GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments

Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data....

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 27; no. 2; pp. 270 - 271
Main Authors van Heeringen, Simon J., Veenstra, Gert Jan C.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.01.2011
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/btq636

Cover

Abstract Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline. Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/. Contact:  s.vanheeringen@ncmls.ru.nl Supplementary Information:  Supplementary data are available at Bioinformatics online.
AbstractList Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline. Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/. Contact: s.vanheeringen@ncmls.ru.nl Supplementary Information: Supplementary data are available at Bioinformatics online.
Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline. Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/. Contact:  s.vanheeringen@ncmls.ru.nl Supplementary Information:  Supplementary data are available at Bioinformatics online.
Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/.Contact: s.vanheeringencmls.ru.nlSupplementary Information: Supplementary data are available at Bioinformatics online.
Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.SUMMARYAccurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/.AVAILABILITYGimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/.s.vanheeringen@ncmls.ru.nlCONTACTs.vanheeringen@ncmls.ru.nlSupplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline. GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/. s.vanheeringen@ncmls.ru.nl Supplementary data are available at Bioinformatics online.
Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.
Author Veenstra, Gert Jan C.
van Heeringen, Simon J.
AuthorAffiliation Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
AuthorAffiliation_xml – name: Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
Author_xml – sequence: 1
  givenname: Simon J.
  surname: van Heeringen
  fullname: van Heeringen, Simon J.
– sequence: 2
  givenname: Gert Jan C.
  surname: Veenstra
  fullname: Veenstra, Gert Jan C.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23839260$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21081511$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9PFTEUxRuDEXj6ETSzMboZuXf6ZzqSmJgXRBKMLHTddDot1My0w3QeyrenL-8JwgJctWl_5_Tk3O6TnRCDJeQ1wgeEhh60Pvrg4jTo2Zt00M6XgopnZA-pqEsmEXdu90B3yX5KvwCAAxcvyG6FIJEj7pGzYz8M9lucvUsfC110tgjxKhbD-qQYJ9t5M_sYitGPtvfBFvnNYnlxclYme7mywfhwXtg_o538YMOcXpLnTvfJvtquC_Lzy9GP5dfy9PvxyfLzaWl4jXMpqwbBUeYMtIxLJqAVrG66pnOSVVK6qmWdYTmxq3jFXQsCoAJskBrTYUsXRGx8V2HU179136sxR9DTtUJQ64rU_YrUpqIs_LQRjqt2sJ3JoSd9J47aq_s3wV-o83ilKKCU2XdB3m0NppgbSLMafDK273WwcZWUFMhpndmnSVozLmpgmXz_KImixqrODWBG3_yb_zb435lm4O0W0Mno3k06DyndcVTSphKQOb7hzBRTmqz77wIPH-iMn_X6k-S6fP-E-ga2b9-a
CitedBy_id crossref_primary_10_18632_oncotarget_14150
crossref_primary_10_1371_journal_pbio_3001538
crossref_primary_10_1038_s41467_017_01126_x
crossref_primary_10_1016_j_ins_2018_07_004
crossref_primary_10_1182_blood_2019004684
crossref_primary_10_12688_f1000research_130530_1
crossref_primary_10_12688_f1000research_130530_2
crossref_primary_10_1109_TCBB_2015_2496261
crossref_primary_10_1152_physiolgenomics_00048_2023
crossref_primary_10_1016_j_immuni_2022_06_006
crossref_primary_10_1038_s41588_018_0134_8
crossref_primary_10_1038_s41586_022_05636_7
crossref_primary_10_1126_sciadv_aba5933
crossref_primary_10_1093_nar_gkac717
crossref_primary_10_1089_cmb_2018_0113
crossref_primary_10_1038_s41467_024_50787_y
crossref_primary_10_1038_s41586_024_07898_9
crossref_primary_10_1016_j_cell_2016_09_034
crossref_primary_10_1016_j_brainres_2015_12_022
crossref_primary_10_1038_emboj_2011_262
crossref_primary_10_1038_s41467_020_19001_7
crossref_primary_10_1007_s11103_012_0001_4
crossref_primary_10_1038_s41467_020_15449_9
crossref_primary_10_1016_j_devcel_2018_11_009
crossref_primary_10_12688_f1000research_7408_1
crossref_primary_10_15252_embr_201744993
crossref_primary_10_1016_j_scr_2013_09_015
crossref_primary_10_12688_f1000research_7408_2
crossref_primary_10_1016_j_chom_2018_03_007
crossref_primary_10_1371_journal_pgen_1010268
crossref_primary_10_1016_j_molcel_2022_01_023
crossref_primary_10_1073_pnas_1402612111
crossref_primary_10_1093_bib_bbab303
crossref_primary_10_1038_nprot_2012_088
crossref_primary_10_3389_fcell_2020_577637
crossref_primary_10_1093_nar_gkz273
crossref_primary_10_15252_embr_201439941
crossref_primary_10_1016_j_cell_2024_07_030
crossref_primary_10_15252_embj_201490061
crossref_primary_10_1093_bib_bbx063
crossref_primary_10_1093_bioinformatics_btac327
crossref_primary_10_1038_s41467_023_43498_3
crossref_primary_10_1186_s13195_024_01659_6
crossref_primary_10_1371_journal_pcbi_1003731
crossref_primary_10_1038_s12276_022_00769_1
crossref_primary_10_1371_journal_pgen_1001380
crossref_primary_10_1016_j_ydbio_2020_05_001
crossref_primary_10_1007_s13592_022_00914_9
crossref_primary_10_1038_s41467_020_15654_6
crossref_primary_10_1016_j_devcel_2023_12_012
crossref_primary_10_1038_s41586_023_06824_9
crossref_primary_10_1038_nmeth_1775
crossref_primary_10_1038_s41598_022_21148_w
crossref_primary_10_1242_dmm_050883
crossref_primary_10_1016_j_celrep_2023_112751
crossref_primary_10_15252_msb_20188227
crossref_primary_10_1186_s13059_023_03158_7
crossref_primary_10_1016_j_celrep_2020_01_006
crossref_primary_10_1016_j_devcel_2023_08_024
crossref_primary_10_1186_s12864_018_5148_1
crossref_primary_10_1093_bioinformatics_btz855
crossref_primary_10_1093_bioinformatics_btz697
crossref_primary_10_1101_gad_211912_112
crossref_primary_10_1101_gr_159608_113
crossref_primary_10_3389_fimmu_2018_01420
crossref_primary_10_1016_j_gdata_2016_02_003
crossref_primary_10_1038_s41467_021_24243_0
crossref_primary_10_1093_bib_bbv022
crossref_primary_10_1038_gene_2014_68
crossref_primary_10_1038_srep43861
crossref_primary_10_1101_gr_249367_119
crossref_primary_10_1038_s41408_019_0194_8
crossref_primary_10_3324_haematol_2020_260562
crossref_primary_10_1016_j_cell_2024_12_028
crossref_primary_10_1126_science_aad2035
crossref_primary_10_1016_j_kint_2017_03_034
crossref_primary_10_1242_jcs_263451
crossref_primary_10_1128_MCB_06175_11
crossref_primary_10_1371_journal_pone_0086044
crossref_primary_10_1161_CIRCULATIONAHA_123_066804
crossref_primary_10_1093_nar_gkad1225
crossref_primary_10_1101_gr_118042_110
crossref_primary_10_1093_bib_bbs016
crossref_primary_10_1093_nar_gkaa147
crossref_primary_10_1093_nar_gkab598
crossref_primary_10_1101_gr_277298_122
crossref_primary_10_1126_science_1251086
crossref_primary_10_1038_s41598_018_38195_x
crossref_primary_10_1371_journal_pone_0231824
crossref_primary_10_1093_nar_gks1034
crossref_primary_10_1016_j_celrep_2016_08_082
crossref_primary_10_1038_ncomms10148
crossref_primary_10_1093_bib_bbx026
crossref_primary_10_1016_j_cell_2014_01_062
crossref_primary_10_1093_nar_gkr1104
crossref_primary_10_1016_j_exphem_2022_03_007
crossref_primary_10_1186_s13072_018_0221_1
crossref_primary_10_1093_nar_gkr1240
crossref_primary_10_7554_eLife_47980
crossref_primary_10_1371_journal_pntd_0008275
crossref_primary_10_1186_1471_2229_14_29
crossref_primary_10_1038_s41588_020_00744_4
crossref_primary_10_1038_s41586_018_0734_6
crossref_primary_10_1016_j_isci_2021_103444
crossref_primary_10_1186_s12885_021_08276_8
crossref_primary_10_1038_s41467_018_07063_7
crossref_primary_10_1186_s13073_025_01438_4
crossref_primary_10_1016_j_ccell_2023_10_009
crossref_primary_10_1016_j_celrep_2023_113124
crossref_primary_10_1038_onc_2016_488
crossref_primary_10_1038_s41467_021_23216_7
Cites_doi 10.1038/nrg2641
10.1093/bioinformatics/19.2.212
10.1093/nar/gkh012
10.1093/nar/gki791
10.1371/journal.pgen.1001065
10.1038/nbt1053
10.1093/nar/gkm310
10.1093/bioinformatics/btp570
10.1093/nar/18.20.6097
ContentType Journal Article
Copyright 2015 INIST-CNRS
The Author(s) 2010. Published by Oxford University Press. 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: The Author(s) 2010. Published by Oxford University Press. 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7QO
FR3
P64
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btq636
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
MEDLINE - Academic
MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 271
ExternalDocumentID 10.1093/bioinformatics/btq636
PMC3018809
21081511
23839260
10_1093_bioinformatics_btq636
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD054356
– fundername: NICHD NIH HHS
  grantid: R01HD054356
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
.-4
.GJ
ABEFU
ABNGD
ACUKT
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
ELUNK
HVGLF
IQODW
NTWIH
O~Y
PB-
RIG
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
482
7SC
8FD
ABJNI
JQ2
L7M
L~C
L~D
ROZ
TN5
WH7
7X8
7QO
FR3
P64
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c571t-82910f34fc0b458460b6479d9df84288f2b4dc4005f2525fb0600201913ccd1b3
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Wed Oct 01 16:08:15 EDT 2025
Tue Sep 30 16:36:47 EDT 2025
Tue Oct 07 09:20:25 EDT 2025
Fri Jul 11 09:38:56 EDT 2025
Thu Jul 10 23:03:27 EDT 2025
Mon Jul 21 06:04:13 EDT 2025
Mon Jul 21 09:12:13 EDT 2025
Tue Jul 01 03:27:03 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Sequencing
De novo
Prediction
Pipeline
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-82910f34fc0b458460b6479d9df84288f2b4dc4005f2525fb0600201913ccd1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
Associate Editor: Alfonso Valencia
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/27/2/270/48868491/bioinformatics_27_2_270.pdf
PMID 21081511
PQID 1671270021
PQPubID 23500
PageCount 2
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btq636
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3018809
proquest_miscellaneous_861537188
proquest_miscellaneous_837456704
proquest_miscellaneous_1671270021
pubmed_primary_21081511
pascalfrancis_primary_23839260
crossref_primary_10_1093_bioinformatics_btq636
crossref_citationtrail_10_1093_bioinformatics_btq636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-15
PublicationDateYYYYMMDD 2011-01-15
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2011
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jin (2023012512173119100_B4) 2009; 25
Kouwenhoven (2023012512173119100_B5) 2010; 6
Schneider (2023012512173119100_B8) 1990; 18
Hu (2023012512173119100_B3) 2005; 33
Carlson (2023012512173119100_B1) 2007; 35
Tompa (2023012512173119100_B9) 2005; 23
Clarke (2023012512173119100_B2) 2003; 19
Park (2023012512173119100_B6) 2009; 10
Sandelin (2023012512173119100_B7) 2004; 32
References_xml – volume: 10
  start-page: 669
  year: 2009
  ident: 2023012512173119100_B6
  article-title: ChIP-seq: advantages and challenges of a maturing technology
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2641
– volume: 19
  start-page: 212
  year: 2003
  ident: 2023012512173119100_B2
  article-title: Rank order metrics for quantifying the association of sequence features with gene regulation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.212
– volume: 32
  start-page: D91
  issue: suppl. 1
  year: 2004
  ident: 2023012512173119100_B7
  article-title: JASPAR: an open-access database for eukaryotic transcription factor binding profiles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh012
– volume: 33
  start-page: 4899
  year: 2005
  ident: 2023012512173119100_B3
  article-title: Limitations and potentials of current motif discovery algorithms
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki791
– volume: 6
  start-page: e1001065
  year: 2010
  ident: 2023012512173119100_B5
  article-title: Genome-Wide profiling of p63 DNA-Binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001065
– volume: 23
  start-page: 137
  year: 2005
  ident: 2023012512173119100_B9
  article-title: Assessing computational tools for the discovery of transcription factor binding sites
  publication-title: Nat. Biotech.
  doi: 10.1038/nbt1053
– volume: 35
  start-page: W259
  issue: suppl. 2
  year: 2007
  ident: 2023012512173119100_B1
  article-title: SCOPE: a web server for practical de novo motif discovery
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm310
– volume: 25
  start-page: 3191
  year: 2009
  ident: 2023012512173119100_B4
  article-title: W-ChIPMotifs: a web application tool for de novo motif discovery from ChIP-based high-throughput data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp570
– volume: 18
  start-page: 6097
  year: 1990
  ident: 2023012512173119100_B8
  article-title: Sequence logos: a new way to display consensus sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.20.6097
SSID ssj0005056
ssj0051444
Score 2.3808026
Snippet Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 270
SubjectTerms Algorithms
Animals
Applications Note
Binding
Binding Sites
Bioinformatics
Biological and medical sciences
Chromatin Immunoprecipitation
Computation
Computational Biology - methods
Computer programs
Enrichment
Fundamental and applied biological sciences. Psychology
General aspects
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Mice
Pipelines
Sequence Analysis, DNA
Similarity
Software
Source code
Transcription Factors - metabolism
Title GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments
URI https://www.ncbi.nlm.nih.gov/pubmed/21081511
https://www.proquest.com/docview/1671270021
https://www.proquest.com/docview/837456704
https://www.proquest.com/docview/861537188
https://pubmed.ncbi.nlm.nih.gov/PMC3018809
https://academic.oup.com/bioinformatics/article-pdf/27/2/270/48868491/bioinformatics_27_2_270.pdf
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61qRBIiGcB84gWiasT73rttblVFaUgteTQSOFk7Xq9akRqm8YBlSO_nNmsnZDwPnCxLGU2jsbfej5nZr4BeMGZVDLnwg9SHflcM9xS0uDDMKKhQkwVToHv5DQ-HvO3k2iyA7LrhZFtVfiga2lQ06qVELWyxcPWn36tzRDf2hkegiGCME54SreMMyYyhodggNa7sBdHSNd7sDc-HR28d_1YwufJcnpye05p1-WThtuXVs3HeKnkvI5fN2s5R1caNwPjZyT1x1rL64uyllef5Wz2XSA7ug1fOxe4-pUPg0WjBvmXLXXI_-qjO3CrpcHkwH3HXdgpyntwzQ3GvLoPo9fTi4vipGqmZv6SSKILUlafKmIrBw2pL212ySKK1NPaNtQXBC9FDs_fjPy2NhwjMllPL5jvw_jo1dnhsd_OfvDzSNDGTxjyGBNykwfKpnLjQMVcpDrVJsE3psQwxXWOD6DIsIhFRgU2wYh8lYZ5rqkKH0CvrMriERBl-3eFEJJpzSVNVZCnKQtEbEJTCM094N0dzfJWGN3O55hlLkEfZlsuc0DwYLBaVjtlkD8t6G_AZbUKWROy1Djw4HmHnww3uc3cyLKoFvOMxmJZIcCoB-QXNkkokAyLgP_GxLJ7JCOJBw8dKte_gSI3RPLtgdjA68rAypBvflJOz5dy5BgiMAikHgxXyP47hzz-5xVP4Ib7T5_6NHoKveZyUTxDUtioPuyevZv02839DRXJasU
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAgkxPthHtUicbXjXa-9NreqohSkVjkQqZysXa9XtUht0zigcuSXM5u1ExLeBy6WpczG0fhbz-fMzDcALziTShZc-GGmY59rhltKGnwYxjRSiKnSKfAdnyRHU_72ND7dATn0wsi-KjwYWhpU1fQSola2eNz702-1GeNbO8NDOEYQJinP6JZxzkTO8BAGaH0FdpMY6foIdqcnk_33rh9L-DxdTk_uzykdunyyaPvSqvuYLJWc1_HrRivn6ErjZmD8jKT-WGt5bVG38vKznM2-C2SHt-Dr4AJXv_IhWHQqKL5sqUP-Vx_dhps9DSb77jvuwE5Z34WrbjDm5T2YvK7Oz8vjpqvM_CWRRJekbj41xFYOGtJe2OySRRRpq9Y21JcEL0UOzt5M_L42HCMyWU8vmN-H6eGrdwdHfj_7wS9iQTs_ZchjTMRNESqbyk1ClXCR6UybFN-YUsMU1wU-gGLDYhYbFdoEI_JVGhWFpip6AKO6qctHQJTt3xVCSKY1lzRTYZFlLBSJiUwpNPeAD3c0L3phdDufY5a7BH2Ub7nMAcGDYLWsdcogf1qwtwGX1SpkTchSk9CD5wN-ctzkNnMj67JZzHOaiGWFAKMekF_YpJFAMixC_hsTy-6RjKQePHSoXP8GitwQybcHYgOvKwMrQ775SV2dLeXIMURgEMg8GK-Q_XcOefzPK57AdfefPvVp_BRG3cWifIaksFN7_bb-Bpo0aak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GimmeMotifs%3A+a+de+novo+motif+prediction+pipeline+for+ChIP-sequencing+experiments&rft.jtitle=Bioinformatics&rft.au=van+Heeringen%2C+Simon+J&rft.au=Veenstra%2C+Gert+Jan+C&rft.date=2011-01-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=27&rft.issue=2&rft.spage=270&rft.epage=271&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtq636&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon