Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples
Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building pred...
Saved in:
| Published in | Biomedical engineering online Vol. 15; no. 1; p. 122 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
16.11.2016
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1475-925X 1475-925X |
| DOI | 10.1186/s12938-016-0242-6 |
Cover
| Abstract | Background
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined.
Methods
In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation.
Results
Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms.
Conclusions
This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods. |
|---|---|
| AbstractList | Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. Methods In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Results Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. Conclusions This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods. Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. Methods In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Results Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. Conclusions This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods. The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods. The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined.BACKGROUNDThe use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined.In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation.METHODSIn this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation.Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms.RESULTSExperimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms.This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.CONCLUSIONSThis study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods. |
| ArticleNumber | 122 |
| Audience | Academic |
| Author | Yang, Liuyang Li, Yongming Zhang, He-Hua Zhu, Xueru Yin, Jun Liu, Yuchuan Qiu, Mingguo Yan, Fang Wang, Pin |
| Author_xml | – sequence: 1 givenname: He-Hua surname: Zhang fullname: Zhang, He-Hua organization: Institute of Surgery Research, Daping Hospital, Third Military Medical University – sequence: 2 givenname: Liuyang surname: Yang fullname: Yang, Liuyang organization: College of Communication Engineering, Chongqing University – sequence: 3 givenname: Yuchuan surname: Liu fullname: Liu, Yuchuan organization: College of Communication Engineering, Chongqing University – sequence: 4 givenname: Pin surname: Wang fullname: Wang, Pin organization: College of Communication Engineering, Chongqing University – sequence: 5 givenname: Jun surname: Yin fullname: Yin, Jun organization: Institute of Surgery Research, Daping Hospital, Third Military Medical University – sequence: 6 givenname: Yongming surname: Li fullname: Li, Yongming email: yongmingli@cqu.edu.cn organization: College of Communication Engineering, Chongqing University, Department of Medical Image, College of Biomedical Engineering, Third Military Medical University – sequence: 7 givenname: Mingguo surname: Qiu fullname: Qiu, Mingguo organization: Department of Medical Image, College of Biomedical Engineering, Third Military Medical University – sequence: 8 givenname: Xueru surname: Zhu fullname: Zhu, Xueru organization: College of Communication Engineering, Chongqing University – sequence: 9 givenname: Fang surname: Yan fullname: Yan, Fang organization: College of Communication Engineering, Chongqing University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27852279$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks9u1DAQhyNURNuFB-CCInGBQ0rsxHZyQapWFCpVAvFH4mY59iTr4tiL7dCWE-IteD2eBC-7lN0KEMphovj7TUaf5zDbs85Clt1H5RFCDX0SEG6rpigRLUpc44Leyg5QzUjRYvJ-b-t9PzsM4bwscVnS9k62j1lDMGbtQfZ1bkQIutdSRO1s7vr8lfAftA3Ofv_yLeRKBxAB8ilqoz9rO-TjZKIuQOmYWxAeQiws6GHROZ8Lq3KwAcbOQG7SqV0lhBmc13ExhvwilTwsAWQqYlwaCHez270wAe5t6ix7d_Ls7fxFcfby-en8-KyQhKFYtE2pmq4DylRHFAbadaqqsWBUoEY1omUVsBoQRSCQUH0PEitGu1aiXpIOqlmG130nuxRXF8IYvvR6FP6Ko5KvhPK1UJ6E8pVQTlPo6Tq0nLoRlAQbvfgddELz3ROrF3xwnzhBCNM00yx7tGng3ccpyeKjDhKMERbcFDhqaoSqqimrhD68gZ67ydvkZEWRijGaxrumBmGAa9u79F-5asqPa1aShlSUJOroD1R6FIxapjXqdfq-E3i8E0hMhMs4iCkEfvrm9S77YFvKtY1fa5UAtgakdyF46LnU8eeCpSm0-advdCP5P3e0udiQWDuA3_L219APN2AECQ |
| CitedBy_id | crossref_primary_10_1016_j_mehy_2019_109483 crossref_primary_10_1109_TASLP_2021_3097215 crossref_primary_10_3233_JPD_181389 crossref_primary_10_1007_s00521_022_07046_2 crossref_primary_10_1016_j_bbe_2020_12_009 crossref_primary_10_1016_j_inffus_2018_07_001 crossref_primary_10_1007_s12652_022_03719_x crossref_primary_10_3390_math9243172 crossref_primary_10_1016_j_eswa_2019_06_052 crossref_primary_10_1155_2018_2396952 crossref_primary_10_1016_j_bspc_2021_102849 crossref_primary_10_1016_j_engappai_2023_106097 crossref_primary_10_1007_s00521_021_05741_0 crossref_primary_10_2196_46105 crossref_primary_10_1016_j_media_2020_101830 crossref_primary_10_1093_bib_bbad184 crossref_primary_10_1109_JTEHM_2019_2940900 crossref_primary_10_1155_2021_4034216 crossref_primary_10_4103_jmss_JMSS_57_18 crossref_primary_10_1016_j_engappai_2018_09_018 crossref_primary_10_1007_s40846_021_00626_y crossref_primary_10_1038_s41598_024_51600_y crossref_primary_10_57197_JDR_2024_0026 crossref_primary_10_1016_j_bspc_2021_102850 crossref_primary_10_1016_j_future_2020_04_008 crossref_primary_10_1007_s11517_023_02944_6 crossref_primary_10_1007_s10489_022_04345_y crossref_primary_10_1016_j_bspc_2021_102418 crossref_primary_10_32604_iasc_2023_032102 crossref_primary_10_1002_mma_7835 crossref_primary_10_1007_s13369_020_04357_1 crossref_primary_10_1155_2022_9209656 crossref_primary_10_1007_s10462_021_10084_2 |
| Cites_doi | 10.3390/e18040115 10.1016/j.cmpb.2015.12.011 10.1109/TSP.2011.6043700 10.1166/jmihi.2016.1582 10.1109/BMEiCon.2013.6687667 10.1109/TBME.2012.2183367 10.1044/1092-4388(2009/08-0184) 10.1080/00207721.2012.724114 10.1007/s10916-009-9272-y 10.1016/j.eswa.2012.07.014 10.1016/j.eswa.2009.06.040 10.1121/1.4939739 10.1016/S0095-4470(95)80042-5 10.1007/s10916-011-9678-1 10.1007/978-3-319-02913-9_176 10.1109/TBME.2008.2005954 10.1109/TBME.2009.2036000 10.1109/IMWS-BIO.2015.7303822 10.1109/ICoCS.2014.7060885 10.1098/rsif.2010.0456 10.1109/JBHI.2013.2245674 10.1212/WNL.54.5.21A 10.1093/aje/kwg068 10.1109/EMBC.2015.7319209 10.1007/s10916-015-0353-9 10.1109/10.76382 10.1080/00207721.2013.809613 10.1166/jmihi.2015.1539 10.1155/2016/6837498 10.1109/ICIEV.2014.6850849 10.1016/j.patrec.2011.07.019 10.1016/j.cmpb.2014.01.004 10.1016/j.eswa.2015.10.034 10.1155/2016/5264743 10.1109/IEMBS.2010.5627634 10.9717/kmms.2016.19.2.209 10.1109/SWSTE.2014.17 10.1016/S0031-3203(98)00097-1 10.1109/EMBC.2014.6944937 10.1016/S0895-4356(01)00425-5 10.1016/j.ins.2013.12.016 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2016 COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016 |
| Copyright_xml | – notice: The Author(s) 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12938-016-0242-6 |
| DatabaseName | SpringerLink Journals Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Medical Database Biological Science Database (Proquest) Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1475-925X |
| ExternalDocumentID | 10.1186/s12938-016-0242-6 PMC5112697 4268328781 A470585365 27852279 10_1186_s12938_016_0242_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61108086 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2013M532153 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: ; grantid: 2013M532153 – fundername: ; grantid: 61108086 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE I-F IAO IGS IHR INH INR ISR ITC KQ8 L6V LK8 M1P M48 M7P M7S MK~ ML~ M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SEG SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c571t-980d8bbe67db5d2e6bbd342a76a18d8a973e74e161ea1adffec2d76b9c1fc5be3 |
| IEDL.DBID | M48 |
| ISSN | 1475-925X |
| IngestDate | Wed Oct 29 11:54:42 EDT 2025 Tue Sep 30 16:08:47 EDT 2025 Thu Sep 04 18:30:23 EDT 2025 Mon Oct 06 18:39:28 EDT 2025 Mon Oct 20 22:06:26 EDT 2025 Mon Oct 20 16:35:11 EDT 2025 Thu Oct 16 14:02:35 EDT 2025 Wed Feb 19 01:56:53 EST 2025 Wed Oct 01 05:54:15 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Sat Sep 06 07:30:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Classification of Parkinson disease Multi-edit-nearest-neighbor algorithm (MENN) Ensemble learning Random forest (RF) Optimal selection of speech samples Decorrelated neural network ensembles (DNNE) |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c571t-980d8bbe67db5d2e6bbd342a76a18d8a973e74e161ea1adffec2d76b9c1fc5be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-016-0242-6 |
| PMID | 27852279 |
| PQID | 1845377629 |
| PQPubID | 42562 |
| ParticipantIDs | unpaywall_primary_10_1186_s12938_016_0242_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5112697 proquest_miscellaneous_1841133803 proquest_journals_1845377629 gale_infotracmisc_A470585365 gale_infotracacademiconefile_A470585365 gale_incontextgauss_ISR_A470585365 pubmed_primary_27852279 crossref_citationtrail_10_1186_s12938_016_0242_6 crossref_primary_10_1186_s12938_016_0242_6 springer_journals_10_1186_s12938_016_0242_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-16 |
| PublicationDateYYYYMMDD | 2016-11-16 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Biomedical engineering online |
| PublicationTitleAbbrev | BioMed Eng OnLine |
| PublicationTitleAlternate | Biomed Eng Online |
| PublicationYear | 2016 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | BE Sakar (242_CR1) 2013; 17 E Kaya (242_CR40) 2011; 7 JR Orozco-Arroyave (242_CR25) 2016; 139 A Ozcift (242_CR30) 2012; 36 242_CR12 T Khan (242_CR38) 2013; 33 242_CR10 J Rusz (242_CR16) 2010; 262 L Naranjo (242_CR43) 2016; 46 M Hariharan (242_CR14) 2014; 113 JW Chung (242_CR46) 2016; 19 A Tsanas (242_CR2) 2012; 59 SK Eeden Van Den (242_CR4) 2003; 157 E Yair (242_CR24) 1991; 38 I Mandal (242_CR48) 2014; 45 J Schoentgen (242_CR22) 1995; 23 TJ Hirschauer (242_CR9) 2015; 39 242_CR37 S Sapir (242_CR15) 2010; 53 242_CR39 242_CR41 242_CR44 R Piyush (242_CR54) 2013; 43 242_CR42 242_CR7 R Das (242_CR8) 2010; 37 JR Rico Juan (242_CR53) 2012; 33 M Gok (242_CR47) 2015; 46 LI Juan (242_CR50) 2014; 40 242_CR27 S Yang (242_CR31) 2014; 9 MC Rijk de (242_CR3) 2000; 54 M Alhamdoosh (242_CR51) 2014; 264 SB O’Sullivan (242_CR6) 2007 242_CR34 242_CR33 242_CR32 MA Little (242_CR13) 2009; 56 Z Galaz (242_CR36) 2016; 127 T Athanasios (242_CR19) 2010; 57 CO Sakar (242_CR35) 2010; 34 H-L Chen (242_CR49) 2013; 40 K Hattori (242_CR52) 1999; 32 W Froelich (242_CR45) 2015; 5 A Tsanas (242_CR23) 2011; 59 RK Sharma (242_CR29) 2016; 6 W Froelich (242_CR28) 2014; 23 L Baghai-Ravary (242_CR11) 2012; 115 242_CR18 242_CR17 Titze (242_CR21) 2000 242_CR20 H Ozkan (242_CR26) 2016; 18 A Elbaz (242_CR5) 2002; 55 10854357 - Neurology. 2000;54(11 Suppl 5):S21-3 2066125 - IEEE Trans Biomed Eng. 1991 Feb;38(2):161-7 21399744 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1015 27274882 - Parkinsons Dis. 2016;2016:5264743 26827042 - J Acoust Soc Am. 2016 Jan;139(1):481-500 24485390 - Comput Methods Programs Biomed. 2014 Mar;113(3):904-13 19948755 - J Speech Lang Hear Res. 2010 Feb;53(1):114-25 26420585 - J Med Syst. 2015 Nov;39(11):179 25571305 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5764-7 19932995 - IEEE Trans Biomed Eng. 2010 Apr;57(4):884-93 27190506 - Int J Telemed Appl. 2016;2016:6837498 24586406 - PLoS One. 2014 Feb 20;9(2):e88825 22249592 - IEEE Trans Biomed Eng. 2012 May;59(5):1264-71 11781119 - J Clin Epidemiol. 2002 Jan;55(1):25-31 25055311 - IEEE J Biomed Health Inform. 2013 Jul;17(4):828-34 20703913 - J Med Syst. 2010 Aug;34(4):591-9 21084338 - J R Soc Interface. 2011 Jun 6;8(59):842-55 25683763 - J Neurol. 2015;262(4):992-1001 21547504 - J Med Syst. 2012 Aug;36(4):2141-7 26737109 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :3751-4 12777365 - Am J Epidemiol. 2003 Jun 1;157(11):1015-22 21097130 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6087-90 26826900 - Comput Methods Programs Biomed. 2016 Apr;127:301-17 |
| References_xml | – volume: 33 start-page: 35 issue: 4 year: 2013 ident: 242_CR38 publication-title: Biocybern Biomed Eng – volume: 23 start-page: 1642 year: 2014 ident: 242_CR28 publication-title: J Med Inform Technol – volume: 18 start-page: 115 issue: 4 year: 2016 ident: 242_CR26 publication-title: Entropy doi: 10.3390/e18040115 – volume-title: Principles of voice production year: 2000 ident: 242_CR21 – volume: 127 start-page: 301 year: 2016 ident: 242_CR36 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2015.12.011 – ident: 242_CR34 doi: 10.1109/TSP.2011.6043700 – volume: 6 start-page: 63 issue: 1 year: 2016 ident: 242_CR29 publication-title: J Med Imaging Health Inform doi: 10.1166/jmihi.2016.1582 – ident: 242_CR32 doi: 10.1109/BMEiCon.2013.6687667 – volume: 7 start-page: 4669 issue: 8 year: 2011 ident: 242_CR40 publication-title: Int J Innov Comput Inform Control Ijicic – volume: 9 start-page: 1 issue: 2 year: 2014 ident: 242_CR31 publication-title: PLoS ONE – volume: 59 start-page: 1264 issue: 5 year: 2012 ident: 242_CR2 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2183367 – volume: 53 start-page: 114 issue: 1 year: 2010 ident: 242_CR15 publication-title: J Speech Lang Hear Res doi: 10.1044/1092-4388(2009/08-0184) – volume: 45 start-page: 647 issue: 3 year: 2014 ident: 242_CR48 publication-title: Int J Syst Sci doi: 10.1080/00207721.2012.724114 – volume: 34 start-page: 591 issue: 4 year: 2010 ident: 242_CR35 publication-title: J Med Syst doi: 10.1007/s10916-009-9272-y – volume: 40 start-page: 263 issue: 1 year: 2013 ident: 242_CR49 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.014 – volume: 40 start-page: 1116 issue: 6 year: 2014 ident: 242_CR50 publication-title: Zidonghua Xuebao/acta Automatica Sinica – volume: 37 start-page: 1568 issue: 2 year: 2010 ident: 242_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.06.040 – volume: 139 start-page: 481 issue: 1 year: 2016 ident: 242_CR25 publication-title: J Acoust Soc Am doi: 10.1121/1.4939739 – ident: 242_CR7 – volume: 23 start-page: 189 issue: 23 year: 1995 ident: 242_CR22 publication-title: J Phon doi: 10.1016/S0095-4470(95)80042-5 – volume: 36 start-page: 2141 issue: 2 year: 2012 ident: 242_CR30 publication-title: J Med Syst doi: 10.1007/s10916-011-9678-1 – volume: 43 start-page: 691 year: 2013 ident: 242_CR54 publication-title: Int Conf Biomed Eng doi: 10.1007/978-3-319-02913-9_176 – ident: 242_CR18 – ident: 242_CR20 – volume: 56 start-page: 1015 issue: 4 year: 2009 ident: 242_CR13 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2005954 – volume: 57 start-page: 884 issue: 4 year: 2010 ident: 242_CR19 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2036000 – start-page: 856 volume-title: “Parkinson disease,” in physical rehabilitation year: 2007 ident: 242_CR6 – ident: 242_CR37 doi: 10.1109/IMWS-BIO.2015.7303822 – volume: 262 start-page: 992 issue: 2 year: 2010 ident: 242_CR16 publication-title: J Neurol – ident: 242_CR41 doi: 10.1109/ICoCS.2014.7060885 – volume: 59 start-page: 842 issue: 8 year: 2011 ident: 242_CR23 publication-title: J Royal Soc Interface doi: 10.1098/rsif.2010.0456 – volume: 17 start-page: 828 issue: 4 year: 2013 ident: 242_CR1 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2013.2245674 – volume: 54 start-page: 21 issue: 5 year: 2000 ident: 242_CR3 publication-title: Neurology doi: 10.1212/WNL.54.5.21A – volume: 157 start-page: 1015 issue: 11 year: 2003 ident: 242_CR4 publication-title: Am J Epidemiol doi: 10.1093/aje/kwg068 – ident: 242_CR12 doi: 10.1109/EMBC.2015.7319209 – ident: 242_CR17 – volume: 39 start-page: 1 issue: 11 year: 2015 ident: 242_CR9 publication-title: J Med Syst doi: 10.1007/s10916-015-0353-9 – volume: 38 start-page: 161 issue: 2 year: 1991 ident: 242_CR24 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.76382 – volume: 46 start-page: 1108 issue: 6 year: 2015 ident: 242_CR47 publication-title: Int J Syst Sci doi: 10.1080/00207721.2013.809613 – volume: 5 start-page: 1358 issue: 6 year: 2015 ident: 242_CR45 publication-title: J Med Imaging Health Inform doi: 10.1166/jmihi.2015.1539 – ident: 242_CR27 doi: 10.1155/2016/6837498 – volume: 115 start-page: 31 issue: 2 year: 2012 ident: 242_CR11 publication-title: Springer Br Electr Comput Eng – ident: 242_CR42 doi: 10.1109/ICIEV.2014.6850849 – volume: 33 start-page: 654 issue: 5 year: 2012 ident: 242_CR53 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2011.07.019 – volume: 113 start-page: 904 issue: 3 year: 2014 ident: 242_CR14 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2014.01.004 – volume: 46 start-page: 286 issue: C year: 2016 ident: 242_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.10.034 – ident: 242_CR33 doi: 10.1155/2016/5264743 – ident: 242_CR44 doi: 10.1109/IEMBS.2010.5627634 – volume: 19 start-page: 209 issue: 2 year: 2016 ident: 242_CR46 publication-title: J Korea Multimed Soc doi: 10.9717/kmms.2016.19.2.209 – ident: 242_CR39 doi: 10.1109/SWSTE.2014.17 – volume: 32 start-page: 425 issue: 3 year: 1999 ident: 242_CR52 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(98)00097-1 – ident: 242_CR10 doi: 10.1109/EMBC.2014.6944937 – volume: 55 start-page: 25 issue: 1 year: 2002 ident: 242_CR5 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(01)00425-5 – volume: 264 start-page: 104 issue: 6 year: 2014 ident: 242_CR51 publication-title: Inf Sci doi: 10.1016/j.ins.2013.12.016 – reference: 26827042 - J Acoust Soc Am. 2016 Jan;139(1):481-500 – reference: 19932995 - IEEE Trans Biomed Eng. 2010 Apr;57(4):884-93 – reference: 10854357 - Neurology. 2000;54(11 Suppl 5):S21-3 – reference: 25055311 - IEEE J Biomed Health Inform. 2013 Jul;17(4):828-34 – reference: 21399744 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1015 – reference: 25683763 - J Neurol. 2015;262(4):992-1001 – reference: 26737109 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :3751-4 – reference: 21084338 - J R Soc Interface. 2011 Jun 6;8(59):842-55 – reference: 26826900 - Comput Methods Programs Biomed. 2016 Apr;127:301-17 – reference: 27190506 - Int J Telemed Appl. 2016;2016:6837498 – reference: 26420585 - J Med Syst. 2015 Nov;39(11):179 – reference: 27274882 - Parkinsons Dis. 2016;2016:5264743 – reference: 12777365 - Am J Epidemiol. 2003 Jun 1;157(11):1015-22 – reference: 22249592 - IEEE Trans Biomed Eng. 2012 May;59(5):1264-71 – reference: 2066125 - IEEE Trans Biomed Eng. 1991 Feb;38(2):161-7 – reference: 21097130 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6087-90 – reference: 24485390 - Comput Methods Programs Biomed. 2014 Mar;113(3):904-13 – reference: 25571305 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5764-7 – reference: 19948755 - J Speech Lang Hear Res. 2010 Feb;53(1):114-25 – reference: 11781119 - J Clin Epidemiol. 2002 Jan;55(1):25-31 – reference: 24586406 - PLoS One. 2014 Feb 20;9(2):e88825 – reference: 21547504 - J Med Syst. 2012 Aug;36(4):2141-7 – reference: 20703913 - J Med Syst. 2010 Aug;34(4):591-9 |
| SSID | ssj0020069 |
| Score | 2.3306775 |
| Snippet | Background
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of... The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent... Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 122 |
| SubjectTerms | Algorithms Analysis Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biotechnology Diagnosis Engineering Health aspects Humans Neural Networks (Computer) Parkinson Disease - classification Parkinson's disease Speech Speech production |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_qFdQ-iNavaJVVBMGyNJ-7yYNIlZYq9JBqoW9hv3ItpMlpcoi--K-7k2zipWB9uoedJbc7s7szs7_9DcCr2C-EsI431SITFMtZ0CwqAhrpLBCGFWGfcDues6PT-NNZcrYB8-EtDMIqhz2x26h1rTBHvmcjkSTidulm75bfKFaNwtvVoYSGcKUV9NuOYuwGbIbIjDWDzfcH888nYwiGxLzubjNI2V6Dpx2CuRCIG4eUTU6nq3v02iF1FUA53qJuwa1VtRQ_f4iyXDuoDu_CHedhkv3eJO7Bhqm2YWuNd3Abbh67G_X78Luriol4oU5FpC4IPoTu3oQ1xF3fEGud5cUv25d0AERqu7ekQvrbpqUVZletKRFRaWKjYnMpS0NcOYoFEeXCzmN7ftkQTPqSZmmMsj8CeYmbB3B6ePD1wxF1RRmoSnjQ0iz1dSqlYVzLRIeGSamjOBSciSDVqch4ZHhsrCNpRCA0glJCzZnMVFCoRJroIcyqujKPgQgTcBNEUhXMmkvoZ77wTSZl4ceFKqT2wB-UkSvHWI6FM8q8i1xSlvf6yxGlhvrLmQdvxi7Lnq7jOuGXqOEcaTAqxNksxKpp8o9fTvL9mPs2kIpY4sFrJ1TU9uNKuGcLdgjInDWR3JlI2nWqps2DIeVun2jyv1btwYuxGXsi9q0y9aqTCTCT4EcePOrtbhxbyNMEOSA94BOLHAWQPXzaUl2cdyzi6GmzjHuwO9ju2t_695Ttjub9_wl-cv2Qn8LtEJcegirZDsza7yvzzLp4rXzu1u0fJtlRsg priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB50BXUfRNdbdZUoguAS7DVpH5fFZRXWB3Vh30LSpGcPdNPDtgfRJ_Ff-Pf8JWbanNIuXvCpD5n0kpl0Mpkv3wC8SMNKSrfwploWkmI5C1okVUQTXUTSsCoeNtyO37Ojk_TdaXbqyaLxLMw0fx_l7HWL_gjhVgiVTWPKrsI156NYn5dlB2NshYy7Pmn5224zt3P55zvxPpeRkWN6dBturO1Kfvks63rigQ5vwy2_dCT7g67vwBVjd2B7Qii4A9ePfar8Lnzvy10iEKgfe9JUBE8494e9fn770RKfmiHO8urlV9ed9OBC6u7QEYvUtm1HLe6cOjMh0mriIl5zrmpDfKmJBZH1orlYdmfnLcENXdKujCndRSLncHsPTg7ffDo4or7gAi0zHnW0yEOdK2UY1yrTsWFK6SSNJWcyynUuC54Ynhq3SDQykhoBJ7HmTBVlVJWZMsl92LKNNQ-BSBNxEyWqrJgzhTgsQhmaQqkqTKuyUjqAcKMPUXo2ciyKUYs-KsmZGFQoEIGGKhQsgFdjl9VAxfE34eeoZIEUFxYxNAu5blvx9uMHsZ_y0AVJCcsCeOmFqsY9vJT-SIL7BGTFmknuziTdHCznzRtbEv4f0AoXO2cJd86mCODZ2Iw9EddmTbPuZSLcJQiTAB4Mpjd-W8zzDPkdA-AzoxwFkBl83mKXZz1DOK6iWcED2NuY7-S1_jxke6OF_3uAH_3XvR_DzRgnI-In2S5sdRdr88St5jr1tJ_HvwBil0WI priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQT0wKO8AgUZhIRE5W2ednJcIaqC1AoBKy0HFNmxs12RJqtNVogeEOJf8Pf4JXiSbNiseIgDpxw8TmJrPDO2v_kG4LFvp0KYwJsqEQmK5Sxo5KUO9VTkCM1StzlwOz5hR2P_5SSYbMH7VS5Mk3SO_0f1T0I-2tBGDNdT0rMm4wErKujFwVyljQEI2UGJPgwhWgiv9V3KLsA2C0yoPoDt8cmr0bs644gHNHKDSXvT-ct-PV-1abHXXNYmnLK7U92BS8t8Lj59FFm25rYOr8Ln1YAbtMqH4bKSw-R8gwvyv83INbjSBrxk1GjoddjS-S7srNEg7sLF4_aC_wZ8rYt0Inyp1hhSpATzsusUte9fvpWkvVAiZr1ks3PTndSQSGreUJEcCXnLiuZ43muUm4hcEbNP12cy06QtkDElIpsWi1l1elYSPIYm5VzrxDwEMiWXN2F8-PztsyPalomgScCdikahrUIpNeNKBsrVTErl-a7gTDihCkXEPc19bUJbLRyhECbjKs5klDhpEkjt3YJBXuT6DhChHa4dTyYpMwrs2pEtbB1Jmdp-mqRSWWCvFCJOWg51LOWRxfVeKmRxM9Mx4uZwpmNmwdOuy7whEPmT8CPUshiJOXJE_kzFsizjF29exyOf22Zr57HAgietUFqYjyeiTaQwQ0Aur57kXk_SWI6k37xS5ri1XGVsdvyBx42LjCx42DVjT0Tj5bpY1jIOnm3YngW3G93vxubyMEBWSgt4b1V0Ashn3m_JZ6c1rznG_iziFuyv1s_ab_1-yva7Jfb3Cb77T9L34LKLawZRn2wPBtViqe-bGLSSD1pL8gMRp4by priority: 102 providerName: Unpaywall |
| Title | Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples |
| URI | https://link.springer.com/article/10.1186/s12938-016-0242-6 https://www.ncbi.nlm.nih.gov/pubmed/27852279 https://www.proquest.com/docview/1845377629 https://www.proquest.com/docview/1841133803 https://pubmed.ncbi.nlm.nih.gov/PMC5112697 https://biomedical-engineering-online.biomedcentral.com/counter/pdf/10.1186/s12938-016-0242-6 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RBZ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DOA dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ADMLS dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RPM dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1475-925X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M48 dateStart: 20020501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: AAJSJ dateStart: 20021201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: C6C dateStart: 20020112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aRQL2gGDcAqMyCAmJyZCrHT8gVKqVgdRpGlTqniI7cbpKWVqaVDCeEP-Cv8cvwSdNo2YaIF4aVT5OG5_jnNvncwCe-XYqpTG8aSKFpNjOggovdaiXCEdqlrrLgNvgiB0O_Q-jYLQBq_ZW9QIWV7p22E9qOM9efv188cZs-NfVhg_ZqwJ1FkKyEE7ru5RtwrZRVAI7OQz8JqmAzrOoDhvxgAo3GNVJzitv0VJTl1_Wa9rqMpKySafuwPVFPpMXX2SWrWms_i24WZuapLuUjduwofNd2FkrQLgL1wZ1av0O_KjaYyJwqOIVmaYET0RXh8N-ff9ZkDqVQ4ykZpNvZjqpwIjU3KEkOZbCLUqaY6TViBWReUKMh6zPVaZJ3ZpiTGQ2ns4n5dl5QTAATIqZ1rG5SKxRXNyFYf_gU--Q1g0aaBxwp6QitJNQKc14ooLE1UypxPNdyZl0wiSUgnua-9oYlVo6MkGAiptwpkTspHGgtHcPtvJprh8Akdrh2vFUnDIjOq5hnrS1UCq1_TROVWKBveJHFNfVy7GJRhZVXkzIoiULI0SsIQsjZsGLZspsWbrjb8RPkckRlsTIEXMzlouiiN5_PIm6PreNU-WxwILnNVE6NT8ey_oIg3kErKLVotxrUZo9G7eHV7IUrUQ-Mr524HGjnIQFT5phnIk4uFxPFxWNg1EF27Pg_lL0mmdzeRhgPUgLeEsoGwKsJN4eySdnVUVxtLqZ4Bbsr8R37W_9ecn2Gwn_9wI__B9uPIIbLu5FhFuyPdgq5wv92Bh_perAJh9x8xn233Vg--3B0fGJ-dZjvU4VTulUW96MDI-Ou6e_AWkcXJM |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlF6QFBegQIGgZCoouZpJweEKqDapd0eoJX2ZuzY2VZKk4VkVZUL_4jfiCevbipRTj3tIePddebz2GN__gbgdeCkQpiFt61ELGwsZ2HHfuravopdoWnqNRtukwM6Ogq-TMPpCvzp7sIgrbKLiXWgVkWCe-TbJhMJfWaGbvxh_sPGqlF4utqV0GhgsafPz0zKVr4ffzL-feN5u58PP47stqqAnYTMrew4clQkpaZMyVB5mkqp_MATjAo3UpGIma9ZoM1KSAtXKGRVeIpRGSdumoRS--Z7b8DNwDexxIwfNr1I8FD2tz05dSO6XeJcilQxpPkGnk0Hc9_lGWBpCrxMz-zPaNdhbZHPxfmZyLKlaXD3Ltxp169kpwHcPVjR-QasL6kabsCtSXtefx9-1zU3kY1UA4AUKcFr1vWNs5K0h0PEYD87-WXakpreaJvmFclRXLes7Bz3bg1QicgVMTm3PpWZJm2xixkR2cx4qTo-LQluKZNyrnViPgSqHpcP4OhanPMQVvMi14-BCO0y7foySakBo-fEjnB0LGXqBGmSSmWB0zmDJ60eOpblyHidF0WUN_7jyIFD_3Fqwbu-ybwRA7nK-BV6mKPIRo4snplYlCUff_vKdwLmmDTNp6EFb1ujtDA_noj2UoTpAupyDSw3B5YmCiTDxx2QeBuFSn4xZix42T_Glsisy3WxqG1c3KdwfAseNbjr--axKESFSQvYAJG9AWqTD5_kJ8e1Rjmu42nMLNjqsLv0t_79yrZ6eP__BT-5ussvYG10ONnn--ODvadw28NhiPRNugmr1c-FfmYWk5V8Xo9gAt-vO2T8BTksitc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BkQo9ICiUBgoYhIREFTW_dnKsFlYt0AoBlXqL7NjerpR6V01WFZwQb8Hr8SR4Em-0qfgRpz14nGwy48yM5_M3AC-SQHNuA29f8pz72M7Cz2Md-rHMQ66ojroNt6NjenCSvD1NT12f03qJdl-WJLszDcjSZJq9udTdEs_oXo1eCkFYCKBNIp9ehxuJdW7YwmBER33GhTy8rpT522kDZ3T1k7zik67iJfui6QbcXJg5_3LJq2rFL43vwG0XUJL9zgLuwjVlNmFjhWZwE9aPXAH9Hnxvm2AiPKjVCJlpguee2yNgP7_9qIkr2BBrj9X0q51OWsihb6_QEIOEt3XjG9xPtcZDuJHE5sHqXFSKuAYUE8Kryexi2pyd1wS3eUk9V6q0PxyZiOv7cDJ-83l04Ls2DH6ZsrDx8yyQmRCKMilSGSkqhIyTiDPKw0xmPGexYomyoaPiIZcIQ4kkoyIvQ12mQsVbsGZmRm0D4SpkKoxFqak1kCjIAx6oXAgdJLrUQnoQLPVRlI6jHFtlVEWbq2S06FRYIC4NVVhQD171U-YdQcffhJ-jkgskvjCIrJnwRV0Xh58-FvsJC2zqFNPUg5dOSM_szUvuDirYR0CurIHkzkDSrsxyOLy0pcJ9GerCZtRpzKwLyj141g_jTES7GTVbtDIh7h0EsQcPOtPrny1iWYqsjx6wgVH2AsgXPhwx07OWNxxja5ozD3aX5rvyt_78ynZ7C__3C374X9d-CusfXo-L94fH7x7BrQjXJQIs6Q6sNRcL9diGe4140i7pX-N-UL4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQT0wKO8AgUZhIRE5W2ednJcIaqC1AoBKy0HFNmxs12RJqtNVogeEOJf8Pf4JXiSbNiseIgDpxw8TmJrPDO2v_kG4LFvp0KYwJsqEQmK5Sxo5KUO9VTkCM1StzlwOz5hR2P_5SSYbMH7VS5Mk3SO_0f1T0I-2tBGDNdT0rMm4wErKujFwVyljQEI2UGJPgwhWgiv9V3KLsA2C0yoPoDt8cmr0bs644gHNHKDSXvT-ct-PV-1abHXXNYmnLK7U92BS8t8Lj59FFm25rYOr8Ln1YAbtMqH4bKSw-R8gwvyv83INbjSBrxk1GjoddjS-S7srNEg7sLF4_aC_wZ8rYt0Inyp1hhSpATzsusUte9fvpWkvVAiZr1ks3PTndSQSGreUJEcCXnLiuZ43muUm4hcEbNP12cy06QtkDElIpsWi1l1elYSPIYm5VzrxDwEMiWXN2F8-PztsyPalomgScCdikahrUIpNeNKBsrVTErl-a7gTDihCkXEPc19bUJbLRyhECbjKs5klDhpEkjt3YJBXuT6DhChHa4dTyYpMwrs2pEtbB1Jmdp-mqRSWWCvFCJOWg51LOWRxfVeKmRxM9Mx4uZwpmNmwdOuy7whEPmT8CPUshiJOXJE_kzFsizjF29exyOf22Zr57HAgietUFqYjyeiTaQwQ0Aur57kXk_SWI6k37xS5ri1XGVsdvyBx42LjCx42DVjT0Tj5bpY1jIOnm3YngW3G93vxubyMEBWSgt4b1V0Ashn3m_JZ6c1rznG_iziFuyv1s_ab_1-yva7Jfb3Cb77T9L34LKLawZRn2wPBtViqe-bGLSSD1pL8gMRp4by |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Parkinson%E2%80%99s+disease+utilizing+multi-edit+nearest-neighbor+and+ensemble+learning+algorithms+with+speech+samples&rft.jtitle=Biomedical+engineering+online&rft.au=Zhang%2C+He-Hua&rft.au=Yang%2C+Liuyang&rft.au=Liu%2C+Yuchuan&rft.au=Wang%2C+Pin&rft.date=2016-11-16&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-016-0242-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12938_016_0242_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon |