A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data
Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to re...
Saved in:
| Published in | BMC systems biology Vol. 13; no. Suppl 2; p. 28 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
05.04.2019
BioMed Central Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1752-0509 1752-0509 |
| DOI | 10.1186/s12918-019-0699-6 |
Cover
| Abstract | Background
Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g.
n
>500).
Results
In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools.
Conclusions
In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at
https://github.com/sqsun
. |
|---|---|
| AbstractList | Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n500). In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun. Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n >500). Results In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. Conclusions In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun . Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n>500). Results In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. Conclusions In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun. Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n>500). In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun . Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n500). Results In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. Conclusions In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at Keywords: Single-cell RNA sequencing, Matrix factorization, Read count, Deep learning Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n>500).BACKGROUNDSingle-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n>500).In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools.RESULTSIn this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools.In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun .CONCLUSIONSIn this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun . |
| ArticleNumber | 28 |
| Audience | Academic |
| Author | Shang, Xuequn Sun, Shiquan Liu, Yang Chen, Yabo |
| Author_xml | – sequence: 1 givenname: Shiquan surname: Sun fullname: Sun, Shiquan organization: School of Computer Science, Northwestern Polytechnical University, Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science, Northwestern Polytechnical University, Department of Biostatistics, University of Michigan – sequence: 2 givenname: Yabo surname: Chen fullname: Chen, Yabo organization: School of Computer Science, Northwestern Polytechnical University – sequence: 3 givenname: Yang surname: Liu fullname: Liu, Yang organization: School of Computer Science, Northwestern Polytechnical University – sequence: 4 givenname: Xuequn surname: Shang fullname: Shang, Xuequn email: shang@nwpu.edu.cn organization: School of Computer Science, Northwestern Polytechnical University, Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30953530$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAURiNURB_wA9ggS2xgkeJH7NgbpFHFo1IFUoG15fFj6iqxp7ZTWn49ns7AdCpAKAtHN-e7Nzq-h81eiME2zXMEjxHi7E1GWCDeQiRayIRo2aPmAPUUt5BCsXfvfb85zPkSQkow7p80-wQKSiiBB02aAadyASoYYJ3z2ttQgI5TKO1cZWvAqEryN5XSJSb_QxUfAxhtuYgGuJiAscXq4sMCaDsMoNwubQYuxRHkWhxse1c-_zTL9goYVdTT5rFTQ7bPNudR8-39u68nH9uzzx9OT2ZnraY9Ki2HusNO2E5pbowTAtKOKQMxVZQIiJHqDexpxy0i2BFCHe4Y5oIopOYYGnLU4HXfKSzV7Xc1DHKZ_KjSrURQrgTKtUBZBcqVQMlq6O06tJzmozW62khqG4zKy90vwV_IRbyWrOsE57g2eLVpkOLVZHORo88rBSrYOGWJMewYZ12_mvXyAXoZpxSqk0oh1NGeMb6lFmqw0gcX61y9aipnlBMkCGV9pY7_QNXH2NHrujbO1_pO4PVOoDLF3pSFmnKWp1_Od9kX96X8tvFrjSqA1oBOMedk3X-Z7h9ktC9321X_3A__TG4uNtcpYWHT1tvfQz8B3LP5Jg |
| CitedBy_id | crossref_primary_10_1109_JBHI_2021_3099127 crossref_primary_10_1007_s12561_021_09324_4 crossref_primary_10_3389_fnmol_2023_1076016 crossref_primary_10_1038_s41556_022_01072_x crossref_primary_10_1093_bioinformatics_btaa473 crossref_primary_10_3390_cells8101161 crossref_primary_10_1109_JBHI_2020_2991172 crossref_primary_10_1186_s13059_023_03067_9 crossref_primary_10_1038_s41588_021_00873_4 crossref_primary_10_1101_gr_251603_119 |
| Cites_doi | 10.1038/nmeth.4236 10.1186/s13059-016-0938-8 10.1038/nmeth.2645 10.1186/s13059-016-1033-x 10.1158/1538-7445.TRANSCAGEN-IA14 10.15252/embr.201540946 10.1186/s12859-018-2100-y 10.1093/bioinformatics/btv122 10.1186/s13059-015-0805-z 10.1186/s13059-016-0881-8 10.1093/bioinformatics/bty332 10.1186/gb-2010-11-10-r106 10.1007/BF01908075 10.1186/s12859-016-0984-y 10.1073/pnas.1507125112 10.1186/s13059-016-1010-4 10.1093/bioinformatics/bty644 10.1038/s41598-017-13665-w 10.1038/s41467-018-03405-7 10.1093/bioinformatics/btw607 10.1186/s13059-018-1406-4 10.1186/s13059-017-1218-y 10.1038/nbt.3498 10.1158/0008-5472.CAN-17-1138 10.1126/sciimmunol.aal2192 10.1093/bioinformatics/btv325 10.1186/s13059-017-1188-0 10.1016/j.molcel.2017.01.023 10.1038/nmeth.2694 10.1038/nbt.3039 10.1038/s41467-017-02554-5 10.1016/j.knosys.2016.07.035 10.1093/bioinformatics/btx435 10.1371/journal.pone.0102541 10.1093/hmg/ddv235 10.1016/j.cell.2015.05.002 10.1093/bioinformatics/btp616 10.1038/nbt.2859 10.1101/211938 10.1038/nbt.3102 10.1038/nmeth.4292 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7TM 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12918-019-0699-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1752-0509 |
| ExternalDocumentID | 10.1186/s12918-019-0699-6 PMC6449882 A583193567 30953530 10_1186_s12918_019_0699_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 8FH ABDBF ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ C6C CS3 DIK DU5 E3Z EBD EBS EJD EMOBN ESX F5P FYUFA GX1 HCIFZ HYE IAO IGS IHR INH INR ISR ITC KQ8 M48 M7P O5R O5S OK1 OVT P2P PGMZT PIMPY PROAC RBZ RNS ROL RPM RSV SBL SJN SOJ SV3 TR2 TUS WOQ ~8M AAYXX CITATION -56 -5G -A0 -BR 3V. ACRMQ ADINQ ADUKV ALIPV BCGST C24 CGR CUY CVF ECM EIF GROUPED_DOAJ M~E NPM 7QL 7TM 7U9 7XB 88E 8FD 8FE 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BVXVI C1K CCPQU DWQXO FR3 GNUQQ H94 HMCUK K9. LK8 M1P M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSQYO RC3 UKHRP 7X8 5PM 2VQ 4.4 ADRAZ ADTOC AHSBF C1A H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c571t-80c42f9e4ac8ddf990546ad025a539021a7d07548e132f335f2462893a1ab20d3 |
| IEDL.DBID | M48 |
| ISSN | 1752-0509 |
| IngestDate | Sun Oct 26 03:56:22 EDT 2025 Thu Aug 21 17:56:40 EDT 2025 Thu Sep 04 17:58:55 EDT 2025 Tue Oct 07 06:03:07 EDT 2025 Mon Oct 20 22:23:40 EDT 2025 Mon Oct 20 16:45:56 EDT 2025 Thu Oct 16 15:03:34 EDT 2025 Thu Jan 02 22:58:34 EST 2025 Thu Apr 24 22:58:56 EDT 2025 Wed Oct 01 02:15:39 EDT 2025 Sat Sep 06 07:24:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 2 |
| Keywords | Deep learning Matrix factorization Read count Single-cell RNA sequencing |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c571t-80c42f9e4ac8ddf990546ad025a539021a7d07548e132f335f2462893a1ab20d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1186/s12918-019-0699-6 |
| PMID | 30953530 |
| PQID | 2211457668 |
| PQPubID | 55238 |
| ParticipantIDs | unpaywall_primary_10_1186_s12918_019_0699_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6449882 proquest_miscellaneous_2204686476 proquest_journals_2211457668 gale_infotracmisc_A583193567 gale_infotracacademiconefile_A583193567 gale_incontextgauss_ISR_A583193567 pubmed_primary_30953530 crossref_primary_10_1186_s12918_019_0699_6 crossref_citationtrail_10_1186_s12918_019_0699_6 springer_journals_10_1186_s12918_019_0699_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-05 |
| PublicationDateYYYYMMDD | 2019-04-05 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC systems biology |
| PublicationTitleAbbrev | BMC Syst Biol |
| PublicationTitleAlternate | BMC Syst Biol |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | C Ziegenhain (699_CR16) 2017; 65 A McDavid (699_CR18) 2016; 34 S Anders (699_CR22) 2010; 11 K Van den Berge (699_CR36) 2018; 19 CA Vallejos (699_CR12) 2017; 14 EZ Macosko (699_CR15) 2015; 161 LF Chu (699_CR43) 2016; 17 GC Yuan (699_CR10) 2017; 18 SQ Sun (699_CR28) 2014; 9 S Darmanis (699_CR41) 2015; 112 PJ Lin (699_CR38) 2017; 18 J Li (699_CR42) 2016; 17 J Alexander (699_CR1) 2018; 78 S Sun (699_CR23) 2017; e106 AM Streets (699_CR32) 2014; 32 T Hashimshony (699_CR14) 2016; 17 MJ Chen (699_CR27) 2017; 7 F Buettner (699_CR5) 2015; 33 699_CR20 CX Shao (699_CR29) 2017; 33 WV Li (699_CR13) 2018; 9 C Trapnell (699_CR25) 2014; 32 J Zurauskiene (699_CR24) 2016; 17 L Hubert (699_CR40) 1985; 2 MD Robinson (699_CR21) 2010; 26 S Sun (699_CR45) 2016; 110 Z Feng (699_CR44) 2018; 99 L Haghverdi (699_CR26) 2015; 31 B Vieth (699_CR4) 2017; 33 D Risso (699_CR35) 2018; 9 B Ding (699_CR11) 2015; 31 JC Love (699_CR2) 2015; 75 QF Wills (699_CR9) 2015; 24 A Conesa (699_CR3) 2016; 17 VY Kiselev (699_CR7) 2017; 14 T Lonnberg (699_CR8) 2017; 2 AR Wu (699_CR19) 2014; 11 P Brennecke (699_CR17) 2013; 10 J Ghosh (699_CR39) 2011; 4 S Sun (699_CR46) 2018; 19 L Jiang (699_CR6) 2016; 17 X Zhu (699_CR30) 2017; e2888 699_CR34 Z Miao (699_CR31) 2018; 34 699_CR37 E Pierson (699_CR33) 2015; 16 |
| References_xml | – volume: 14 start-page: 483 year: 2017 ident: 699_CR7 publication-title: Nat Methods doi: 10.1038/nmeth.4236 – volume: 17 start-page: 77 year: 2016 ident: 699_CR14 publication-title: Genome Biol doi: 10.1186/s13059-016-0938-8 – volume: 10 start-page: 1093 year: 2013 ident: 699_CR17 publication-title: Nat Methods doi: 10.1038/nmeth.2645 – volume: 17 start-page: 173 year: 2016 ident: 699_CR43 publication-title: Genome Biol doi: 10.1186/s13059-016-1033-x – volume: 75 start-page: IA14 year: 2015 ident: 699_CR2 publication-title: Cancer Res doi: 10.1158/1538-7445.TRANSCAGEN-IA14 – volume: 17 start-page: 178 year: 2016 ident: 699_CR42 publication-title: Embo Rep doi: 10.15252/embr.201540946 – volume: 19 start-page: 113 year: 2018 ident: 699_CR46 publication-title: BMC Bioinforma doi: 10.1186/s12859-018-2100-y – volume: 31 start-page: 2225 year: 2015 ident: 699_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv122 – volume: 16 start-page: 241 year: 2015 ident: 699_CR33 publication-title: Genome Biol doi: 10.1186/s13059-015-0805-z – volume: 99 start-page: 1 year: 2018 ident: 699_CR44 publication-title: IEEE ACM T Comput BI – volume: 4 start-page: 305 year: 2011 ident: 699_CR39 publication-title: Adv Rev – volume: 17 start-page: 13 year: 2016 ident: 699_CR3 publication-title: Genome Biol doi: 10.1186/s13059-016-0881-8 – volume: 34 start-page: 3223 year: 2018 ident: 699_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty332 – volume: 11 start-page: R106 year: 2010 ident: 699_CR22 publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – volume: 2 start-page: 193 year: 1985 ident: 699_CR40 publication-title: J Classif doi: 10.1007/BF01908075 – volume: 17 start-page: 140 year: 2016 ident: 699_CR24 publication-title: BMC Bioinforma doi: 10.1186/s12859-016-0984-y – ident: 699_CR37 – volume: 112 start-page: 7285 year: 2015 ident: 699_CR41 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1507125112 – volume: 17 start-page: 144 year: 2016 ident: 699_CR6 publication-title: Genome Biol doi: 10.1186/s13059-016-1010-4 – ident: 699_CR20 doi: 10.1093/bioinformatics/bty644 – volume: 7 start-page: 13587 year: 2017 ident: 699_CR27 publication-title: Sci Rep doi: 10.1038/s41598-017-13665-w – volume: 9 start-page: 997 year: 2018 ident: 699_CR13 publication-title: Nat Commun doi: 10.1038/s41467-018-03405-7 – volume: 33 start-page: 235 year: 2017 ident: 699_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw607 – volume: 19 start-page: 24 year: 2018 ident: 699_CR36 publication-title: Genome Biol doi: 10.1186/s13059-018-1406-4 – volume: 18 start-page: 84 year: 2017 ident: 699_CR10 publication-title: Genome Biol doi: 10.1186/s13059-017-1218-y – volume: 34 start-page: 591 year: 2016 ident: 699_CR18 publication-title: Nat Biotechnol doi: 10.1038/nbt.3498 – volume: 78 start-page: 348 year: 2018 ident: 699_CR1 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-1138 – volume: 2 start-page: eaal2192 year: 2017 ident: 699_CR8 publication-title: Sci Immunol doi: 10.1126/sciimmunol.aal2192 – volume: 31 start-page: 2989 year: 2015 ident: 699_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv325 – volume: 18 start-page: 59 year: 2017 ident: 699_CR38 publication-title: Genome Biol doi: 10.1186/s13059-017-1188-0 – volume: e106 start-page: 45 year: 2017 ident: 699_CR23 publication-title: Nucleic Acids Res – volume: 65 start-page: 631 year: 2017 ident: 699_CR16 publication-title: Mol Cell doi: 10.1016/j.molcel.2017.01.023 – volume: 11 start-page: 41 year: 2014 ident: 699_CR19 publication-title: Nat Methods doi: 10.1038/nmeth.2694 – volume: 32 start-page: 1005 year: 2014 ident: 699_CR32 publication-title: Nat Biotechnol doi: 10.1038/nbt.3039 – volume: 9 start-page: 284 year: 2018 ident: 699_CR35 publication-title: Nat Commun doi: 10.1038/s41467-017-02554-5 – volume: 110 start-page: 267 year: 2016 ident: 699_CR45 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.07.035 – volume: 33 start-page: 3486 year: 2017 ident: 699_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx435 – volume: 9 start-page: e102541 year: 2014 ident: 699_CR28 publication-title: Plos ONE doi: 10.1371/journal.pone.0102541 – volume: e2888 start-page: 5 year: 2017 ident: 699_CR30 publication-title: Peerj – volume: 24 start-page: R74 year: 2015 ident: 699_CR9 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddv235 – volume: 161 start-page: 1202 year: 2015 ident: 699_CR15 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 26 start-page: 139 year: 2010 ident: 699_CR21 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 32 start-page: 381 year: 2014 ident: 699_CR25 publication-title: Nat Biotechnol doi: 10.1038/nbt.2859 – ident: 699_CR34 doi: 10.1101/211938 – volume: 33 start-page: 155 year: 2015 ident: 699_CR5 publication-title: Nat Biotechnol doi: 10.1038/nbt.3102 – volume: 14 start-page: 565 year: 2017 ident: 699_CR12 publication-title: Nat Methods doi: 10.1038/nmeth.4292 |
| SSID | ssj0053227 |
| Score | 2.2997918 |
| Snippet | Background
Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify... Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More... Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 28 |
| SubjectTerms | Algorithms Binomial distribution Biochemistry Bioinformatics Biomedical and Life Sciences Brain Brain stem Cell cycle Cells (Biology) Cellular and Medical Topics Clustering Computational Biology/Bioinformatics Data analysis Data processing Datasets Factorization Gene expression Gene sequencing Genes Genomes Information management Information processing Life Sciences Matrices (Mathematics) Methods Pancreas Physiological Principal components analysis Ribonucleic acid RNA RNA sequencing Sequence Analysis, RNA Simulation and Modeling Single-Cell Analysis - methods Source code Stem cells Systems Biology Time Factors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VrRBwQLxaAgUZhIREZTWb2E5yQGhBrQoSK7RQqTfLiW2otGS3za6g_56ZvNr0sFzjSeLHeB72zDcAb1Dl2jzNPUdzV3LhlOG5zyMexcheBE4Y1jjbX6fq-ER8OZWnWzDtcmEorLKTibWgtouCzsgPIvRUBBrHKv2wPOdUNYpuV7sSGqYtrWDf1xBjt2A7ImSsEWx_PJx-m3WyWSL7Ju3d5jhVBxVquzEFc1EmfpZxNdBON2X0NSV1M4Cyv0W9B3fW5dJc_jHz-TVFdfQA7rcWJps0LPEQtlz5CG43NScvH8PFhHlTrZgpLXM1fgR-ndXj4qTSLPtNqP1_WVOJp03TZE2laYYmLrOOLh6wH4xO_Rkd4laM0lQYnTvMHa8fz6aTyp0zikB9AidHhz8-HfO28AIvZDJeodYqROQzJ0yRWutRYUmhjEXzyMg4Q6vAJBZNDZE69GV9HEsfUYprFpuxyaPQxjswKhelewpMpS4sUiVyHxp0VX0mfGYMOXnoSxVpHkDYTbguWlRyKo4x17V3kirdrJHGNdK0RloF8K5_ZdlAcmwifk2rqAnqoqRYmp9mXVX68_eZnsgU5U8sVRLA25bIL_DnhWlTE3AIhI41oNwbUOJeLIbNHbPoVhZU-opzA3jVN9ObFN9WusWaaEKhcJoS7PBuw1v92GKCBJRxGEAy4LqegBDChy3l2a8aKRyN3QxdqAD2O_686taGKdvvWfj_E_xs85Cfw92o3l6Ch3IPRquLtXuBZtwqf9nuzX9Gh0Lr priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgCDEeEJ-j20ABISExRfSaj6aPp2nTQGIPg0l7i9ImAaSjN9Y7wf577LZXrhPaxGvjtGnixHZs_wzwBkWuL00ZOaq7isugHS9jmfFMIHsROGHa4mx_OtZHp_LjmTrrwaIpF2bdfz8x-n2D8mhC4VaUK18UXN-GOyijdOuX1furQ1chX-a90_Kf3UZi5-rhuyZ9rkZGDu7R-3BvWZ-7y19uNluTQIcP4UGvOrJpt9aP4FaoH8Pdrpjk5RO4mLLomgVztWehBYbAt7O2FgQnWeXZD4Lj_826Ejt9_iXrSkgz1F2ZD-RRwHEwus5ndDvbMMo_YXShMAu8fXxyPG3CT0ahpU_h9PDgy_4R7ysq8ErlkwWKo0pmsQjSVcb7iJJISe086j1OiQLFvcs96hDSBDRSoxAqZpS7Wgg3cWWWevEMNup5HZ4D0yakldGyjKlDGzQWMhbOkfWGRlJlygTS1YTbqocbp6oXM9uaHUbbbo0srpGlNbI6gXdDl_MOa-M64te0ipYwLGoKkvnqlk1jP3w-sVNl8GARSucJvO2J4hw_Xrk-5wB_gWCvRpS7I0rcZNW4ecUstt_kjc3QeJZor2mTwKuhmXpS4Fod5kuiSaXGacpxwFsdbw3_JgjrT4k0gXzEdQMBQX-PW-rv31oIcNRiC7SNEthb8effYV0zZXsDC988wdv_9e4d2Mza3SZ5qnZhY3GxDC9QXVuUL9uN-gdCbjT5 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB_0ilgf_K5Gq6wiCJZcc8nuJnkMYqmCh1QP6tOySXb96DV3Ngla_3pnkly8HFIRfAvZWZKdzOzMZGd-A_AMTW6eRql10d0VLjdSu6lNfdcPULwInNBrcLbfTuXhjL85FscdpBDVwqSnGUEYEwLReL0Afd7s2niRnewvc9sqeyT3S7RXE0rHolr6OHblZdiSAt3yEWzNpu-Sj01BpPBdwjnpTjX_OG9glzZ35zXztJk62Z-fXoOrdbHU59_1fL5mog5uwNfV4trMlJNxXaXj7OcG7uN_Wf1NuN45sixpJe8WXDLFbbjStrY8vwNnCbO6rJgucmYamAp8BGs6U7hkOXN2Ss0BfrC24U9XDcrahtYMPWmWGzrfwEUzOlxg9K-4ZFQNw-j3xty4ze2jaVKab4wSXe_C7ODVh5eHbtffwc1EOKnQOGbct7HhOovy3KJdFFzqHL0wLYIYnQ8d5ujR8MhgyGyDQFifKmnjQE906nt5sAOjYlGY-8BkZLwskjy1nsaI2MbcxlpTLIkhWxalDnirr6uyDvycenDMVRMERVK1rFTISkWsVNKBF_2UZYv8cRHxUxIZRYgaBaXsfNJ1WarX749UIiLc5gIhQweed0R2Qd9SdxUQuAQC4RpQ7g4oUeWz4fBKMlW35ZTKx1CeY_QoIwee9MM0k9LoCrOoicbjEtkU4gvfawW5X1tAyIMi8BwIByLeExAQ-XCk-PK5ASRHnzrGSM2BvZUy_H6tC1i21-vL3xn84J-oH8K23ygFR73fhVF1VptH6DxW6eNuW_gFOHdmuA priority: 102 providerName: Unpaywall |
| Title | A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data |
| URI | https://link.springer.com/article/10.1186/s12918-019-0699-6 https://www.ncbi.nlm.nih.gov/pubmed/30953530 https://www.proquest.com/docview/2211457668 https://www.proquest.com/docview/2204686476 https://pubmed.ncbi.nlm.nih.gov/PMC6449882 https://bmcsystbiol.biomedcentral.com/track/pdf/10.1186/s12918-019-0699-6 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1752-0509 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: RBZ dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1752-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1752-0509 dateEnd: 20190812 omitProxy: true ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1752-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1752-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1752-0509 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1752-0509 dateEnd: 20190430 omitProxy: true ssIdentifier: ssj0053227 issn: 1752-0509 databaseCode: M48 dateStart: 20070501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQwh4QHwTGJVBSEhMgTSxneQBoa7aNJBWTYVKhRfLSewNKaRb04r1v-cuScMyTYOXSq0vqXO-y93Zd78DeIMmN0uixLro7gqXG6ndxCa-6wcoXgRO6FU420cjeTjhX6ZiugHr9lYNA8trQzvqJzWZ5-8vzlefUOE_VgofyQ8l2qw-pWRRPX0cu3ITttFQxdTJ4Yi3hwoCZbfqtRIK3yXYk-aQ89pbdMzU1Zf1JWt1NZOyPU69C7eXxZle_dZ5fsliHdyHe42ryQa1bDyADVM8hFt188nVI5gPmNXlgukiY6YCksC7s6p3hEu2LWO_CL7_gtUteZp6TVa3nGbo67LM0AkEzoPR9j-j3dySUb0Kow2I3LjVz-PRoDTnjFJRH8PkYP_b8NBtOjC4qQj7CzRfKfdtbLhOoyyzaLkElzpDP0mLIEb3QIcZ-hw8MhjU2iAQ1qda1zjQfZ34XhY8ga1iVphnwGRkvDSSPLGexpjVxtzGWlO0h0FVGiUOeGuGq7SBJ6cuGbmqwpRIqnqNFK6RojVS0oF37SVnNTbHTcSvaRUVYV4UlFRzopdlqT5_HauBiPBFFAgZOvC2IbIz_PNUNzUK-AgEk9Wh3OlQolKm3eG1sKi1TCsfg22O8Z2MHHjVDtOVlOhWmNmSaDwukU0hTvhpLVvtswWEDSgCz4GwI3UtAUGFd0eKn6cVZDh6vTHGUg7sruXz77RuYNluK8L_ZvDz_2HwC7jjV0rGUQN3YGsxX5qX6NUtkh5shtOwB9t7-6PjMX4bymGv0l_8HO_9wJHJ6Hjw_Q_040ly |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGGAQCInJWprYTvIwoQKbWrZVaGzS3owT24BU0m5pNfrP8bdxl68teyhPe60vaew734d99ztC3oDJNWmcOgburmDcSs1SlwYsCEG8EJzQL3G2D0ZycMy_nIiTFfK3qYXBtMpGJ5aK2kwyPCPfCiBS4eAcy_jD9JRh1yi8XW1aaOi6tYLZLiHG6sKOPbs4hxCu2B5-Bn6_DYLdnaNPA1Z3GWCZiHozUNEZD1xiuc5iYxxoZ8GlNuALaBEmYAJ1ZMCu8thC4ObCULgA6zmTUPd0GvgmhPfeIGs85AkEf2sfd0ZfDxtbIGC7RPVdai-WWwVY1x4mj2Hlf5Iw2bGGV23CJaN4NWGzvbW9Tdbn-VQvzvV4fMkw7t4ld2qPlvYrEbxHVmx-n9yselwuHpCzPnW6mFGdG2pLvAp4Oy3XkaEJNfQ3dgn4Q6vOP3VZKK06W1NwqamxeNEB30HxloHioXFBsSyG4jnH2LLy58NRv7CnFDNeH5Lja2HBI7KaT3L7hFAZWz-LJU-dryE0dgl3idYYVELslsWpR_xmwVVWo6BjM46xKqOhWKqKRwp4pJBHSnrkffvItIIAWUb8GrmoEFojx9ydH3peFGr47VD1RQz6LhQy8si7mshN4M8zXZdCwBQQjatDudGhhL2fdYcbYVG17inUxU7xyKt2GJ_EfLrcTuZI43MJyxTBBz-uZKudW4gQhCL0PRJ1pK4lQETy7kj-62eJTA7OdQIhm0c2G_m8-KwlS7bZivD_F_jp8im_JOuDo4N9tT8c7T0jt4Jyq3Hmiw2yOjub2-fgQs7SF_U-peT7dauGf3m9fhE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9QwDLdgiNcHxJvCgICQkJii9dokTT-eDk4bjxMaTNq3KG0TQDp6x9oT7L_H7ot1QkN8bZw2TezYTuyfAV6gyi0ynXmO5q7kwinLM59FPIqRvQicMGxwtj8s1N6heHskj7o6p1Uf7d5fSbY5DYTSVNa768K3Iq7VboVaakJBWJRBn6ZcXYRLApUblTCYqVm_FUvk1qS7yvxrt5EyOrsln9JJZ-Mlh0vT63B1U67tyU-7XJ7SS_ObcKMzKNm05YBbcMGVt-FyW2Ly5A4cT5m3Vc1sWTDXwEXg21lTIYKTBivYdwLp_8XawjtdViZrC0sztGhZ4eieAcfB6JCf0ZltxSgrhdExw9Lx5vHBYlq5H4wCTu_C4fzN59ke7-os8FwmkxqVVC4inzphc10UHvWTFMoWaA1ZGadoBNikQMtCaIeuq49j6SPKaE1jO7FZFBbxPdgqV6V7AExpF-ZaicyHFj1TnwqfWks-HbpOuc4CCPsJN3kHQk61MJamcUa0Mu0aGVwjQ2tkVACvhi7rFoHjPOLntIqGkC1KCp35YjdVZfY_HZip1LjdxFIlAbzsiPwKP57bLhMBf4HAsEaU2yNKFL183Nwzi-lEvzIRutQCvTilA3g2NFNPCmcr3WpDNKFQOE0JDvh-y1vDv8WEACjjMIBkxHUDAQGCj1vKb18bYHC0bVP0mALY6fnzz7DOmbKdgYX_PcEP_-vdT-HKx9dz835_8e4RXIsawRM8lNuwVR9v3GO05-rsSSOzvwH2SUAv |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB_0ilgf_K5Gq6wiCJZcc8nuJnkMYqmCh1QP6tOySXb96DV3Ngla_3pnkly8HFIRfAvZWZKdzOzMZGd-A_AMTW6eRql10d0VLjdSu6lNfdcPULwInNBrcLbfTuXhjL85FscdpBDVwqSnGUEYEwLReL0Afd7s2niRnewvc9sqeyT3S7RXE0rHolr6OHblZdiSAt3yEWzNpu-Sj01BpPBdwjnpTjX_OG9glzZ35zXztJk62Z-fXoOrdbHU59_1fL5mog5uwNfV4trMlJNxXaXj7OcG7uN_Wf1NuN45sixpJe8WXDLFbbjStrY8vwNnCbO6rJgucmYamAp8BGs6U7hkOXN2Ss0BfrC24U9XDcrahtYMPWmWGzrfwEUzOlxg9K-4ZFQNw-j3xty4ze2jaVKab4wSXe_C7ODVh5eHbtffwc1EOKnQOGbct7HhOovy3KJdFFzqHL0wLYIYnQ8d5ujR8MhgyGyDQFifKmnjQE906nt5sAOjYlGY-8BkZLwskjy1nsaI2MbcxlpTLIkhWxalDnirr6uyDvycenDMVRMERVK1rFTISkWsVNKBF_2UZYv8cRHxUxIZRYgaBaXsfNJ1WarX749UIiLc5gIhQweed0R2Qd9SdxUQuAQC4RpQ7g4oUeWz4fBKMlW35ZTKx1CeY_QoIwee9MM0k9LoCrOoicbjEtkU4gvfawW5X1tAyIMi8BwIByLeExAQ-XCk-PK5ASRHnzrGSM2BvZUy_H6tC1i21-vL3xn84J-oH8K23ygFR73fhVF1VptH6DxW6eNuW_gFOHdmuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+and+efficient+count-based+matrix+factorization+method+for+detecting+cell+types+from+single-cell+RNAseq+data&rft.jtitle=BMC+systems+biology&rft.au=Sun%2C+Shiquan&rft.au=Chen%2C+Yabo&rft.au=Liu%2C+Yang&rft.au=Shang%2C+Xuequn&rft.date=2019-04-05&rft.pub=BioMed+Central+Ltd&rft.issn=1752-0509&rft.eissn=1752-0509&rft.volume=13&rft.issue=Suppl+2&rft_id=info:doi/10.1186%2Fs12918-019-0699-6&rft.externalDBID=ISR&rft.externalDocID=A583193567 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0509&client=summon |