  publication-title: Therap. Adv. Gastroenterol.
– volume: 2
  start-page: e313
  year: 2007
  article-title: A key role of dendritic cells in probiotic functionality
  publication-title: PLoS One
– volume: 9
  start-page: 313
  year: 2009
  end-page: 323
  article-title: The gut microbiota shapes intestinal immune responses during health and disease
  publication-title: Nat. Rev. Immunol.
– volume: 9
  start-page: e94891
  year: 2014
  article-title: inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic via modulation of the negative regulators and involvement of TLR2 in intestinal Caco‐2 cells and pig explants
  publication-title: PLoS One
– volume: 21
  start-page: e516
  year: 2009
  end-page: e557
  article-title: Cell‐free supernatants of Nissle 1917 modulate human colonic motility: evidence from an in vitro organ bath study
  publication-title: Neurogastroenterol. Motil.
– volume: 104
  start-page: 3267
  year: 2004
  end-page: 3275
  article-title: NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL‐12 polarization in DCs
  publication-title: Blood
– volume: 270
  start-page: 206
  year: 2011
  end-page: 214
  article-title: Rotavirus vaccines: safety, efficacy and public health impact
  publication-title: J. Intern. Med.
– volume: 91
  start-page: 196
  year: 1998
  end-page: 206
  article-title: Interleukin‐12‐activated natural killer cells recognize B7 costimulatory molecules on tumor cells and autologous dendritic cells
  publication-title: Blood
– volume: 559
  start-page: 71
  year: 2004
  end-page: 76
  article-title: Interleukin‐12 secreted by mature dendritic cells mediates activation of NK cell function
  publication-title: FEBS Lett.
– volume: 83
  start-page: 571
  year: 2005
  end-page: 577
  article-title: Activation of plasmacytoid dendritic cells
  publication-title: Immunol. Cell Biol.
– volume: 80
  start-page: 372
  year: 2006
  end-page: 382
  article-title: Cytokine responses in gnotobiotic pigs after infection with virulent or attenuated human rotavirus
  publication-title: J. Virol.
– volume: 7
  start-page: 369
  year: 2014
  end-page: 378
  article-title: TcpC protein from Nissle improves epithelial barrier function involving PKCzeta and ERK1/2 signaling in HT‐29/B6 cells
  publication-title: Mucosal. Immunol.
– volume: 131
  start-page: 242
  year: 2010
  end-page: 256
  article-title: Innate immune responses to human rotavirus in the neonatal gnotobiotic piglet disease model
  publication-title: Immunology
– volume: 36
  start-page: 363
  year: 2012
  end-page: 369
  article-title: Randomised clinical trial: DSM 17938 vs. placebo in children with acute diarrhoea—a double‐blind study
  publication-title: Aliment Pharmacol. Ther.
– volume: 45
  start-page: 1783
  year: 2015
  end-page: 1793
  article-title: Dendritic cell regulation of NK‐cell responses involves lymphotoxin‐alpha, IL‐12, and TGF‐beta
  publication-title: Eur. J. Immunol.
– volume: 77
  start-page: 770
  year: 2009
  end-page: 782
  article-title: Dendritic cell and NK cell reciprocal cross talk promotes gamma interferon‐dependent immunity to blood‐stage AS infection in mice
  publication-title: Infect. Immun.
– volume: 12
  start-page: 295
  year: 1964
  end-page: 300
  article-title: Procurement and maintenance of germ‐free seine for microbiological investigations
  publication-title: Appl. Microbiol.
– volume: 55
  start-page: 297
  year: 2009
  end-page: 301
  article-title: Dose‐dependent effect of on quantitative reduction of faecal rotavirus shedding in children
  publication-title: J. Trop. Pediatr.
– volume: 196
  start-page: 1780
  year: 2016
  end-page: 1789
  article-title: Differential effects of Nissle and strain GG on human rotavirus binding, infection, and B cell immunity
  publication-title: J. Immunol.
– volume: 6
  start-page: 39
  year: 2013
  end-page: 51
  article-title: Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation
  publication-title: Therap. Adv. Gastroenterol.
– volume: 12
  start-page: 136
  year: 2012
  end-page: 141
  article-title: 2008 estimate of worldwide rotavirus‐associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta‐analysis
  publication-title: Lancet Infect Dis.
– volume: 139
  start-page: 379
  year: 2014
  end-page: 385
  article-title: Lactobacillus GG for treatment of acute childhood diarrhoea: an open labelled, randomized controlled trial
  publication-title: Indian J. Med. Res.
– volume: 1
  start-page: 55
  year: 2014
  end-page: 69
  article-title: Viruses and the microbiota
  publication-title: Annu. Rev. Virol.
– volume: 34
  start-page: J220
  year: 2010
  end-page: J225
  article-title: Coordination of tolerogenic immune responses by the commensal microbiota
  publication-title: J. Autoimmun.
– volume: 12
  start-page: 153
  year: 1996
  end-page: 161
  article-title: The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses
  publication-title: Arch. Virol. Suppl.
– volume: 159
  start-page: 28
  year: 1997
  end-page: 35
  article-title: IL‐12‐deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells
  publication-title: J. Immunol.
– volume: 65
  start-page: 467
  year: 2012
  end-page: 480
  article-title: Early administration of probiotic and/or prebiotic inulin attenuates pathogen‐mediated intestinal inflammation and Smad 7 cell signaling
  publication-title: FEMS Immunol. Med. Microbiol.
– volume: 174
  start-page: 727
  year: 2005
  end-page: 734
  article-title: The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions
  publication-title: J. Immunol.
– volume: 191
  start-page: 2446
  year: 2013
  end-page: 2456
  article-title: Divergent immunomodulating effects of probiotics on T cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model
  publication-title: J. Immunol.
– volume: 171
  start-page: 4294
  year: 2003
  end-page: 4303
  article-title: A dominant role of Toll‐like receptor 4 in the signaling of apoptosis in bacteria‐faced macrophages
  publication-title: J. Immunol.
– volume: 114
  start-page: 727
  year: 2015
  end-page: 733
  article-title: Effects of oral intake of plasmacytoid dendritic cells‐stimulative lactic acid bacterial strain on pathogenesis of influenza‐like illness and immunological response to influenza virus
  publication-title: Br J Nutr
– volume: 70
  start-page: 3075
  year: 1996
  end-page: 3083
  article-title: Systematic and intestinal antibody‐secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease
  publication-title: J. Virol.
– volume: 144
  start-page: 376
  year: 2006
  end-page: 381
  article-title: Expression of Toll‐like receptors and their association with cytokine responses in peripheral blood mononuclear cells of children with acute rotavirus diarrhoea
  publication-title: Clin. Exp. Immunol.
– volume: 8
  start-page: e76962
  year: 2013
  article-title: Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs
  publication-title: PLoS One
– volume: 10
  start-page: 253
  year: 2010
  article-title: Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double‐blind, controlled trial using two different probiotic preparations in Bolivian children
  publication-title: BMC Infect Dis.
– volume: 77
  start-page: 1431
  year: 1996
  end-page: 1441
  article-title: Pathogenesis of an attenuated and a virulent strain of group A human rotavirus in neonatal gnotobiotic pigs
  publication-title: J. Gen. Virol.
– volume: 63
  start-page: 93
  year: 2011
  end-page: 107
  article-title: Regulation of the IL‐10/IL‐12 axis in human dendritic cells with probiotic bacteria
  publication-title: FEMS Immunol. Med. Microbiol.
– volume: 260
  start-page: 547
  year: 1993
  end-page: 549
  article-title: Development of TH1 CD4+ T cells through IL‐12 produced by Listeria‐induced macrophages
  publication-title: Science
– volume: 40
  start-page: 223
  year: 2004
  end-page: 229
  article-title: The probiotic strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens
  publication-title: FEMS Immunol. Med. Microbio
– volume: 7
  start-page: 86
  year: 2007
  article-title: Effective prophylaxis against rotavirus diarrhea using a combination of GG and antibodies
  publication-title: BMC Microbiol.
– volume: 462–463
  start-page: 49
  year: 2014
  end-page: 59
  article-title: Avian reovirus‐triggered apoptosis enhances both virus spread and the processing of the viral nonstructural muNS protein
  publication-title: Virology
– volume: 45
  start-page: S149
  year: 2011
  end-page: S153
  article-title: Probiotics for prevention and treatment of diarrhea
  publication-title: J. Clin. Gastroenterol.
– volume: 6
  start-page: 1050
  year: 2015
  article-title: Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches
  publication-title: Front Microbiol.
– volume: 6
  start-page: 295
  year: 2013
  end-page: 308
  article-title: Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ
  publication-title: Therap. Adv. Gastroenterol.
– volume: 11
  start-page: 321
  year: 2000
  end-page: 333
  article-title: Interferon‐gamma and interleukin‐12 pathway defects and human disease
  publication-title: Cytokine Growth Factor Rev.
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jaut.2009.11.007
– ident: e_1_2_7_55_1
  doi: 10.1371/journal.pone.0094891
– ident: e_1_2_7_54_1
  doi: 10.2174/138161206778743501
– volume: 12
  start-page: 295
  year: 1964
  ident: e_1_2_7_60_1
  article-title: Procurement and maintenance of germ‐free seine for microbiological investigations
  publication-title: Appl. Microbiol.
  doi: 10.1128/am.12.4.295-300.1964
– volume: 12
  start-page: 153
  year: 1996
  ident: e_1_2_7_10_1
  article-title: The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses
  publication-title: Arch. Virol. Suppl.
  doi: 10.1007/978-3-7091-6553-9_17
– ident: e_1_2_7_46_1
  doi: 10.4049/jimmunol.174.2.727
– ident: e_1_2_7_22_1
  doi: 10.1007/s00384-011-1363-9
– ident: e_1_2_7_63_1
  doi: 10.1016/j.vetimm.2015.09.006
– ident: e_1_2_7_45_1
  doi: 10.1016/S0014-5793(04)00026-2
– ident: e_1_2_7_44_1
  doi: 10.1126/science.8097338
– ident: e_1_2_7_56_1
  doi: 10.1016/j.virol.2014.04.039
– ident: e_1_2_7_42_1
  doi: 10.1016/S1359-6101(00)00010-1
– ident: e_1_2_7_40_1
  doi: 10.1182/blood-2004-01-0380
– ident: e_1_2_7_48_1
  doi: 10.4049/jimmunol.1203575
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1365-2567.2010.03298.x
– volume: 139
  start-page: 379
  year: 2014
  ident: e_1_2_7_16_1
  article-title: Lactobacillus GG for treatment of acute childhood diarrhoea: an open labelled, randomized controlled trial
  publication-title: Indian J. Med. Res.
– ident: e_1_2_7_49_1
  doi: 10.1155/2015/697238
– ident: e_1_2_7_23_1
  doi: 10.1038/mi.2013.55
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-2249.2010.04283.x
– ident: e_1_2_7_58_1
  doi: 10.1099/0022-1317-77-7-1431
– ident: e_1_2_7_11_1
  doi: 10.1016/S1473-3099(11)70253-5
– ident: e_1_2_7_34_1
  doi: 10.3389/fmicb.2015.01050
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1440-1711.2005.01392.x
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-2796.2011.02409.x
– ident: e_1_2_7_38_1
  doi: 10.1002/eji.201444885
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1574-695X.2012.00978.x
– ident: e_1_2_7_15_1
  doi: 10.1093/tropej/fmp001
– ident: e_1_2_7_28_1
  doi: 10.1128/IAI.73.3.1452-1465.2005
– ident: e_1_2_7_3_1
  doi: 10.1038/nri2515
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1365-2036.2012.05180.x
– ident: e_1_2_7_26_1
  doi: 10.1016/S0928-8244(03)00368-7
– ident: e_1_2_7_39_1
  doi: 10.1182/blood.V91.1.196
– ident: e_1_2_7_6_1
  doi: 10.1371/journal.pone.0000313
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1365-2982.2008.01258.x
– ident: e_1_2_7_24_1
  doi: 10.1177/1753425910396251
– ident: e_1_2_7_9_1
  doi: 10.1177/1756283X12459294
– ident: e_1_2_7_35_1
  doi: 10.1146/annurev-virology-031413-085550
– ident: e_1_2_7_8_1
  doi: 10.1097/MCG.0b013e3182257e98
– ident: e_1_2_7_33_1
  doi: 10.3389/fimmu.2013.00512
– ident: e_1_2_7_62_1
  doi: 10.1128/JVI.80.1.372-382.2006
– ident: e_1_2_7_14_1
  doi: 10.1186/1471-2334-10-253
– ident: e_1_2_7_53_1
  doi: 10.1042/BST0351473
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1574-695X.2011.00835.x
– ident: e_1_2_7_7_1
  doi: 10.1017/S0007114515002408
– ident: e_1_2_7_5_1
  doi: 10.1177/1756283X12454590
– ident: e_1_2_7_20_1
  doi: 10.1186/1471-2180-7-86
– ident: e_1_2_7_31_1
  doi: 10.1172/JCI60945
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1365-2249.2006.03079.x
– ident: e_1_2_7_36_1
  doi: 10.1093/nutrit/nuv039
– volume: 70
  start-page: 3075
  year: 1996
  ident: e_1_2_7_61_1
  article-title: Systematic and intestinal antibody‐secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease
  publication-title: J. Virol.
  doi: 10.1128/jvi.70.5.3075-3083.1996
– ident: e_1_2_7_52_1
  doi: 10.4049/jimmunol.171.8.4294
– ident: e_1_2_7_50_1
  doi: 10.1128/JVI.02550-09
– ident: e_1_2_7_27_1
  doi: 10.1128/IAI.01563-06
– ident: e_1_2_7_4_1
  doi: 10.1177/1756283X13482996
– ident: e_1_2_7_18_1
  doi: 10.1371/journal.pone.0076962
– ident: e_1_2_7_43_1
  doi: 10.1146/annurev.iy.13.040195.001343
– volume: 72
  start-page: 330
  year: 1998
  ident: e_1_2_7_59_1
  article-title: Antibody‐secreting cell responses and protective immunity assessed in gnotobiotic pigs inoculated orally or intramuscularly with inactivated human rotavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.1.330-338.1998
– ident: e_1_2_7_29_1
  doi: 10.4049/jimmunol.1501705
– volume: 159
  start-page: 28
  year: 1997
  ident: e_1_2_7_41_1
  article-title: IL‐12‐deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.159.1.28
– ident: e_1_2_7_51_1
  doi: 10.1002/ibd.21282
– ident: e_1_2_7_37_1
  doi: 10.1128/IAI.00994-08
– ident: e_1_2_7_19_1
  doi: 10.4049/jimmunol.1300678
– reference: 20735858 - BMC Infect Dis. 2010 Aug 25;10:253
– reference: 23900194 - Mucosal Immunol. 2014 Mar;7(2):369-78
– reference: 25092461 - Virology. 2014 Aug;462-463:49-59
– reference: 18031248 - Biochem Soc Trans. 2007 Dec;35(Pt 6):1473-8
– reference: 21382908 - Innate Immun. 2012 Apr;18(2):204-16
– reference: 26247025 - Biomed Res Int. 2015;2015:697238
– reference: 24098572 - PLoS One. 2013 Oct 02;8(10):e76962
– reference: 22680836 - Aliment Pharmacol Ther. 2012 Aug;36(4):363-9
– reference: 26500616 - Front Microbiol. 2015 Oct 06;6:1050
– reference: 22130826 - Int J Colorectal Dis. 2012 Apr;27(4):467-74
– reference: 25773885 - Eur J Immunol. 2015 Jun;45(6):1783-93
– reference: 21992955 - J Clin Gastroenterol. 2011 Nov;45 Suppl:S149-53
– reference: 15039098 - FEMS Immunol Med Microbiol. 2004 Apr 9;40(3):223-9
– reference: 20164228 - J Virol. 2010 May;84(9):4543-55
– reference: 9200435 - J Immunol. 1997 Jul 1;159(1):28-35
– reference: 14960310 - FEBS Lett. 2004 Feb 13;559(1-3):71-6
– reference: 14199016 - Appl Microbiol. 1964 Jul;12:295-300
– reference: 24459463 - Front Immunol. 2014 Jan 14;4:512
– reference: 24820831 - Indian J Med Res. 2014 Mar;139(3):379-85
– reference: 8097338 - Science. 1993 Apr 23;260(5107):547-9
– reference: 8757984 - J Gen Virol. 1996 Jul;77 ( Pt 7):1431-41
– reference: 21668823 - J Intern Med. 2011 Sep;270(3):206-14
– reference: 8627786 - J Virol. 1996 May;70(5):3075-83
– reference: 24733511 - PLoS One. 2014 Apr 14;9(4):e94891
– reference: 15731043 - Infect Immun. 2005 Mar;73(3):1452-65
– reference: 15634892 - J Immunol. 2005 Jan 15;174(2):727-34
– reference: 22524476 - FEMS Immunol Med Microbiol. 2012 Aug;65(3):467-80
– reference: 19203988 - J Trop Pediatr. 2009 Oct;55(5):297-301
– reference: 17100625 - Curr Pharm Des. 2006;12(32):4229-45
– reference: 25821837 - Annu Rev Virol. 2014;1:55-69
– reference: 17900343 - BMC Microbiol. 2007 Sep 27;7:86
– reference: 19220758 - Neurogastroenterol Motil. 2009 May;21(5):559-66, e16-7
– reference: 19015248 - Infect Immun. 2009 Feb;77(2):770-82
– reference: 16734605 - Clin Exp Immunol. 2006 Jun;144(3):376-81
– reference: 21155989 - Clin Exp Immunol. 2011 Feb;163(2):242-9
– reference: 17375199 - PLoS One. 2007 Mar 21;2(3):e313
– reference: 9414285 - Blood. 1998 Jan 1;91(1):196-206
– reference: 20497255 - Immunology. 2010 Oct;131(2):242-56
– reference: 7612223 - Annu Rev Immunol. 1995;13:251-76
– reference: 23635775 - J Clin Invest. 2013 Jun;123(6):2464-74
– reference: 26433606 - Vet Immunol Immunopathol. 2015 Dec 15;168(3-4):193-202
– reference: 23320050 - Therap Adv Gastroenterol. 2013 Jan;6(1):53-68
– reference: 26175488 - Nutr Rev. 2015 Aug;73 Suppl 1:32-40
– reference: 19963349 - J Autoimmun. 2010 May;34(3):J220-5
– reference: 23536630 - J Immunol. 2013 May 1;190(9):4742-53
– reference: 10959079 - Cytokine Growth Factor Rev. 2000 Dec;11(4):321-33
– reference: 23814609 - Therap Adv Gastroenterol. 2013 Jul;6(4):295-308
– reference: 16174109 - Immunol Cell Biol. 2005 Oct;83(5):571-7
– reference: 26234407 - Br J Nutr. 2015 Sep 14;114(5):727-33
– reference: 21707779 - FEMS Immunol Med Microbiol. 2011 Oct;63(1):93-107
– reference: 14530354 - J Immunol. 2003 Oct 15;171(8):4294-303
– reference: 16352562 - J Virol. 2006 Jan;80(1):372-82
– reference: 22030330 - Lancet Infect Dis. 2012 Feb;12(2):136-41
– reference: 9420231 - J Virol. 1998 Jan;72(1):330-8
– reference: 23320049 - Therap Adv Gastroenterol. 2013 Jan;6(1):39-51
– reference: 9015112 - Arch Virol Suppl. 1996;12:153-61
– reference: 15242871 - Blood. 2004 Nov 15;104(10):3267-75
– reference: 17283097 - Infect Immun. 2007 May;75(5):2399-407
– reference: 23918983 - J Immunol. 2013 Sep 1;191(5):2446-56
– reference: 26800875 - J Immunol. 2016 Feb 15;196 (4):1780-9
– reference: 19343057 - Nat Rev Immunol. 2009 May;9(5):313-23
– reference: 20803699 - Inflamm Bowel Dis. 2010 Sep;16(9):1583-97
SSID ssj0009659
Score 2.397211
Snippet Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics...
Lactobacillus rhamnosus GG (LGG), a gram‐positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram‐negative probiotics...
Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2426
SubjectTerms Animals
Cell Differentiation
Cells, Cultured
Childhood diarrhea
Cytokines - metabolism
Cytotoxicity, Immunologic
Dendritic cells
Dendritic Cells - immunology
Dendritic Cells - virology
E coli
E. coli Nissle 1917
Escherichia coli
Escherichia coli - immunology
Escherichia coli Infections - immunology
Germ-Free Life
Human rotavirus
Humans
Immunity, Innate
Inflammation Mediators - metabolism
Intestinal Mucosa - immunology
Killer Cells, Natural - immunology
L. rhamnosus GG
Lactobacillus rhamnosus
Lactobacillus rhamnosus - immunology
Lymphocyte Activation
Natural killer cells
Probiotics
Reoviridae
Rotavirus - immunology
Rotavirus Infections - immunology
Swine
Viruses
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hSrwOPMorUJCREBwgbeL4kRxR2aoUsQdEpd6C7TirwJJdbTbAcuIn8Bv5JYzjbKoFUYS4JuPIsWfsbzzjbwAepWXhKr7zUFNdhiyJdKgKmYVCKFtoKgruE2TH4vCYHZ3wk77OqbsL4_khhgM3Zxndeu0MXOlm75Q01L6vXGaWYIJl7rJvnPAuTPvmlD7KkeX5lZiFNEujnmMT2-9ttN7ck34DmpfhYlvP1eqzmk43MWy3CR1chXfr7vvckw-77VLvmq-_MDv-x_9dgys9QCXPvUZdh3O23obzvmTlahsuvO6D8Tfgy6hxM165bGmC-lSRMc7i1BLnnJGeAKIhk3q2dFxP-D0yryYNURNVISglXXlAgmLqU7VoG6JX5OOs6MqJ1RMyf7FPVF2Q8asf37678AJZ-HRe29yE44PR2_3DsC_kEBou0T1VsWUFem7U4JKWyiRLaZlmRUlTm5k0MiaKS4R6MqFKCGlEWZqYW1HK0kqlKE9uwVY9q-0dIIy7SHnCtbWMSYPOaRqJSJkUYYkyQgbwbD2VuelZzl2xjWnu-ZlpjuOaD-MawONBfO7pPf4kuLPWi7y38iZH30yiv0ZlHMDD4TXapxsVVdtZ28kI6WKb7CwZFzzN0LsL4LbXuaE3VDKO-CEJ4MmghH_r6tNOr86WykdHLxOEl3f_SfoeXHLPfDbjDmwtF629j6hsqR90pvcT3kMuBQ
  priority: 102
  providerName: Wiley-Blackwell
Title Escherichia coli Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NK‐cell responses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.201646498
https://www.ncbi.nlm.nih.gov/pubmed/27457183
https://www.proquest.com/docview/1827576271
https://www.proquest.com/docview/1826730474
https://www.proquest.com/docview/1837299255
http://doi.org/10.1002/eji.201646498
UnpaywallVersion submittedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1521-4141
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009659
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL0anfh64GPACIzJSAgeRkbiOHbyOI1OY4gKISqNp8hxnCrQpVXTbJQnfgK_kV_CdZxGqioKb5FyYyW-1_Y5ujf3ALyI8swovoduStPcZYGXujITscu51FlKeRbaAtkBPx2ys_PwfAuWioKr6Xv6Rn8tTPkVZ5zF0TXY5iaN1IPt4eDj0Re7yTKXxo1AmjmJXOYzv22lufb86tGzhidvw826nMrFlRyPV6Fqc9ac3IX-8o8dW2Ly7bCep4fqx3oDx42fcQ_utGCTHNnouA9butyB61Z-crEDNz60ifUH8L1fGe8VpvKZYGwUZIAeGWtiiBZpmzlUZFRO5qZvE45HpsWoInIkCwSYpJH6I2gmL4tZXZF0QS4mWSMNVo7I9O0xkWVGBu9___xlUgVkZktzdfUQhif9z8enbivK4KpQINWUvmYZsjCqcHuKRBBHNI_iLKeRjlXkKeX5OcI2EVDJuVA8z5Ufap6LXAspaRg8gl45KfVjICw0We8gTLVmTCgkmpHHPakihBhSceHA66W_EtV2LDfCGePE9lqmCc5r0s2rAy8786lt1fE3w72l85N2xVYJ8iyB3IsK34Hn3W1ca2ZWZKkndWPDhclTsk02JhEaI1NzYNcGVvc2VLAQsUDgwKsu0v71qgdNHG62Svpn7wKEik_-e9yncMtc26rEPejNZ7V-huhqnu4jr_hE99sl9gdd6Bqq
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BERQOPMorUMBIiB4gbdZxbOeI2q22rz2gVuotchxnlXbJrja7wHLiJ_Ab-SWM42zKgihCnD2x_Jixv_FMvgF4JfPMVnyP_JSmuc_CIPVVJmKfc2WylPIscgmyfd47Yfun0elPf_E7foj2wc1aRn1eWwO3D9JbF6yh5qywqVmccRbLq3DNxuisae68vyCQsnR57ixmPo1l0LBsYgdbS58v30q_Qc1bsDorx2r-SQ2Hyyi2voZ274BaTMBln5xvzqbppv7yC7fj_8zwLtxuMCp555TqHlwx5Rpcd1Ur52tw46iJx9-Hz93KbnphE6YJqlRB-riRQ0Osf0YaDoiKDMrR1NI9YX9kXAwqogaqQFxK6gqBBMXUx2Iyq0g6Jx9GWV1RrByQ8c42UWVG-gffv36zEQYycRm9pnoAJ7vd4-2e39Ry8HUk0ENVHcMydN6oxlNNijCWNJdxllNpYi0DrYNOjmhPhFRxLjTPc92JDM9FboRSNAofwko5Ks1jICyywfIwSo1hTGj0T2XAA6UlIhOlufDg7WIvE90Qndt6G8PEUTTTBNc1adfVg9et-NgxfPxJcH2hGElj6FWC7plAl42Kjgcv22Y0UbsqqjSjWS3DhQ1vsstkbPw0RgfPg0dO6drRUMEihBChBxutFv5tqG9qxbpcKunu74WIMJ_8k_QLWO0dHx0mh3v9g6dw07a75MZ1WJlOZuYZgrRp-ry2wx-xQjIh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BEQUeuJRboICREH2AtFnHsZ1H1O6qF1ghRKW-BcdxVoElu9psgOWJT-Ab-RLGcTbVgihCPGdiOfaMc05mcgbgicwz2_E98lOa5j4Lg9RXmYh9zpXJUsqzyBXIDvn-MTs8iU7aPqf2XxinD9F9cLOR0ZzXNsCnWb5zKhpq3he2MoszzmJ5Hi4wjgzLoqI3p_pRVi3PHcXMp7EMWpFNHGBn5fbVl9JvSPMKXKrLqVp8VuPxKoht3kKDa_BuOX9XfPJhu56n2_rrL9KO__GA1-Fqi1DJC-dSN-CcKTfgoutZudiA9VdtNv4mfOlXdssLWy5N0KEKMsRtHBti2RlpFSAqMioncyv2hOORaTGqiBqpAlEpafoDEjRTn4pZXZF0QT5OsqafWDki071dosqMDI9-fPtu8wtk5up5TXULjgf9t7v7ftvJwdeRQH6qeoZlSN2oxjNNijCWNJdxllNpYi0DrYNejlhPhFRxLjTPc92LDM9FboRSNApvw1o5Kc1dICyyqfIwSo1hTGhkpzLggdIScYnSXHjwfLmViW5lzm23jXHiBJppguuadOvqwdPOfOr0Pf5kuLn0i6QN8ypBciaQsFHR8-BxdxkD1K6KKs2kbmy4sMlNdpaNzZ7GSO88uON8rpsNFSxCABF6sNU54d-m-qzxq7Otkv7hQYj48t4_WT-C9dd7g-TlwfDoPly2l11l4yaszWe1eYAIbZ4-bKLwJ-qKMNA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrfjogY9CS6AgIyE4lJTEcezkWJWtShErDqxUTpHjOKu0S3a12QDLqT-B38gvYRxnI61WLNwiZWIlnrH9nmYyD-BllGdG8T10U5rmLgu81JWZiF3Opc5SyrPQFsgO-NmQnV-EF1uwVBRcTd_Tt_qyMOVXnHEWRzdgm5s0Ug-2h4NPx1_sJstcGjcCaeYkcpnP_LaV5trzq0fPGp7cgdt1OZWL73I8XoWqzVlzeg_6yz92bInJ1VE9T4_Uz_UGjhs_4z7cbcEmObbR8QC2dLkLN6385GIXbn1sE-sP4Ue_Mt4rTOUzwdgoyAA9MtbEEC3SNnOoyKiczE3fJhyPTItRReRIFggwSSP1R9BMfitmdUXSBfk6yRppsHJEpu9OiCwzMvjw-_qXSRWQmS3N1dUjGJ72P5-cua0og6tCgVRT-pplyMKowu0pEkEc0TyKs5xGOlaRp5Tn5wjbREAl50LxPFd-qHkuci2kpGGwB71yUurHQFhost5BmGrNmFBINCOPe1JFCDGk4sKBN0t_JartWG6EM8aJ7bVME5zXpJtXB1515lPbquNvhgdL5yftiq0S5FkCuRcVvgMvutu41sysyFJP6saGC5OnZJtsTCI0RqbmwL4NrO5tqGAhYoHAgdddpP3rVQ-bONxslfTP3wcIFZ_897hP4Y65tlWJB9Cbz2r9DNHVPH3eLq4_w8kZwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Escherichia+coli+Nissle+1917+protects+gnotobiotic+pigs+against+human+rotavirus+by+modulating+pDC+and+NK%E2%80%90cell+responses&rft.jtitle=European+journal+of+immunology&rft.au=Vlasova%2C+Anastasia+N.&rft.au=Shao%2C+Lulu&rft.au=Kandasamy%2C+Sukumar&rft.au=Fischer%2C+David+D.&rft.date=2016-10-01&rft.issn=0014-2980&rft.eissn=1521-4141&rft.volume=46&rft.issue=10&rft.spage=2426&rft.epage=2437&rft_id=info:doi/10.1002%2Feji.201646498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eji_201646498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon