GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments
Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data....
        Saved in:
      
    
          | Published in | Bioinformatics Vol. 27; no. 2; pp. 270 - 271 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Oxford University Press
    
        15.01.2011
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4803 1367-4811 1367-4811 1460-2059  | 
| DOI | 10.1093/bioinformatics/btq636 | 
Cover
| Abstract | Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.
Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/.
Contact:  s.vanheeringen@ncmls.ru.nl
Supplementary Information:  Supplementary data are available at Bioinformatics online. | 
    
|---|---|
| AbstractList | Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline. Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/. Contact: s.vanheeringen@ncmls.ru.nl Supplementary Information: Supplementary data are available at Bioinformatics online. Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline. Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/. Contact: s.vanheeringen@ncmls.ru.nl Supplementary Information: Supplementary data are available at Bioinformatics online. Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.Availability: GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/.Contact: s.vanheeringencmls.ru.nlSupplementary Information: Supplementary data are available at Bioinformatics online. Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.SUMMARYAccurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/.AVAILABILITYGimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/.s.vanheeringen@ncmls.ru.nlCONTACTs.vanheeringen@ncmls.ru.nlSupplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline. GimmeMotifs is implemented in Python and runs on Linux. The source code is freely available for download at http://www.ncmls.eu/bioinfo/gimmemotifs/. s.vanheeringen@ncmls.ru.nl Supplementary data are available at Bioinformatics online. Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on GimmeMotifs, a pipeline that incorporates an ensemble of computational tools to predict motifs de novo from ChIP-sequencing (ChIP-seq) data. Similar redundant motifs are compared using the weighted information content (WIC) similarity score and clustered using an iterative procedure. A comprehensive output report is generated with several different evaluation metrics to compare and evaluate the results. Benchmarks show that the method performs well on human and mouse ChIP-seq datasets. GimmeMotifs consists of a suite of command-line scripts that can be easily implemented in a ChIP-seq analysis pipeline.  | 
    
| Author | Veenstra, Gert Jan C. van Heeringen, Simon J.  | 
    
| AuthorAffiliation | Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands | 
    
| AuthorAffiliation_xml | – name: Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands | 
    
| Author_xml | – sequence: 1 givenname: Simon J. surname: van Heeringen fullname: van Heeringen, Simon J. – sequence: 2 givenname: Gert Jan C. surname: Veenstra fullname: Veenstra, Gert Jan C.  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23839260$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21081511$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqNkk9PFTEUxRuDEXj6ETSzMboZuXf6ZzqSmJgXRBKMLHTddDot1My0w3QeyrenL-8JwgJctWl_5_Tk3O6TnRCDJeQ1wgeEhh60Pvrg4jTo2Zt00M6XgopnZA-pqEsmEXdu90B3yX5KvwCAAxcvyG6FIJEj7pGzYz8M9lucvUsfC110tgjxKhbD-qQYJ9t5M_sYitGPtvfBFvnNYnlxclYme7mywfhwXtg_o538YMOcXpLnTvfJvtquC_Lzy9GP5dfy9PvxyfLzaWl4jXMpqwbBUeYMtIxLJqAVrG66pnOSVVK6qmWdYTmxq3jFXQsCoAJskBrTYUsXRGx8V2HU179136sxR9DTtUJQ64rU_YrUpqIs_LQRjqt2sJ3JoSd9J47aq_s3wV-o83ilKKCU2XdB3m0NppgbSLMafDK273WwcZWUFMhpndmnSVozLmpgmXz_KImixqrODWBG3_yb_zb435lm4O0W0Mno3k06DyndcVTSphKQOb7hzBRTmqz77wIPH-iMn_X6k-S6fP-E-ga2b9-a | 
    
| CitedBy_id | crossref_primary_10_18632_oncotarget_14150 crossref_primary_10_1371_journal_pbio_3001538 crossref_primary_10_1038_s41467_017_01126_x crossref_primary_10_1016_j_ins_2018_07_004 crossref_primary_10_1182_blood_2019004684 crossref_primary_10_12688_f1000research_130530_1 crossref_primary_10_12688_f1000research_130530_2 crossref_primary_10_1109_TCBB_2015_2496261 crossref_primary_10_1152_physiolgenomics_00048_2023 crossref_primary_10_1016_j_immuni_2022_06_006 crossref_primary_10_1038_s41588_018_0134_8 crossref_primary_10_1038_s41586_022_05636_7 crossref_primary_10_1126_sciadv_aba5933 crossref_primary_10_1093_nar_gkac717 crossref_primary_10_1089_cmb_2018_0113 crossref_primary_10_1038_s41467_024_50787_y crossref_primary_10_1038_s41586_024_07898_9 crossref_primary_10_1016_j_cell_2016_09_034 crossref_primary_10_1016_j_brainres_2015_12_022 crossref_primary_10_1038_emboj_2011_262 crossref_primary_10_1038_s41467_020_19001_7 crossref_primary_10_1007_s11103_012_0001_4 crossref_primary_10_1038_s41467_020_15449_9 crossref_primary_10_1016_j_devcel_2018_11_009 crossref_primary_10_12688_f1000research_7408_1 crossref_primary_10_15252_embr_201744993 crossref_primary_10_1016_j_scr_2013_09_015 crossref_primary_10_12688_f1000research_7408_2 crossref_primary_10_1016_j_chom_2018_03_007 crossref_primary_10_1371_journal_pgen_1010268 crossref_primary_10_1016_j_molcel_2022_01_023 crossref_primary_10_1073_pnas_1402612111 crossref_primary_10_1093_bib_bbab303 crossref_primary_10_1038_nprot_2012_088 crossref_primary_10_3389_fcell_2020_577637 crossref_primary_10_1093_nar_gkz273 crossref_primary_10_15252_embr_201439941 crossref_primary_10_1016_j_cell_2024_07_030 crossref_primary_10_15252_embj_201490061 crossref_primary_10_1093_bib_bbx063 crossref_primary_10_1093_bioinformatics_btac327 crossref_primary_10_1038_s41467_023_43498_3 crossref_primary_10_1186_s13195_024_01659_6 crossref_primary_10_1371_journal_pcbi_1003731 crossref_primary_10_1038_s12276_022_00769_1 crossref_primary_10_1371_journal_pgen_1001380 crossref_primary_10_1016_j_ydbio_2020_05_001 crossref_primary_10_1007_s13592_022_00914_9 crossref_primary_10_1038_s41467_020_15654_6 crossref_primary_10_1016_j_devcel_2023_12_012 crossref_primary_10_1038_s41586_023_06824_9 crossref_primary_10_1038_nmeth_1775 crossref_primary_10_1038_s41598_022_21148_w crossref_primary_10_1242_dmm_050883 crossref_primary_10_1016_j_celrep_2023_112751 crossref_primary_10_15252_msb_20188227 crossref_primary_10_1186_s13059_023_03158_7 crossref_primary_10_1016_j_celrep_2020_01_006 crossref_primary_10_1016_j_devcel_2023_08_024 crossref_primary_10_1186_s12864_018_5148_1 crossref_primary_10_1093_bioinformatics_btz855 crossref_primary_10_1093_bioinformatics_btz697 crossref_primary_10_1101_gad_211912_112 crossref_primary_10_1101_gr_159608_113 crossref_primary_10_3389_fimmu_2018_01420 crossref_primary_10_1016_j_gdata_2016_02_003 crossref_primary_10_1038_s41467_021_24243_0 crossref_primary_10_1093_bib_bbv022 crossref_primary_10_1038_gene_2014_68 crossref_primary_10_1038_srep43861 crossref_primary_10_1101_gr_249367_119 crossref_primary_10_1038_s41408_019_0194_8 crossref_primary_10_3324_haematol_2020_260562 crossref_primary_10_1016_j_cell_2024_12_028 crossref_primary_10_1126_science_aad2035 crossref_primary_10_1016_j_kint_2017_03_034 crossref_primary_10_1242_jcs_263451 crossref_primary_10_1128_MCB_06175_11 crossref_primary_10_1371_journal_pone_0086044 crossref_primary_10_1161_CIRCULATIONAHA_123_066804 crossref_primary_10_1093_nar_gkad1225 crossref_primary_10_1101_gr_118042_110 crossref_primary_10_1093_bib_bbs016 crossref_primary_10_1093_nar_gkaa147 crossref_primary_10_1093_nar_gkab598 crossref_primary_10_1101_gr_277298_122 crossref_primary_10_1126_science_1251086 crossref_primary_10_1038_s41598_018_38195_x crossref_primary_10_1371_journal_pone_0231824 crossref_primary_10_1093_nar_gks1034 crossref_primary_10_1016_j_celrep_2016_08_082 crossref_primary_10_1038_ncomms10148 crossref_primary_10_1093_bib_bbx026 crossref_primary_10_1016_j_cell_2014_01_062 crossref_primary_10_1093_nar_gkr1104 crossref_primary_10_1016_j_exphem_2022_03_007 crossref_primary_10_1186_s13072_018_0221_1 crossref_primary_10_1093_nar_gkr1240 crossref_primary_10_7554_eLife_47980 crossref_primary_10_1371_journal_pntd_0008275 crossref_primary_10_1186_1471_2229_14_29 crossref_primary_10_1038_s41588_020_00744_4 crossref_primary_10_1038_s41586_018_0734_6 crossref_primary_10_1016_j_isci_2021_103444 crossref_primary_10_1186_s12885_021_08276_8 crossref_primary_10_1038_s41467_018_07063_7 crossref_primary_10_1186_s13073_025_01438_4 crossref_primary_10_1016_j_ccell_2023_10_009 crossref_primary_10_1016_j_celrep_2023_113124 crossref_primary_10_1038_onc_2016_488 crossref_primary_10_1038_s41467_021_23216_7  | 
    
| Cites_doi | 10.1038/nrg2641 10.1093/bioinformatics/19.2.212 10.1093/nar/gkh012 10.1093/nar/gki791 10.1371/journal.pgen.1001065 10.1038/nbt1053 10.1093/nar/gkm310 10.1093/bioinformatics/btp570 10.1093/nar/18.20.6097  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 INIST-CNRS The Author(s) 2010. Published by Oxford University Press. 2010  | 
    
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: The Author(s) 2010. Published by Oxford University Press. 2010  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7QO FR3 P64 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/bioinformatics/btq636 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts MEDLINE - Academic MEDLINE Engineering Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1367-4811 1460-2059  | 
    
| EndPage | 271 | 
    
| ExternalDocumentID | 10.1093/bioinformatics/btq636 PMC3018809 21081511 23839260 10_1093_bioinformatics_btq636  | 
    
| Genre | Research Support, Non-U.S. Gov't Evaluation Study Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD054356 – fundername: NICHD NIH HHS grantid: R01HD054356  | 
    
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM .-4 .GJ ABEFU ABNGD ACUKT AFFNX AGQPQ AI. AQDSO ATTQO AZFZN ELUNK HVGLF IQODW NTWIH O~Y PB- RIG RNI RZF RZO VH1 ZGI CGR CUY CVF ECM EIF NPM 482 7SC 8FD ABJNI JQ2 L7M L~C L~D ROZ TN5 WH7 7X8 7QO FR3 P64 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c571t-82910f34fc0b458460b6479d9df84288f2b4dc4005f2525fb0600201913ccd1b3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1367-4803 1367-4811  | 
    
| IngestDate | Wed Oct 01 16:08:15 EDT 2025 Tue Sep 30 16:36:47 EDT 2025 Tue Oct 07 09:20:25 EDT 2025 Fri Jul 11 09:38:56 EDT 2025 Thu Jul 10 23:03:27 EDT 2025 Mon Jul 21 06:04:13 EDT 2025 Mon Jul 21 09:12:13 EDT 2025 Tue Jul 01 03:27:03 EDT 2025 Thu Apr 24 23:02:46 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Sequencing De novo Prediction Pipeline  | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by-nc/2.0/uk CC BY 4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c571t-82910f34fc0b458460b6479d9df84288f2b4dc4005f2525fb0600201913ccd1b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 Associate Editor: Alfonso Valencia  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/27/2/270/48868491/bioinformatics_27_2_270.pdf | 
    
| PMID | 21081511 | 
    
| PQID | 1671270021 | 
    
| PQPubID | 23500 | 
    
| PageCount | 2 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btq636 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3018809 proquest_miscellaneous_861537188 proquest_miscellaneous_837456704 proquest_miscellaneous_1671270021 pubmed_primary_21081511 pascalfrancis_primary_23839260 crossref_primary_10_1093_bioinformatics_btq636 crossref_citationtrail_10_1093_bioinformatics_btq636  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-01-15 | 
    
| PublicationDateYYYYMMDD | 2011-01-15 | 
    
| PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford – name: England  | 
    
| PublicationTitle | Bioinformatics | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2011 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Jin (2023012512173119100_B4) 2009; 25 Kouwenhoven (2023012512173119100_B5) 2010; 6 Schneider (2023012512173119100_B8) 1990; 18 Hu (2023012512173119100_B3) 2005; 33 Carlson (2023012512173119100_B1) 2007; 35 Tompa (2023012512173119100_B9) 2005; 23 Clarke (2023012512173119100_B2) 2003; 19 Park (2023012512173119100_B6) 2009; 10 Sandelin (2023012512173119100_B7) 2004; 32  | 
    
| References_xml | – volume: 10 start-page: 669 year: 2009 ident: 2023012512173119100_B6 article-title: ChIP-seq: advantages and challenges of a maturing technology publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2641 – volume: 19 start-page: 212 year: 2003 ident: 2023012512173119100_B2 article-title: Rank order metrics for quantifying the association of sequence features with gene regulation publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.212 – volume: 32 start-page: D91 issue: suppl. 1 year: 2004 ident: 2023012512173119100_B7 article-title: JASPAR: an open-access database for eukaryotic transcription factor binding profiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh012 – volume: 33 start-page: 4899 year: 2005 ident: 2023012512173119100_B3 article-title: Limitations and potentials of current motif discovery algorithms publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki791 – volume: 6 start-page: e1001065 year: 2010 ident: 2023012512173119100_B5 article-title: Genome-Wide profiling of p63 DNA-Binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001065 – volume: 23 start-page: 137 year: 2005 ident: 2023012512173119100_B9 article-title: Assessing computational tools for the discovery of transcription factor binding sites publication-title: Nat. Biotech. doi: 10.1038/nbt1053 – volume: 35 start-page: W259 issue: suppl. 2 year: 2007 ident: 2023012512173119100_B1 article-title: SCOPE: a web server for practical de novo motif discovery publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm310 – volume: 25 start-page: 3191 year: 2009 ident: 2023012512173119100_B4 article-title: W-ChIPMotifs: a web application tool for de novo motif discovery from ChIP-based high-throughput data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp570 – volume: 18 start-page: 6097 year: 1990 ident: 2023012512173119100_B8 article-title: Sequence logos: a new way to display consensus sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.20.6097  | 
    
| SSID | ssj0005056 ssj0051444  | 
    
| Score | 2.3808026 | 
    
| Snippet | Accurate prediction of transcription factor binding motifs that are enriched in a collection of sequences remains a computational challenge. Here we report on... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 270 | 
    
| SubjectTerms | Algorithms Animals Applications Note Binding Binding Sites Bioinformatics Biological and medical sciences Chromatin Immunoprecipitation Computation Computational Biology - methods Computer programs Enrichment Fundamental and applied biological sciences. Psychology General aspects Humans Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Mice Pipelines Sequence Analysis, DNA Similarity Software Source code Transcription Factors - metabolism  | 
    
| Title | GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21081511 https://www.proquest.com/docview/1671270021 https://www.proquest.com/docview/837456704 https://www.proquest.com/docview/861537188 https://pubmed.ncbi.nlm.nih.gov/PMC3018809 https://academic.oup.com/bioinformatics/article-pdf/27/2/270/48868491/bioinformatics_27_2_270.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1367-4811 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61qRBIiGcB84gWiasT73rttblVFaUgteTQSOFk7Xq9akRqm8YBlSO_nNmsnZDwPnCxLGU2jsbfej5nZr4BeMGZVDLnwg9SHflcM9xS0uDDMKKhQkwVToHv5DQ-HvO3k2iyA7LrhZFtVfiga2lQ06qVELWyxcPWn36tzRDf2hkegiGCME54SreMMyYyhodggNa7sBdHSNd7sDc-HR28d_1YwufJcnpye05p1-WThtuXVs3HeKnkvI5fN2s5R1caNwPjZyT1x1rL64uyllef5Wz2XSA7ug1fOxe4-pUPg0WjBvmXLXXI_-qjO3CrpcHkwH3HXdgpyntwzQ3GvLoPo9fTi4vipGqmZv6SSKILUlafKmIrBw2pL212ySKK1NPaNtQXBC9FDs_fjPy2NhwjMllPL5jvw_jo1dnhsd_OfvDzSNDGTxjyGBNykwfKpnLjQMVcpDrVJsE3psQwxXWOD6DIsIhFRgU2wYh8lYZ5rqkKH0CvrMriERBl-3eFEJJpzSVNVZCnKQtEbEJTCM094N0dzfJWGN3O55hlLkEfZlsuc0DwYLBaVjtlkD8t6G_AZbUKWROy1Djw4HmHnww3uc3cyLKoFvOMxmJZIcCoB-QXNkkokAyLgP_GxLJ7JCOJBw8dKte_gSI3RPLtgdjA68rAypBvflJOz5dy5BgiMAikHgxXyP47hzz-5xVP4Ib7T5_6NHoKveZyUTxDUtioPuyevZv02839DRXJasU | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAgkxPthHtUicbXjXa-9NreqohSkVjkQqZysXa9XtUht0zigcuSXM5u1ExLeBy6WpczG0fhbz-fMzDcALziTShZc-GGmY59rhltKGnwYxjRSiKnSKfAdnyRHU_72ND7dATn0wsi-KjwYWhpU1fQSola2eNz702-1GeNbO8NDOEYQJinP6JZxzkTO8BAGaH0FdpMY6foIdqcnk_33rh9L-DxdTk_uzykdunyyaPvSqvuYLJWc1_HrRivn6ErjZmD8jKT-WGt5bVG38vKznM2-C2SHt-Dr4AJXv_IhWHQqKL5sqUP-Vx_dhps9DSb77jvuwE5Z34WrbjDm5T2YvK7Oz8vjpqvM_CWRRJekbj41xFYOGtJe2OySRRRpq9Y21JcEL0UOzt5M_L42HCMyWU8vmN-H6eGrdwdHfj_7wS9iQTs_ZchjTMRNESqbyk1ClXCR6UybFN-YUsMU1wU-gGLDYhYbFdoEI_JVGhWFpip6AKO6qctHQJTt3xVCSKY1lzRTYZFlLBSJiUwpNPeAD3c0L3phdDufY5a7BH2Ub7nMAcGDYLWsdcogf1qwtwGX1SpkTchSk9CD5wN-ctzkNnMj67JZzHOaiGWFAKMekF_YpJFAMixC_hsTy-6RjKQePHSoXP8GitwQybcHYgOvKwMrQ775SV2dLeXIMURgEMg8GK-Q_XcOefzPK57AdfefPvVp_BRG3cWifIaksFN7_bb-Bpo0aak | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GimmeMotifs%3A+a+de+novo+motif+prediction+pipeline+for+ChIP-sequencing+experiments&rft.jtitle=Bioinformatics&rft.au=van+Heeringen%2C+Simon+J&rft.au=Veenstra%2C+Gert+Jan+C&rft.date=2011-01-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=27&rft.issue=2&rft.spage=270&rft.epage=271&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtq636&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |