Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect
Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson’s disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait a...
Saved in:
| Published in | Biomedical engineering online Vol. 14; no. 1; p. 97 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
24.10.2015
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1475-925X 1475-925X |
| DOI | 10.1186/s12938-015-0092-7 |
Cover
| Abstract | Background
Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson’s disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space.
Methods
The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson’s disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data.
Results
The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson’s disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications.
Conclusions
Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders. |
|---|---|
| AbstractList | Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. Methods The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. Results The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Conclusions Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders. Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space.BACKGROUNDAnalysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space.The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data.METHODSThe experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data.The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications.RESULTSThe main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications.Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.CONCLUSIONSDiscussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders. Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson’s disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. Methods The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson’s disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. Results The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson’s disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Conclusions Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders. Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders. Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. Methods The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. Results The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. Conclusions Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders. Keywords: Image and depth sensors, Gait disorders, Motion features, Video processing, MS Kinect, Classification , Parkinson's disease Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. |
| ArticleNumber | 97 |
| Audience | Academic |
| Author | Vališ, Martin Vyšata, Oldřich Mareš, Jan Ťupa, Ondřej Procházka, Aleš Mařík, Vladimír Schätz, Martin |
| Author_xml | – sequence: 1 givenname: Ondrej surname: Tupa fullname: Tupa, Ondrej – sequence: 2 givenname: Ales surname: Prochazka fullname: Prochazka, Ales – sequence: 3 givenname: Oldrich surname: Vysata fullname: Vysata, Oldrich – sequence: 4 givenname: Martin surname: Schatz fullname: Schatz, Martin – sequence: 5 givenname: Jan surname: Mares fullname: Mares, Jan – sequence: 6 givenname: Martin surname: Valis fullname: Valis, Martin – sequence: 7 givenname: Vladimir surname: Marik fullname: Marik, Vladimir |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26499251$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAQxyNURD_gAbigSFzgkBIndmJfkKqKj4pWIAoSN2viTIJL1l7sBOiN1-D1eBImuwV2K0Aoh0T27z8Z_Wb2kx3nHSbJXZYfMiarR5EVqpRZzkSW56rI6hvJHuO1yFQh3u1sfO8m-zFe5HmR55W6lewWFVd0zvYSOPOj9S4dA5gP1vUpuDbtwY5phzBOAVOMo13ACup8SAMa3zsbZ_YVBMpE775__RbT1kaEiOm0ujs7T19Yh2a8ndzsYIh45-p9kLx9-uTN8fPs9OWzk-Oj08yImo2ZqZumqnjZCGhKpnhZgeASWdk2ohWoOiyLvKxQFF1Rg5BgUEkplSk7AOBteZAU67qTW8LlZxgGvQzUebjULNezL732pcmXnn3pmkKP16Hl1CywNehIxO-gB6u3b5x9r3v_SfOKeqwkFXhwVSD4jxO50gsbDQ4DOPRT1KwualLNmSL0_jX0wk_BkROiJBOcprVB9TCgtq7z82jmovpIcMalkGz-7eEfKHpaXFhDW9JZOt8KPNwKEDPil7GHKUZ9cv56m723KeWXjZ9bQ0C9BkzwMQbstLHjakWoCzv80ze7lvyfGV0NNhLregwb3v4a-gHL-vWP |
| CitedBy_id | crossref_primary_10_1155_2018_5809769 crossref_primary_10_1016_j_vrih_2024_08_001 crossref_primary_10_3390_app13010162 crossref_primary_10_1016_j_rh_2017_11_003 crossref_primary_10_1186_s12859_018_2488_4 crossref_primary_10_3390_electronics12030625 crossref_primary_10_1016_j_jvcir_2021_103218 crossref_primary_10_1109_TIM_2021_3111998 crossref_primary_10_1007_s11042_021_11750_x crossref_primary_10_1109_JSEN_2021_3139939 crossref_primary_10_1186_s12911_019_0987_5 crossref_primary_10_1016_j_jocn_2019_08_101 crossref_primary_10_3390_s22239467 crossref_primary_10_1007_s11517_019_02079_7 crossref_primary_10_1016_j_ifacol_2016_10_546 crossref_primary_10_1109_TNSRE_2021_3096433 crossref_primary_10_1109_ACCESS_2019_2949744 crossref_primary_10_1186_s12984_023_01186_9 crossref_primary_10_1109_ACCESS_2018_2879896 crossref_primary_10_3390_app13074205 crossref_primary_10_3390_s22218173 crossref_primary_10_3389_fnhum_2022_826376 crossref_primary_10_1038_s41531_022_00368_x crossref_primary_10_1186_s12984_019_0492_1 crossref_primary_10_4338_ACI_2016_03_R_0042 crossref_primary_10_1109_ACCESS_2020_2967845 crossref_primary_10_1109_RBME_2018_2807182 crossref_primary_10_3389_fneur_2021_603619 crossref_primary_10_1111_cns_12687 crossref_primary_10_1007_s10916_018_0905_x crossref_primary_10_1109_JSEN_2018_2839732 crossref_primary_10_1016_j_neucom_2021_12_004 crossref_primary_10_1007_s11042_023_15079_5 crossref_primary_10_1080_14737175_2023_2229954 crossref_primary_10_3390_app7060581 crossref_primary_10_2174_1389557521666210927151553 crossref_primary_10_3390_s17122843 crossref_primary_10_1016_j_neucom_2025_129533 crossref_primary_10_1177_1877718X241312605 crossref_primary_10_1109_JBHI_2021_3092875 crossref_primary_10_1016_j_compeleceng_2025_110216 crossref_primary_10_1016_j_matpr_2020_11_615 crossref_primary_10_2196_52582 crossref_primary_10_3389_fnhum_2022_768575 crossref_primary_10_1109_ACCESS_2023_3234421 crossref_primary_10_1007_s11831_019_09375_3 crossref_primary_10_3390_s17040825 crossref_primary_10_1111_camh_12360 crossref_primary_10_3233_JIFS_189038 crossref_primary_10_1016_j_medengphy_2020_08_007 crossref_primary_10_1016_j_mejo_2018_01_015 crossref_primary_10_1109_ACCESS_2020_3013029 |
| Cites_doi | 10.1016/j.patrec.2005.10.010 10.1016/j.gaitpost.2015.05.002 10.1109/MMUL.2012.24 10.1016/j.gaitpost.2012.03.033 10.1016/j.apergo.2011.09.011 10.1093/clinchem/39.4.561 10.1109/TCYB.2013.2271112 10.1016/S0893-6080(01)00027-2 10.1109/MSP.2011.941097 10.1016/j.jbiomech.2013.08.011 10.1109/TCYB.2013.2275945 10.1109/THMS.2013.2283945 10.1007/978-1-4612-0717-7 10.1016/j.gaitpost.2014.01.008 10.1109/TBME.2014.2299772 10.1007/978-3-319-14142-8_10 10.1109/TCYB.2013.2265378 10.1007/s11517-012-0960-2 10.1186/1475-925X-10-1 10.1016/j.eswa.2011.07.042 10.1007/s11265-013-0778-7 10.21917/ijsc.2012.0054 10.1109/TSMC.2013.2251629 10.1016/j.sigpro.2005.02.002 10.1007/s11263-010-0362-6 10.1109/TSMCC.2012.2215852 10.3390/s140406124 10.1111/j.1460-9568.2005.04298.x 10.1016/j.jbiomech.2013.11.031 10.1007/s00521-014-1622-0 10.1186/1743-0003-11-60 10.3390/s140203362 10.1007/978-3-642-53862-9_26 |
| ContentType | Journal Article |
| Copyright | Ťupa et al. 2015 COPYRIGHT 2015 BioMed Central Ltd. Copyright BioMed Central 2015 |
| Copyright_xml | – notice: Ťupa et al. 2015 – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Copyright BioMed Central 2015 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12938-015-0092-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1475-925X |
| ExternalDocumentID | 10.1186/s12938-015-0092-7 PMC4619468 4025807141 A541485818 26499251 10_1186_s12938_015_0092_7 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE I-F IAO IGS IHR INH INR ISR ITC KQ8 L6V LK8 M1P M48 M7P M7S MK~ ML~ M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SEG SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c571t-c7bb6643b5ab319436a548e13db5d5e9fe32036e52f27a58ace98889c3faaa4d3 |
| IEDL.DBID | M48 |
| ISSN | 1475-925X |
| IngestDate | Wed Oct 29 11:45:16 EDT 2025 Tue Sep 30 15:22:29 EDT 2025 Thu Sep 04 17:27:29 EDT 2025 Mon Oct 06 18:38:46 EDT 2025 Mon Oct 20 22:51:45 EDT 2025 Mon Oct 20 17:04:04 EDT 2025 Thu Oct 16 16:17:57 EDT 2025 Mon Jul 21 06:02:22 EDT 2025 Thu Apr 24 22:51:55 EDT 2025 Wed Oct 01 00:48:12 EDT 2025 Sat Sep 06 07:30:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Image and depth sensors Video processing MS Kinect Classification Parkinson’s disease Gait disorders Motion features |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c571t-c7bb6643b5ab319436a548e13db5d5e9fe32036e52f27a58ace98889c3faaa4d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-015-0092-7 |
| PMID | 26499251 |
| PQID | 1781544759 |
| PQPubID | 42562 |
| ParticipantIDs | unpaywall_primary_10_1186_s12938_015_0092_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4619468 proquest_miscellaneous_1727992419 proquest_journals_1781544759 gale_infotracmisc_A541485818 gale_infotracacademiconefile_A541485818 gale_incontextgauss_ISR_A541485818 pubmed_primary_26499251 crossref_citationtrail_10_1186_s12938_015_0092_7 crossref_primary_10_1186_s12938_015_0092_7 springer_journals_10_1186_s12938_015_0092_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-24 |
| PublicationDateYYYYMMDD | 2015-10-24 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Biomedical engineering online |
| PublicationTitleAbbrev | BioMed Eng OnLine |
| PublicationTitleAlternate | Biomed Eng Online |
| PublicationYear | 2015 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | S Haykin (92_CR36) 2009 MS Mary (92_CR37) 2012; 2 YY Chen (92_CR17) 2012; 39 X Xu (92_CR19) 2015; 42 D Jarchi (92_CR25) 2014; 61 J Lue (92_CR31) 2005; 85 MU Choudry (92_CR10) 2013; 43 T Dutta (92_CR29) 2012; 43 J Han (92_CR4) 2013; 43 G Yogev (92_CR18) 2005; 22 A Schmitz (92_CR8) 2014; 47 T Fawcett (92_CR35) 2006; 27 S Qin (92_CR28) 2014; 74 F Schwenker (92_CR38) 2002; 14 RA Clark (92_CR14) 2013; 46 B Galna (92_CR15) 2014; 39 RW Schafer (92_CR32) 2011; 28 92_CR39 HPH Shum (92_CR9) 2013; 43 I Venkat (92_CR16) 2011; 91 G Fortino (92_CR5) 2013; 43 G Cuaya (92_CR13) 2013; 51 A Prochazka (92_CR23) 2014; 25 MH Zweig (92_CR34) 1993; 39 M Camplani (92_CR7) 2013; 43 D Brscic (92_CR3) 2013; 43 ST Moore (92_CR40) 2011; 10 T Krzeszowski (92_CR24) 2014; 8671 JJK Ruanaidh (92_CR33) 1996 F Karray (92_CR1) 2008; 1 RA Clark (92_CR12) 2012; 36 M Elgendi (92_CR6) 2014; 13 B Caby (92_CR11) 2011; 10 Z Zhang (92_CR27) 2012; 19 B Galna (92_CR2) 2014; 11 IH Witten (92_CR22) 2011 J Tang (92_CR30) 2014; 14 92_CR26 92_CR21 A Muro-de-la-Herran (92_CR20) 2014; 14 21244718 - Biomed Eng Online. 2011;10:1 22438718 - Sensors (Basel). 2012;12(2):1437-54 11411631 - Neural Netw. 2001 May;14(4-5):439-58 23981562 - IEEE Trans Cybern. 2013 Oct;43(5):1357-69 24016679 - J Biomech. 2013 Oct 18;46(15):2722-5 16176368 - Eur J Neurosci. 2005 Sep;22(5):1248-56 24556672 - Sensors (Basel). 2014 Feb 19;14(2):3362-94 24731758 - J Neuroeng Rehabil. 2014;11:60 23065654 - Med Biol Eng Comput. 2013 Feb;51(1-2):29-37 8472349 - Clin Chem. 1993 Apr;39(4):561-77 24968711 - Biomed Eng Online. 2014;13:88 21936884 - Biomed Eng Online. 2011;10:82 24658250 - IEEE Trans Biomed Eng. 2014 Apr;61(4):1261-73 23807480 - IEEE Trans Cybern. 2013 Oct;43(5):1318-34 24315287 - J Biomech. 2014 Jan 22;47(2):587-91 22018839 - Appl Ergon. 2012 Jul;43(4):645-9 22633015 - Gait Posture. 2012 Jul;36(3):372-7 24560691 - Gait Posture. 2014 Apr;39(4):1062-8 26002604 - Gait Posture. 2015 Jul;42(2):145-51 24273141 - IEEE Trans Cybern. 2013 Dec;43(6):1560-71 24686727 - Sensors (Basel). 2014;14(4):6124-43 |
| References_xml | – volume-title: Neural networks and learning machines year: 2009 ident: 92_CR36 – volume: 27 start-page: 861 year: 2006 ident: 92_CR35 publication-title: Pattern Recognit Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 42 start-page: 145 issue: 2 year: 2015 ident: 92_CR19 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.05.002 – volume: 19 start-page: 4 issue: 2 year: 2012 ident: 92_CR27 publication-title: IEEE Multimed doi: 10.1109/MMUL.2012.24 – volume: 36 start-page: 372 year: 2012 ident: 92_CR12 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.03.033 – volume: 43 start-page: 645 year: 2012 ident: 92_CR29 publication-title: Appl Ergon. doi: 10.1016/j.apergo.2011.09.011 – volume: 39 start-page: 561 year: 1993 ident: 92_CR34 publication-title: Clin Chem. doi: 10.1093/clinchem/39.4.561 – volume: 43 start-page: 1560 issue: 6 year: 2013 ident: 92_CR7 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2271112 – volume: 14 start-page: 439 year: 2002 ident: 92_CR38 publication-title: Neural Netw doi: 10.1016/S0893-6080(01)00027-2 – volume: 28 start-page: 111 issue: 4 year: 2011 ident: 92_CR32 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2011.941097 – volume: 46 start-page: 2772 issue: 15 year: 2013 ident: 92_CR14 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.08.011 – volume: 43 start-page: 1357 issue: 5 year: 2013 ident: 92_CR9 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2275945 – volume: 43 start-page: 522 issue: 6 year: 2013 ident: 92_CR3 publication-title: IEEE Trans Hum Mach Syst doi: 10.1109/THMS.2013.2283945 – volume-title: Numerical Bayesian methods applied to signal processing year: 1996 ident: 92_CR33 doi: 10.1007/978-1-4612-0717-7 – volume: 39 start-page: 1062 issue: 4 year: 2014 ident: 92_CR15 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.01.008 – volume: 61 start-page: 1261 issue: 4 year: 2014 ident: 92_CR25 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2299772 – ident: 92_CR21 doi: 10.1007/978-3-319-14142-8_10 – volume: 43 start-page: 1318 issue: 5 year: 2013 ident: 92_CR4 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2265378 – volume: 13 start-page: 1 issue: 88 year: 2014 ident: 92_CR6 publication-title: BioMed Eng OnLine – volume: 51 start-page: 29 issue: 1–2 year: 2013 ident: 92_CR13 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-012-0960-2 – ident: 92_CR39 – volume: 8671 start-page: 356 year: 2014 ident: 92_CR24 publication-title: Sensors – volume: 10 start-page: 1 issue: 1 year: 2011 ident: 92_CR11 publication-title: BioMed Eng OnLine doi: 10.1186/1475-925X-10-1 – volume: 39 start-page: 520 issue: 1 year: 2012 ident: 92_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.07.042 – volume: 74 start-page: 47 year: 2014 ident: 92_CR28 publication-title: J Signal Proces Syst doi: 10.1007/s11265-013-0778-7 – volume: 10 start-page: 1 issue: 82 year: 2011 ident: 92_CR40 publication-title: BioMed Eng OnLine – volume: 2 start-page: 348 issue: 3 year: 2012 ident: 92_CR37 publication-title: ICTACT J Soft Comput doi: 10.21917/ijsc.2012.0054 – volume: 43 start-page: 314 issue: 3 year: 2013 ident: 92_CR10 publication-title: IEEE Trans Hum Mach Syst doi: 10.1109/TSMC.2013.2251629 – volume-title: Data mining: practical machine learning tools and techniques year: 2011 ident: 92_CR22 – volume: 1 start-page: 137 issue: 1 year: 2008 ident: 92_CR1 publication-title: Int J Smart Sens Intell Sens – volume: 85 start-page: 1429 issue: 7 year: 2005 ident: 92_CR31 publication-title: Signal Process doi: 10.1016/j.sigpro.2005.02.002 – volume: 91 start-page: 7 issue: 1 year: 2011 ident: 92_CR16 publication-title: Int J Comput Vis doi: 10.1007/s11263-010-0362-6 – volume: 43 start-page: 115 issue: 1 year: 2013 ident: 92_CR5 publication-title: IEEE Trans Hum Mach Syst doi: 10.1109/TSMCC.2012.2215852 – volume: 14 start-page: 6124 issue: 4 year: 2014 ident: 92_CR30 publication-title: Sensors doi: 10.3390/s140406124 – volume: 22 start-page: 1248 issue: 5 year: 2005 ident: 92_CR18 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2005.04298.x – volume: 47 start-page: 587 year: 2014 ident: 92_CR8 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.11.031 – volume: 25 start-page: 1349 year: 2014 ident: 92_CR23 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1622-0 – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 92_CR2 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-11-60 – volume: 14 start-page: 3362 issue: 2 year: 2014 ident: 92_CR20 publication-title: Sensors doi: 10.3390/s140203362 – ident: 92_CR26 doi: 10.1007/978-3-642-53862-9_26 – reference: 24556672 - Sensors (Basel). 2014 Feb 19;14(2):3362-94 – reference: 23981562 - IEEE Trans Cybern. 2013 Oct;43(5):1357-69 – reference: 24273141 - IEEE Trans Cybern. 2013 Dec;43(6):1560-71 – reference: 22438718 - Sensors (Basel). 2012;12(2):1437-54 – reference: 24315287 - J Biomech. 2014 Jan 22;47(2):587-91 – reference: 26002604 - Gait Posture. 2015 Jul;42(2):145-51 – reference: 22633015 - Gait Posture. 2012 Jul;36(3):372-7 – reference: 24686727 - Sensors (Basel). 2014;14(4):6124-43 – reference: 8472349 - Clin Chem. 1993 Apr;39(4):561-77 – reference: 24968711 - Biomed Eng Online. 2014;13:88 – reference: 22018839 - Appl Ergon. 2012 Jul;43(4):645-9 – reference: 24731758 - J Neuroeng Rehabil. 2014;11:60 – reference: 16176368 - Eur J Neurosci. 2005 Sep;22(5):1248-56 – reference: 23065654 - Med Biol Eng Comput. 2013 Feb;51(1-2):29-37 – reference: 23807480 - IEEE Trans Cybern. 2013 Oct;43(5):1318-34 – reference: 11411631 - Neural Netw. 2001 May;14(4-5):439-58 – reference: 24658250 - IEEE Trans Biomed Eng. 2014 Apr;61(4):1261-73 – reference: 21244718 - Biomed Eng Online. 2011;10:1 – reference: 24560691 - Gait Posture. 2014 Apr;39(4):1062-8 – reference: 24016679 - J Biomech. 2013 Oct 18;46(15):2722-5 – reference: 21936884 - Biomed Eng Online. 2011;10:82 |
| SSID | ssj0020069 |
| Score | 2.400734 |
| Snippet | Background
Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson’s disease. It is also... Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to... Background Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 97 |
| SubjectTerms | Acceleration Adult Aged Aged, 80 and over Algorithms Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biotechnology Care and treatment Case-Control Studies Complications and side effects Computer software industry Diagnosis Engineering Female Gait Humans Imaging, Three-Dimensional - methods Male Middle Aged Movement disorders Nerve Net Neural networks Parkinson Disease - physiopathology Risk factors Walking |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB_qFdR-EK2PnlZZRRAsoZfHZpMPIlVaqnKHtBb6yWVfqYUjdzUJ4n_vTG4TLwXr5508dmZ2d2Zn5jcAr5UWmUM3IKAwD4FqTwKdhC5A1coLChsllqqRp7P0-Cz5fM7PN2DW1cJQWmW3J7YbtV0YuiPfD0VGwDGC5--XVwF1jaLoatdCQ_nWCvZdCzF2CzYjQsYaweaHw9nXk94FI2BeH9sMs3S_otOOkrl4QOBDgRicTtf36LVD6noCZR9F3YI7TblUv3-p-XztoDq6D_e8hckOVirxADZcuQ1ba7iD23B76iPqD-H7tG3jw_ADhm7NmSotu1CXNStci_nJCIZjVd_I0MBlPuOIrhgYlUy31WMV84Ee1rQD01P2BV9v6kdwdnT47eNx4HsuBIaLsA6M0DpFK0VzpXF1JnGq0KdxYWw1t9zlhYspdOl4VERC8UwZl6MTnZu4UEolNn4Mo3JRuh1gWTpRWmueGIviF4XKLAqFqziJjEVpjmHS8VoaD0hOfTHmsnVMslSuxCNRPJLEI8UY3vaPLFdoHDcRvyIBSkK5KCmN5kI1VSU_nZ7IA2p-nnE0VsbwxhMVC-K08lUJOAUCxhpQ7g4ocRma4XCnJ9JvA5X8q7RjeNkP05OU2la6RUM0kcjRCw6R5slKrfq5obWKQxxZJQYK1xMQOPhwpLz80YKEJ3Q9leJv7XWqufZb_2bZXq-9_2fw05un_AzuRrSy8KCPkl0Y1T8b9xwtuFq_8MvyD5PeQec priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Pb9UwDLdgSMAOCAYbDwYKCAmJqeL1T5L2OE2bBuhxYEzaLUrSdEx66ptoK8SNr8HX45Ngp3lVO8EQZzttE9u1Hce_ALzSRuYO04CIyjwEqj2PTBa7CFWrqKhslJXUjbz4KI5Ps_dn_CyARVMvzLh-H-fibUP-iI5b8YjggSJ5E26hjxK-LisOhtyKEHdD0fKPwyZu5-rPd-R9rp6MHMqjm3Cnqy_19296uRx5oKP7cC-Ejmy_l_UDuOHqLdgcAQpuwe1FKJU_BL3w9_MwfIGl7XCm65Kd64uWVc6DeTLC1-gbFxlGriwcJaK9A0a90L4t7NePnw0LRRzWedrihH3AN9j2EZweHX4-OI7CfQqR5TJuIyuNERiBGK4NWl6WCo35iovT0vCSu6JyKZUlHU-qRGqea-sKTJALm1Za66xMt2GjXtXuMbBczLUxhme2RNHKSucl-kCu0yyxpczjGczXy61sABunOy-WyicduVC9hBRKSJGElJzBm2HIZY-0cR3zS5KhIgSLmo7InOuuadS7k09qny42zzkGIjN4HZiqFS22Dh0HOAUCvZpw7k440cTslLxWFRVMvFExTpN7uMQZvBjINJKOrdVu1RFPIgvMcGPk2ek1a5gbRqJI4rhUcqJzAwMBf08p9cUXDwCe0daTwM_aW2vn6LP-vmR7gwL_e4Gf_Nezn8LdhGwNfXqS7cJG-7VzzzBYa81zb6a_AQEnNcU priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwF74GMMVhjIICQkJnfNh-PksUJMA9QJMSoV8WDZjjOmVWm1JEIgHvg3-Pf4S7hL3NBUfIgH3iLdubGv5_Nd7u5nQh4rLWILYQDDNA-Cag-ZDj3LQLWSDNNGYYrdyOPj6GgSvpzy6QZ5v-yFaZrOcX7M_gTkYw1sxGC1JX1W23F4MOcHizRrtn8cHRR4gmGBFmcIKMTEJbIZcXDUe2Rzcvx69K7uNxKcJT6fujznL8d1Tqp1e71yYK0XU7YZ1S1ypcoX6tNHNZutHFqH18mX5XKbWpXzQVXqgfm8hgT5n-Rxg1xzzi4dNdp5k2zYfJtsrUAgbpPLY5fcv0XUuL5RiNY_DkSq8pSeqrOSZraGH6WICNK0WlLwtakrfsKvHRS7t-tGtu9fvxXUpZ1oVdPGJ_QVvMGUO2Ry-PztsyPmboBghguvZEZoHYHPpLnSYCvCIFIQYVkvSDVPuU0yG2Ai1XI_84XisTI2gZA-MUGmlArT4Dbp5fPc7hIaR0OlteahSUEZRabiFE5troLQN6mIvT4ZLv9taRw8Ot7SMZN1mBRHshGkBEFKFKQUffK0HbJosEH-xPwIVUgi5kaORT2nqioK-eLkjRzhVewxB9epT544pmyOwlauRwKWgDBdHc69DicYBdMlLzVVOqNUSA-WyWuAxz552JJxJBba5XZeIY8vEojJPeC50yh2uzbwnYHEQVSio_ItA0KVdyn52YcasjzEj2URTGt_uTlWpvV7ke23--fvAr77T9z3yFUftwR4IX64R3rlRWXvg3tZ6gfOTPwAoLJ1WA priority: 102 providerName: Unpaywall |
| Title | Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect |
| URI | https://link.springer.com/article/10.1186/s12938-015-0092-7 https://www.ncbi.nlm.nih.gov/pubmed/26499251 https://www.proquest.com/docview/1781544759 https://www.proquest.com/docview/1727992419 https://pubmed.ncbi.nlm.nih.gov/PMC4619468 https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-015-0092-7 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RBZ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DOA dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ADMLS dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RPM dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1475-925X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M48 dateStart: 20020501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: AAJSJ dateStart: 20021201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: C6C dateStart: 20020112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwED_tIQH7gGC8CqMyCIHEFGgejpMPCJVqZYBSTRuVyhcsO3HGpCrt1lSw_5671ImaaYwvkaq7PHy-69357N8BvFJaRAbTAIfKPASq3XN04BoHVSvOqWwUZHQaORmFh-Pg64RPNqCunlsBLq5N7aif1Phi-u7P-eVHNPgPlcFH4fsF-SzaksUdghByxOv5uUN9paj-aptsbMI2-q6YmjskQVNnoHw6trXOa5_U8lZX_7PXnNbVDZVNVXUHbi-Lubr8rabTNcc1vAd3bcTJ-isVuQ8bptiFnTUcwl24ldgK-wP4mVRtfRi-IKVVdKaKjJ2qs5LlpsIAZQTLsTrvyDDgZXYHEi05MDpCXZ0mWzBb-GHLipCcsG_4-LR8COPhwffBoWN7MDgpF27ppELrEKMWzZVGaw38UGGOY1w_0zzjJs6NT6VMw73cE4pHKjUxJtVx6udKqSDzH8FWMSvME2BR2FNaax6kGaqDyFWUod_kyg-8NBOR24FeLWuZWoBy6pMxlVWiEoVyNT0Sp0fS9EjRgbfNLfMVOsdNzC9pAiWhXhS0reZULRcL-eXkWPapGXrEMXjpwBvLlM9I0sqeUsAhEFBWi3OvxYlmmbbJtZ7IWquli8PkFcRiB140ZLqTtroVZrYkHk_EmBW7yPN4pVbN2DB6RRJHUYmWwjUMBBbephRnvyrQ8ICWq0L8rP1aNdc-698i22-09_8CfnrzkJ_BHY8sCx2_F-zBVnmxNM8xoit1FzbFROA1Gn7uwvang9HRMf4ahINutUbSrYwWKePRUf_HX1BETMM |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItH2gKC8FgoYBEKiirp5OE4OCFVAtct2e6CttKca23HaSqvsQjaq-qf4jczk1U0lyqlnTx4ejz0znplvAN4pLSKLboBDYR4C1e47OnCtg6IVpxQ2ChKqRh4fhIPj4PuET1bgT1MLQ2mVzZlYHtTJzNAd-Y4rIgKOETz-PP_lUNcoiq42LTQqsRjZywt02fJPw6-4vu89b-_b0ZeBU3cVcAwX7sIxQusQ9bDmSqP8BX6o0Gq3rp9onnAbp9an4JzlXuoJxSNlbIxuYmz8VCkVJD6-9w7cDXw8S3D_iMmVg0ewv3Xk1I3CnZx0KaWKcYegjRzR0X3XNcCSCryentnGaDdgrcjm6vJCTadLanDvAdyv7Ve2WwncQ1ix2SZsLKEabsK9cR2vfwQn47JJEMMPGLqTZypL2Kk6X7DUloiijEA-qupJhuYzq_OZ6AKDUUF2WZuWszqMxIpyYHzIRvh6s3gMx7fC-yewms0y-wxYFPaV1poHJkHhEqmKEtTCXPmBZxKUlR70G15LU8OdU9eNqSzdniiU1fJIXB5JyyNFDz62j8wrrI-biN_SAkrC0MgoSedUFXkuh4c_5C61Vo84mkI9-FATpTPitKprHnAKBLvVodzqUOImN93hRk5kfcjk8mpL9OBNO0xPUuJcZmcF0XgiRh_bRZqnlVi1c0NbGIc4skp0BK4lIOjx7kh2flZCkAd0-RXib203orn0W_9m2XYrvf9n8PObp_wa1gZH4325PzwYvYB1j3YZmhResAWri9-FfYm24kK_Kjcog5-3fSL8BUhieNA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9QwDLdgSIM9IBgMDgYEhITEVO3aJk37OB2cNsZNiDFpb1GSpmPSqXeiPSHe-Bp8PT4JdptW14k_4jlO2yR2bcf2zwAvtZGpQzcgoDAPgWqPA8NDFyBrZQWFjXhO1cizk-TwjL87F-e-z2nVZbt3Icm2poFQmsp6f5kXrYinyX5FWoqSsERAoEGBvA43OCo3amEwSSa9x0U4vD6U-dtpA2V09Ze8ppOu5kv2QdMtuLkql_rbVz2fr-ml6R247Q1KdtBywF245spt2FqDGdyGzZkPoN8DPWu69jB8gaVLcqbLnF3oy5oVroH4ZIS60ZYzMrRnmU8wohsFRhXSTbHYz-8_KuZDO2zVjM1O2TG-wdb34Wz69tPkMPBdFgIrZFgHVhqToF1ihDYojzxONHoxLoxzI3LhssLFFKx0IioiqUWqrcvQbc5sXGiteR7vwEa5KN1DYGky1sYYwW2OBy4LneaoGYWOeWRzmYYjGHfbrayHIKdOGHPVuCJpotoTUnhCik5IyRG87qcsW_yNvxG_oDNUhGtRUuLMhV5VlTo6_agOqN15KtA8GcErT1QsaLO1r0PAJRAU1oByd0CJgmeHwx2rKC_4lQpxmaIBURzB836YZlIyW-kWK6KJZIZ-b4g0D1rO6teG9ikOCdwqOeC5noDgwIcj5eXnBhac04VUgp-113Hn2mf9ecv2egb-9wY_-q9nP4PND2-m6v3RyfFjuBWR2KHSj_gubNRfVu4JWnO1edpI7C-pikD7 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwF74GMMVhjIICQkJnfNh-PksUJMA9QJMSoV8WDZjjOmVWm1JEIgHvg3-Pf4S7hL3NBUfIgH3iLdubGv5_Nd7u5nQh4rLWILYQDDNA-Cag-ZDj3LQLWSDNNGYYrdyOPj6GgSvpzy6QZ5v-yFaZrOcX7M_gTkYw1sxGC1JX1W23F4MOcHizRrtn8cHRR4gmGBFmcIKMTEJbIZcXDUe2Rzcvx69K7uNxKcJT6fujznL8d1Tqp1e71yYK0XU7YZ1S1ypcoX6tNHNZutHFqH18mX5XKbWpXzQVXqgfm8hgT5n-Rxg1xzzi4dNdp5k2zYfJtsrUAgbpPLY5fcv0XUuL5RiNY_DkSq8pSeqrOSZraGH6WICNK0WlLwtakrfsKvHRS7t-tGtu9fvxXUpZ1oVdPGJ_QVvMGUO2Ry-PztsyPmboBghguvZEZoHYHPpLnSYCvCIFIQYVkvSDVPuU0yG2Ai1XI_84XisTI2gZA-MUGmlArT4Dbp5fPc7hIaR0OlteahSUEZRabiFE5troLQN6mIvT4ZLv9taRw8Ot7SMZN1mBRHshGkBEFKFKQUffK0HbJosEH-xPwIVUgi5kaORT2nqioK-eLkjRzhVewxB9epT544pmyOwlauRwKWgDBdHc69DicYBdMlLzVVOqNUSA-WyWuAxz552JJxJBba5XZeIY8vEojJPeC50yh2uzbwnYHEQVSio_ItA0KVdyn52YcasjzEj2URTGt_uTlWpvV7ke23--fvAr77T9z3yFUftwR4IX64R3rlRWXvg3tZ6gfOTPwAoLJ1WA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+tracking+and+gait+feature+estimation+for+recognising+Parkinsons+disease+using+MS+Kinect&rft.jtitle=Biomedical+engineering+online&rft.au=Tupa%2C+Ondrej&rft.au=Prochazka%2C+Ales&rft.au=Vysata%2C+Oldrich&rft.au=Schatz%2C+Martin&rft.date=2015-10-24&rft.pub=Springer+Nature+B.V&rft.eissn=1475-925X&rft.volume=14&rft_id=info:doi/10.1186%2Fs12938-015-0092-7&rft.externalDocID=4025807141 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon |