基于因果知识网络的攻击路径预测方法
TP393.8; 针对现有攻击路径预测方法无法准确反映攻击者攻击能力对后续攻击路径的影响,提出了基于因果知识网络的攻击路径预测方法。借助因果知识网络,首先通过告警映射识别已发生的攻击行为;然后分析推断攻击者能力等级,进而根据攻击者能力等级动态调整概率知识分布;最后利用改进的Dijkstra算法计算出最有可能的攻击路径。实验结果表明,该方法符合网络对抗实际环境,且能提高攻击路径预测的准确度。...
Saved in:
Published in | 通信学报 Vol. 37; no. 10; pp. 188 - 198 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
信息保障技术重点实验室,北京 100072
2016
解放军信息工程大学,河南郑州,450001%解放军信息工程大学,河南郑州 450001 |
Subjects | |
Online Access | Get full text |
ISSN | 1000-436X |
DOI | 10.11959/j.issn.1000-436x.2016210 |
Cover
Abstract | TP393.8; 针对现有攻击路径预测方法无法准确反映攻击者攻击能力对后续攻击路径的影响,提出了基于因果知识网络的攻击路径预测方法。借助因果知识网络,首先通过告警映射识别已发生的攻击行为;然后分析推断攻击者能力等级,进而根据攻击者能力等级动态调整概率知识分布;最后利用改进的Dijkstra算法计算出最有可能的攻击路径。实验结果表明,该方法符合网络对抗实际环境,且能提高攻击路径预测的准确度。 |
---|---|
AbstractList | TP393.8; 针对现有攻击路径预测方法无法准确反映攻击者攻击能力对后续攻击路径的影响,提出了基于因果知识网络的攻击路径预测方法。借助因果知识网络,首先通过告警映射识别已发生的攻击行为;然后分析推断攻击者能力等级,进而根据攻击者能力等级动态调整概率知识分布;最后利用改进的Dijkstra算法计算出最有可能的攻击路径。实验结果表明,该方法符合网络对抗实际环境,且能提高攻击路径预测的准确度。 |
Abstract_FL | The existing attack path prediction methods can not accurately reflect the variation of the following attack path caused by the capability of the attacker. Accordingly an attack path prediction method based on causal knowledge net was presented. The proposed method detected the current attack actions by mapping the alarm sets to the causal knowledge net. By analyzing the attack actions, the capability grade of the attacker was inferred, according to which adjust the prob-ability knowledge distribution dynamically. With the improved Dijkstra algorithm, the most possible attack path was computed. The experiments results indicate that the proposed method is suitable for a real network confrontation envi-ronment. Besides, the method can enhance the accuracy of attack path prediction. |
Author | 汤光明 宋海涛 寇广 王硕 |
AuthorAffiliation | 解放军信息工程大学,河南郑州,450001%解放军信息工程大学,河南郑州 450001; 信息保障技术重点实验室,北京 100072 |
AuthorAffiliation_xml | – name: 解放军信息工程大学,河南郑州,450001%解放军信息工程大学,河南郑州 450001; 信息保障技术重点实验室,北京 100072 |
Author_FL | KOU Guang WANG Shuo TANG Guang-ming SONG Hai-tao |
Author_FL_xml | – sequence: 1 fullname: WANG Shuo – sequence: 2 fullname: TANG Guang-ming – sequence: 3 fullname: KOU Guang – sequence: 4 fullname: SONG Hai-tao |
Author_xml | – sequence: 1 fullname: 王硕 – sequence: 2 fullname: 汤光明 – sequence: 3 fullname: 寇广 – sequence: 4 fullname: 宋海涛 |
BookMark | eNrjYmDJy89LZWBQNDTQMzS0NLXUz9LLLC7O0zM0MDDQNTE2q9AzMjA0MzI0YGHghIlFcDDwFhdnJhmYGhqbmxkYG3IyGD-dv-vJrr6nsxc8mzfn-fylL9a3Pd878fnuOc9ntTybsvtp--4X29c_3dfyclHLs63dz6btfLZ5Kg8Da1piTnEqL5TmZghxcw1x9tD18Xf3dHb00U02NTfSNTQ2NTE2NUtJsbQwNjU1Njc3MEpKSk1LTbJITDVKTDG3SE40TjU3SzFOBSo0N0k1MDROSk1KTLFMNDJNSk41MuZmUIUYW56Yl5aYlx6flV9alAe0ML6koiIJ5Dugv4yMjAEd0VyY |
ClassificationCodes | TP393.8 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11959/j.issn.1000-436x.2016210 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Attack path prediction method based on causal knowledge net |
EndPage | 198 |
ExternalDocumentID | txxb201610022 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 信息保障技术重点实验室开放基金资助项目(No.KJ-14-106) Foundation Items:The National Natural Science Foundation of China; Foundation of Science and Technology on Information Assurance Laboratory funderid: (No.61303074); (61303074); (KJ-14-106) |
GroupedDBID | -0Y 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CUBFJ GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-c572-1354356dd9835537702bbefeb8ae2ad78ca3e76d3e35474e013bebad9a25bce23 |
ISSN | 1000-436X |
IngestDate | Thu May 29 04:00:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Keywords | 概率知识分布 probability knowledge distribution attacker capability 因果知识网络 attack path prediction 攻击者能力 Dijkstra算法 causal knowledge net 攻击路径预测 Dijkstra algorithm |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c572-1354356dd9835537702bbefeb8ae2ad78ca3e76d3e35474e013bebad9a25bce23 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_txxb201610022 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 通信学报 |
PublicationTitle_FL | Journal on Communications |
PublicationYear | 2016 |
Publisher | 信息保障技术重点实验室,北京 100072 解放军信息工程大学,河南郑州,450001%解放军信息工程大学,河南郑州 450001 |
Publisher_xml | – name: 信息保障技术重点实验室,北京 100072 – name: 解放军信息工程大学,河南郑州,450001%解放军信息工程大学,河南郑州 450001 |
SSID | ssib051376031 ssj0002912165 ssib058759023 ssib001102965 ssib023646527 ssib023168036 ssib036439991 ssib050281523 ssib000968473 |
Score | 2.1012194 |
Snippet | TP393.8; 针对现有攻击路径预测方法无法准确反映攻击者攻击能力对后续攻击路径的影响,提出了基于因果知识网络的攻击路径预测方法。借助因果知识网络,首先通过告警映射识... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 188 |
Title | 基于因果知识网络的攻击路径预测方法 |
URI | https://d.wanfangdata.com.cn/periodical/txxb201610022 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1000-436X databaseCode: M~E dateStart: 19800101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib058759023 providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9QwFC_rCuJFFBU_lxXMSbo2adM0x7bTYRH1NMLelqYfehphnYVhD54GPQiCoB50cUXwvAcRcQf9a5yZ9b_wvdfOTAcVP2AI6csvL-_lTZuXNsmzrKu49UMZjAGYB67tebmwdeFrO8sKWeZuIZwc9w7fuu2v3_FubMiNpSM3G6uWtntmLdv55b6S_7Eq0MCuuEv2Hyw7YwoEyIN9IQULQ_pXNmaJZLrNopAlHqZBQpSIhQ5LfKYTpmOWKMSEkiUBC9ss8JEStZjmlImmGKjuUS0PicAnoFKoFSmsCJQoIYxmoajBEcAiqgV5TRSXVfEspy4v4nE5RSUkSMKRVdhioY_4IATZpmZHQUAJZKkQqBslwJqz0CPJ4EeN6QDgc4gkBRWJqqGthZKklhREBoUwA_Wj5luPajsm_UMbsoKInPQnim6hPqAM9hpJH1R9HRNGY_NBi_QQ1CPUMlgCew3AcU1BRcBycU2BVKvaimF8DT-HqMYLWby2PZeiMc5GlOoYm-md4zTGB17FMKxdDV4F4P55FNNS0zCGTaxNm-jjQkRf1PwWDwnv9fsGS_FAXXBIjgoFfhcuZH2YNCer4Io0d1E7Qs-_cQsMYQb-zPza93wpZs6pi76rnp-sJMEzBedvxk9yXF81_6YsYSas64hU5BcJzQWn2K6zTjtmXZnqe_132tJuum6Zdu82HL_OSetEPWNbDavb75S1tHPvtOWO9g6-HTwdvX47frM72Xt_uP9o8uXZZLg7eTUYPx-OHg8PP-2Pvg6-vxuMPz4Zv_w8_vDijNVpJ5143a7jj9iZVMLmroS5hJ_nGmYp0lXKEcYUZWGCtBBproIsdQvlwwMNgMorYDJlCpPmOhXSZIVwz1rL3fvd4py1yt3MSYUoeWl8L3VKk8JjLOXGTU0poWfOWyu1jpv14-XB5oJJL_wJcNE6jvnq5eAla7m3tV1cBne5Z1boX_ADgAOMdQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%9B%A0%E6%9E%9C%E7%9F%A5%E8%AF%86%E7%BD%91%E7%BB%9C%E7%9A%84%E6%94%BB%E5%87%BB%E8%B7%AF%E5%BE%84%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E9%80%9A%E4%BF%A1%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E7%A1%95&rft.au=%E6%B1%A4%E5%85%89%E6%98%8E&rft.au=%E5%AF%87%E5%B9%BF&rft.au=%E5%AE%8B%E6%B5%B7%E6%B6%9B&rft.date=2016&rft.pub=%E4%BF%A1%E6%81%AF%E4%BF%9D%E9%9A%9C%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E5%8C%97%E4%BA%AC+100072&rft.issn=1000-436X&rft.volume=37&rft.issue=10&rft.spage=188&rft.epage=198&rft_id=info:doi/10.11959%2Fj.issn.1000-436x.2016210&rft.externalDocID=txxb201610022 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftxxb%2Ftxxb.jpg |