Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect

Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson’s disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait a...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 14; no. 1; p. 97
Main Authors Tupa, Ondrej, Prochazka, Ales, Vysata, Oldrich, Schatz, Martin, Mares, Jan, Valis, Martin, Marik, Vladimir
Format Journal Article
LanguageEnglish
Published London BioMed Central 24.10.2015
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-015-0092-7

Cover

Abstract Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson’s disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. Methods The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson’s disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. Results The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson’s disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Conclusions Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.
AbstractList Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. Methods The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. Results The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Conclusions Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.
Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space.BACKGROUNDAnalysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space.The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data.METHODSThe experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data.The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications.RESULTSThe main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications.Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.CONCLUSIONSDiscussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.
Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson’s disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. Methods The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson’s disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. Results The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson’s disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Conclusions Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.
Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.
Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. Methods The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. Results The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Conclusions Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders. Keywords: Image and depth sensors, Gait disorders, Motion features, Video processing, MS Kinect, Classification , Parkinson's disease
Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications.
ArticleNumber 97
Audience Academic
Author Vališ, Martin
Vyšata, Oldřich
Mareš, Jan
Ťupa, Ondřej
Procházka, Aleš
Mařík, Vladimír
Schätz, Martin
Author_xml – sequence: 1
  givenname: Ondrej
  surname: Tupa
  fullname: Tupa, Ondrej
– sequence: 2
  givenname: Ales
  surname: Prochazka
  fullname: Prochazka, Ales
– sequence: 3
  givenname: Oldrich
  surname: Vysata
  fullname: Vysata, Oldrich
– sequence: 4
  givenname: Martin
  surname: Schatz
  fullname: Schatz, Martin
– sequence: 5
  givenname: Jan
  surname: Mares
  fullname: Mares, Jan
– sequence: 6
  givenname: Martin
  surname: Valis
  fullname: Valis, Martin
– sequence: 7
  givenname: Vladimir
  surname: Marik
  fullname: Marik, Vladimir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26499251$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAQxyNURD_gAbigSFzgkBIndmJfkKqKj4pWIAoSN2viTIJL1l7sBOiN1-D1eBImuwV2K0Aoh0T27z8Z_Wb2kx3nHSbJXZYfMiarR5EVqpRZzkSW56rI6hvJHuO1yFQh3u1sfO8m-zFe5HmR55W6lewWFVd0zvYSOPOj9S4dA5gP1vUpuDbtwY5phzBOAVOMo13ACup8SAMa3zsbZ_YVBMpE775__RbT1kaEiOm0ujs7T19Yh2a8ndzsYIh45-p9kLx9-uTN8fPs9OWzk-Oj08yImo2ZqZumqnjZCGhKpnhZgeASWdk2ohWoOiyLvKxQFF1Rg5BgUEkplSk7AOBteZAU67qTW8LlZxgGvQzUebjULNezL732pcmXnn3pmkKP16Hl1CywNehIxO-gB6u3b5x9r3v_SfOKeqwkFXhwVSD4jxO50gsbDQ4DOPRT1KwualLNmSL0_jX0wk_BkROiJBOcprVB9TCgtq7z82jmovpIcMalkGz-7eEfKHpaXFhDW9JZOt8KPNwKEDPil7GHKUZ9cv56m723KeWXjZ9bQ0C9BkzwMQbstLHjakWoCzv80ze7lvyfGV0NNhLregwb3v4a-gHL-vWP
CitedBy_id crossref_primary_10_1155_2018_5809769
crossref_primary_10_1016_j_vrih_2024_08_001
crossref_primary_10_3390_app13010162
crossref_primary_10_1016_j_rh_2017_11_003
crossref_primary_10_1186_s12859_018_2488_4
crossref_primary_10_3390_electronics12030625
crossref_primary_10_1016_j_jvcir_2021_103218
crossref_primary_10_1109_TIM_2021_3111998
crossref_primary_10_1007_s11042_021_11750_x
crossref_primary_10_1109_JSEN_2021_3139939
crossref_primary_10_1186_s12911_019_0987_5
crossref_primary_10_1016_j_jocn_2019_08_101
crossref_primary_10_3390_s22239467
crossref_primary_10_1007_s11517_019_02079_7
crossref_primary_10_1016_j_ifacol_2016_10_546
crossref_primary_10_1109_TNSRE_2021_3096433
crossref_primary_10_1109_ACCESS_2019_2949744
crossref_primary_10_1186_s12984_023_01186_9
crossref_primary_10_1109_ACCESS_2018_2879896
crossref_primary_10_3390_app13074205
crossref_primary_10_3390_s22218173
crossref_primary_10_3389_fnhum_2022_826376
crossref_primary_10_1038_s41531_022_00368_x
crossref_primary_10_1186_s12984_019_0492_1
crossref_primary_10_4338_ACI_2016_03_R_0042
crossref_primary_10_1109_ACCESS_2020_2967845
crossref_primary_10_1109_RBME_2018_2807182
crossref_primary_10_3389_fneur_2021_603619
crossref_primary_10_1111_cns_12687
crossref_primary_10_1007_s10916_018_0905_x
crossref_primary_10_1109_JSEN_2018_2839732
crossref_primary_10_1016_j_neucom_2021_12_004
crossref_primary_10_1007_s11042_023_15079_5
crossref_primary_10_1080_14737175_2023_2229954
crossref_primary_10_3390_app7060581
crossref_primary_10_2174_1389557521666210927151553
crossref_primary_10_3390_s17122843
crossref_primary_10_1016_j_neucom_2025_129533
crossref_primary_10_1177_1877718X241312605
crossref_primary_10_1109_JBHI_2021_3092875
crossref_primary_10_1016_j_compeleceng_2025_110216
crossref_primary_10_1016_j_matpr_2020_11_615
crossref_primary_10_2196_52582
crossref_primary_10_3389_fnhum_2022_768575
crossref_primary_10_1109_ACCESS_2023_3234421
crossref_primary_10_1007_s11831_019_09375_3
crossref_primary_10_3390_s17040825
crossref_primary_10_1111_camh_12360
crossref_primary_10_3233_JIFS_189038
crossref_primary_10_1016_j_medengphy_2020_08_007
crossref_primary_10_1016_j_mejo_2018_01_015
crossref_primary_10_1109_ACCESS_2020_3013029
Cites_doi 10.1016/j.patrec.2005.10.010
10.1016/j.gaitpost.2015.05.002
10.1109/MMUL.2012.24
10.1016/j.gaitpost.2012.03.033
10.1016/j.apergo.2011.09.011
10.1093/clinchem/39.4.561
10.1109/TCYB.2013.2271112
10.1016/S0893-6080(01)00027-2
10.1109/MSP.2011.941097
10.1016/j.jbiomech.2013.08.011
10.1109/TCYB.2013.2275945
10.1109/THMS.2013.2283945
10.1007/978-1-4612-0717-7
10.1016/j.gaitpost.2014.01.008
10.1109/TBME.2014.2299772
10.1007/978-3-319-14142-8_10
10.1109/TCYB.2013.2265378
10.1007/s11517-012-0960-2
10.1186/1475-925X-10-1
10.1016/j.eswa.2011.07.042
10.1007/s11265-013-0778-7
10.21917/ijsc.2012.0054
10.1109/TSMC.2013.2251629
10.1016/j.sigpro.2005.02.002
10.1007/s11263-010-0362-6
10.1109/TSMCC.2012.2215852
10.3390/s140406124
10.1111/j.1460-9568.2005.04298.x
10.1016/j.jbiomech.2013.11.031
10.1007/s00521-014-1622-0
10.1186/1743-0003-11-60
10.3390/s140203362
10.1007/978-3-642-53862-9_26
ContentType Journal Article
Copyright Ťupa et al. 2015
COPYRIGHT 2015 BioMed Central Ltd.
Copyright BioMed Central 2015
Copyright_xml – notice: Ťupa et al. 2015
– notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Copyright BioMed Central 2015
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12938-015-0092-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

MEDLINE



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
ExternalDocumentID 10.1186/s12938-015-0092-7
PMC4619468
4025807141
A541485818
26499251
10_1186_s12938_015_0092_7
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c571t-c7bb6643b5ab319436a548e13db5d5e9fe32036e52f27a58ace98889c3faaa4d3
IEDL.DBID M48
ISSN 1475-925X
IngestDate Wed Oct 29 11:45:16 EDT 2025
Tue Sep 30 15:22:29 EDT 2025
Thu Sep 04 17:27:29 EDT 2025
Mon Oct 06 18:38:46 EDT 2025
Mon Oct 20 22:51:45 EDT 2025
Mon Oct 20 17:04:04 EDT 2025
Thu Oct 16 16:17:57 EDT 2025
Mon Jul 21 06:02:22 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Wed Oct 01 00:48:12 EDT 2025
Sat Sep 06 07:30:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image and depth sensors
Video processing
MS Kinect
Classification
Parkinson’s disease
Gait disorders
Motion features
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-c7bb6643b5ab319436a548e13db5d5e9fe32036e52f27a58ace98889c3faaa4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-015-0092-7
PMID 26499251
PQID 1781544759
PQPubID 42562
ParticipantIDs unpaywall_primary_10_1186_s12938_015_0092_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4619468
proquest_miscellaneous_1727992419
proquest_journals_1781544759
gale_infotracmisc_A541485818
gale_infotracacademiconefile_A541485818
gale_incontextgauss_ISR_A541485818
pubmed_primary_26499251
crossref_citationtrail_10_1186_s12938_015_0092_7
crossref_primary_10_1186_s12938_015_0092_7
springer_journals_10_1186_s12938_015_0092_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-24
PublicationDateYYYYMMDD 2015-10-24
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References S Haykin (92_CR36) 2009
MS Mary (92_CR37) 2012; 2
YY Chen (92_CR17) 2012; 39
X Xu (92_CR19) 2015; 42
D Jarchi (92_CR25) 2014; 61
J Lue (92_CR31) 2005; 85
MU Choudry (92_CR10) 2013; 43
T Dutta (92_CR29) 2012; 43
J Han (92_CR4) 2013; 43
G Yogev (92_CR18) 2005; 22
A Schmitz (92_CR8) 2014; 47
T Fawcett (92_CR35) 2006; 27
S Qin (92_CR28) 2014; 74
F Schwenker (92_CR38) 2002; 14
RA Clark (92_CR14) 2013; 46
B Galna (92_CR15) 2014; 39
RW Schafer (92_CR32) 2011; 28
92_CR39
HPH Shum (92_CR9) 2013; 43
I Venkat (92_CR16) 2011; 91
G Fortino (92_CR5) 2013; 43
G Cuaya (92_CR13) 2013; 51
A Prochazka (92_CR23) 2014; 25
MH Zweig (92_CR34) 1993; 39
M Camplani (92_CR7) 2013; 43
D Brscic (92_CR3) 2013; 43
ST Moore (92_CR40) 2011; 10
T Krzeszowski (92_CR24) 2014; 8671
JJK Ruanaidh (92_CR33) 1996
F Karray (92_CR1) 2008; 1
RA Clark (92_CR12) 2012; 36
M Elgendi (92_CR6) 2014; 13
B Caby (92_CR11) 2011; 10
Z Zhang (92_CR27) 2012; 19
B Galna (92_CR2) 2014; 11
IH Witten (92_CR22) 2011
J Tang (92_CR30) 2014; 14
92_CR26
92_CR21
A Muro-de-la-Herran (92_CR20) 2014; 14
21244718 - Biomed Eng Online. 2011;10:1
22438718 - Sensors (Basel). 2012;12(2):1437-54
11411631 - Neural Netw. 2001 May;14(4-5):439-58
23981562 - IEEE Trans Cybern. 2013 Oct;43(5):1357-69
24016679 - J Biomech. 2013 Oct 18;46(15):2722-5
16176368 - Eur J Neurosci. 2005 Sep;22(5):1248-56
24556672 - Sensors (Basel). 2014 Feb 19;14(2):3362-94
24731758 - J Neuroeng Rehabil. 2014;11:60
23065654 - Med Biol Eng Comput. 2013 Feb;51(1-2):29-37
8472349 - Clin Chem. 1993 Apr;39(4):561-77
24968711 - Biomed Eng Online. 2014;13:88
21936884 - Biomed Eng Online. 2011;10:82
24658250 - IEEE Trans Biomed Eng. 2014 Apr;61(4):1261-73
23807480 - IEEE Trans Cybern. 2013 Oct;43(5):1318-34
24315287 - J Biomech. 2014 Jan 22;47(2):587-91
22018839 - Appl Ergon. 2012 Jul;43(4):645-9
22633015 - Gait Posture. 2012 Jul;36(3):372-7
24560691 - Gait Posture. 2014 Apr;39(4):1062-8
26002604 - Gait Posture. 2015 Jul;42(2):145-51
24273141 - IEEE Trans Cybern. 2013 Dec;43(6):1560-71
24686727 - Sensors (Basel). 2014;14(4):6124-43
References_xml – volume-title: Neural networks and learning machines
  year: 2009
  ident: 92_CR36
– volume: 27
  start-page: 861
  year: 2006
  ident: 92_CR35
  publication-title: Pattern Recognit Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 42
  start-page: 145
  issue: 2
  year: 2015
  ident: 92_CR19
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.05.002
– volume: 19
  start-page: 4
  issue: 2
  year: 2012
  ident: 92_CR27
  publication-title: IEEE Multimed
  doi: 10.1109/MMUL.2012.24
– volume: 36
  start-page: 372
  year: 2012
  ident: 92_CR12
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.03.033
– volume: 43
  start-page: 645
  year: 2012
  ident: 92_CR29
  publication-title: Appl Ergon.
  doi: 10.1016/j.apergo.2011.09.011
– volume: 39
  start-page: 561
  year: 1993
  ident: 92_CR34
  publication-title: Clin Chem.
  doi: 10.1093/clinchem/39.4.561
– volume: 43
  start-page: 1560
  issue: 6
  year: 2013
  ident: 92_CR7
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2271112
– volume: 14
  start-page: 439
  year: 2002
  ident: 92_CR38
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(01)00027-2
– volume: 28
  start-page: 111
  issue: 4
  year: 2011
  ident: 92_CR32
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2011.941097
– volume: 46
  start-page: 2772
  issue: 15
  year: 2013
  ident: 92_CR14
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.08.011
– volume: 43
  start-page: 1357
  issue: 5
  year: 2013
  ident: 92_CR9
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2275945
– volume: 43
  start-page: 522
  issue: 6
  year: 2013
  ident: 92_CR3
  publication-title: IEEE Trans Hum Mach Syst
  doi: 10.1109/THMS.2013.2283945
– volume-title: Numerical Bayesian methods applied to signal processing
  year: 1996
  ident: 92_CR33
  doi: 10.1007/978-1-4612-0717-7
– volume: 39
  start-page: 1062
  issue: 4
  year: 2014
  ident: 92_CR15
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.01.008
– volume: 61
  start-page: 1261
  issue: 4
  year: 2014
  ident: 92_CR25
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2299772
– ident: 92_CR21
  doi: 10.1007/978-3-319-14142-8_10
– volume: 43
  start-page: 1318
  issue: 5
  year: 2013
  ident: 92_CR4
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2265378
– volume: 13
  start-page: 1
  issue: 88
  year: 2014
  ident: 92_CR6
  publication-title: BioMed Eng OnLine
– volume: 51
  start-page: 29
  issue: 1–2
  year: 2013
  ident: 92_CR13
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-012-0960-2
– ident: 92_CR39
– volume: 8671
  start-page: 356
  year: 2014
  ident: 92_CR24
  publication-title: Sensors
– volume: 10
  start-page: 1
  issue: 1
  year: 2011
  ident: 92_CR11
  publication-title: BioMed Eng OnLine
  doi: 10.1186/1475-925X-10-1
– volume: 39
  start-page: 520
  issue: 1
  year: 2012
  ident: 92_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.042
– volume: 74
  start-page: 47
  year: 2014
  ident: 92_CR28
  publication-title: J Signal Proces Syst
  doi: 10.1007/s11265-013-0778-7
– volume: 10
  start-page: 1
  issue: 82
  year: 2011
  ident: 92_CR40
  publication-title: BioMed Eng OnLine
– volume: 2
  start-page: 348
  issue: 3
  year: 2012
  ident: 92_CR37
  publication-title: ICTACT J Soft Comput
  doi: 10.21917/ijsc.2012.0054
– volume: 43
  start-page: 314
  issue: 3
  year: 2013
  ident: 92_CR10
  publication-title: IEEE Trans Hum Mach Syst
  doi: 10.1109/TSMC.2013.2251629
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2011
  ident: 92_CR22
– volume: 1
  start-page: 137
  issue: 1
  year: 2008
  ident: 92_CR1
  publication-title: Int J Smart Sens Intell Sens
– volume: 85
  start-page: 1429
  issue: 7
  year: 2005
  ident: 92_CR31
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2005.02.002
– volume: 91
  start-page: 7
  issue: 1
  year: 2011
  ident: 92_CR16
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-010-0362-6
– volume: 43
  start-page: 115
  issue: 1
  year: 2013
  ident: 92_CR5
  publication-title: IEEE Trans Hum Mach Syst
  doi: 10.1109/TSMCC.2012.2215852
– volume: 14
  start-page: 6124
  issue: 4
  year: 2014
  ident: 92_CR30
  publication-title: Sensors
  doi: 10.3390/s140406124
– volume: 22
  start-page: 1248
  issue: 5
  year: 2005
  ident: 92_CR18
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2005.04298.x
– volume: 47
  start-page: 587
  year: 2014
  ident: 92_CR8
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.11.031
– volume: 25
  start-page: 1349
  year: 2014
  ident: 92_CR23
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1622-0
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 92_CR2
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-11-60
– volume: 14
  start-page: 3362
  issue: 2
  year: 2014
  ident: 92_CR20
  publication-title: Sensors
  doi: 10.3390/s140203362
– ident: 92_CR26
  doi: 10.1007/978-3-642-53862-9_26
– reference: 24556672 - Sensors (Basel). 2014 Feb 19;14(2):3362-94
– reference: 23981562 - IEEE Trans Cybern. 2013 Oct;43(5):1357-69
– reference: 24273141 - IEEE Trans Cybern. 2013 Dec;43(6):1560-71
– reference: 22438718 - Sensors (Basel). 2012;12(2):1437-54
– reference: 24315287 - J Biomech. 2014 Jan 22;47(2):587-91
– reference: 26002604 - Gait Posture. 2015 Jul;42(2):145-51
– reference: 22633015 - Gait Posture. 2012 Jul;36(3):372-7
– reference: 24686727 - Sensors (Basel). 2014;14(4):6124-43
– reference: 8472349 - Clin Chem. 1993 Apr;39(4):561-77
– reference: 24968711 - Biomed Eng Online. 2014;13:88
– reference: 22018839 - Appl Ergon. 2012 Jul;43(4):645-9
– reference: 24731758 - J Neuroeng Rehabil. 2014;11:60
– reference: 16176368 - Eur J Neurosci. 2005 Sep;22(5):1248-56
– reference: 23065654 - Med Biol Eng Comput. 2013 Feb;51(1-2):29-37
– reference: 23807480 - IEEE Trans Cybern. 2013 Oct;43(5):1318-34
– reference: 11411631 - Neural Netw. 2001 May;14(4-5):439-58
– reference: 24658250 - IEEE Trans Biomed Eng. 2014 Apr;61(4):1261-73
– reference: 21244718 - Biomed Eng Online. 2011;10:1
– reference: 24560691 - Gait Posture. 2014 Apr;39(4):1062-8
– reference: 24016679 - J Biomech. 2013 Oct 18;46(15):2722-5
– reference: 21936884 - Biomed Eng Online. 2011;10:82
SSID ssj0020069
Score 2.400734
Snippet Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson’s disease. It is also...
Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to...
Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 97
SubjectTerms Acceleration
Adult
Aged
Aged, 80 and over
Algorithms
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Care and treatment
Case-Control Studies
Complications and side effects
Computer software industry
Diagnosis
Engineering
Female
Gait
Humans
Imaging, Three-Dimensional - methods
Male
Middle Aged
Movement disorders
Nerve Net
Neural networks
Parkinson Disease - physiopathology
Risk factors
Walking
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB_qFdR-EK2PnlZZRRAsoZfHZpMPIlVaqnKHtBb6yWVfqYUjdzUJ4n_vTG4TLwXr5508dmZ2d2Zn5jcAr5UWmUM3IKAwD4FqTwKdhC5A1coLChsllqqRp7P0-Cz5fM7PN2DW1cJQWmW3J7YbtV0YuiPfD0VGwDGC5--XVwF1jaLoatdCQ_nWCvZdCzF2CzYjQsYaweaHw9nXk94FI2BeH9sMs3S_otOOkrl4QOBDgRicTtf36LVD6noCZR9F3YI7TblUv3-p-XztoDq6D_e8hckOVirxADZcuQ1ba7iD23B76iPqD-H7tG3jw_ADhm7NmSotu1CXNStci_nJCIZjVd_I0MBlPuOIrhgYlUy31WMV84Ee1rQD01P2BV9v6kdwdnT47eNx4HsuBIaLsA6M0DpFK0VzpXF1JnGq0KdxYWw1t9zlhYspdOl4VERC8UwZl6MTnZu4UEolNn4Mo3JRuh1gWTpRWmueGIviF4XKLAqFqziJjEVpjmHS8VoaD0hOfTHmsnVMslSuxCNRPJLEI8UY3vaPLFdoHDcRvyIBSkK5KCmN5kI1VSU_nZ7IA2p-nnE0VsbwxhMVC-K08lUJOAUCxhpQ7g4ocRma4XCnJ9JvA5X8q7RjeNkP05OU2la6RUM0kcjRCw6R5slKrfq5obWKQxxZJQYK1xMQOPhwpLz80YKEJ3Q9leJv7XWqufZb_2bZXq-9_2fw05un_AzuRrSy8KCPkl0Y1T8b9xwtuFq_8MvyD5PeQec
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Pb9UwDLdgSMAOCAYbDwYKCAmJqeL1T5L2OE2bBuhxYEzaLUrSdEx66ptoK8SNr8HX45Ngp3lVO8EQZzttE9u1Hce_ALzSRuYO04CIyjwEqj2PTBa7CFWrqKhslJXUjbz4KI5Ps_dn_CyARVMvzLh-H-fibUP-iI5b8YjggSJ5E26hjxK-LisOhtyKEHdD0fKPwyZu5-rPd-R9rp6MHMqjm3Cnqy_19296uRx5oKP7cC-Ejmy_l_UDuOHqLdgcAQpuwe1FKJU_BL3w9_MwfIGl7XCm65Kd64uWVc6DeTLC1-gbFxlGriwcJaK9A0a90L4t7NePnw0LRRzWedrihH3AN9j2EZweHX4-OI7CfQqR5TJuIyuNERiBGK4NWl6WCo35iovT0vCSu6JyKZUlHU-qRGqea-sKTJALm1Za66xMt2GjXtXuMbBczLUxhme2RNHKSucl-kCu0yyxpczjGczXy61sABunOy-WyicduVC9hBRKSJGElJzBm2HIZY-0cR3zS5KhIgSLmo7InOuuadS7k09qny42zzkGIjN4HZiqFS22Dh0HOAUCvZpw7k440cTslLxWFRVMvFExTpN7uMQZvBjINJKOrdVu1RFPIgvMcGPk2ek1a5gbRqJI4rhUcqJzAwMBf08p9cUXDwCe0daTwM_aW2vn6LP-vmR7gwL_e4Gf_Nezn8LdhGwNfXqS7cJG-7VzzzBYa81zb6a_AQEnNcU
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwF74GMMVhjIICQkJnfNh-PksUJMA9QJMSoV8WDZjjOmVWm1JEIgHvg3-Pf4S7hL3NBUfIgH3iLdubGv5_Nd7u5nQh4rLWILYQDDNA-Cag-ZDj3LQLWSDNNGYYrdyOPj6GgSvpzy6QZ5v-yFaZrOcX7M_gTkYw1sxGC1JX1W23F4MOcHizRrtn8cHRR4gmGBFmcIKMTEJbIZcXDUe2Rzcvx69K7uNxKcJT6fujznL8d1Tqp1e71yYK0XU7YZ1S1ypcoX6tNHNZutHFqH18mX5XKbWpXzQVXqgfm8hgT5n-Rxg1xzzi4dNdp5k2zYfJtsrUAgbpPLY5fcv0XUuL5RiNY_DkSq8pSeqrOSZraGH6WICNK0WlLwtakrfsKvHRS7t-tGtu9fvxXUpZ1oVdPGJ_QVvMGUO2Ry-PztsyPmboBghguvZEZoHYHPpLnSYCvCIFIQYVkvSDVPuU0yG2Ai1XI_84XisTI2gZA-MUGmlArT4Dbp5fPc7hIaR0OlteahSUEZRabiFE5troLQN6mIvT4ZLv9taRw8Ot7SMZN1mBRHshGkBEFKFKQUffK0HbJosEH-xPwIVUgi5kaORT2nqioK-eLkjRzhVewxB9epT544pmyOwlauRwKWgDBdHc69DicYBdMlLzVVOqNUSA-WyWuAxz552JJxJBba5XZeIY8vEojJPeC50yh2uzbwnYHEQVSio_ItA0KVdyn52YcasjzEj2URTGt_uTlWpvV7ke23--fvAr77T9z3yFUftwR4IX64R3rlRWXvg3tZ6gfOTPwAoLJ1WA
  priority: 102
  providerName: Unpaywall
Title Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect
URI https://link.springer.com/article/10.1186/s12938-015-0092-7
https://www.ncbi.nlm.nih.gov/pubmed/26499251
https://www.proquest.com/docview/1781544759
https://www.proquest.com/docview/1727992419
https://pubmed.ncbi.nlm.nih.gov/PMC4619468
https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-015-0092-7
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwED_tIQH7gGC8CqMyCIHEFGgejpMPCJVqZYBSTRuVyhcsO3HGpCrt1lSw_5671ImaaYwvkaq7PHy-69357N8BvFJaRAbTAIfKPASq3XN04BoHVSvOqWwUZHQaORmFh-Pg64RPNqCunlsBLq5N7aif1Phi-u7P-eVHNPgPlcFH4fsF-SzaksUdghByxOv5uUN9paj-aptsbMI2-q6YmjskQVNnoHw6trXOa5_U8lZX_7PXnNbVDZVNVXUHbi-Lubr8rabTNcc1vAd3bcTJ-isVuQ8bptiFnTUcwl24ldgK-wP4mVRtfRi-IKVVdKaKjJ2qs5LlpsIAZQTLsTrvyDDgZXYHEi05MDpCXZ0mWzBb-GHLipCcsG_4-LR8COPhwffBoWN7MDgpF27ppELrEKMWzZVGaw38UGGOY1w_0zzjJs6NT6VMw73cE4pHKjUxJtVx6udKqSDzH8FWMSvME2BR2FNaax6kGaqDyFWUod_kyg-8NBOR24FeLWuZWoBy6pMxlVWiEoVyNT0Sp0fS9EjRgbfNLfMVOsdNzC9pAiWhXhS0reZULRcL-eXkWPapGXrEMXjpwBvLlM9I0sqeUsAhEFBWi3OvxYlmmbbJtZ7IWquli8PkFcRiB140ZLqTtroVZrYkHk_EmBW7yPN4pVbN2DB6RRJHUYmWwjUMBBbephRnvyrQ8ICWq0L8rP1aNdc-698i22-09_8CfnrzkJ_BHY8sCx2_F-zBVnmxNM8xoit1FzbFROA1Gn7uwvang9HRMf4ahINutUbSrYwWKePRUf_HX1BETMM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItH2gKC8FgoYBEKiirp5OE4OCFVAtct2e6CttKca23HaSqvsQjaq-qf4jczk1U0lyqlnTx4ejz0znplvAN4pLSKLboBDYR4C1e47OnCtg6IVpxQ2ChKqRh4fhIPj4PuET1bgT1MLQ2mVzZlYHtTJzNAd-Y4rIgKOETz-PP_lUNcoiq42LTQqsRjZywt02fJPw6-4vu89b-_b0ZeBU3cVcAwX7sIxQusQ9bDmSqP8BX6o0Gq3rp9onnAbp9an4JzlXuoJxSNlbIxuYmz8VCkVJD6-9w7cDXw8S3D_iMmVg0ewv3Xk1I3CnZx0KaWKcYegjRzR0X3XNcCSCryentnGaDdgrcjm6vJCTadLanDvAdyv7Ve2WwncQ1ix2SZsLKEabsK9cR2vfwQn47JJEMMPGLqTZypL2Kk6X7DUloiijEA-qupJhuYzq_OZ6AKDUUF2WZuWszqMxIpyYHzIRvh6s3gMx7fC-yewms0y-wxYFPaV1poHJkHhEqmKEtTCXPmBZxKUlR70G15LU8OdU9eNqSzdniiU1fJIXB5JyyNFDz62j8wrrI-biN_SAkrC0MgoSedUFXkuh4c_5C61Vo84mkI9-FATpTPitKprHnAKBLvVodzqUOImN93hRk5kfcjk8mpL9OBNO0xPUuJcZmcF0XgiRh_bRZqnlVi1c0NbGIc4skp0BK4lIOjx7kh2flZCkAd0-RXib203orn0W_9m2XYrvf9n8PObp_wa1gZH4325PzwYvYB1j3YZmhResAWri9-FfYm24kK_Kjcog5-3fSL8BUhieNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9QwDLdgSIM9IBgMDgYEhITEVO3aJk37OB2cNsZNiDFpb1GSpmPSqXeiPSHe-Bp8PT4JdptW14k_4jlO2yR2bcf2zwAvtZGpQzcgoDAPgWqPA8NDFyBrZQWFjXhO1cizk-TwjL87F-e-z2nVZbt3Icm2poFQmsp6f5kXrYinyX5FWoqSsERAoEGBvA43OCo3amEwSSa9x0U4vD6U-dtpA2V09Ze8ppOu5kv2QdMtuLkql_rbVz2fr-ml6R247Q1KdtBywF245spt2FqDGdyGzZkPoN8DPWu69jB8gaVLcqbLnF3oy5oVroH4ZIS60ZYzMrRnmU8wohsFRhXSTbHYz-8_KuZDO2zVjM1O2TG-wdb34Wz69tPkMPBdFgIrZFgHVhqToF1ihDYojzxONHoxLoxzI3LhssLFFKx0IioiqUWqrcvQbc5sXGiteR7vwEa5KN1DYGky1sYYwW2OBy4LneaoGYWOeWRzmYYjGHfbrayHIKdOGHPVuCJpotoTUnhCik5IyRG87qcsW_yNvxG_oDNUhGtRUuLMhV5VlTo6_agOqN15KtA8GcErT1QsaLO1r0PAJRAU1oByd0CJgmeHwx2rKC_4lQpxmaIBURzB836YZlIyW-kWK6KJZIZ-b4g0D1rO6teG9ikOCdwqOeC5noDgwIcj5eXnBhac04VUgp-113Hn2mf9ecv2egb-9wY_-q9nP4PND2-m6v3RyfFjuBWR2KHSj_gubNRfVu4JWnO1edpI7C-pikD7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwF74GMMVhjIICQkJnfNh-PksUJMA9QJMSoV8WDZjjOmVWm1JEIgHvg3-Pf4S7hL3NBUfIgH3iLdubGv5_Nd7u5nQh4rLWILYQDDNA-Cag-ZDj3LQLWSDNNGYYrdyOPj6GgSvpzy6QZ5v-yFaZrOcX7M_gTkYw1sxGC1JX1W23F4MOcHizRrtn8cHRR4gmGBFmcIKMTEJbIZcXDUe2Rzcvx69K7uNxKcJT6fujznL8d1Tqp1e71yYK0XU7YZ1S1ypcoX6tNHNZutHFqH18mX5XKbWpXzQVXqgfm8hgT5n-Rxg1xzzi4dNdp5k2zYfJtsrUAgbpPLY5fcv0XUuL5RiNY_DkSq8pSeqrOSZraGH6WICNK0WlLwtakrfsKvHRS7t-tGtu9fvxXUpZ1oVdPGJ_QVvMGUO2Ry-PztsyPmboBghguvZEZoHYHPpLnSYCvCIFIQYVkvSDVPuU0yG2Ai1XI_84XisTI2gZA-MUGmlArT4Dbp5fPc7hIaR0OlteahSUEZRabiFE5troLQN6mIvT4ZLv9taRw8Ot7SMZN1mBRHshGkBEFKFKQUffK0HbJosEH-xPwIVUgi5kaORT2nqioK-eLkjRzhVewxB9epT544pmyOwlauRwKWgDBdHc69DicYBdMlLzVVOqNUSA-WyWuAxz552JJxJBba5XZeIY8vEojJPeC50yh2uzbwnYHEQVSio_ItA0KVdyn52YcasjzEj2URTGt_uTlWpvV7ke23--fvAr77T9z3yFUftwR4IX64R3rlRWXvg3tZ6gfOTPwAoLJ1WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+tracking+and+gait+feature+estimation+for+recognising+Parkinsons+disease+using+MS+Kinect&rft.jtitle=Biomedical+engineering+online&rft.au=Tupa%2C+Ondrej&rft.au=Prochazka%2C+Ales&rft.au=Vysata%2C+Oldrich&rft.au=Schatz%2C+Martin&rft.date=2015-10-24&rft.pub=Springer+Nature+B.V&rft.eissn=1475-925X&rft.volume=14&rft_id=info:doi/10.1186%2Fs12938-015-0092-7&rft.externalDocID=4025807141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon