A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data

Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to re...

Full description

Saved in:
Bibliographic Details
Published inBMC systems biology Vol. 13; no. Suppl 2; p. 28
Main Authors Sun, Shiquan, Chen, Yabo, Liu, Yang, Shang, Xuequn
Format Journal Article
LanguageEnglish
Published London BioMed Central 05.04.2019
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1752-0509
1752-0509
DOI10.1186/s12918-019-0699-6

Cover

Abstract Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n >500). Results In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. Conclusions In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun .
AbstractList Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n500). In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun.
Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n >500). Results In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. Conclusions In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun .
Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n>500). Results In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. Conclusions In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun.
Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n>500). In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun .
Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n500). Results In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools. Conclusions In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at Keywords: Single-cell RNA sequencing, Matrix factorization, Read count, Deep learning
Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n>500).BACKGROUNDSingle-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low dimension information from high dimensional gene expression data to represent cell-type structure. In the past two years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are really time-consuming when handling a large number of cells (e.g. n>500).In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools.RESULTSIn this paper, we developed a fast and efficient count-based matrix factorization method (single-cell negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools.In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun .CONCLUSIONSIn this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF, which is more powerful for detecting cell type purposes. A series of experiments were performed on three public scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis. scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun .
ArticleNumber 28
Audience Academic
Author Shang, Xuequn
Sun, Shiquan
Liu, Yang
Chen, Yabo
Author_xml – sequence: 1
  givenname: Shiquan
  surname: Sun
  fullname: Sun, Shiquan
  organization: School of Computer Science, Northwestern Polytechnical University, Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science, Northwestern Polytechnical University, Department of Biostatistics, University of Michigan
– sequence: 2
  givenname: Yabo
  surname: Chen
  fullname: Chen, Yabo
  organization: School of Computer Science, Northwestern Polytechnical University
– sequence: 3
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: School of Computer Science, Northwestern Polytechnical University
– sequence: 4
  givenname: Xuequn
  surname: Shang
  fullname: Shang, Xuequn
  email: shang@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30953530$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAURiNURB_wA9ggS2xgkeJH7NgbpFHFo1IFUoG15fFj6iqxp7ZTWn49ns7AdCpAKAtHN-e7Nzq-h81eiME2zXMEjxHi7E1GWCDeQiRayIRo2aPmAPUUt5BCsXfvfb85zPkSQkow7p80-wQKSiiBB02aAadyASoYYJ3z2ttQgI5TKO1cZWvAqEryN5XSJSb_QxUfAxhtuYgGuJiAscXq4sMCaDsMoNwubQYuxRHkWhxse1c-_zTL9goYVdTT5rFTQ7bPNudR8-39u68nH9uzzx9OT2ZnraY9Ki2HusNO2E5pbowTAtKOKQMxVZQIiJHqDexpxy0i2BFCHe4Y5oIopOYYGnLU4HXfKSzV7Xc1DHKZ_KjSrURQrgTKtUBZBcqVQMlq6O06tJzmozW62khqG4zKy90vwV_IRbyWrOsE57g2eLVpkOLVZHORo88rBSrYOGWJMewYZ12_mvXyAXoZpxSqk0oh1NGeMb6lFmqw0gcX61y9aipnlBMkCGV9pY7_QNXH2NHrujbO1_pO4PVOoDLF3pSFmnKWp1_Od9kX96X8tvFrjSqA1oBOMedk3X-Z7h9ktC9321X_3A__TG4uNtcpYWHT1tvfQz8B3LP5Jg
CitedBy_id crossref_primary_10_1109_JBHI_2021_3099127
crossref_primary_10_1007_s12561_021_09324_4
crossref_primary_10_3389_fnmol_2023_1076016
crossref_primary_10_1038_s41556_022_01072_x
crossref_primary_10_1093_bioinformatics_btaa473
crossref_primary_10_3390_cells8101161
crossref_primary_10_1109_JBHI_2020_2991172
crossref_primary_10_1186_s13059_023_03067_9
crossref_primary_10_1038_s41588_021_00873_4
crossref_primary_10_1101_gr_251603_119
Cites_doi 10.1038/nmeth.4236
10.1186/s13059-016-0938-8
10.1038/nmeth.2645
10.1186/s13059-016-1033-x
10.1158/1538-7445.TRANSCAGEN-IA14
10.15252/embr.201540946
10.1186/s12859-018-2100-y
10.1093/bioinformatics/btv122
10.1186/s13059-015-0805-z
10.1186/s13059-016-0881-8
10.1093/bioinformatics/bty332
10.1186/gb-2010-11-10-r106
10.1007/BF01908075
10.1186/s12859-016-0984-y
10.1073/pnas.1507125112
10.1186/s13059-016-1010-4
10.1093/bioinformatics/bty644
10.1038/s41598-017-13665-w
10.1038/s41467-018-03405-7
10.1093/bioinformatics/btw607
10.1186/s13059-018-1406-4
10.1186/s13059-017-1218-y
10.1038/nbt.3498
10.1158/0008-5472.CAN-17-1138
10.1126/sciimmunol.aal2192
10.1093/bioinformatics/btv325
10.1186/s13059-017-1188-0
10.1016/j.molcel.2017.01.023
10.1038/nmeth.2694
10.1038/nbt.3039
10.1038/s41467-017-02554-5
10.1016/j.knosys.2016.07.035
10.1093/bioinformatics/btx435
10.1371/journal.pone.0102541
10.1093/hmg/ddv235
10.1016/j.cell.2015.05.002
10.1093/bioinformatics/btp616
10.1038/nbt.2859
10.1101/211938
10.1038/nbt.3102
10.1038/nmeth.4292
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7TM
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12918-019-0699-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1752-0509
ExternalDocumentID 10.1186/s12918-019-0699-6
PMC6449882
A583193567
30953530
10_1186_s12918_019_0699_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
8FH
ABDBF
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
C6C
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GX1
HCIFZ
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PROAC
RBZ
RNS
ROL
RPM
RSV
SBL
SJN
SOJ
SV3
TR2
TUS
WOQ
~8M
AAYXX
CITATION
-56
-5G
-A0
-BR
3V.
ACRMQ
ADINQ
ADUKV
ALIPV
BCGST
C24
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
M~E
NPM
7QL
7TM
7U9
7XB
88E
8FD
8FE
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BVXVI
C1K
CCPQU
DWQXO
FR3
GNUQQ
H94
HMCUK
K9.
LK8
M1P
M7N
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSQYO
RC3
UKHRP
7X8
5PM
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c571t-80c42f9e4ac8ddf990546ad025a539021a7d07548e132f335f2462893a1ab20d3
IEDL.DBID M48
ISSN 1752-0509
IngestDate Sun Oct 26 03:56:22 EDT 2025
Thu Aug 21 17:56:40 EDT 2025
Thu Sep 04 17:58:55 EDT 2025
Tue Oct 07 06:03:07 EDT 2025
Mon Oct 20 22:23:40 EDT 2025
Mon Oct 20 16:45:56 EDT 2025
Thu Oct 16 15:03:34 EDT 2025
Thu Jan 02 22:58:34 EST 2025
Thu Apr 24 22:58:56 EDT 2025
Wed Oct 01 02:15:39 EDT 2025
Sat Sep 06 07:24:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 2
Keywords Deep learning
Matrix factorization
Read count
Single-cell RNA sequencing
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-80c42f9e4ac8ddf990546ad025a539021a7d07548e132f335f2462893a1ab20d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s12918-019-0699-6
PMID 30953530
PQID 2211457668
PQPubID 55238
ParticipantIDs unpaywall_primary_10_1186_s12918_019_0699_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6449882
proquest_miscellaneous_2204686476
proquest_journals_2211457668
gale_infotracmisc_A583193567
gale_infotracacademiconefile_A583193567
gale_incontextgauss_ISR_A583193567
pubmed_primary_30953530
crossref_primary_10_1186_s12918_019_0699_6
crossref_citationtrail_10_1186_s12918_019_0699_6
springer_journals_10_1186_s12918_019_0699_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-05
PublicationDateYYYYMMDD 2019-04-05
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-05
  day: 05
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC systems biology
PublicationTitleAbbrev BMC Syst Biol
PublicationTitleAlternate BMC Syst Biol
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References C Ziegenhain (699_CR16) 2017; 65
A McDavid (699_CR18) 2016; 34
S Anders (699_CR22) 2010; 11
K Van den Berge (699_CR36) 2018; 19
CA Vallejos (699_CR12) 2017; 14
EZ Macosko (699_CR15) 2015; 161
LF Chu (699_CR43) 2016; 17
GC Yuan (699_CR10) 2017; 18
SQ Sun (699_CR28) 2014; 9
S Darmanis (699_CR41) 2015; 112
PJ Lin (699_CR38) 2017; 18
J Li (699_CR42) 2016; 17
J Alexander (699_CR1) 2018; 78
S Sun (699_CR23) 2017; e106
AM Streets (699_CR32) 2014; 32
T Hashimshony (699_CR14) 2016; 17
MJ Chen (699_CR27) 2017; 7
F Buettner (699_CR5) 2015; 33
699_CR20
CX Shao (699_CR29) 2017; 33
WV Li (699_CR13) 2018; 9
C Trapnell (699_CR25) 2014; 32
J Zurauskiene (699_CR24) 2016; 17
L Hubert (699_CR40) 1985; 2
MD Robinson (699_CR21) 2010; 26
S Sun (699_CR45) 2016; 110
Z Feng (699_CR44) 2018; 99
L Haghverdi (699_CR26) 2015; 31
B Vieth (699_CR4) 2017; 33
D Risso (699_CR35) 2018; 9
B Ding (699_CR11) 2015; 31
JC Love (699_CR2) 2015; 75
QF Wills (699_CR9) 2015; 24
A Conesa (699_CR3) 2016; 17
VY Kiselev (699_CR7) 2017; 14
T Lonnberg (699_CR8) 2017; 2
AR Wu (699_CR19) 2014; 11
P Brennecke (699_CR17) 2013; 10
J Ghosh (699_CR39) 2011; 4
S Sun (699_CR46) 2018; 19
L Jiang (699_CR6) 2016; 17
X Zhu (699_CR30) 2017; e2888
699_CR34
Z Miao (699_CR31) 2018; 34
699_CR37
E Pierson (699_CR33) 2015; 16
References_xml – volume: 14
  start-page: 483
  year: 2017
  ident: 699_CR7
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4236
– volume: 17
  start-page: 77
  year: 2016
  ident: 699_CR14
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0938-8
– volume: 10
  start-page: 1093
  year: 2013
  ident: 699_CR17
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2645
– volume: 17
  start-page: 173
  year: 2016
  ident: 699_CR43
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1033-x
– volume: 75
  start-page: IA14
  year: 2015
  ident: 699_CR2
  publication-title: Cancer Res
  doi: 10.1158/1538-7445.TRANSCAGEN-IA14
– volume: 17
  start-page: 178
  year: 2016
  ident: 699_CR42
  publication-title: Embo Rep
  doi: 10.15252/embr.201540946
– volume: 19
  start-page: 113
  year: 2018
  ident: 699_CR46
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-018-2100-y
– volume: 31
  start-page: 2225
  year: 2015
  ident: 699_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv122
– volume: 16
  start-page: 241
  year: 2015
  ident: 699_CR33
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0805-z
– volume: 99
  start-page: 1
  year: 2018
  ident: 699_CR44
  publication-title: IEEE ACM T Comput BI
– volume: 4
  start-page: 305
  year: 2011
  ident: 699_CR39
  publication-title: Adv Rev
– volume: 17
  start-page: 13
  year: 2016
  ident: 699_CR3
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0881-8
– volume: 34
  start-page: 3223
  year: 2018
  ident: 699_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty332
– volume: 11
  start-page: R106
  year: 2010
  ident: 699_CR22
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-10-r106
– volume: 2
  start-page: 193
  year: 1985
  ident: 699_CR40
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 17
  start-page: 140
  year: 2016
  ident: 699_CR24
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-016-0984-y
– ident: 699_CR37
– volume: 112
  start-page: 7285
  year: 2015
  ident: 699_CR41
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1507125112
– volume: 17
  start-page: 144
  year: 2016
  ident: 699_CR6
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1010-4
– ident: 699_CR20
  doi: 10.1093/bioinformatics/bty644
– volume: 7
  start-page: 13587
  year: 2017
  ident: 699_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-13665-w
– volume: 9
  start-page: 997
  year: 2018
  ident: 699_CR13
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03405-7
– volume: 33
  start-page: 235
  year: 2017
  ident: 699_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw607
– volume: 19
  start-page: 24
  year: 2018
  ident: 699_CR36
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1406-4
– volume: 18
  start-page: 84
  year: 2017
  ident: 699_CR10
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1218-y
– volume: 34
  start-page: 591
  year: 2016
  ident: 699_CR18
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3498
– volume: 78
  start-page: 348
  year: 2018
  ident: 699_CR1
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-1138
– volume: 2
  start-page: eaal2192
  year: 2017
  ident: 699_CR8
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.aal2192
– volume: 31
  start-page: 2989
  year: 2015
  ident: 699_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv325
– volume: 18
  start-page: 59
  year: 2017
  ident: 699_CR38
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1188-0
– volume: e106
  start-page: 45
  year: 2017
  ident: 699_CR23
  publication-title: Nucleic Acids Res
– volume: 65
  start-page: 631
  year: 2017
  ident: 699_CR16
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.01.023
– volume: 11
  start-page: 41
  year: 2014
  ident: 699_CR19
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2694
– volume: 32
  start-page: 1005
  year: 2014
  ident: 699_CR32
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3039
– volume: 9
  start-page: 284
  year: 2018
  ident: 699_CR35
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02554-5
– volume: 110
  start-page: 267
  year: 2016
  ident: 699_CR45
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.07.035
– volume: 33
  start-page: 3486
  year: 2017
  ident: 699_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx435
– volume: 9
  start-page: e102541
  year: 2014
  ident: 699_CR28
  publication-title: Plos ONE
  doi: 10.1371/journal.pone.0102541
– volume: e2888
  start-page: 5
  year: 2017
  ident: 699_CR30
  publication-title: Peerj
– volume: 24
  start-page: R74
  year: 2015
  ident: 699_CR9
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv235
– volume: 161
  start-page: 1202
  year: 2015
  ident: 699_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 26
  start-page: 139
  year: 2010
  ident: 699_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 32
  start-page: 381
  year: 2014
  ident: 699_CR25
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2859
– ident: 699_CR34
  doi: 10.1101/211938
– volume: 33
  start-page: 155
  year: 2015
  ident: 699_CR5
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3102
– volume: 14
  start-page: 565
  year: 2017
  ident: 699_CR12
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4292
SSID ssj0053227
Score 2.2997918
Snippet Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify...
Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify cell-types. More...
Background Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would be able to mask the true signal to identify...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Algorithms
Binomial distribution
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Brain
Brain stem
Cell cycle
Cells (Biology)
Cellular and Medical Topics
Clustering
Computational Biology/Bioinformatics
Data analysis
Data processing
Datasets
Factorization
Gene expression
Gene sequencing
Genes
Genomes
Information management
Information processing
Life Sciences
Matrices (Mathematics)
Methods
Pancreas
Physiological
Principal components analysis
Ribonucleic acid
RNA
RNA sequencing
Sequence Analysis, RNA
Simulation and Modeling
Single-Cell Analysis - methods
Source code
Stem cells
Systems Biology
Time Factors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VrRBwQLxaAgUZhIREZTWb2E5yQGhBrQoSK7RQqTfLiW2otGS3za6g_56ZvNr0sFzjSeLHeB72zDcAb1Dl2jzNPUdzV3LhlOG5zyMexcheBE4Y1jjbX6fq-ER8OZWnWzDtcmEorLKTibWgtouCzsgPIvRUBBrHKv2wPOdUNYpuV7sSGqYtrWDf1xBjt2A7ImSsEWx_PJx-m3WyWSL7Ju3d5jhVBxVquzEFc1EmfpZxNdBON2X0NSV1M4Cyv0W9B3fW5dJc_jHz-TVFdfQA7rcWJps0LPEQtlz5CG43NScvH8PFhHlTrZgpLXM1fgR-ndXj4qTSLPtNqP1_WVOJp03TZE2laYYmLrOOLh6wH4xO_Rkd4laM0lQYnTvMHa8fz6aTyp0zikB9AidHhz8-HfO28AIvZDJeodYqROQzJ0yRWutRYUmhjEXzyMg4Q6vAJBZNDZE69GV9HEsfUYprFpuxyaPQxjswKhelewpMpS4sUiVyHxp0VX0mfGYMOXnoSxVpHkDYTbguWlRyKo4x17V3kirdrJHGNdK0RloF8K5_ZdlAcmwifk2rqAnqoqRYmp9mXVX68_eZnsgU5U8sVRLA25bIL_DnhWlTE3AIhI41oNwbUOJeLIbNHbPoVhZU-opzA3jVN9ObFN9WusWaaEKhcJoS7PBuw1v92GKCBJRxGEAy4LqegBDChy3l2a8aKRyN3QxdqAD2O_686taGKdvvWfj_E_xs85Cfw92o3l6Ch3IPRquLtXuBZtwqf9nuzX9Gh0Lr
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgCDEeEJ-j20ABISExRfSaj6aPp2nTQGIPg0l7i9ImAaSjN9Y7wf577LZXrhPaxGvjtGnixHZs_wzwBkWuL00ZOaq7isugHS9jmfFMIHsROGHa4mx_OtZHp_LjmTrrwaIpF2bdfz8x-n2D8mhC4VaUK18UXN-GOyijdOuX1furQ1chX-a90_Kf3UZi5-rhuyZ9rkZGDu7R-3BvWZ-7y19uNluTQIcP4UGvOrJpt9aP4FaoH8Pdrpjk5RO4mLLomgVztWehBYbAt7O2FgQnWeXZD4Lj_826Ejt9_iXrSkgz1F2ZD-RRwHEwus5ndDvbMMo_YXShMAu8fXxyPG3CT0ahpU_h9PDgy_4R7ysq8ErlkwWKo0pmsQjSVcb7iJJISe086j1OiQLFvcs96hDSBDRSoxAqZpS7Wgg3cWWWevEMNup5HZ4D0yakldGyjKlDGzQWMhbOkfWGRlJlygTS1YTbqocbp6oXM9uaHUbbbo0srpGlNbI6gXdDl_MOa-M64te0ipYwLGoKkvnqlk1jP3w-sVNl8GARSucJvO2J4hw_Xrk-5wB_gWCvRpS7I0rcZNW4ecUstt_kjc3QeJZor2mTwKuhmXpS4Fod5kuiSaXGacpxwFsdbw3_JgjrT4k0gXzEdQMBQX-PW-rv31oIcNRiC7SNEthb8effYV0zZXsDC988wdv_9e4d2Mza3SZ5qnZhY3GxDC9QXVuUL9uN-gdCbjT5
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB_0ilgf_K5Gq6wiCJZcc8nuJnkMYqmCh1QP6tOySXb96DV3Ngla_3pnkly8HFIRfAvZWZKdzOzMZGd-A_AMTW6eRql10d0VLjdSu6lNfdcPULwInNBrcLbfTuXhjL85FscdpBDVwqSnGUEYEwLReL0Afd7s2niRnewvc9sqeyT3S7RXE0rHolr6OHblZdiSAt3yEWzNpu-Sj01BpPBdwjnpTjX_OG9glzZ35zXztJk62Z-fXoOrdbHU59_1fL5mog5uwNfV4trMlJNxXaXj7OcG7uN_Wf1NuN45sixpJe8WXDLFbbjStrY8vwNnCbO6rJgucmYamAp8BGs6U7hkOXN2Ss0BfrC24U9XDcrahtYMPWmWGzrfwEUzOlxg9K-4ZFQNw-j3xty4ze2jaVKab4wSXe_C7ODVh5eHbtffwc1EOKnQOGbct7HhOovy3KJdFFzqHL0wLYIYnQ8d5ujR8MhgyGyDQFifKmnjQE906nt5sAOjYlGY-8BkZLwskjy1nsaI2MbcxlpTLIkhWxalDnirr6uyDvycenDMVRMERVK1rFTISkWsVNKBF_2UZYv8cRHxUxIZRYgaBaXsfNJ1WarX749UIiLc5gIhQweed0R2Qd9SdxUQuAQC4RpQ7g4oUeWz4fBKMlW35ZTKx1CeY_QoIwee9MM0k9LoCrOoicbjEtkU4gvfawW5X1tAyIMi8BwIByLeExAQ-XCk-PK5ASRHnzrGSM2BvZUy_H6tC1i21-vL3xn84J-oH8K23ygFR73fhVF1VptH6DxW6eNuW_gFOHdmuA
  priority: 102
  providerName: Unpaywall
Title A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data
URI https://link.springer.com/article/10.1186/s12918-019-0699-6
https://www.ncbi.nlm.nih.gov/pubmed/30953530
https://www.proquest.com/docview/2211457668
https://www.proquest.com/docview/2204686476
https://pubmed.ncbi.nlm.nih.gov/PMC6449882
https://bmcsystbiol.biomedcentral.com/track/pdf/10.1186/s12918-019-0699-6
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: RBZ
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1752-0509
  dateEnd: 20190812
  omitProxy: true
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1752-0509
  dateEnd: 20190430
  omitProxy: true
  ssIdentifier: ssj0053227
  issn: 1752-0509
  databaseCode: M48
  dateStart: 20070501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQwh4QHwTGJVBSEhMgTSxneQBoa7aNJBWTYVKhRfLSewNKaRb04r1v-cuScMyTYOXSq0vqXO-y93Zd78DeIMmN0uixLro7gqXG6ndxCa-6wcoXgRO6FU420cjeTjhX6ZiugHr9lYNA8trQzvqJzWZ5-8vzlefUOE_VgofyQ8l2qw-pWRRPX0cu3ITttFQxdTJ4Yi3hwoCZbfqtRIK3yXYk-aQ89pbdMzU1Zf1JWt1NZOyPU69C7eXxZle_dZ5fsliHdyHe42ryQa1bDyADVM8hFt188nVI5gPmNXlgukiY6YCksC7s6p3hEu2LWO_CL7_gtUteZp6TVa3nGbo67LM0AkEzoPR9j-j3dySUb0Kow2I3LjVz-PRoDTnjFJRH8PkYP_b8NBtOjC4qQj7CzRfKfdtbLhOoyyzaLkElzpDP0mLIEb3QIcZ-hw8MhjU2iAQ1qda1zjQfZ34XhY8ga1iVphnwGRkvDSSPLGexpjVxtzGWlO0h0FVGiUOeGuGq7SBJ6cuGbmqwpRIqnqNFK6RojVS0oF37SVnNTbHTcSvaRUVYV4UlFRzopdlqT5_HauBiPBFFAgZOvC2IbIz_PNUNzUK-AgEk9Wh3OlQolKm3eG1sKi1TCsfg22O8Z2MHHjVDtOVlOhWmNmSaDwukU0hTvhpLVvtswWEDSgCz4GwI3UtAUGFd0eKn6cVZDh6vTHGUg7sruXz77RuYNluK8L_ZvDz_2HwC7jjV0rGUQN3YGsxX5qX6NUtkh5shtOwB9t7-6PjMX4bymGv0l_8HO_9wJHJ6Hjw_Q_040ly
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGGAQCInJWprYTvIwoQKbWrZVaGzS3owT24BU0m5pNfrP8bdxl68teyhPe60vaew734d99ztC3oDJNWmcOgburmDcSs1SlwYsCEG8EJzQL3G2D0ZycMy_nIiTFfK3qYXBtMpGJ5aK2kwyPCPfCiBS4eAcy_jD9JRh1yi8XW1aaOi6tYLZLiHG6sKOPbs4hxCu2B5-Bn6_DYLdnaNPA1Z3GWCZiHozUNEZD1xiuc5iYxxoZ8GlNuALaBEmYAJ1ZMCu8thC4ObCULgA6zmTUPd0GvgmhPfeIGs85AkEf2sfd0ZfDxtbIGC7RPVdai-WWwVY1x4mj2Hlf5Iw2bGGV23CJaN4NWGzvbW9Tdbn-VQvzvV4fMkw7t4ld2qPlvYrEbxHVmx-n9yselwuHpCzPnW6mFGdG2pLvAp4Oy3XkaEJNfQ3dgn4Q6vOP3VZKK06W1NwqamxeNEB30HxloHioXFBsSyG4jnH2LLy58NRv7CnFDNeH5Lja2HBI7KaT3L7hFAZWz-LJU-dryE0dgl3idYYVELslsWpR_xmwVVWo6BjM46xKqOhWKqKRwp4pJBHSnrkffvItIIAWUb8GrmoEFojx9ydH3peFGr47VD1RQz6LhQy8si7mshN4M8zXZdCwBQQjatDudGhhL2fdYcbYVG17inUxU7xyKt2GJ_EfLrcTuZI43MJyxTBBz-uZKudW4gQhCL0PRJ1pK4lQETy7kj-62eJTA7OdQIhm0c2G_m8-KwlS7bZivD_F_jp8im_JOuDo4N9tT8c7T0jt4Jyq3Hmiw2yOjub2-fgQs7SF_U-peT7dauGf3m9fhE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9QwDLdgiNcHxJvCgICQkJii9dokTT-eDk4bjxMaTNq3KG0TQDp6x9oT7L_H7ot1QkN8bZw2TezYTuyfAV6gyi0ynXmO5q7kwinLM59FPIqRvQicMGxwtj8s1N6heHskj7o6p1Uf7d5fSbY5DYTSVNa768K3Iq7VboVaakJBWJRBn6ZcXYRLApUblTCYqVm_FUvk1qS7yvxrt5EyOrsln9JJZ-Mlh0vT63B1U67tyU-7XJ7SS_ObcKMzKNm05YBbcMGVt-FyW2Ly5A4cT5m3Vc1sWTDXwEXg21lTIYKTBivYdwLp_8XawjtdViZrC0sztGhZ4eieAcfB6JCf0ZltxSgrhdExw9Lx5vHBYlq5H4wCTu_C4fzN59ke7-os8FwmkxqVVC4inzphc10UHvWTFMoWaA1ZGadoBNikQMtCaIeuq49j6SPKaE1jO7FZFBbxPdgqV6V7AExpF-ZaicyHFj1TnwqfWks-HbpOuc4CCPsJN3kHQk61MJamcUa0Mu0aGVwjQ2tkVACvhi7rFoHjPOLntIqGkC1KCp35YjdVZfY_HZip1LjdxFIlAbzsiPwKP57bLhMBf4HAsEaU2yNKFL183Nwzi-lEvzIRutQCvTilA3g2NFNPCmcr3WpDNKFQOE0JDvh-y1vDv8WEACjjMIBkxHUDAQGCj1vKb18bYHC0bVP0mALY6fnzz7DOmbKdgYX_PcEP_-vdT-HKx9dz835_8e4RXIsawRM8lNuwVR9v3GO05-rsSSOzvwH2SUAv
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB_0ilgf_K5Gq6wiCJZcc8nuJnkMYqmCh1QP6tOySXb96DV3Ngla_3pnkly8HFIRfAvZWZKdzOzMZGd-A_AMTW6eRql10d0VLjdSu6lNfdcPULwInNBrcLbfTuXhjL85FscdpBDVwqSnGUEYEwLReL0Afd7s2niRnewvc9sqeyT3S7RXE0rHolr6OHblZdiSAt3yEWzNpu-Sj01BpPBdwjnpTjX_OG9glzZ35zXztJk62Z-fXoOrdbHU59_1fL5mog5uwNfV4trMlJNxXaXj7OcG7uN_Wf1NuN45sixpJe8WXDLFbbjStrY8vwNnCbO6rJgucmYamAp8BGs6U7hkOXN2Ss0BfrC24U9XDcrahtYMPWmWGzrfwEUzOlxg9K-4ZFQNw-j3xty4ze2jaVKab4wSXe_C7ODVh5eHbtffwc1EOKnQOGbct7HhOovy3KJdFFzqHL0wLYIYnQ8d5ujR8MhgyGyDQFifKmnjQE906nt5sAOjYlGY-8BkZLwskjy1nsaI2MbcxlpTLIkhWxalDnirr6uyDvycenDMVRMERVK1rFTISkWsVNKBF_2UZYv8cRHxUxIZRYgaBaXsfNJ1WarX749UIiLc5gIhQweed0R2Qd9SdxUQuAQC4RpQ7g4oUeWz4fBKMlW35ZTKx1CeY_QoIwee9MM0k9LoCrOoicbjEtkU4gvfawW5X1tAyIMi8BwIByLeExAQ-XCk-PK5ASRHnzrGSM2BvZUy_H6tC1i21-vL3xn84J-oH8K23ygFR73fhVF1VptH6DxW6eNuW_gFOHdmuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+and+efficient+count-based+matrix+factorization+method+for+detecting+cell+types+from+single-cell+RNAseq+data&rft.jtitle=BMC+systems+biology&rft.au=Sun%2C+Shiquan&rft.au=Chen%2C+Yabo&rft.au=Liu%2C+Yang&rft.au=Shang%2C+Xuequn&rft.date=2019-04-05&rft.pub=BioMed+Central+Ltd&rft.issn=1752-0509&rft.eissn=1752-0509&rft.volume=13&rft.issue=Suppl+2&rft_id=info:doi/10.1186%2Fs12918-019-0699-6&rft.externalDBID=ISR&rft.externalDocID=A583193567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0509&client=summon