A novel measure and significance testing in data analysis of cell image segmentation
Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and meth...
Saved in:
| Published in | BMC bioinformatics Vol. 18; no. 1; p. 168 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
14.03.2017
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-017-1527-x |
Cover
| Abstract | Background
Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed.
Results
We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms.
Conclusions
A novel measure TER of CIS is proposed. The TER’s SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing. |
|---|---|
| AbstractList | Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed.
We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms.
A novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing. Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. Results We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. Conclusions A novel measure TER of CIS is proposed. The TER’s SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing. Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed.BACKGROUNDCell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed.We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms.RESULTSWe propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms.A novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.CONCLUSIONSA novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing. Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. Results We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. Conclusions A novel measure TER of CIS is proposed. The TER’s SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing. |
| ArticleNumber | 168 |
| Audience | Academic |
| Author | Halter, Michael Kacker, Raghu N. Elliott, John T. Wu, Jin Chu Plant, Anne L. |
| Author_xml | – sequence: 1 givenname: Jin Chu orcidid: 0000-0002-6340-2467 surname: Wu fullname: Wu, Jin Chu email: jinchu.wu@nist.gov organization: National Institute of Standards and Technology – sequence: 2 givenname: Michael surname: Halter fullname: Halter, Michael organization: National Institute of Standards and Technology – sequence: 3 givenname: Raghu N. surname: Kacker fullname: Kacker, Raghu N. organization: National Institute of Standards and Technology – sequence: 4 givenname: John T. surname: Elliott fullname: Elliott, John T. organization: National Institute of Standards and Technology – sequence: 5 givenname: Anne L. surname: Plant fullname: Plant, Anne L. organization: National Institute of Standards and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28292256$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhi1URD_gB3BBlrjAISV24ti5IK0qoJUqIUE5W44zCa4Se4mTsvvvmShLu1sBQjk4ip93PHnGp-TIBw-EvGTpOWOqeBcZV6JMUiYTJrhMNk_ICcslSzhLxdHe-zE5jfE2RVCl4hk55oqXnIvihNysqA930NEeTJwGoMbXNLrWu8ZZ4y3QEeLofEudp7UZDQKm20YXaWioha6jrjct0AhtD340owv-OXnamC7Ci916Rr59_HBzcZlcf_50dbG6TqyQbEwypcDYRhqVsyZXVlZVXVQyV6UB2ZS14hK4ApmnjQFRK2Yrm8uyrDIQVWaz7Izwpe7k12b703SdXg_YzrDVLNWzIr0o0vjnelakNxh6v4TWU9VDbbHpwTwEg3H6cMe777oNd1pkgnEmsMCbXYEh_JjQju5dnE0YD2GKmikplciYlIi-foTehmlAgTOFM0g5z_MHqjUdaOebgOfauahe5UqIIisKhdT5Hyh8auidxYvROPx-EHh7EEBmhM3YmilGffX1yyH7al_KvY3fFwUBuQB2CDEO0GjrlmFjF677p2_2KPk_M9oNNiLrWxj2vP019At8IfD6 |
| CitedBy_id | crossref_primary_10_1109_TASLP_2023_3313447 crossref_primary_10_1080_03610918_2018_1521974 crossref_primary_10_3390_diagnostics13142379 crossref_primary_10_4103_jpi_jpi_82_18 |
| Cites_doi | 10.1080/03610918.2012.700362 10.1080/01621459.1971.10482356 10.1109/42.363096 10.1111/1467-9884.00331 10.6028/jres.116.003 10.1111/j.1365-2818.2012.03678.x 10.1214/aos/1176344552 10.1016/j.cviu.2007.08.003 10.1201/b16923 10.1080/00031305.1996.10473566 10.1007/978-1-4899-4541-9 10.1186/1471-2105-9-42 10.1093/bioinformatics/btu302 10.1016/S0167-8655(97)00083-4 10.1186/1471-2105-8-340 10.1186/s12859-015-0762-2 10.1109/TPAMI.2007.1046 10.1080/03610918.2015.1065327 10.1109/ISBI.2009.5193098 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 |
| Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12859-017-1527-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Statistics |
| EISSN | 1471-2105 |
| ExternalDocumentID | 10.1186/s12859-017-1527-x PMC5351215 A485563668 28292256 10_1186_s12859_017_1527_x |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c571t-388eacf7a841f48c7bbd6b7489ae7f9d827e28e740fae5d81cbc4799b3e5b3c33 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Sun Oct 26 04:15:33 EDT 2025 Tue Sep 30 15:07:01 EDT 2025 Fri Sep 05 08:03:01 EDT 2025 Tue Oct 07 05:21:12 EDT 2025 Mon Oct 20 21:53:18 EDT 2025 Mon Oct 20 16:35:04 EDT 2025 Thu Oct 16 15:19:45 EDT 2025 Mon Jul 21 05:59:40 EDT 2025 Wed Oct 01 04:15:29 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Sat Sep 06 07:27:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Performance measure Correlation coefficient Cell assays Significance testing Standard error Bootstrap method Misclassification error rate Total error rate Cell image segmentation Confidence interval |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c571t-388eacf7a841f48c7bbd6b7489ae7f9d827e28e740fae5d81cbc4799b3e5b3c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6340-2467 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-017-1527-x |
| PMID | 28292256 |
| PQID | 1882902244 |
| PQPubID | 44065 |
| ParticipantIDs | unpaywall_primary_10_1186_s12859_017_1527_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_5351215 proquest_miscellaneous_1877853177 proquest_journals_1882902244 gale_infotracmisc_A485563668 gale_infotracacademiconefile_A485563668 gale_incontextgauss_ISR_A485563668 pubmed_primary_28292256 crossref_citationtrail_10_1186_s12859_017_1527_x crossref_primary_10_1186_s12859_017_1527_x springer_journals_10_1186_s12859_017_1527_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-14 |
| PublicationDateYYYYMMDD | 2017-03-14 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2017 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | S Dimopoulos (1527_CR11) 2014; 30 1527_CR13 1527_CR14 B Efron (1527_CR16) 1993 J Chalfoun (1527_CR2) 2013; 249 AA Hill (1527_CR1) 2007; 8 B Ostle (1527_CR4) 1988 JC Wu (1527_CR18) 2014; 43 R Unnikrishnan (1527_CR6) 2007; 29 AP Zijdenbos (1527_CR7) 1994; 13 1527_CR9 N Klar (1527_CR10) 2002; 51 1527_CR23 JC Wu (1527_CR19) 2016; 45 1527_CR20 DJ Hand (1527_CR22) 1997 BL Waerden van der (1527_CR24) 1969 1527_CR25 P Bajcsy (1527_CR3) 2015; 16 WM Rand (1527_CR5) 1971; 66 RJ Hyndman (1527_CR27) 1996; 50 YJ Zhang (1527_CR8) 1997; 18 H Zhang (1527_CR12) 2008; 110 B Efron (1527_CR15) 1979; 7 JC Wu (1527_CR17) 2011; 116 IMG Dresen (1527_CR21) 2008; 9 JA Rice (1527_CR26) 2006 |
| References_xml | – volume: 43 start-page: 225 issue: 1 year: 2014 ident: 1527_CR18 publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2012.700362 – volume: 66 start-page: 846 year: 1971 ident: 1527_CR5 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1971.10482356 – volume: 13 start-page: 716 year: 1994 ident: 1527_CR7 publication-title: IEEE Trans Med Imag doi: 10.1109/42.363096 – volume: 51 start-page: 467 year: 2002 ident: 1527_CR10 publication-title: Statistician doi: 10.1111/1467-9884.00331 – volume: 116 start-page: 517 year: 2011 ident: 1527_CR17 publication-title: J Res Natl Inst Stand Technol doi: 10.6028/jres.116.003 – volume: 249 start-page: 41 issue: 1 year: 2013 ident: 1527_CR2 publication-title: J Microsc doi: 10.1111/j.1365-2818.2012.03678.x – volume: 7 start-page: 1 year: 1979 ident: 1527_CR15 publication-title: Ann Statistics doi: 10.1214/aos/1176344552 – ident: 1527_CR20 – volume: 110 start-page: 260 year: 2008 ident: 1527_CR12 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.08.003 – ident: 1527_CR25 doi: 10.1201/b16923 – ident: 1527_CR13 – volume-title: Statistics in research: basic concepts and techniques for research workers year: 1988 ident: 1527_CR4 – volume: 50 start-page: 361 year: 1996 ident: 1527_CR27 publication-title: Am Stat doi: 10.1080/00031305.1996.10473566 – volume-title: An Introduction to the Bootstrap year: 1993 ident: 1527_CR16 doi: 10.1007/978-1-4899-4541-9 – volume: 9 start-page: 42 year: 2008 ident: 1527_CR21 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-9-42 – volume: 30 start-page: 2644 year: 2014 ident: 1527_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu302 – ident: 1527_CR23 – volume: 18 start-page: 963 year: 1997 ident: 1527_CR8 publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(97)00083-4 – volume: 8 start-page: 340 year: 2007 ident: 1527_CR1 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-8-340 – volume: 16 start-page: 330 year: 2015 ident: 1527_CR3 publication-title: BMC Bioinf. doi: 10.1186/s12859-015-0762-2 – volume: 29 start-page: 929 year: 2007 ident: 1527_CR6 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.1046 – volume-title: Construction and assessment of classification rules year: 1997 ident: 1527_CR22 – volume: 45 start-page: 1689 issue: 5 year: 2016 ident: 1527_CR19 publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2015.1065327 – volume-title: Mathematical statistics and data analysis year: 2006 ident: 1527_CR26 – ident: 1527_CR14 – volume-title: Mathematical statistics year: 1969 ident: 1527_CR24 – ident: 1527_CR9 doi: 10.1109/ISBI.2009.5193098 |
| SSID | ssj0017805 |
| Score | 2.2324493 |
| Snippet | Background
Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting... Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance... Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 168 |
| SubjectTerms | Algorithms Analysis Animals Automation Bioinformatics Biomedical and Life Sciences Computation Computational Biology/Bioinformatics Computer Appl. in Life Sciences Confidence intervals Correlation coefficient Correlation coefficients Cytometry Data analysis image analysis and data visualization Image Interpretation, Computer-Assisted Image processing Image segmentation Imaging Life Sciences Mice Microarrays Microscopy Microscopy, Fluorescence Myocytes, Smooth Muscle - cytology Performance evaluation Research Article Smooth muscle Standard error (Statistics) Statistical analysis Statistical methods Statistical significance Statistics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB_qFbE-iFarq1WiCIIldD-yye6DyCktVfCQ2kLfwiabPQ_usqd7p-1_b2a_vC1YnzNhN5mPTDIzvwF4zbUIfZ7GNM-4pizWnKZFqCgzAltM5kFeF4l9mfCTc_b5Ir7YgklXC4NplZ1NrA11Xmp8Iz8MEgz5uQOHvV_-oNg1CqOrXQuNrG2tkL-rIcZuwXaIyFgj2P5wNPl62scVEMG_jW0GCT-sAsRvo2ipsb0rvRycTtdt9MYhdT2Bso-i3oU7a7vMrn5n8_nGQXV8H-61HiYZNyLxALaM3YXbTc_Jq13YQfeyQWd-CGdjYstfZk4WzVMhyWxOMKUDE4hQHsgKUTjslMwswWRSR9CAmJCyIPjoT2YLZ5FIZaaLtorJPoLz46Ozjye07bNAdSyCFY2SxJnfQmQJCwqWaKFUzhXC0mRGFGmehMKEiRHMLzITO-ZppZlIUxWZWEU6ivZgZEtrngBRsXM3hbsiKeem-MZX3I_SgjF3ycvDOFce-N3-St2CkGMvjLmsLyMJlw1LpGOJRJbISw_e9lOWDQLHTcSvkGkSkS0sps5Ms3VVyU_fTuUYYXB4xHniwZuWqCjdx3XWViK4JSAY1oByf0DpVE8PhzvZkK3qV_KvoHrwsh_GmZjOZk25RhohnJ8UCOHB40aU-rVhaNsZWe6BGAhZT4CA4MMRO_teA4PHUYxgIR4cdOK48Vv_3rKDXmL_v8FPb17yM9gJUZsw4ZHtw2j1c22eO69tpV60qvgHPEg-rQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZixQxEC5kRdQH8bZ1lSiC4BLsI1c_DovLKuiD7sK-hU46PTswk17sGXX_vanuTDO9eOBzKn2kjlRSVV8BvBZW5qkoOa0rYSnjVtCyyQ1lTmKLyTqr-yKxT5_F8Sn7eMbPIlg01sLsxu8zJd51GSKsUbSl2ICVBnfxetijRB-XFYdjwACh-WPQ8rfTJtvOVeO7s_tczYwcw6O34ebGX1SXP6rlcmcHOroLd6LrSGYDr-_BNefvw42hmeTlAziZEd9-d0uyGq79SOVrgukZmAyEvCVrRNTwc7LwBBNDA8EASELahuAFPlmsgnUhnZuvYkWSfwinR-9PDo9p7JlALZfZmhZKBVPayEqxrGHKSmNqYRBipnKyKWuVS5crJ1naVI4HRlhjmSxLUzhuClsUj2DPt949AWJ4cB1lOO6Y4HKkLjUiLcqGsXBgq3NemwTS7ZJqGwHFsa_FUvcHCyX0wAUduKCRC_pnAm_HKRcDmsbfiF8hnzSiVHhMg5lXm67TH75-0TOEtBGFECqBN5GoacPLbRWrCsIvILDVhHJ_QhnUyE6Ht-Kgoxp3OlMYZw5eDkvg5TiMMzE1zbt2gzRSBp8nkzKBx4P0jP-GYepgMEUCciJXIwGCe09H_OK8B_nmBUfgjwQOthK481l_XrKDUUj_vcBP_-vZz-BWjvqEuYxsH_bW3zbueXDI1uZFr4q_AABsLO0 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwEB6tukLAA_cRWJBBSEis0s3hI3msEKsFiRXHVlqerNhxSkXrVG0DLL8eT3OoqTiExLPHSjz5PB5nZr4BeMa1iAKeMj_PuPYp09xPi0j51AhsMZmH-aZI7O0pPxnTN-fsfA_et7Uwaq7VtGxIQ5GoeLhdhj6rqxywi4JZHi3yot70CT9ahcjE5qPNxUatvnMr9zlz7vkA9sen70afNlVGIvTdFYc10c1fzuudT7tWeuuY2k2h7OKoV-FyZRfZxbdsNts6qo6vw7JdZJ2h8mVYrdVQ_9jhf_yvWrgB1xrHloxqJN6EPWNvwaW61eXFbTgbEVt-NTMyr39KkszmBJNHMFUJkUfWyPdhJ2RqCaatOoGaLoWUBcHwApnOne0jKzOZN_VS9g6Mj1-dvTzxm44OvmYiXPtxkjhDX4gsoWFBEy2UyrlCApzMiCLNk0iYKDGCBkVmmIOJVpqKNFWxYSrWcXwXBra05j4QxZxjK9xlTDmHKDCB4kGcFpS662QesVx5ELTfUeqG7hy7bszk5tqTcFkrSzplSVSW_O7Bi27Koub6-JPwUwSHRA4Ni0k6k6xareTrjx_kCAl3eMx54sHzRqgo3cN11tQ8uCUg7VZP8qAn6Ta57g-3GJSNkVnJMMEouPPBqAdPumGciYlz1pQVygjhPLJQCA_u1ZDt1oZBdGfOuQeiB-ZOAKnH-yN2-nlDQc5ihrQkHhy2sN96rd-r7LDbGX9X8IN_kn4IVyKEPWZa0gMYrJeVeeTcxbV63BiAn7C5ZYM priority: 102 providerName: Unpaywall |
| Title | A novel measure and significance testing in data analysis of cell image segmentation |
| URI | https://link.springer.com/article/10.1186/s12859-017-1527-x https://www.ncbi.nlm.nih.gov/pubmed/28292256 https://www.proquest.com/docview/1882902244 https://www.proquest.com/docview/1877853177 https://pubmed.ncbi.nlm.nih.gov/PMC5351215 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-017-1527-x |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (PMC) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (WRLC) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJgQ8IL4XGJVBSEhMgXw4tvOAUKhWRqVV07ZK5SmKE6er1LpjbWH977nLF800QOIlkeKzkvh-Z5_t8-8IecNT4Tk8DOws4anNgpTbYe4pm2mBKSYzNysOiR0N-OGQ9UfBaIvU6a2qBlzcOLXDfFLDy-n7q-_rT2DwHwuDl_zDwkUWNhv7W0zSaoNLuQMDVYiZHI7Y700FpO-vNjZvrIbEwNILAeG8NUpd76s3BqvrgZTNbuo9cmdlLpL1z2Q63Riweg_I_crTpFEJjYdkS5tH5HaZe3L9mJxF1Mx_6CmdlauENDEZxWgOjB1CKNAlEnCYMZ0YinGkIFDyl9B5TnG9n05m0BnRhR7PqgNM5gkZ9g7Ouod2lWLBTgPhLm1fSuh5c5FI5uZMpkKpjCtkpEm0yMNMekJ7Ugvm5IkOQG-pSpkIQ-XrQPmp7z8l22Zu9C6hKgBPU8DsSIGH4mhHcccPc8Zgfpd5QaYs4tRNGqcV_zimwZjGxTxE8rhUSAwKiVEh8ZVF3jVVLkryjb8Jv0Y9xUhqYTBqZpysFov46-lJHCEDDvc5lxZ5Wwnlc3h5mlSHEOAXkAerJbnXkgSrS9vFNRziGrSxK3FbGpwiZpFXTTHWxEg2o-crlBECXCRXCIs8K9HT_FuNPouIFq4aAeQCb5eYyXnBCR74AfKEWGS_RuDGZ_25yfYbkP67gZ__91e9IHc9NDMMg2R7ZHt5udIvwZdbqg65JUYCrrL3pUN2oqh_2of754PB8Qk87fJup1gl6RSWDCXDwXH07Rfq9Ezm |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6ahtDGA4JxCwwwCITEFC0Xx04eEKqAqWWXB-ikvZnYcUql1imkZeuf4jfi01xoJjGe9uwTxfa52uf4OwCvmOKBx5LIzVKmXBop5iZ5IF2qObaYzPxs9Ujs-IT1T-nns-hsA343b2GwrLKxiStDnRUK78j3_RhTftbh0PezHy52jcLsatNCoxKLQ708t0e28t3go-Xv6yA4-DT80HfrrgKuirg_d8M4tsYm52lM_ZzGikuZMYkgLKnmeZLFAddBrDn18lRHdqpKKsqTRIY6kqHCC1Br8m_Q0NoSqz_8rD3g-dgfoM6c-jHbL31Eh3PRD2DzWPei4_sue4A1F3i5PLPN0d6CrYWZpcvzdDJZc4MHd-B2Hb-SXiVwd2FDmx24WXW0XO7ANgavFfbzPRj2iCl-6QmZVheRJDUZwYIRLE9CaSNzxPgwIzI2BEtVLUEFkUKKnGBKgYyn1t6RUo-m9Rspcx9Or2W_H8CmKYx-BERGNpjl9gAmbRDkaU8yL0xySu0RMguiTDrgNfsrVA1xjp02JmJ11ImZqFgiLEsEskRcOPC2_WRW4XtcRfwSmSYQN8NgYc4oXZSlGHz9InoIssNCxmIH3tREeWF_rtL6nYNdAkJtdSh3O5RWsVV3uJENURuWUvxVAwdetMP4JRbLGV0skIZzG4X5nDvwsBKldm2YOLcmnDnAO0LWEiDceHfEjL-vYMejMEIoEgf2GnFcm9a_t2yvldj_b_Djq5f8HLb6w-MjcTQ4OXwC2wFqFpZW0l3YnP9c6Kc2PpzLZyulJPDtuq3AH7V9dpI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6hIq4HxN1AAYOQkKii5vCVx9XCquWoELRS36zYcZaVdp1VkwX67_FsstGm4hDPHufwHB57Zr4BeMWNSCKesbDIuQkpMzzMykSH1ApsMVnExbpI7NMxPzyl78_YWdfntN5ku29Ckm1NA6I0ueZgWZStikt-UMeIuxaihcW2rKF3Iq9Sv7lhC4MxH_dhBATs70KZv5022Iwum-StPelyvmQfNL0FN1ZumV_8yOfzrX1pcgdudw4lGbUScBeuWHcPrrUtJi_uw8mIuOq7nZNFexlIclcQTNrAFCHkOGkQZ8NNycwRTBf1BC1MCalKgtf6ZLbwNofUdrro6pTcAzidvDsZH4ZdJ4XQMBE3YSqlN7ClyCWNSyqN0LrgGoFncivKrJCJsIm0gkZlbplnj9GGiizTqWU6NWn6EHZc5ewuEM28Qyn8IUh7RySykeZRmpWU-mNckbBCBxBtllSZDmYcu13M1fq4IblquaA8FxRyQf0M4E0_ZdlibPyN-CXySSF2hcPkmGm-qmt19PWLGiHQDU85lwG87ojKyr_c5F2tgf8FhLsaUO4NKL1ymeHwRhxUp9y1iiVGn73vQwN40Q_jTExYc7ZaIY0Q3hOKhQjgUSs9_b9h8NqbUR6AGMhVT4CQ38MRN_u2hv5mKUM4kAD2NxK49Vl_XrL9Xkj_vcCP_-vZz-H657cT9fHo-MMTuJmgamGyI92DneZ8ZZ96j63Rz9Za-Qtewzgj |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwEB6tukLAA_cRWJBBSEis0s3hI3msEKsFiRXHVlqerNhxSkXrVG0DLL8eT3OoqTiExLPHSjz5PB5nZr4BeMa1iAKeMj_PuPYp09xPi0j51AhsMZmH-aZI7O0pPxnTN-fsfA_et7Uwaq7VtGxIQ5GoeLhdhj6rqxywi4JZHi3yot70CT9ahcjE5qPNxUatvnMr9zlz7vkA9sen70afNlVGIvTdFYc10c1fzuudT7tWeuuY2k2h7OKoV-FyZRfZxbdsNts6qo6vw7JdZJ2h8mVYrdVQ_9jhf_yvWrgB1xrHloxqJN6EPWNvwaW61eXFbTgbEVt-NTMyr39KkszmBJNHMFUJkUfWyPdhJ2RqCaatOoGaLoWUBcHwApnOne0jKzOZN_VS9g6Mj1-dvTzxm44OvmYiXPtxkjhDX4gsoWFBEy2UyrlCApzMiCLNk0iYKDGCBkVmmIOJVpqKNFWxYSrWcXwXBra05j4QxZxjK9xlTDmHKDCB4kGcFpS662QesVx5ELTfUeqG7hy7bszk5tqTcFkrSzplSVSW_O7Bi27Koub6-JPwUwSHRA4Ni0k6k6xareTrjx_kCAl3eMx54sHzRqgo3cN11tQ8uCUg7VZP8qAn6Ta57g-3GJSNkVnJMMEouPPBqAdPumGciYlz1pQVygjhPLJQCA_u1ZDt1oZBdGfOuQeiB-ZOAKnH-yN2-nlDQc5ihrQkHhy2sN96rd-r7LDbGX9X8IN_kn4IVyKEPWZa0gMYrJeVeeTcxbV63BiAn7C5ZYM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+measure+and+significance+testing+in+data+analysis+of+cell+image+segmentation&rft.jtitle=BMC+bioinformatics&rft.au=Wu%2C+Jin+Chu&rft.au=Halter%2C+Michael&rft.au=Kacker%2C+Raghu+N.&rft.au=Elliott%2C+John+T.&rft.date=2017-03-14&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=18&rft_id=info:doi/10.1186%2Fs12859-017-1527-x&rft_id=info%3Apmid%2F28292256&rft.externalDocID=PMC5351215 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |