Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease

To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician. Retrospective series. One thousand consecutive families seen by a single clinician. The clinical records of all pati...

Full description

Saved in:
Bibliographic Details
Published inOphthalmology (Rochester, Minn.) Vol. 124; no. 9; pp. 1314 - 1331
Main Authors Stone, Edwin M., Andorf, Jeaneen L., Whitmore, S. Scott, DeLuca, Adam P., Giacalone, Joseph C., Streb, Luan M., Braun, Terry A., Mullins, Robert F., Scheetz, Todd E., Sheffield, Val C., Tucker, Budd A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2017
Subjects
EPP
VVD
PV
RPE
IVS
BWA
BBS
HMA
AD
LCA
FGR
AR
EV
XL
LB
MIS
ERG
NGS
PCR
RP
Online AccessGet full text
ISSN0161-6420
1549-4713
1549-4713
DOI10.1016/j.ophtha.2017.04.008

Cover

Abstract To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician. Retrospective series. One thousand consecutive families seen by a single clinician. The clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000. Sensitivity and false genotype rate. Disease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001). Genetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.
AbstractList Purpose To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician. Design Retrospective series. Participants One thousand consecutive families seen by a single clinician. Methods The clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000. Main Outcome Measures Sensitivity and false genotype rate. Results Disease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001). Conclusions Genetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.
To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician. Retrospective series. One thousand consecutive families seen by a single clinician. The clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000. Sensitivity and false genotype rate. Disease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001). Genetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.
To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician.PURPOSETo devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician.Retrospective series.DESIGNRetrospective series.One thousand consecutive families seen by a single clinician.PARTICIPANTSOne thousand consecutive families seen by a single clinician.The clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000.METHODSThe clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000.Sensitivity and false genotype rate.MAIN OUTCOME MEASURESSensitivity and false genotype rate.Disease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001).RESULTSDisease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001).Genetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.CONCLUSIONSGenetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.
Author Tucker, Budd A.
Streb, Luan M.
Stone, Edwin M.
Giacalone, Joseph C.
Braun, Terry A.
Scheetz, Todd E.
Sheffield, Val C.
Whitmore, S. Scott
DeLuca, Adam P.
Andorf, Jeaneen L.
Mullins, Robert F.
AuthorAffiliation 1 Departments of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, IA
3 Stephen A. Wynn Institute for Vision Research, the University of Iowa, Iowa City, IA
2 Pediatrics, the University of Iowa Carver College of Medicine, Iowa City, IA
AuthorAffiliation_xml – name: 1 Departments of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, IA
– name: 2 Pediatrics, the University of Iowa Carver College of Medicine, Iowa City, IA
– name: 3 Stephen A. Wynn Institute for Vision Research, the University of Iowa, Iowa City, IA
Author_xml – sequence: 1
  givenname: Edwin M.
  surname: Stone
  fullname: Stone, Edwin M.
  email: edwin-stone@uiowa.edu
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 2
  givenname: Jeaneen L.
  surname: Andorf
  fullname: Andorf, Jeaneen L.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 3
  givenname: S. Scott
  orcidid: 0000-0003-0161-9625
  surname: Whitmore
  fullname: Whitmore, S. Scott
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 4
  givenname: Adam P.
  orcidid: 0000-0001-7798-1538
  surname: DeLuca
  fullname: DeLuca, Adam P.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 5
  givenname: Joseph C.
  surname: Giacalone
  fullname: Giacalone, Joseph C.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 6
  givenname: Luan M.
  surname: Streb
  fullname: Streb, Luan M.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 7
  givenname: Terry A.
  surname: Braun
  fullname: Braun, Terry A.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 8
  givenname: Robert F.
  surname: Mullins
  fullname: Mullins, Robert F.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 9
  givenname: Todd E.
  surname: Scheetz
  fullname: Scheetz, Todd E.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 10
  givenname: Val C.
  surname: Sheffield
  fullname: Sheffield, Val C.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
– sequence: 11
  givenname: Budd A.
  surname: Tucker
  fullname: Tucker, Budd A.
  organization: Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28559085$$D View this record in MEDLINE/PubMed
BookMark eNqVkl-LEzEUxYOsuN3qNxCZR186JpkkMyMiSLW6sCL45zlkMnd2UtOkm2Qq_fam266oIIsvyUPO_R1yzr1AZ847QOgpwSXBRLxYl347plGVFJO6xKzEuHmAZoSzdsFqUp2hWZaRhWAUn6OLGNcYYyEq9gid04bzFjd8hoalNc5oZe2-WHk9ReiLj96CnqwKxaXbQUzmWiXjXeGHgmRGsfQuZkEyOyhWamOsgVj8MGnM-hGCSZnxGZJxyhZvTQQV4TF6OCgb4cnpnqNvq3dflx8WV5_eXy7fXC00r0la9A1gCkPXkoFSIkRHBPCK9gC16DtCgDDaQAUU2rrv-o4zEFUDQ9UNtGOMV3P0-sjdTt0Geg0uBWXlNpiNCnvplZF_vjgzymu_k5wLXmOWAc9PgOBvpvx5uTFRg7XKgZ-iJC1mtMJtPubo2e9ev0zuws2Cl0eBDj7GAIPUJt1Gma2NlQTLQ5NyLY9NykOTEjOZm8zD7K_hO_49Y6cAIKe8MxBk1Aacht4E0En23vwvQJ825DvsIa79FHKvOQgZqcTyy2HHDitG6gozcQt49W_A_f4_ASo35TY
CitedBy_id crossref_primary_10_1038_s41598_020_69456_3
crossref_primary_10_1186_s13287_023_03526_x
crossref_primary_10_1093_hmg_ddad176
crossref_primary_10_1016_j_jcjo_2024_12_013
crossref_primary_10_1134_S1022795421070139
crossref_primary_10_1093_hmg_ddae144
crossref_primary_10_1136_bjo_2022_321903
crossref_primary_10_1371_journal_pone_0307266
crossref_primary_10_3928_23258160_20210727_08
crossref_primary_10_1007_s00347_018_0779_9
crossref_primary_10_1073_pnas_1913179117
crossref_primary_10_1097_IJG_0000000000002254
crossref_primary_10_1002_mgg3_70019
crossref_primary_10_1007_s10633_021_09847_7
crossref_primary_10_1136_jmedgenet_2018_105971
crossref_primary_10_1038_s41433_020_01287_y
crossref_primary_10_1038_s41434_022_00364_z
crossref_primary_10_1001_jamaophthalmol_2020_6418
crossref_primary_10_3390_ijms22126419
crossref_primary_10_1016_j_gene_2022_146554
crossref_primary_10_1016_j_ophtha_2020_07_037
crossref_primary_10_1186_s13023_022_02340_7
crossref_primary_10_1002_mgg3_1663
crossref_primary_10_1111_aos_14679
crossref_primary_10_2147_JMDH_S274739
crossref_primary_10_1016_j_ajhg_2024_01_001
crossref_primary_10_1016_j_xops_2024_100649
crossref_primary_10_3389_fgene_2021_647400
crossref_primary_10_1002_humu_24275
crossref_primary_10_1016_j_xops_2021_100106
crossref_primary_10_3390_biomedicines11020385
crossref_primary_10_1167_tvst_9_7_2
crossref_primary_10_1089_hum_2018_244
crossref_primary_10_1007_s00417_023_06360_2
crossref_primary_10_1080_13816810_2020_1807026
crossref_primary_10_3390_ijms21030777
crossref_primary_10_1159_000500574
crossref_primary_10_1016_j_jbc_2024_107739
crossref_primary_10_1038_s42003_018_0226_0
crossref_primary_10_1055_a_2176_4233
crossref_primary_10_1089_hum_2019_159
crossref_primary_10_1038_s41467_024_47911_3
crossref_primary_10_1038_s41525_021_00214_8
crossref_primary_10_1002_humu_24064
crossref_primary_10_1093_hmg_ddad032
crossref_primary_10_1089_hum_2020_043
crossref_primary_10_1186_s13023_020_01591_6
crossref_primary_10_1097_IAE_0000000000004332
crossref_primary_10_3389_fnagi_2022_948279
crossref_primary_10_3390_genes13020313
crossref_primary_10_1001_jamaophthalmol_2020_6089
crossref_primary_10_1186_s12920_021_00935_w
crossref_primary_10_1002_mgg3_2505
crossref_primary_10_1089_hum_2018_156
crossref_primary_10_1167_tvst_11_2_14
crossref_primary_10_3390_diagnostics10100779
crossref_primary_10_3390_ijms21176240
crossref_primary_10_1016_j_survophthal_2017_12_006
crossref_primary_10_3341_kjo_2023_0008
crossref_primary_10_1016_j_jcjo_2023_11_022
crossref_primary_10_1136_jmg_2023_109470
crossref_primary_10_1016_j_ophtha_2019_04_031
crossref_primary_10_1038_s41434_022_00365_y
crossref_primary_10_3390_genes11091090
crossref_primary_10_1016_j_ophtha_2024_09_004
crossref_primary_10_1080_13816810_2020_1766087
crossref_primary_10_3390_ijms22041508
crossref_primary_10_1111_ceo_14461
crossref_primary_10_1080_08164622_2021_1878851
crossref_primary_10_3390_ijms23042271
crossref_primary_10_3389_fgene_2021_600210
crossref_primary_10_1038_s41591_018_0327_9
crossref_primary_10_1038_s41525_022_00306_z
crossref_primary_10_3390_cimb46050300
crossref_primary_10_1167_tvst_9_6_2
crossref_primary_10_3390_genes12060812
crossref_primary_10_1016_j_preteyeres_2019_100827
crossref_primary_10_3928_23258160_20200603_06
crossref_primary_10_1016_j_ajoc_2019_100461
crossref_primary_10_1111_ceo_14110
crossref_primary_10_1093_pnasnexus_pgad043
crossref_primary_10_1097_IIO_0000000000000377
crossref_primary_10_3390_genes11121497
crossref_primary_10_1016_j_ajps_2022_02_001
crossref_primary_10_1136_bjophthalmol_2021_319365
crossref_primary_10_1007_s11095_018_2554_7
crossref_primary_10_1002_path_6056
crossref_primary_10_3389_fgene_2022_999695
crossref_primary_10_1038_s41431_025_01833_w
crossref_primary_10_1038_s41439_019_0065_7
crossref_primary_10_1097_IAE_0000000000002449
crossref_primary_10_1097_IIO_0000000000000368
crossref_primary_10_1016_j_preteyeres_2022_101089
crossref_primary_10_3389_fnins_2020_579062
crossref_primary_10_1016_j_ajo_2023_10_002
crossref_primary_10_1016_j_ajo_2024_08_038
crossref_primary_10_1167_tvst_11_1_6
crossref_primary_10_3390_jcm13185512
crossref_primary_10_1080_13816810_2021_1952616
crossref_primary_10_1172_jci_insight_165937
crossref_primary_10_1001_jamaophthalmol_2020_3645
crossref_primary_10_1038_s41525_021_00180_1
crossref_primary_10_1038_s41598_020_73645_5
crossref_primary_10_1136_bmjophth_2021_000860
crossref_primary_10_1167_tvst_10_11_3
crossref_primary_10_1097_IIO_0000000000000262
crossref_primary_10_3390_ijms22020850
crossref_primary_10_1172_JCI173892
crossref_primary_10_1177_24741264221100936
crossref_primary_10_1007_s00415_020_10028_w
crossref_primary_10_1002_mgg3_70046
crossref_primary_10_3389_fmed_2023_1204095
crossref_primary_10_1016_j_jcjo_2023_08_006
crossref_primary_10_1016_j_survophthal_2023_09_006
crossref_primary_10_1007_s10384_021_00824_w
crossref_primary_10_1167_iovs_66_2_12
crossref_primary_10_1016_j_ymthe_2020_11_029
crossref_primary_10_1055_a_1388_7236
crossref_primary_10_3390_genes12040593
crossref_primary_10_1089_hum_2023_017
crossref_primary_10_3390_genes13050925
crossref_primary_10_3390_ijms24087280
crossref_primary_10_1080_08820538_2021_1887903
crossref_primary_10_1186_s13023_021_02145_0
crossref_primary_10_1016_j_scr_2024_103621
crossref_primary_10_1007_s40291_021_00558_y
crossref_primary_10_3389_fgene_2022_900548
crossref_primary_10_3390_genes14020291
crossref_primary_10_1016_j_visres_2023_108192
crossref_primary_10_1038_s41433_019_0599_4
crossref_primary_10_1371_journal_pgen_1010587
crossref_primary_10_1515_mr_2022_0029
crossref_primary_10_1136_bjophthalmol_2020_317763
crossref_primary_10_1016_j_ophtha_2020_04_008
crossref_primary_10_1016_j_oret_2022_03_011
crossref_primary_10_1038_s41598_024_77014_4
crossref_primary_10_1097_IAE_0000000000003319
crossref_primary_10_3390_ijms26010114
crossref_primary_10_1146_annurev_vision_032321_091738
crossref_primary_10_1080_07853890_2023_2250538
crossref_primary_10_1002_bies_202200032
crossref_primary_10_3390_cells14030152
crossref_primary_10_1016_j_gim_2021_10_013
crossref_primary_10_46889_JOAR_2023_4309
crossref_primary_10_1111_opo_12682
crossref_primary_10_3390_ph12020074
crossref_primary_10_1167_iovs_62_6_22
crossref_primary_10_1016_j_stemcr_2019_03_002
crossref_primary_10_3389_fcell_2021_645600
crossref_primary_10_1016_j_ajo_2020_11_022
crossref_primary_10_1089_jop_2018_0087
crossref_primary_10_1097_JBR_0000000000000021
crossref_primary_10_1073_pnas_1817639116
crossref_primary_10_2147_OPTH_S353787
crossref_primary_10_3390_ijms23073905
crossref_primary_10_1016_j_oret_2025_03_004
crossref_primary_10_2147_OPTH_S346103
crossref_primary_10_3390_genes13010027
crossref_primary_10_1167_iovs_65_14_30
crossref_primary_10_1186_s12886_019_1250_7
crossref_primary_10_1002_ajmg_c_31828
crossref_primary_10_1002_ajmg_c_31825
crossref_primary_10_3390_ijms22052374
crossref_primary_10_3390_ijms24032709
crossref_primary_10_1016_j_preteyeres_2024_101317
crossref_primary_10_1136_jmedgenet_2018_105691
crossref_primary_10_1080_08164622_2021_1880863
crossref_primary_10_1136_bjo_2023_323640
crossref_primary_10_3390_genes10040278
crossref_primary_10_1016_j_ymthe_2025_03_013
crossref_primary_10_1097_ICU_0000000000000750
crossref_primary_10_1080_13816810_2020_1832295
crossref_primary_10_1097_ICB_0000000000000941
crossref_primary_10_3390_diagnostics13233530
crossref_primary_10_1016_j_gene_2020_144890
crossref_primary_10_1089_hum_2017_179
crossref_primary_10_1021_acschemneuro_0c00111
crossref_primary_10_1167_iovs_19_27226
crossref_primary_10_1002_ajmg_c_31835
crossref_primary_10_1016_j_oret_2023_10_020
crossref_primary_10_1080_13816810_2022_2096243
crossref_primary_10_1080_13816810_2023_2215310
crossref_primary_10_1016_j_preteyeres_2020_100918
crossref_primary_10_1111_ceo_13875
crossref_primary_10_1007_s13353_022_00733_9
crossref_primary_10_1016_j_exer_2020_108147
crossref_primary_10_1016_j_ajo_2025_03_001
crossref_primary_10_1016_j_jtos_2022_05_007
crossref_primary_10_1002_humu_23903
crossref_primary_10_3390_ijms23020995
crossref_primary_10_1167_iovs_66_2_50
crossref_primary_10_1371_journal_pgen_1009848
crossref_primary_10_3389_fneur_2025_1493876
crossref_primary_10_1038_s41598_023_33694_y
crossref_primary_10_1007_s00439_023_02631_4
crossref_primary_10_1016_j_preteyeres_2021_101035
crossref_primary_10_1016_j_preteyeres_2018_11_003
crossref_primary_10_1038_s41598_020_67792_y
crossref_primary_10_1016_j_oret_2019_12_008
crossref_primary_10_1038_s41598_025_90516_z
crossref_primary_10_1016_j_preteyeres_2018_03_003
crossref_primary_10_1167_iovs_65_5_22
crossref_primary_10_1093_hmg_ddac227
crossref_primary_10_12968_opti_2021_6_8622
crossref_primary_10_1097_IAE_0000000000002675
crossref_primary_10_1002_ajmg_a_62045
crossref_primary_10_1167_iovs_62_2_13
crossref_primary_10_3389_fnmol_2023_1155955
crossref_primary_10_3390_genes14030738
crossref_primary_10_1007_s00347_018_0762_5
crossref_primary_10_1097_ICU_0000000000000656
crossref_primary_10_1186_s13023_025_03641_3
crossref_primary_10_1038_s41434_021_00291_5
crossref_primary_10_1001_jamaophthalmol_2024_4696
crossref_primary_10_1038_s41433_021_01853_y
crossref_primary_10_1016_j_ajo_2024_10_025
crossref_primary_10_1136_jmg_2023_109750
crossref_primary_10_1002_ajmg_a_63805
crossref_primary_10_26508_lsa_202201814
crossref_primary_10_1038_s41525_023_00352_1
crossref_primary_10_3390_biology11091338
crossref_primary_10_3389_fgene_2022_914345
crossref_primary_10_3389_fopht_2024_1410874
crossref_primary_10_22608_APO_201851
crossref_primary_10_1038_s41598_018_22096_0
crossref_primary_10_1136_bjophthalmol_2018_312225
crossref_primary_10_3390_genes16010032
crossref_primary_10_3390_genes11010012
crossref_primary_10_1097_IAE_0000000000002316
crossref_primary_10_1001_jamaophthalmol_2021_0004
crossref_primary_10_1186_s13023_023_02798_z
crossref_primary_10_4103_ojo_ojo_11_23
crossref_primary_10_1167_iovs_64_2_5
crossref_primary_10_1016_j_ogla_2023_05_006
crossref_primary_10_1080_13816810_2020_1734944
crossref_primary_10_1038_s41433_023_02624_7
crossref_primary_10_1016_j_ophtha_2024_01_035
crossref_primary_10_1167_tvst_11_9_34
crossref_primary_10_1038_s41598_022_13717_w
crossref_primary_10_3390_cells9020438
crossref_primary_10_1007_s10633_022_09893_9
crossref_primary_10_1016_j_xhgg_2024_100357
crossref_primary_10_1001_jamaophthalmol_2023_3535
crossref_primary_10_1016_j_preteyeres_2018_08_003
crossref_primary_10_1089_crispr_2023_0039
crossref_primary_10_1016_j_xops_2023_100397
crossref_primary_10_1038_s41598_020_77558_1
crossref_primary_10_3390_genes11010105
crossref_primary_10_1111_ceo_14511
crossref_primary_10_4103_kjo_kjo_140_21
crossref_primary_10_4103_tjo_TJO_D_23_00062
crossref_primary_10_1016_j_apjo_2023_100030
crossref_primary_10_1016_S0140_6736_22_02609_5
crossref_primary_10_1080_13816810_2024_2371875
crossref_primary_10_3390_genes11111288
crossref_primary_10_1080_13816810_2021_1938140
crossref_primary_10_1080_13816810_2025_2473961
crossref_primary_10_1080_13816810_2025_2470212
crossref_primary_10_3390_genes15060766
crossref_primary_10_1038_s41598_022_24636_1
crossref_primary_10_3389_fped_2024_1339664
crossref_primary_10_3390_ijms22115684
crossref_primary_10_3390_diagnostics13030392
crossref_primary_10_3928_23258160_20180628_02
crossref_primary_10_1016_j_ejpn_2021_01_003
crossref_primary_10_18502_jovr_v18i3_13780
crossref_primary_10_1016_j_exer_2024_109833
crossref_primary_10_3390_ijms232113361
crossref_primary_10_1016_j_ajhg_2025_02_015
crossref_primary_10_1159_000519136
crossref_primary_10_1007_s10633_019_09745_z
crossref_primary_10_1080_13816810_2023_2291687
crossref_primary_10_3390_diagnostics13243635
crossref_primary_10_1016_j_ajo_2020_08_042
crossref_primary_10_3390_genes14010074
crossref_primary_10_3389_fgene_2021_814131
crossref_primary_10_1093_hmg_ddaa124
crossref_primary_10_1556_650_2022_32636
crossref_primary_10_1016_j_ajoint_2024_100002
crossref_primary_10_1002_sctm_18_0210
crossref_primary_10_1038_s41598_019_52660_1
crossref_primary_10_1136_jmg_2022_108618
crossref_primary_10_1186_s13023_024_03238_2
crossref_primary_10_1371_journal_pone_0305422
crossref_primary_10_1016_j_oret_2022_11_014
crossref_primary_10_1080_13816810_2024_2446549
crossref_primary_10_1038_s41598_022_13026_2
crossref_primary_10_1016_j_cll_2020_02_007
crossref_primary_10_3390_ijms22137207
crossref_primary_10_1117_1_JBO_23_9_091415
crossref_primary_10_3389_fgene_2021_794805
crossref_primary_10_1111_cge_14415
crossref_primary_10_1167_iovs_19_26672
crossref_primary_10_3390_genes14071325
crossref_primary_10_1089_hum_2020_231
crossref_primary_10_3390_ijms232113467
crossref_primary_10_1002_humu_24371
crossref_primary_10_1002_humu_24492
crossref_primary_10_1002_mgg3_1044
crossref_primary_10_3390_ijms222111542
crossref_primary_10_1016_j_preteyeres_2020_100934
crossref_primary_10_1111_aos_14218
crossref_primary_10_1016_j_exer_2019_107834
crossref_primary_10_1016_j_exer_2020_108327
crossref_primary_10_3390_genes13040615
crossref_primary_10_1016_j_ophtha_2017_06_018
crossref_primary_10_1001_jamaophthalmol_2024_3829
crossref_primary_10_1002_ajmg_a_63322
crossref_primary_10_1038_s41525_025_00473_9
crossref_primary_10_1016_j_ajo_2022_12_027
crossref_primary_10_1016_j_ajo_2021_10_014
crossref_primary_10_1007_s12325_021_02036_7
crossref_primary_10_1001_jamaophthalmol_2019_0005
crossref_primary_10_3390_ijms25116151
crossref_primary_10_1080_13816810_2021_1955278
Cites_doi 10.7554/eLife.00471
10.1038/srep32819
10.1038/305779a0
10.1038/srep30742
10.1086/507318
10.1038/nature19057
10.1167/iovs.09-3611
10.1016/j.preteyeres.2014.10.002
10.1093/bioinformatics/btv710
10.1016/S0140-6736(13)62117-0
10.1364/JOSAA.24.001457
10.1016/j.ophtha.2015.10.006
10.1056/NEJMoa0802315
10.1126/science.8202715
10.1093/hmg/ddq284
10.1038/323643a0
10.1038/78182
10.1073/pnas.1108918108
10.1007/s10633-014-9473-7
10.1167/iovs.15-18092
10.1093/hmg/ddt367
10.1038/jhg.2014.88
10.1097/APO.0000000000000222
10.1101/gr.138115.112
10.1016/j.ajo.2007.08.022
10.1002/0471142905.hg0723s81
10.1002/mus.880181425
10.1016/j.cell.2013.08.021
10.1038/343364a0
10.1038/ng.806
10.7554/eLife.00824
10.1016/j.trsl.2015.08.007
10.1093/nar/17.7.2503
10.1038/35057062
10.1093/hmg/11.5.605
10.1126/science.1058040
10.1002/0471250953.bi0123s44
10.1126/science.1232033
10.1006/geno.2002.6815
10.1167/iovs.10-6106
10.1038/ncomms9718
10.1093/bioinformatics/btp698
ContentType Journal Article
Copyright 2017 American Academy of Ophthalmology
American Academy of Ophthalmology
Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 American Academy of Ophthalmology
– notice: American Academy of Ophthalmology
– notice: Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ophtha.2017.04.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1549-4713
EndPage 1331
ExternalDocumentID PMC5565704
28559085
10_1016_j_ophtha_2017_04_008
S0161642017304608
1_s2_0_S0161642017304608
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY011298
– fundername: NEI NIH HHS
  grantid: P30 EY025580
– fundername: NIGMS NIH HHS
  grantid: T32 GM007337
– fundername: NEI NIH HHS
  grantid: R01 EY017168
– fundername: NEI NIH HHS
  grantid: R01 EY024259
– fundername: NEI NIH HHS
  grantid: R01 EY026008
– fundername: NEI NIH HHS
  grantid: R01 EY024588
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
123
1B1
1CY
1P~
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
AAEDT
AAEDW
AALRI
AAQFI
AAQQT
AAQXK
AAXUO
ABCQX
ABFRF
ABJNI
ABLJU
ABMAC
ABOCM
ABWVN
ACGFO
ACGFS
ACIUM
ACNCT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEFWE
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AGCQF
AGQPQ
AIGII
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BELOY
C5W
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M27
M41
MO0
N4W
N9A
NQ-
O9-
OF-
OPF
OQ~
P2P
R2-
ROL
RPZ
SDG
SEL
SES
SSZ
UHS
UNMZH
UV1
WH7
X7M
XH2
XPP
Z5R
ZGI
ZXP
ADPAM
RIG
AAIAV
AGZHU
AHPSJ
ALXNB
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c571t-d8e02efb91f22166b16e532dee76db11e1428e3e2e97dbdb54e638ef3bf2b4453
ISSN 0161-6420
1549-4713
IngestDate Thu Aug 21 18:06:00 EDT 2025
Sun Sep 28 10:15:39 EDT 2025
Thu Jan 02 22:55:27 EST 2025
Tue Jul 01 00:44:09 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Fri Feb 23 02:28:31 EST 2024
Sun Feb 23 10:19:59 EST 2025
Tue Aug 26 16:37:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords EPP
VVD
PV
RPE
IVS
MCLMR
ECORD
HPCD
ARMS
AR-1
TERM
ADNIV
BWA
BBS
Mito
ExAC
LCHAD
FEVR
HMA
CSSD
CRISPR
ISCEV
AD
AZOOR
DDND
LCA
MDPD
FGR
GATK
AR
EV
L/M Opsin
XL
LB
MIS
LHON
MIDD
CSNB
ERG
NGS
TA Cloning
PCR
RP
SECORD
false genotype rate
autosomal dominant neovascular inflammatory vitreoretinopathy
X-linked
amplification refractory mutation system
homocystinuria with macular atrophy
autosomal recessive-1 allele identified
genome analysis toolkit
acute zonal occult outer retinopathy
congenital stationary synaptic dysfunction
Leber congenital amaurosis
International Society for Clinical Electrophysiology of Vision
mitochondrial
autosomal dominant
early childhood onset retinal dystrophy
severe early childhood onset retinal dystrophy
erosive vitreoretinopathy
electroretinogram
missense
Leber hereditary optic neuropathy
familial exudative vitreoretinopathy
microcephaly congenital lymphedema and chorioretinopathy
autosomal recessive
long/medium wave length opsin
intervening sequence
clustered regularly interspaced short palindromic repeats
plausible variants
Bardet-Biedl syndrome
Burrows Wheeler aligner
lysogeny broth
thymine and adenine cloning
vision variation database
estimate of pathogenic probability
Exome Aggregation Consortium
mutation detection probability distribution
retinal pigment epithelium
long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency
polymerase chain reaction
helicoid peripapillary chorioretinal degeneration
developmental delay and/or neuromuscular degeneration
next-generation sequencing
congential stationary night blindness
maternally inherited diabetes and deafness
retinitis pigmentosa
terminating
Language English
License Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c571t-d8e02efb91f22166b16e532dee76db11e1428e3e2e97dbdb54e638ef3bf2b4453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0161-9625
0000-0001-7798-1538
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5565704
PMID 28559085
PQID 1904230942
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565704
proquest_miscellaneous_1904230942
pubmed_primary_28559085
crossref_citationtrail_10_1016_j_ophtha_2017_04_008
crossref_primary_10_1016_j_ophtha_2017_04_008
elsevier_sciencedirect_doi_10_1016_j_ophtha_2017_04_008
elsevier_clinicalkeyesjournals_1_s2_0_S0161642017304608
elsevier_clinicalkey_doi_10_1016_j_ophtha_2017_04_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ophthalmology (Rochester, Minn.)
PublicationTitleAlternate Ophthalmology
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Fromer, Purcell (bib41) 2014; 81
Dryja, Hahn, Kajiwara, Berson (bib47) 1997; 38
Constable, Blumenkranz, Schwartz (bib6) 2016; 5
Lott, Leipzig, Derbeneva (bib24) 2013; 44
Wiley, Burnight, DeLuca (bib11) 2016; 6
Krumm, Sudmant, Ko (bib21) 2012; 22
Maguire, Simonelli, Pierce (bib4) 2008; 358
Schindler, Nylen, Ko (bib39) 2010; 19
Suzuki, Tsurusaki, Nakashima (bib42) 2014; 59
Tucker, Cranston, Anfinson (bib46) 2015; 166
Lander, Linton, Birren (bib12) 2001; 409
DePristo, Banks, Poplin (bib20) 2011; 43
Vervoort, Lennon, Bird (bib36) 2000; 25
2010 Accessed January 7, 2017.
Li, Durbin (bib19) 2010; 26
Bellingham, Davidson, Aboshiha (bib31) 2015; 56
Newton, Graham, Heptinstall (bib17) 1989; 17
United States Census Bureau. Population by sex and selected age groups: 2000 and 2010.
Ran, Hsu, Lin (bib7) 2013; 154
Ayyagari, Demirci, Liu (bib37) 2002; 80
Tucker, Scheetz, Mullins (bib40) 2011; 108
McCulloch, Marmor, Brigell (bib15) 2015; 130
Braun, Mullins, Wagner (bib28) 2013; 22
Friend, Bernards, Rogelj (bib2) 1986; 323
Cideciyan, Swider, Aleman (bib14) 2007; 24
Stone (bib18) 2003; 101
van den Ouweland, Lemkes, Gerbitz, Maassen (bib35) 1995; 3
Weleber, Michaelides, Trzupek (bib25) 2011; 52
Khan, Ali, Naeem (bib30) 2015; 21
Jinek, East, Cheng (bib8) 2013; 2
Small, DeLuca, Whitmore (bib33) 2016; 123
Stone (bib16) 2007; 144
Wiley, Burnight, Songstad (bib10) 2015; 44
Venter, Adams, Myers (bib13) 2001; 291
Yang, Peachey, Moshfeghi (bib38) 2002; 11
Kajiwara, Berson, Dryja (bib48) 1994; 264
Merico, Roifman, Braunschweig (bib44) 2015; 6
Tucker, Mullins, Streb (bib29) 2013; 2
Dryja, McGee, Reichel (bib3) 1990; 343
Genead, Fishman, Stone, Allikmets (bib26) 2009; 50
Chen, Schulz-Trieglaff, Shaw (bib22) 2016; 32
Lek, Karczewski, Minikel (bib23) 2016; 536
Howell, Bindoff, McCullough (bib34) 1991; 49
Känsäkoski, Jääskeläinen, Jääskeläinen (bib45) 2016; 6
den Hollander, Koenekoop, Yzer (bib32) 2006; 79
Wildschutte, Baron, Diroff, Kidd (bib43) 2015; 43
MacLaren, Groppe, Barnard (bib5) 2014; 383
Cavenee, Dryja, Phillips (bib1) 1983; 305
Mali, Yang, Esvelt (bib9) 2013; 339
Friend (10.1016/j.ophtha.2017.04.008_bib2) 1986; 323
Mali (10.1016/j.ophtha.2017.04.008_bib9) 2013; 339
Bellingham (10.1016/j.ophtha.2017.04.008_bib31) 2015; 56
Ayyagari (10.1016/j.ophtha.2017.04.008_bib37) 2002; 80
Maguire (10.1016/j.ophtha.2017.04.008_bib4) 2008; 358
Newton (10.1016/j.ophtha.2017.04.008_bib17) 1989; 17
Stone (10.1016/j.ophtha.2017.04.008_bib18) 2003; 101
van den Ouweland (10.1016/j.ophtha.2017.04.008_bib35) 1995; 3
Schindler (10.1016/j.ophtha.2017.04.008_bib39) 2010; 19
Genead (10.1016/j.ophtha.2017.04.008_bib26) 2009; 50
Chen (10.1016/j.ophtha.2017.04.008_bib22) 2016; 32
Weleber (10.1016/j.ophtha.2017.04.008_bib25) 2011; 52
Stone (10.1016/j.ophtha.2017.04.008_bib16) 2007; 144
Venter (10.1016/j.ophtha.2017.04.008_bib13) 2001; 291
10.1016/j.ophtha.2017.04.008_bib27
Dryja (10.1016/j.ophtha.2017.04.008_bib47) 1997; 38
DePristo (10.1016/j.ophtha.2017.04.008_bib20) 2011; 43
Constable (10.1016/j.ophtha.2017.04.008_bib6) 2016; 5
Wiley (10.1016/j.ophtha.2017.04.008_bib10) 2015; 44
Suzuki (10.1016/j.ophtha.2017.04.008_bib42) 2014; 59
Känsäkoski (10.1016/j.ophtha.2017.04.008_bib45) 2016; 6
MacLaren (10.1016/j.ophtha.2017.04.008_bib5) 2014; 383
McCulloch (10.1016/j.ophtha.2017.04.008_bib15) 2015; 130
Merico (10.1016/j.ophtha.2017.04.008_bib44) 2015; 6
Cideciyan (10.1016/j.ophtha.2017.04.008_bib14) 2007; 24
Howell (10.1016/j.ophtha.2017.04.008_bib34) 1991; 49
Lek (10.1016/j.ophtha.2017.04.008_bib23) 2016; 536
Li (10.1016/j.ophtha.2017.04.008_bib19) 2010; 26
Tucker (10.1016/j.ophtha.2017.04.008_bib46) 2015; 166
Dryja (10.1016/j.ophtha.2017.04.008_bib3) 1990; 343
Ran (10.1016/j.ophtha.2017.04.008_bib7) 2013; 154
Braun (10.1016/j.ophtha.2017.04.008_bib28) 2013; 22
Wildschutte (10.1016/j.ophtha.2017.04.008_bib43) 2015; 43
Krumm (10.1016/j.ophtha.2017.04.008_bib21) 2012; 22
Lott (10.1016/j.ophtha.2017.04.008_bib24) 2013; 44
Small (10.1016/j.ophtha.2017.04.008_bib33) 2016; 123
Cavenee (10.1016/j.ophtha.2017.04.008_bib1) 1983; 305
Tucker (10.1016/j.ophtha.2017.04.008_bib29) 2013; 2
Khan (10.1016/j.ophtha.2017.04.008_bib30) 2015; 21
Jinek (10.1016/j.ophtha.2017.04.008_bib8) 2013; 2
Lander (10.1016/j.ophtha.2017.04.008_bib12) 2001; 409
Tucker (10.1016/j.ophtha.2017.04.008_bib40) 2011; 108
Kajiwara (10.1016/j.ophtha.2017.04.008_bib48) 1994; 264
Wiley (10.1016/j.ophtha.2017.04.008_bib11) 2016; 6
Yang (10.1016/j.ophtha.2017.04.008_bib38) 2002; 11
Vervoort (10.1016/j.ophtha.2017.04.008_bib36) 2000; 25
den Hollander (10.1016/j.ophtha.2017.04.008_bib32) 2006; 79
Fromer (10.1016/j.ophtha.2017.04.008_bib41) 2014; 81
34690342 - Retina. 2022 Jan 1;42(1):1-3
28823343 - Ophthalmology. 2017 Sep;124(9):1254-1255
References_xml – volume: 305
  start-page: 779
  year: 1983
  end-page: 784
  ident: bib1
  article-title: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma
  publication-title: Nature
– volume: 49
  start-page: 939
  year: 1991
  end-page: 950
  ident: bib34
  article-title: Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees
  publication-title: Am J Hum Genet
– volume: 38
  start-page: 1972
  year: 1997
  end-page: 1982
  ident: bib47
  article-title: Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa
  publication-title: Invest Ophthalmol Vis Sci
– volume: 19
  start-page: 3693
  year: 2010
  end-page: 3701
  ident: bib39
  article-title: Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population
  publication-title: Hum Mol Genet
– volume: 130
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib15
  article-title: ISCEV standard for full-field clinical electroretinography (2015 update)
  publication-title: Doc Ophthalmol
– volume: 5
  start-page: 300
  year: 2016
  end-page: 303
  ident: bib6
  article-title: Gene therapy for age-related macular degeneration
  publication-title: Asia Pac J Ophthalmol (Phila)
– volume: 144
  start-page: 791
  year: 2007
  end-page: 811
  ident: bib16
  article-title: Leber congenital amaurosis—a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture
  publication-title: Am J Ophthalmol
– volume: 52
  start-page: 292
  year: 2011
  end-page: 302
  ident: bib25
  article-title: The Phenotype of Severe Early Childhood Onset Retinal Dystrophy (SECORD) from mutation of RPE65 and differentiation from Leber congenital amaurosis
  publication-title: Invest Ophthalmol Vis Sci
– volume: 343
  start-page: 364
  year: 1990
  end-page: 366
  ident: bib3
  article-title: A point mutation of the rhodopsin gene in one form of retinitis pigmentosa
  publication-title: Nature
– reference: United States Census Bureau. Population by sex and selected age groups: 2000 and 2010.
– volume: 323
  start-page: 643
  year: 1986
  end-page: 646
  ident: bib2
  article-title: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma
  publication-title: Nature
– volume: 11
  start-page: 605
  year: 2002
  end-page: 611
  ident: bib38
  article-title: Mutations in the RPGR gene cause X-linked cone dystrophy
  publication-title: Hum Mol Genet
– volume: 25
  start-page: 462
  year: 2000
  end-page: 466
  ident: bib36
  article-title: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa
  publication-title: Nat Genet
– volume: 22
  start-page: 1525
  year: 2012
  end-page: 1532
  ident: bib21
  article-title: Copy number variation detection and genotyping from exome sequence data
  publication-title: Genome Res
– volume: 108
  start-page: E569
  year: 2011
  end-page: E576
  ident: bib40
  article-title: Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa
  publication-title: Proc Natl Acad Sci U S A
– volume: 536
  start-page: 285
  year: 2016
  end-page: 291
  ident: bib23
  article-title: Analysis of protein-coding genetic variation in 60,706 humans
  publication-title: Nature
– volume: 81
  start-page: 7.23.1
  year: 2014
  end-page: 7.23.21
  ident: bib41
  article-title: Using XHMM software to detect copy number variation in whole-exome sequencing data
  publication-title: Curr Protoc Hum Genet
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: bib9
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
– volume: 2
  start-page: e00471
  year: 2013
  ident: bib8
  article-title: RNA-programmed genome editing in human cells
  publication-title: Elife
– volume: 3
  start-page: S124
  year: 1995
  end-page: S130
  ident: bib35
  article-title: Maternally inherited diabetes and deafness (MIDD): a distinct subtype of diabetes associated with a mitochondrial tRNA(Leu)(UUR) gene point mutation
  publication-title: Muscle Nerve Suppl
– volume: 358
  start-page: 2240
  year: 2008
  end-page: 2248
  ident: bib4
  article-title: Safety and efficacy of gene transfer for Leber's congenital amaurosis
  publication-title: N Engl J Med
– volume: 383
  start-page: 1129
  year: 2014
  end-page: 1137
  ident: bib5
  article-title: Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial
  publication-title: Lancet
– volume: 154
  start-page: 1380
  year: 2013
  end-page: 1389
  ident: bib7
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
– volume: 80
  start-page: 166
  year: 2002
  end-page: 171
  ident: bib37
  article-title: X-linked recessive atrophic macular degeneration from RPGR mutation
  publication-title: Genomics
– volume: 43
  start-page: 10292
  year: 2015
  end-page: 10307
  ident: bib43
  article-title: Discovery and characterization of Alu repeat sequences via precise local read assembly
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 5136
  year: 2013
  end-page: 5145
  ident: bib28
  article-title: Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease
  publication-title: Hum Mol Genet
– volume: 6
  start-page: 30742
  year: 2016
  ident: bib11
  article-title: cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness
  publication-title: Sci Rep
– volume: 123
  start-page: 9
  year: 2016
  end-page: 18
  ident: bib33
  article-title: North Carolina macular dystrophy is caused by dysregulation of the retinal transcription factor PRDM13
  publication-title: Ophthalmology
– volume: 26
  start-page: 589
  year: 2010
  end-page: 595
  ident: bib19
  article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
– volume: 24
  start-page: 1457
  year: 2007
  end-page: 1467
  ident: bib14
  article-title: Reduced-lluminance autofluorescence imaging in ABCA4-associated retinal degenerations
  publication-title: J Opt Soc Am A Opt Image Sci Vis
– volume: 59
  start-page: 649
  year: 2014
  end-page: 654
  ident: bib42
  article-title: Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing
  publication-title: J Hum Genet
– volume: 166
  start-page: 740
  year: 2015
  end-page: 749.e1
  ident: bib46
  article-title: Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65 kDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial
  publication-title: Transl Res
– volume: 409
  start-page: 860
  year: 2001
  end-page: 921
  ident: bib12
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
– reference: ; 2010 Accessed January 7, 2017.
– volume: 43
  start-page: 491
  year: 2011
  end-page: 498
  ident: bib20
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat Genet
– volume: 2
  start-page: e00824
  year: 2013
  ident: bib29
  article-title: Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa
  publication-title: Elife
– volume: 21
  start-page: 871
  year: 2015
  end-page: 882
  ident: bib30
  article-title: Splice-site mutations identified in PDE6A responsible for retinitis pigmentosa in consanguineous Pakistani families
  publication-title: Mol Vis
– volume: 264
  start-page: 1604
  year: 1994
  end-page: 1608
  ident: bib48
  article-title: Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci
  publication-title: Science
– volume: 56
  start-page: 7784
  year: 2015
  end-page: 7793
  ident: bib31
  article-title: Investigation of aberrant splicing induced by AIPL1 variations as a cause of Leber congenital amaurosis
  publication-title: Invest Ophthalmol Vis Sci
– volume: 44
  start-page: 1.23.1
  year: 2013
  end-page: 1.23.26
  ident: bib24
  article-title: mtDNA variation and analysis using Mitomap and Mitomaster
  publication-title: Curr Protoc Bioinformatics
– volume: 6
  start-page: 8718
  year: 2015
  ident: bib44
  article-title: Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman syndrome by disrupting minor intron splicing
  publication-title: Nat Commun
– volume: 44
  start-page: 15
  year: 2015
  end-page: 35
  ident: bib10
  article-title: Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases
  publication-title: Prog Retin Eye Res
– volume: 6
  start-page: 32819
  year: 2016
  ident: bib45
  article-title: Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene
  publication-title: Sci Rep
– volume: 17
  start-page: 2503
  year: 1989
  end-page: 2516
  ident: bib17
  article-title: Analysis of any point mutation in DNA. The Amplification Refractory Mutation System (ARMS)
  publication-title: Nucleic Acids Res
– volume: 101
  start-page: 437
  year: 2003
  end-page: 484
  ident: bib18
  article-title: Finding and interpreting genetic variations that are important to ophthalmologists
  publication-title: Trans Am Ophthalmol Soc
– volume: 32
  start-page: 1220
  year: 2016
  end-page: 1222
  ident: bib22
  article-title: Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications
  publication-title: Bioinformatics
– volume: 50
  start-page: 5867
  year: 2009
  end-page: 5871
  ident: bib26
  article-title: The natural history of Stargardt disease with specific sequence mutation in the ABCA4 gene
  publication-title: Invest Ophthalmol Vis Sci
– volume: 291
  start-page: 1304
  year: 2001
  end-page: 1351
  ident: bib13
  article-title: The sequence of the human genome
  publication-title: Science
– volume: 79
  start-page: 556
  year: 2006
  end-page: 561
  ident: bib32
  article-title: Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis
  publication-title: Am J Hum Genet
– volume: 2
  start-page: e00471
  year: 2013
  ident: 10.1016/j.ophtha.2017.04.008_bib8
  article-title: RNA-programmed genome editing in human cells
  publication-title: Elife
  doi: 10.7554/eLife.00471
– volume: 101
  start-page: 437
  year: 2003
  ident: 10.1016/j.ophtha.2017.04.008_bib18
  article-title: Finding and interpreting genetic variations that are important to ophthalmologists
  publication-title: Trans Am Ophthalmol Soc
– ident: 10.1016/j.ophtha.2017.04.008_bib27
– volume: 21
  start-page: 871
  year: 2015
  ident: 10.1016/j.ophtha.2017.04.008_bib30
  article-title: Splice-site mutations identified in PDE6A responsible for retinitis pigmentosa in consanguineous Pakistani families
  publication-title: Mol Vis
– volume: 6
  start-page: 32819
  year: 2016
  ident: 10.1016/j.ophtha.2017.04.008_bib45
  article-title: Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene
  publication-title: Sci Rep
  doi: 10.1038/srep32819
– volume: 305
  start-page: 779
  year: 1983
  ident: 10.1016/j.ophtha.2017.04.008_bib1
  article-title: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma
  publication-title: Nature
  doi: 10.1038/305779a0
– volume: 6
  start-page: 30742
  year: 2016
  ident: 10.1016/j.ophtha.2017.04.008_bib11
  article-title: cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness
  publication-title: Sci Rep
  doi: 10.1038/srep30742
– volume: 79
  start-page: 556
  year: 2006
  ident: 10.1016/j.ophtha.2017.04.008_bib32
  article-title: Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis
  publication-title: Am J Hum Genet
  doi: 10.1086/507318
– volume: 43
  start-page: 10292
  year: 2015
  ident: 10.1016/j.ophtha.2017.04.008_bib43
  article-title: Discovery and characterization of Alu repeat sequences via precise local read assembly
  publication-title: Nucleic Acids Res
– volume: 536
  start-page: 285
  year: 2016
  ident: 10.1016/j.ophtha.2017.04.008_bib23
  article-title: Analysis of protein-coding genetic variation in 60,706 humans
  publication-title: Nature
  doi: 10.1038/nature19057
– volume: 50
  start-page: 5867
  year: 2009
  ident: 10.1016/j.ophtha.2017.04.008_bib26
  article-title: The natural history of Stargardt disease with specific sequence mutation in the ABCA4 gene
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-3611
– volume: 44
  start-page: 15
  year: 2015
  ident: 10.1016/j.ophtha.2017.04.008_bib10
  article-title: Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2014.10.002
– volume: 32
  start-page: 1220
  year: 2016
  ident: 10.1016/j.ophtha.2017.04.008_bib22
  article-title: Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv710
– volume: 383
  start-page: 1129
  year: 2014
  ident: 10.1016/j.ophtha.2017.04.008_bib5
  article-title: Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62117-0
– volume: 24
  start-page: 1457
  year: 2007
  ident: 10.1016/j.ophtha.2017.04.008_bib14
  article-title: Reduced-lluminance autofluorescence imaging in ABCA4-associated retinal degenerations
  publication-title: J Opt Soc Am A Opt Image Sci Vis
  doi: 10.1364/JOSAA.24.001457
– volume: 123
  start-page: 9
  year: 2016
  ident: 10.1016/j.ophtha.2017.04.008_bib33
  article-title: North Carolina macular dystrophy is caused by dysregulation of the retinal transcription factor PRDM13
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2015.10.006
– volume: 38
  start-page: 1972
  year: 1997
  ident: 10.1016/j.ophtha.2017.04.008_bib47
  article-title: Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa
  publication-title: Invest Ophthalmol Vis Sci
– volume: 358
  start-page: 2240
  year: 2008
  ident: 10.1016/j.ophtha.2017.04.008_bib4
  article-title: Safety and efficacy of gene transfer for Leber's congenital amaurosis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0802315
– volume: 264
  start-page: 1604
  year: 1994
  ident: 10.1016/j.ophtha.2017.04.008_bib48
  article-title: Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci
  publication-title: Science
  doi: 10.1126/science.8202715
– volume: 19
  start-page: 3693
  year: 2010
  ident: 10.1016/j.ophtha.2017.04.008_bib39
  article-title: Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddq284
– volume: 323
  start-page: 643
  year: 1986
  ident: 10.1016/j.ophtha.2017.04.008_bib2
  article-title: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma
  publication-title: Nature
  doi: 10.1038/323643a0
– volume: 25
  start-page: 462
  year: 2000
  ident: 10.1016/j.ophtha.2017.04.008_bib36
  article-title: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa
  publication-title: Nat Genet
  doi: 10.1038/78182
– volume: 108
  start-page: E569
  year: 2011
  ident: 10.1016/j.ophtha.2017.04.008_bib40
  article-title: Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1108918108
– volume: 130
  start-page: 1
  year: 2015
  ident: 10.1016/j.ophtha.2017.04.008_bib15
  article-title: ISCEV standard for full-field clinical electroretinography (2015 update)
  publication-title: Doc Ophthalmol
  doi: 10.1007/s10633-014-9473-7
– volume: 56
  start-page: 7784
  year: 2015
  ident: 10.1016/j.ophtha.2017.04.008_bib31
  article-title: Investigation of aberrant splicing induced by AIPL1 variations as a cause of Leber congenital amaurosis
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-18092
– volume: 22
  start-page: 5136
  year: 2013
  ident: 10.1016/j.ophtha.2017.04.008_bib28
  article-title: Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt367
– volume: 59
  start-page: 649
  year: 2014
  ident: 10.1016/j.ophtha.2017.04.008_bib42
  article-title: Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing
  publication-title: J Hum Genet
  doi: 10.1038/jhg.2014.88
– volume: 5
  start-page: 300
  year: 2016
  ident: 10.1016/j.ophtha.2017.04.008_bib6
  article-title: Gene therapy for age-related macular degeneration
  publication-title: Asia Pac J Ophthalmol (Phila)
  doi: 10.1097/APO.0000000000000222
– volume: 22
  start-page: 1525
  year: 2012
  ident: 10.1016/j.ophtha.2017.04.008_bib21
  article-title: Copy number variation detection and genotyping from exome sequence data
  publication-title: Genome Res
  doi: 10.1101/gr.138115.112
– volume: 144
  start-page: 791
  year: 2007
  ident: 10.1016/j.ophtha.2017.04.008_bib16
  article-title: Leber congenital amaurosis—a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2007.08.022
– volume: 81
  start-page: 7.23.1
  year: 2014
  ident: 10.1016/j.ophtha.2017.04.008_bib41
  article-title: Using XHMM software to detect copy number variation in whole-exome sequencing data
  publication-title: Curr Protoc Hum Genet
  doi: 10.1002/0471142905.hg0723s81
– volume: 3
  start-page: S124
  year: 1995
  ident: 10.1016/j.ophtha.2017.04.008_bib35
  article-title: Maternally inherited diabetes and deafness (MIDD): a distinct subtype of diabetes associated with a mitochondrial tRNA(Leu)(UUR) gene point mutation
  publication-title: Muscle Nerve Suppl
  doi: 10.1002/mus.880181425
– volume: 154
  start-page: 1380
  year: 2013
  ident: 10.1016/j.ophtha.2017.04.008_bib7
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 343
  start-page: 364
  year: 1990
  ident: 10.1016/j.ophtha.2017.04.008_bib3
  article-title: A point mutation of the rhodopsin gene in one form of retinitis pigmentosa
  publication-title: Nature
  doi: 10.1038/343364a0
– volume: 43
  start-page: 491
  year: 2011
  ident: 10.1016/j.ophtha.2017.04.008_bib20
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat Genet
  doi: 10.1038/ng.806
– volume: 2
  start-page: e00824
  year: 2013
  ident: 10.1016/j.ophtha.2017.04.008_bib29
  article-title: Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa
  publication-title: Elife
  doi: 10.7554/eLife.00824
– volume: 166
  start-page: 740
  year: 2015
  ident: 10.1016/j.ophtha.2017.04.008_bib46
  article-title: Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65 kDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial
  publication-title: Transl Res
  doi: 10.1016/j.trsl.2015.08.007
– volume: 17
  start-page: 2503
  year: 1989
  ident: 10.1016/j.ophtha.2017.04.008_bib17
  article-title: Analysis of any point mutation in DNA. The Amplification Refractory Mutation System (ARMS)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/17.7.2503
– volume: 409
  start-page: 860
  year: 2001
  ident: 10.1016/j.ophtha.2017.04.008_bib12
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 11
  start-page: 605
  year: 2002
  ident: 10.1016/j.ophtha.2017.04.008_bib38
  article-title: Mutations in the RPGR gene cause X-linked cone dystrophy
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/11.5.605
– volume: 291
  start-page: 1304
  year: 2001
  ident: 10.1016/j.ophtha.2017.04.008_bib13
  article-title: The sequence of the human genome
  publication-title: Science
  doi: 10.1126/science.1058040
– volume: 44
  start-page: 1.23.1
  year: 2013
  ident: 10.1016/j.ophtha.2017.04.008_bib24
  article-title: mtDNA variation and analysis using Mitomap and Mitomaster
  publication-title: Curr Protoc Bioinformatics
  doi: 10.1002/0471250953.bi0123s44
– volume: 49
  start-page: 939
  year: 1991
  ident: 10.1016/j.ophtha.2017.04.008_bib34
  article-title: Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees
  publication-title: Am J Hum Genet
– volume: 339
  start-page: 823
  year: 2013
  ident: 10.1016/j.ophtha.2017.04.008_bib9
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 80
  start-page: 166
  year: 2002
  ident: 10.1016/j.ophtha.2017.04.008_bib37
  article-title: X-linked recessive atrophic macular degeneration from RPGR mutation
  publication-title: Genomics
  doi: 10.1006/geno.2002.6815
– volume: 52
  start-page: 292
  year: 2011
  ident: 10.1016/j.ophtha.2017.04.008_bib25
  article-title: The Phenotype of Severe Early Childhood Onset Retinal Dystrophy (SECORD) from mutation of RPE65 and differentiation from Leber congenital amaurosis
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.10-6106
– volume: 6
  start-page: 8718
  year: 2015
  ident: 10.1016/j.ophtha.2017.04.008_bib44
  article-title: Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman syndrome by disrupting minor intron splicing
  publication-title: Nat Commun
  doi: 10.1038/ncomms9718
– volume: 26
  start-page: 589
  year: 2010
  ident: 10.1016/j.ophtha.2017.04.008_bib19
  article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp698
– reference: 28823343 - Ophthalmology. 2017 Sep;124(9):1254-1255
– reference: 34690342 - Retina. 2022 Jan 1;42(1):1-3
SSID ssj0006634
Score 2.650883
Snippet To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families...
Purpose To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1314
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Child
Child, Preschool
DNA Mutational Analysis
Exome - genetics
Eye Diseases, Hereditary - genetics
Eye Proteins - genetics
Family Health
Female
Genetic Testing
Genotype
High-Throughput Nucleotide Sequencing
Humans
Infant
Male
Middle Aged
Mutation
Ophthalmology
Pedigree
Retinal Diseases - genetics
Retrospective Studies
Sensitivity and Specificity
Sequence Analysis, DNA
United States
Title Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0161642017304608
https://www.clinicalkey.es/playcontent/1-s2.0-S0161642017304608
https://dx.doi.org/10.1016/j.ophtha.2017.04.008
https://www.ncbi.nlm.nih.gov/pubmed/28559085
https://www.proquest.com/docview/1904230942
https://pubmed.ncbi.nlm.nih.gov/PMC5565704
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9owELcYlaa9TPsu-5In7W0KchwnIY9oK-pWaKUONN4snDiCiiZVCZq2l_3rO3-FMJjK9hKBE8eQ-_nufPndGaH3kjIBp3qeEER4LIKpCN9zj8QyTCVJelKXFBqdR6cT9mUaTlutXw3W0roS3fTn3ryS_5EqtIFcVZbsP0i2vik0wGeQLxxBwnA8SMa2qOdy-ePDoEzXK3AeR26722YFDeMTqhi73qATLtCEIb3pBayUTTD2c6FSAZUDeqnSoLU63Ly8sf7rxc28ms-W16Zykw4_2B23DAe_KLqN2IKu9K21bfZ9UWwCr_0iK29zQ66ZFYomNtwYh0XluL9fQfOUVc3L-SSH69SEgbPZtU1MswELMIKOkVXrWJZ4YBONXpN72pxiNtnVFoFJQ836gck83dH_JhRx1S3101DMvVhXsiW9jb1z7_jPL_hgMhzy8cl0fA8d0RicrzY66p9dfjurjTm0aWKC-30u-1JTBHdH-Zt3s7t6-ZOE2_Bqxo_QQ7scwX2DrceoJYsn6P7IEi6eonwDMWwhhmuI4S2I4TLHCmK4ATHsIIYVxHANMWwhhi3EnqHJ4GT88dSzW3N4aRj7lZf1JKEyF4mfU-pHkfAjGQY0kzKOMuH7UhXyk4GkMokzkYmQSVD0Mg9ETgVjYfActQuA4DHCQUiinMyyCB4vk3BPCmoCbspSf5ZLIjoocI-Up7Zuvdo-ZckdQfGKG0FwJQhOGAdBdJBX97oxdVvuuD500uIuJxmsKAdg3dEv3tdPrqyaWHGfrygnikUZ-bDYh66ajLDV03q7xos9YMx3Dk4cjIF6wwdztVzDWImiuZGE0Q56YeBV_3vaC8MEFlgw7hbw6gtUofntM8VirgvOh4obQdjLA8Z9hR5s5vxr1K5u1_INuO2VeGun1m-8efE6
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+Focused+Molecular+Investigation+of+1000+Consecutive+Families+with+Inherited+Retinal+Disease&rft.jtitle=Ophthalmology+%28Rochester%2C+Minn.%29&rft.au=Stone%2C+Edwin+M&rft.au=Andorf%2C+Jeaneen+L&rft.au=Whitmore%2C+S+Scott&rft.au=DeLuca%2C+Adam+P&rft.date=2017-09-01&rft.issn=1549-4713&rft.eissn=1549-4713&rft.volume=124&rft.issue=9&rft.spage=1314&rft_id=info:doi/10.1016%2Fj.ophtha.2017.04.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-6420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-6420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-6420&client=summon