Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples

Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building pred...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 15; no. 1; p. 122
Main Authors Zhang, He-Hua, Yang, Liuyang, Liu, Yuchuan, Wang, Pin, Yin, Jun, Li, Yongming, Qiu, Mingguo, Zhu, Xueru, Yan, Fang
Format Journal Article
LanguageEnglish
Published London BioMed Central 16.11.2016
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-016-0242-6

Cover

Abstract Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. Methods In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Results Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. Conclusions This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
AbstractList Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. Methods In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Results Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. Conclusions This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. Methods In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Results Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. Conclusions This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined.BACKGROUNDThe use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined.In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation.METHODSIn this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation.Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms.RESULTSExperimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms.This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.CONCLUSIONSThis study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
ArticleNumber 122
Audience Academic
Author Yang, Liuyang
Li, Yongming
Zhang, He-Hua
Zhu, Xueru
Yin, Jun
Liu, Yuchuan
Qiu, Mingguo
Yan, Fang
Wang, Pin
Author_xml – sequence: 1
  givenname: He-Hua
  surname: Zhang
  fullname: Zhang, He-Hua
  organization: Institute of Surgery Research, Daping Hospital, Third Military Medical University
– sequence: 2
  givenname: Liuyang
  surname: Yang
  fullname: Yang, Liuyang
  organization: College of Communication Engineering, Chongqing University
– sequence: 3
  givenname: Yuchuan
  surname: Liu
  fullname: Liu, Yuchuan
  organization: College of Communication Engineering, Chongqing University
– sequence: 4
  givenname: Pin
  surname: Wang
  fullname: Wang, Pin
  organization: College of Communication Engineering, Chongqing University
– sequence: 5
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
  organization: Institute of Surgery Research, Daping Hospital, Third Military Medical University
– sequence: 6
  givenname: Yongming
  surname: Li
  fullname: Li, Yongming
  email: yongmingli@cqu.edu.cn
  organization: College of Communication Engineering, Chongqing University, Department of Medical Image, College of Biomedical Engineering, Third Military Medical University
– sequence: 7
  givenname: Mingguo
  surname: Qiu
  fullname: Qiu, Mingguo
  organization: Department of Medical Image, College of Biomedical Engineering, Third Military Medical University
– sequence: 8
  givenname: Xueru
  surname: Zhu
  fullname: Zhu, Xueru
  organization: College of Communication Engineering, Chongqing University
– sequence: 9
  givenname: Fang
  surname: Yan
  fullname: Yan, Fang
  organization: College of Communication Engineering, Chongqing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27852279$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQhyNURNuFB-CCInGBQ0rsxHZyQapWFCpVAvFH4mY59iTr4tiL7dCWE-IteD2eBC-7lN0KEMphovj7TUaf5zDbs85Clt1H5RFCDX0SEG6rpigRLUpc44Leyg5QzUjRYvJ-b-t9PzsM4bwscVnS9k62j1lDMGbtQfZ1bkQIutdSRO1s7vr8lfAftA3Ofv_yLeRKBxAB8ilqoz9rO-TjZKIuQOmYWxAeQiws6GHROZ8Lq3KwAcbOQG7SqV0lhBmc13ExhvwilTwsAWQqYlwaCHez270wAe5t6ix7d_Ls7fxFcfby-en8-KyQhKFYtE2pmq4DylRHFAbadaqqsWBUoEY1omUVsBoQRSCQUH0PEitGu1aiXpIOqlmG130nuxRXF8IYvvR6FP6Ko5KvhPK1UJ6E8pVQTlPo6Tq0nLoRlAQbvfgddELz3ROrF3xwnzhBCNM00yx7tGng3ccpyeKjDhKMERbcFDhqaoSqqimrhD68gZ67ydvkZEWRijGaxrumBmGAa9u79F-5asqPa1aShlSUJOroD1R6FIxapjXqdfq-E3i8E0hMhMs4iCkEfvrm9S77YFvKtY1fa5UAtgakdyF46LnU8eeCpSm0-advdCP5P3e0udiQWDuA3_L219APN2AECQ
CitedBy_id crossref_primary_10_1016_j_mehy_2019_109483
crossref_primary_10_1109_TASLP_2021_3097215
crossref_primary_10_3233_JPD_181389
crossref_primary_10_1007_s00521_022_07046_2
crossref_primary_10_1016_j_bbe_2020_12_009
crossref_primary_10_1016_j_inffus_2018_07_001
crossref_primary_10_1007_s12652_022_03719_x
crossref_primary_10_3390_math9243172
crossref_primary_10_1016_j_eswa_2019_06_052
crossref_primary_10_1155_2018_2396952
crossref_primary_10_1016_j_bspc_2021_102849
crossref_primary_10_1016_j_engappai_2023_106097
crossref_primary_10_1007_s00521_021_05741_0
crossref_primary_10_2196_46105
crossref_primary_10_1016_j_media_2020_101830
crossref_primary_10_1093_bib_bbad184
crossref_primary_10_1109_JTEHM_2019_2940900
crossref_primary_10_1155_2021_4034216
crossref_primary_10_4103_jmss_JMSS_57_18
crossref_primary_10_1016_j_engappai_2018_09_018
crossref_primary_10_1007_s40846_021_00626_y
crossref_primary_10_1038_s41598_024_51600_y
crossref_primary_10_57197_JDR_2024_0026
crossref_primary_10_1016_j_bspc_2021_102850
crossref_primary_10_1016_j_future_2020_04_008
crossref_primary_10_1007_s11517_023_02944_6
crossref_primary_10_1007_s10489_022_04345_y
crossref_primary_10_1016_j_bspc_2021_102418
crossref_primary_10_32604_iasc_2023_032102
crossref_primary_10_1002_mma_7835
crossref_primary_10_1007_s13369_020_04357_1
crossref_primary_10_1155_2022_9209656
crossref_primary_10_1007_s10462_021_10084_2
Cites_doi 10.3390/e18040115
10.1016/j.cmpb.2015.12.011
10.1109/TSP.2011.6043700
10.1166/jmihi.2016.1582
10.1109/BMEiCon.2013.6687667
10.1109/TBME.2012.2183367
10.1044/1092-4388(2009/08-0184)
10.1080/00207721.2012.724114
10.1007/s10916-009-9272-y
10.1016/j.eswa.2012.07.014
10.1016/j.eswa.2009.06.040
10.1121/1.4939739
10.1016/S0095-4470(95)80042-5
10.1007/s10916-011-9678-1
10.1007/978-3-319-02913-9_176
10.1109/TBME.2008.2005954
10.1109/TBME.2009.2036000
10.1109/IMWS-BIO.2015.7303822
10.1109/ICoCS.2014.7060885
10.1098/rsif.2010.0456
10.1109/JBHI.2013.2245674
10.1212/WNL.54.5.21A
10.1093/aje/kwg068
10.1109/EMBC.2015.7319209
10.1007/s10916-015-0353-9
10.1109/10.76382
10.1080/00207721.2013.809613
10.1166/jmihi.2015.1539
10.1155/2016/6837498
10.1109/ICIEV.2014.6850849
10.1016/j.patrec.2011.07.019
10.1016/j.cmpb.2014.01.004
10.1016/j.eswa.2015.10.034
10.1155/2016/5264743
10.1109/IEMBS.2010.5627634
10.9717/kmms.2016.19.2.209
10.1109/SWSTE.2014.17
10.1016/S0031-3203(98)00097-1
10.1109/EMBC.2014.6944937
10.1016/S0895-4356(01)00425-5
10.1016/j.ins.2013.12.016
ContentType Journal Article
Copyright The Author(s) 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Copyright_xml – notice: The Author(s) 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12938-016-0242-6
DatabaseName SpringerLink Journals Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Biological Science Database (Proquest)
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
ExternalDocumentID 10.1186/s12938-016-0242-6
PMC5112697
4268328781
A470585365
27852279
10_1186_s12938_016_0242_6
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61108086
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2013M532153
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: ;
  grantid: 2013M532153
– fundername: ;
  grantid: 61108086
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c571t-980d8bbe67db5d2e6bbd342a76a18d8a973e74e161ea1adffec2d76b9c1fc5be3
IEDL.DBID M48
ISSN 1475-925X
IngestDate Wed Oct 29 11:54:42 EDT 2025
Tue Sep 30 16:08:47 EDT 2025
Thu Sep 04 18:30:23 EDT 2025
Mon Oct 06 18:39:28 EDT 2025
Mon Oct 20 22:06:26 EDT 2025
Mon Oct 20 16:35:11 EDT 2025
Thu Oct 16 14:02:35 EDT 2025
Wed Feb 19 01:56:53 EST 2025
Wed Oct 01 05:54:15 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Sat Sep 06 07:30:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Classification of Parkinson disease
Multi-edit-nearest-neighbor algorithm (MENN)
Ensemble learning
Random forest (RF)
Optimal selection of speech samples
Decorrelated neural network ensembles (DNNE)
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-980d8bbe67db5d2e6bbd342a76a18d8a973e74e161ea1adffec2d76b9c1fc5be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-016-0242-6
PMID 27852279
PQID 1845377629
PQPubID 42562
ParticipantIDs unpaywall_primary_10_1186_s12938_016_0242_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5112697
proquest_miscellaneous_1841133803
proquest_journals_1845377629
gale_infotracmisc_A470585365
gale_infotracacademiconefile_A470585365
gale_incontextgauss_ISR_A470585365
pubmed_primary_27852279
crossref_citationtrail_10_1186_s12938_016_0242_6
crossref_primary_10_1186_s12938_016_0242_6
springer_journals_10_1186_s12938_016_0242_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-16
PublicationDateYYYYMMDD 2016-11-16
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References BE Sakar (242_CR1) 2013; 17
E Kaya (242_CR40) 2011; 7
JR Orozco-Arroyave (242_CR25) 2016; 139
A Ozcift (242_CR30) 2012; 36
242_CR12
T Khan (242_CR38) 2013; 33
242_CR10
J Rusz (242_CR16) 2010; 262
L Naranjo (242_CR43) 2016; 46
M Hariharan (242_CR14) 2014; 113
JW Chung (242_CR46) 2016; 19
A Tsanas (242_CR2) 2012; 59
SK Eeden Van Den (242_CR4) 2003; 157
E Yair (242_CR24) 1991; 38
I Mandal (242_CR48) 2014; 45
J Schoentgen (242_CR22) 1995; 23
TJ Hirschauer (242_CR9) 2015; 39
242_CR37
S Sapir (242_CR15) 2010; 53
242_CR39
242_CR41
242_CR44
R Piyush (242_CR54) 2013; 43
242_CR42
242_CR7
R Das (242_CR8) 2010; 37
JR Rico Juan (242_CR53) 2012; 33
M Gok (242_CR47) 2015; 46
LI Juan (242_CR50) 2014; 40
242_CR27
S Yang (242_CR31) 2014; 9
MC Rijk de (242_CR3) 2000; 54
M Alhamdoosh (242_CR51) 2014; 264
SB O’Sullivan (242_CR6) 2007
242_CR34
242_CR33
242_CR32
MA Little (242_CR13) 2009; 56
Z Galaz (242_CR36) 2016; 127
T Athanasios (242_CR19) 2010; 57
CO Sakar (242_CR35) 2010; 34
H-L Chen (242_CR49) 2013; 40
K Hattori (242_CR52) 1999; 32
W Froelich (242_CR45) 2015; 5
A Tsanas (242_CR23) 2011; 59
RK Sharma (242_CR29) 2016; 6
W Froelich (242_CR28) 2014; 23
L Baghai-Ravary (242_CR11) 2012; 115
242_CR18
242_CR17
Titze (242_CR21) 2000
242_CR20
H Ozkan (242_CR26) 2016; 18
A Elbaz (242_CR5) 2002; 55
10854357 - Neurology. 2000;54(11 Suppl 5):S21-3
2066125 - IEEE Trans Biomed Eng. 1991 Feb;38(2):161-7
21399744 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1015
27274882 - Parkinsons Dis. 2016;2016:5264743
26827042 - J Acoust Soc Am. 2016 Jan;139(1):481-500
24485390 - Comput Methods Programs Biomed. 2014 Mar;113(3):904-13
19948755 - J Speech Lang Hear Res. 2010 Feb;53(1):114-25
26420585 - J Med Syst. 2015 Nov;39(11):179
25571305 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5764-7
19932995 - IEEE Trans Biomed Eng. 2010 Apr;57(4):884-93
27190506 - Int J Telemed Appl. 2016;2016:6837498
24586406 - PLoS One. 2014 Feb 20;9(2):e88825
22249592 - IEEE Trans Biomed Eng. 2012 May;59(5):1264-71
11781119 - J Clin Epidemiol. 2002 Jan;55(1):25-31
25055311 - IEEE J Biomed Health Inform. 2013 Jul;17(4):828-34
20703913 - J Med Syst. 2010 Aug;34(4):591-9
21084338 - J R Soc Interface. 2011 Jun 6;8(59):842-55
25683763 - J Neurol. 2015;262(4):992-1001
21547504 - J Med Syst. 2012 Aug;36(4):2141-7
26737109 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :3751-4
12777365 - Am J Epidemiol. 2003 Jun 1;157(11):1015-22
21097130 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6087-90
26826900 - Comput Methods Programs Biomed. 2016 Apr;127:301-17
References_xml – volume: 33
  start-page: 35
  issue: 4
  year: 2013
  ident: 242_CR38
  publication-title: Biocybern Biomed Eng
– volume: 23
  start-page: 1642
  year: 2014
  ident: 242_CR28
  publication-title: J Med Inform Technol
– volume: 18
  start-page: 115
  issue: 4
  year: 2016
  ident: 242_CR26
  publication-title: Entropy
  doi: 10.3390/e18040115
– volume-title: Principles of voice production
  year: 2000
  ident: 242_CR21
– volume: 127
  start-page: 301
  year: 2016
  ident: 242_CR36
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.12.011
– ident: 242_CR34
  doi: 10.1109/TSP.2011.6043700
– volume: 6
  start-page: 63
  issue: 1
  year: 2016
  ident: 242_CR29
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2016.1582
– ident: 242_CR32
  doi: 10.1109/BMEiCon.2013.6687667
– volume: 7
  start-page: 4669
  issue: 8
  year: 2011
  ident: 242_CR40
  publication-title: Int J Innov Comput Inform Control Ijicic
– volume: 9
  start-page: 1
  issue: 2
  year: 2014
  ident: 242_CR31
  publication-title: PLoS ONE
– volume: 59
  start-page: 1264
  issue: 5
  year: 2012
  ident: 242_CR2
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2183367
– volume: 53
  start-page: 114
  issue: 1
  year: 2010
  ident: 242_CR15
  publication-title: J Speech Lang Hear Res
  doi: 10.1044/1092-4388(2009/08-0184)
– volume: 45
  start-page: 647
  issue: 3
  year: 2014
  ident: 242_CR48
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2012.724114
– volume: 34
  start-page: 591
  issue: 4
  year: 2010
  ident: 242_CR35
  publication-title: J Med Syst
  doi: 10.1007/s10916-009-9272-y
– volume: 40
  start-page: 263
  issue: 1
  year: 2013
  ident: 242_CR49
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.014
– volume: 40
  start-page: 1116
  issue: 6
  year: 2014
  ident: 242_CR50
  publication-title: Zidonghua Xuebao/acta Automatica Sinica
– volume: 37
  start-page: 1568
  issue: 2
  year: 2010
  ident: 242_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.06.040
– volume: 139
  start-page: 481
  issue: 1
  year: 2016
  ident: 242_CR25
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4939739
– ident: 242_CR7
– volume: 23
  start-page: 189
  issue: 23
  year: 1995
  ident: 242_CR22
  publication-title: J Phon
  doi: 10.1016/S0095-4470(95)80042-5
– volume: 36
  start-page: 2141
  issue: 2
  year: 2012
  ident: 242_CR30
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9678-1
– volume: 43
  start-page: 691
  year: 2013
  ident: 242_CR54
  publication-title: Int Conf Biomed Eng
  doi: 10.1007/978-3-319-02913-9_176
– ident: 242_CR18
– ident: 242_CR20
– volume: 56
  start-page: 1015
  issue: 4
  year: 2009
  ident: 242_CR13
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2005954
– volume: 57
  start-page: 884
  issue: 4
  year: 2010
  ident: 242_CR19
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2036000
– start-page: 856
  volume-title: “Parkinson disease,” in physical rehabilitation
  year: 2007
  ident: 242_CR6
– ident: 242_CR37
  doi: 10.1109/IMWS-BIO.2015.7303822
– volume: 262
  start-page: 992
  issue: 2
  year: 2010
  ident: 242_CR16
  publication-title: J Neurol
– ident: 242_CR41
  doi: 10.1109/ICoCS.2014.7060885
– volume: 59
  start-page: 842
  issue: 8
  year: 2011
  ident: 242_CR23
  publication-title: J Royal Soc Interface
  doi: 10.1098/rsif.2010.0456
– volume: 17
  start-page: 828
  issue: 4
  year: 2013
  ident: 242_CR1
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2245674
– volume: 54
  start-page: 21
  issue: 5
  year: 2000
  ident: 242_CR3
  publication-title: Neurology
  doi: 10.1212/WNL.54.5.21A
– volume: 157
  start-page: 1015
  issue: 11
  year: 2003
  ident: 242_CR4
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwg068
– ident: 242_CR12
  doi: 10.1109/EMBC.2015.7319209
– ident: 242_CR17
– volume: 39
  start-page: 1
  issue: 11
  year: 2015
  ident: 242_CR9
  publication-title: J Med Syst
  doi: 10.1007/s10916-015-0353-9
– volume: 38
  start-page: 161
  issue: 2
  year: 1991
  ident: 242_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.76382
– volume: 46
  start-page: 1108
  issue: 6
  year: 2015
  ident: 242_CR47
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2013.809613
– volume: 5
  start-page: 1358
  issue: 6
  year: 2015
  ident: 242_CR45
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2015.1539
– ident: 242_CR27
  doi: 10.1155/2016/6837498
– volume: 115
  start-page: 31
  issue: 2
  year: 2012
  ident: 242_CR11
  publication-title: Springer Br Electr Comput Eng
– ident: 242_CR42
  doi: 10.1109/ICIEV.2014.6850849
– volume: 33
  start-page: 654
  issue: 5
  year: 2012
  ident: 242_CR53
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2011.07.019
– volume: 113
  start-page: 904
  issue: 3
  year: 2014
  ident: 242_CR14
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.01.004
– volume: 46
  start-page: 286
  issue: C
  year: 2016
  ident: 242_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.034
– ident: 242_CR33
  doi: 10.1155/2016/5264743
– ident: 242_CR44
  doi: 10.1109/IEMBS.2010.5627634
– volume: 19
  start-page: 209
  issue: 2
  year: 2016
  ident: 242_CR46
  publication-title: J Korea Multimed Soc
  doi: 10.9717/kmms.2016.19.2.209
– ident: 242_CR39
  doi: 10.1109/SWSTE.2014.17
– volume: 32
  start-page: 425
  issue: 3
  year: 1999
  ident: 242_CR52
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(98)00097-1
– ident: 242_CR10
  doi: 10.1109/EMBC.2014.6944937
– volume: 55
  start-page: 25
  issue: 1
  year: 2002
  ident: 242_CR5
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(01)00425-5
– volume: 264
  start-page: 104
  issue: 6
  year: 2014
  ident: 242_CR51
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.12.016
– reference: 26827042 - J Acoust Soc Am. 2016 Jan;139(1):481-500
– reference: 19932995 - IEEE Trans Biomed Eng. 2010 Apr;57(4):884-93
– reference: 10854357 - Neurology. 2000;54(11 Suppl 5):S21-3
– reference: 25055311 - IEEE J Biomed Health Inform. 2013 Jul;17(4):828-34
– reference: 21399744 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1015
– reference: 25683763 - J Neurol. 2015;262(4):992-1001
– reference: 26737109 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :3751-4
– reference: 21084338 - J R Soc Interface. 2011 Jun 6;8(59):842-55
– reference: 26826900 - Comput Methods Programs Biomed. 2016 Apr;127:301-17
– reference: 27190506 - Int J Telemed Appl. 2016;2016:6837498
– reference: 26420585 - J Med Syst. 2015 Nov;39(11):179
– reference: 27274882 - Parkinsons Dis. 2016;2016:5264743
– reference: 12777365 - Am J Epidemiol. 2003 Jun 1;157(11):1015-22
– reference: 22249592 - IEEE Trans Biomed Eng. 2012 May;59(5):1264-71
– reference: 2066125 - IEEE Trans Biomed Eng. 1991 Feb;38(2):161-7
– reference: 21097130 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6087-90
– reference: 24485390 - Comput Methods Programs Biomed. 2014 Mar;113(3):904-13
– reference: 25571305 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:5764-7
– reference: 19948755 - J Speech Lang Hear Res. 2010 Feb;53(1):114-25
– reference: 11781119 - J Clin Epidemiol. 2002 Jan;55(1):25-31
– reference: 24586406 - PLoS One. 2014 Feb 20;9(2):e88825
– reference: 21547504 - J Med Syst. 2012 Aug;36(4):2141-7
– reference: 20703913 - J Med Syst. 2010 Aug;34(4):591-9
SSID ssj0020069
Score 2.3306775
Snippet Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of...
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent...
Background The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122
SubjectTerms Algorithms
Analysis
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Diagnosis
Engineering
Health aspects
Humans
Neural Networks (Computer)
Parkinson Disease - classification
Parkinson's disease
Speech
Speech production
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_qFdQ-iNavaJVVBMGyNJ-7yYNIlZYq9JBqoW9hv3ItpMlpcoi--K-7k2zipWB9uoedJbc7s7szs7_9DcCr2C-EsI431SITFMtZ0CwqAhrpLBCGFWGfcDues6PT-NNZcrYB8-EtDMIqhz2x26h1rTBHvmcjkSTidulm75bfKFaNwtvVoYSGcKUV9NuOYuwGbIbIjDWDzfcH888nYwiGxLzubjNI2V6Dpx2CuRCIG4eUTU6nq3v02iF1FUA53qJuwa1VtRQ_f4iyXDuoDu_CHedhkv3eJO7Bhqm2YWuNd3Abbh67G_X78Luriol4oU5FpC4IPoTu3oQ1xF3fEGud5cUv25d0AERqu7ekQvrbpqUVZletKRFRaWKjYnMpS0NcOYoFEeXCzmN7ftkQTPqSZmmMsj8CeYmbB3B6ePD1wxF1RRmoSnjQ0iz1dSqlYVzLRIeGSamjOBSciSDVqch4ZHhsrCNpRCA0glJCzZnMVFCoRJroIcyqujKPgQgTcBNEUhXMmkvoZ77wTSZl4ceFKqT2wB-UkSvHWI6FM8q8i1xSlvf6yxGlhvrLmQdvxi7Lnq7jOuGXqOEcaTAqxNksxKpp8o9fTvL9mPs2kIpY4sFrJ1TU9uNKuGcLdgjInDWR3JlI2nWqps2DIeVun2jyv1btwYuxGXsi9q0y9aqTCTCT4EcePOrtbhxbyNMEOSA94BOLHAWQPXzaUl2cdyzi6GmzjHuwO9ju2t_695Ttjub9_wl-cv2Qn8LtEJcegirZDsza7yvzzLp4rXzu1u0fJtlRsg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals Open Access
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB50BXUfRNdbdZUoguAS7DVpH5fFZRXWB3Vh30LSpGcPdNPDtgfRJ_Ff-Pf8JWbanNIuXvCpD5n0kpl0Mpkv3wC8SMNKSrfwploWkmI5C1okVUQTXUTSsCoeNtyO37Ojk_TdaXbqyaLxLMw0fx_l7HWL_gjhVgiVTWPKrsI156NYn5dlB2NshYy7Pmn5224zt3P55zvxPpeRkWN6dBturO1Kfvks63rigQ5vwy2_dCT7g67vwBVjd2B7Qii4A9ePfar8Lnzvy10iEKgfe9JUBE8494e9fn770RKfmiHO8urlV9ed9OBC6u7QEYvUtm1HLe6cOjMh0mriIl5zrmpDfKmJBZH1orlYdmfnLcENXdKujCndRSLncHsPTg7ffDo4or7gAi0zHnW0yEOdK2UY1yrTsWFK6SSNJWcyynUuC54Ynhq3SDQykhoBJ7HmTBVlVJWZMsl92LKNNQ-BSBNxEyWqrJgzhTgsQhmaQqkqTKuyUjqAcKMPUXo2ciyKUYs-KsmZGFQoEIGGKhQsgFdjl9VAxfE34eeoZIEUFxYxNAu5blvx9uMHsZ_y0AVJCcsCeOmFqsY9vJT-SIL7BGTFmknuziTdHCznzRtbEv4f0AoXO2cJd86mCODZ2Iw9EddmTbPuZSLcJQiTAB4Mpjd-W8zzDPkdA-AzoxwFkBl83mKXZz1DOK6iWcED2NuY7-S1_jxke6OF_3uAH_3XvR_DzRgnI-In2S5sdRdr88St5jr1tJ_HvwBil0WI
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQT0wKO8AgUZhIRE5W2ednJcIaqC1AoBKy0HFNmxs12RJqtNVogeEOJf8Pf4JXiSbNiseIgDpxw8TmJrPDO2v_kG4LFvp0KYwJsqEQmK5Sxo5KUO9VTkCM1StzlwOz5hR2P_5SSYbMH7VS5Mk3SO_0f1T0I-2tBGDNdT0rMm4wErKujFwVyljQEI2UGJPgwhWgiv9V3KLsA2C0yoPoDt8cmr0bs644gHNHKDSXvT-ct-PV-1abHXXNYmnLK7U92BS8t8Lj59FFm25rYOr8Ln1YAbtMqH4bKSw-R8gwvyv83INbjSBrxk1GjoddjS-S7srNEg7sLF4_aC_wZ8rYt0Inyp1hhSpATzsusUte9fvpWkvVAiZr1ks3PTndSQSGreUJEcCXnLiuZ43muUm4hcEbNP12cy06QtkDElIpsWi1l1elYSPIYm5VzrxDwEMiWXN2F8-PztsyPalomgScCdikahrUIpNeNKBsrVTErl-a7gTDihCkXEPc19bUJbLRyhECbjKs5klDhpEkjt3YJBXuT6DhChHa4dTyYpMwrs2pEtbB1Jmdp-mqRSWWCvFCJOWg51LOWRxfVeKmRxM9Mx4uZwpmNmwdOuy7whEPmT8CPUshiJOXJE_kzFsizjF29exyOf22Zr57HAgietUFqYjyeiTaQwQ0Aur57kXk_SWI6k37xS5ri1XGVsdvyBx42LjCx42DVjT0Tj5bpY1jIOnm3YngW3G93vxubyMEBWSgt4b1V0Ashn3m_JZ6c1rznG_iziFuyv1s_ab_1-yva7Jfb3Cb77T9L34LKLawZRn2wPBtViqe-bGLSSD1pL8gMRp4by
  priority: 102
  providerName: Unpaywall
Title Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples
URI https://link.springer.com/article/10.1186/s12938-016-0242-6
https://www.ncbi.nlm.nih.gov/pubmed/27852279
https://www.proquest.com/docview/1845377629
https://www.proquest.com/docview/1841133803
https://pubmed.ncbi.nlm.nih.gov/PMC5112697
https://biomedical-engineering-online.biomedcentral.com/counter/pdf/10.1186/s12938-016-0242-6
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aRQL2gGDcAqMyCAmJyZCrHT8gVKqVgdRpGlTqniI7cbpKWVqaVDCeEP-Cv8cvwSdNo2YaIF4aVT5OG5_jnNvncwCe-XYqpTG8aSKFpNjOggovdaiXCEdqlrrLgNvgiB0O_Q-jYLQBq_ZW9QIWV7p22E9qOM9efv188cZs-NfVhg_ZqwJ1FkKyEE7ru5RtwrZRVAI7OQz8JqmAzrOoDhvxgAo3GNVJzitv0VJTl1_Wa9rqMpKySafuwPVFPpMXX2SWrWms_i24WZuapLuUjduwofNd2FkrQLgL1wZ1av0O_KjaYyJwqOIVmaYET0RXh8N-ff9ZkDqVQ4ykZpNvZjqpwIjU3KEkOZbCLUqaY6TViBWReUKMh6zPVaZJ3ZpiTGQ2ns4n5dl5QTAATIqZ1rG5SKxRXNyFYf_gU--Q1g0aaBxwp6QitJNQKc14ooLE1UypxPNdyZl0wiSUgnua-9oYlVo6MkGAiptwpkTspHGgtHcPtvJprh8Akdrh2vFUnDIjOq5hnrS1UCq1_TROVWKBveJHFNfVy7GJRhZVXkzIoiULI0SsIQsjZsGLZspsWbrjb8RPkckRlsTIEXMzlouiiN5_PIm6PreNU-WxwILnNVE6NT8ey_oIg3kErKLVotxrUZo9G7eHV7IUrUQ-Mr524HGjnIQFT5phnIk4uFxPFxWNg1EF27Pg_lL0mmdzeRhgPUgLeEsoGwKsJN4eySdnVUVxtLqZ4Bbsr8R37W_9ecn2Gwn_9wI__B9uPIIbLu5FhFuyPdgq5wv92Bh_perAJh9x8xn233Vg--3B0fGJ-dZjvU4VTulUW96MDI-Ou6e_AWkcXJM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlF6QFBegQIGgZCoouZpJweEKqDapd0eoJX2ZuzY2VZKk4VkVZUL_4jfiCevbipRTj3tIePddebz2GN__gbgdeCkQpiFt61ELGwsZ2HHfuravopdoWnqNRtukwM6Ogq-TMPpCvzp7sIgrbKLiXWgVkWCe-TbJhMJfWaGbvxh_sPGqlF4utqV0GhgsafPz0zKVr4ffzL-feN5u58PP47stqqAnYTMrew4clQkpaZMyVB5mkqp_MATjAo3UpGIma9ZoM1KSAtXKGRVeIpRGSdumoRS--Z7b8DNwDexxIwfNr1I8FD2tz05dSO6XeJcilQxpPkGnk0Hc9_lGWBpCrxMz-zPaNdhbZHPxfmZyLKlaXD3Ltxp169kpwHcPVjR-QasL6kabsCtSXtefx9-1zU3kY1UA4AUKcFr1vWNs5K0h0PEYD87-WXakpreaJvmFclRXLes7Bz3bg1QicgVMTm3PpWZJm2xixkR2cx4qTo-LQluKZNyrnViPgSqHpcP4OhanPMQVvMi14-BCO0y7foySakBo-fEjnB0LGXqBGmSSmWB0zmDJ60eOpblyHidF0WUN_7jyIFD_3Fqwbu-ybwRA7nK-BV6mKPIRo4snplYlCUff_vKdwLmmDTNp6EFb1ujtDA_noj2UoTpAupyDSw3B5YmCiTDxx2QeBuFSn4xZix42T_Glsisy3WxqG1c3KdwfAseNbjr--axKESFSQvYAJG9AWqTD5_kJ8e1Rjmu42nMLNjqsLv0t_79yrZ6eP__BT-5ussvYG10ONnn--ODvadw28NhiPRNugmr1c-FfmYWk5V8Xo9gAt-vO2T8BTksitc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BkQo9ICiUBgoYhIREFTW_dnKsFlYt0AoBlXqL7NjerpR6V01WFZwQb8Hr8SR4Em-0qfgRpz14nGwy48yM5_M3AC-SQHNuA29f8pz72M7Cz2Md-rHMQ66ojroNt6NjenCSvD1NT12f03qJdl-WJLszDcjSZJq9udTdEs_oXo1eCkFYCKBNIp9ehxuJdW7YwmBER33GhTy8rpT522kDZ3T1k7zik67iJfui6QbcXJg5_3LJq2rFL43vwG0XUJL9zgLuwjVlNmFjhWZwE9aPXAH9Hnxvm2AiPKjVCJlpguee2yNgP7_9qIkr2BBrj9X0q51OWsihb6_QEIOEt3XjG9xPtcZDuJHE5sHqXFSKuAYUE8Kryexi2pyd1wS3eUk9V6q0PxyZiOv7cDJ-83l04Ls2DH6ZsrDx8yyQmRCKMilSGSkqhIyTiDPKw0xmPGexYomyoaPiIZcIQ4kkoyIvQ12mQsVbsGZmRm0D4SpkKoxFqak1kCjIAx6oXAgdJLrUQnoQLPVRlI6jHFtlVEWbq2S06FRYIC4NVVhQD171U-YdQcffhJ-jkgskvjCIrJnwRV0Xh58-FvsJC2zqFNPUg5dOSM_szUvuDirYR0CurIHkzkDSrsxyOLy0pcJ9GerCZtRpzKwLyj141g_jTES7GTVbtDIh7h0EsQcPOtPrny1iWYqsjx6wgVH2AsgXPhwx07OWNxxja5ozD3aX5rvyt_78ynZ7C__3C374X9d-CusfXo-L94fH7x7BrQjXJQIs6Q6sNRcL9diGe4140i7pX-N-UL4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQT0wKO8AgUZhIRE5W2ednJcIaqC1AoBKy0HFNmxs12RJqtNVogeEOJf8Pf4JXiSbNiseIgDpxw8TmJrPDO2v_kG4LFvp0KYwJsqEQmK5Sxo5KUO9VTkCM1StzlwOz5hR2P_5SSYbMH7VS5Mk3SO_0f1T0I-2tBGDNdT0rMm4wErKujFwVyljQEI2UGJPgwhWgiv9V3KLsA2C0yoPoDt8cmr0bs644gHNHKDSXvT-ct-PV-1abHXXNYmnLK7U92BS8t8Lj59FFm25rYOr8Ln1YAbtMqH4bKSw-R8gwvyv83INbjSBrxk1GjoddjS-S7srNEg7sLF4_aC_wZ8rYt0Inyp1hhSpATzsusUte9fvpWkvVAiZr1ks3PTndSQSGreUJEcCXnLiuZ43muUm4hcEbNP12cy06QtkDElIpsWi1l1elYSPIYm5VzrxDwEMiWXN2F8-PztsyPalomgScCdikahrUIpNeNKBsrVTErl-a7gTDihCkXEPc19bUJbLRyhECbjKs5klDhpEkjt3YJBXuT6DhChHa4dTyYpMwrs2pEtbB1Jmdp-mqRSWWCvFCJOWg51LOWRxfVeKmRxM9Mx4uZwpmNmwdOuy7whEPmT8CPUshiJOXJE_kzFsizjF29exyOf22Zr57HAgietUFqYjyeiTaQwQ0Aur57kXk_SWI6k37xS5ri1XGVsdvyBx42LjCx42DVjT0Tj5bpY1jIOnm3YngW3G93vxubyMEBWSgt4b1V0Ashn3m_JZ6c1rznG_iziFuyv1s_ab_1-yva7Jfb3Cb77T9L34LKLawZRn2wPBtViqe-bGLSSD1pL8gMRp4by
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Parkinson%E2%80%99s+disease+utilizing+multi-edit+nearest-neighbor+and+ensemble+learning+algorithms+with+speech+samples&rft.jtitle=Biomedical+engineering+online&rft.au=Zhang%2C+He-Hua&rft.au=Yang%2C+Liuyang&rft.au=Liu%2C+Yuchuan&rft.au=Wang%2C+Pin&rft.date=2016-11-16&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-016-0242-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12938_016_0242_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon