A novel measure and significance testing in data analysis of cell image segmentation

Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and meth...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 18; no. 1; p. 168
Main Authors Wu, Jin Chu, Halter, Michael, Kacker, Raghu N., Elliott, John T., Plant, Anne L.
Format Journal Article
LanguageEnglish
Published London BioMed Central 14.03.2017
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-017-1527-x

Cover

Abstract Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. Results We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. Conclusions A novel measure TER of CIS is proposed. The TER’s SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.
AbstractList Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. A novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.
Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. Results We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. Conclusions A novel measure TER of CIS is proposed. The TER’s SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.
Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed.BACKGROUNDCell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed.We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms.RESULTSWe propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms.A novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.CONCLUSIONSA novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.
Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. Results We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. Conclusions A novel measure TER of CIS is proposed. The TER’s SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.
ArticleNumber 168
Audience Academic
Author Halter, Michael
Kacker, Raghu N.
Elliott, John T.
Wu, Jin Chu
Plant, Anne L.
Author_xml – sequence: 1
  givenname: Jin Chu
  orcidid: 0000-0002-6340-2467
  surname: Wu
  fullname: Wu, Jin Chu
  email: jinchu.wu@nist.gov
  organization: National Institute of Standards and Technology
– sequence: 2
  givenname: Michael
  surname: Halter
  fullname: Halter, Michael
  organization: National Institute of Standards and Technology
– sequence: 3
  givenname: Raghu N.
  surname: Kacker
  fullname: Kacker, Raghu N.
  organization: National Institute of Standards and Technology
– sequence: 4
  givenname: John T.
  surname: Elliott
  fullname: Elliott, John T.
  organization: National Institute of Standards and Technology
– sequence: 5
  givenname: Anne L.
  surname: Plant
  fullname: Plant, Anne L.
  organization: National Institute of Standards and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28292256$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gB3BBlrjAISV24ti5IK0qoJUqIUE5W44zCa4Se4mTsvvvmShLu1sBQjk4ip93PHnGp-TIBw-EvGTpOWOqeBcZV6JMUiYTJrhMNk_ICcslSzhLxdHe-zE5jfE2RVCl4hk55oqXnIvihNysqA930NEeTJwGoMbXNLrWu8ZZ4y3QEeLofEudp7UZDQKm20YXaWioha6jrjct0AhtD340owv-OXnamC7Ci916Rr59_HBzcZlcf_50dbG6TqyQbEwypcDYRhqVsyZXVlZVXVQyV6UB2ZS14hK4ApmnjQFRK2Yrm8uyrDIQVWaz7Izwpe7k12b703SdXg_YzrDVLNWzIr0o0vjnelakNxh6v4TWU9VDbbHpwTwEg3H6cMe777oNd1pkgnEmsMCbXYEh_JjQju5dnE0YD2GKmikplciYlIi-foTehmlAgTOFM0g5z_MHqjUdaOebgOfauahe5UqIIisKhdT5Hyh8auidxYvROPx-EHh7EEBmhM3YmilGffX1yyH7al_KvY3fFwUBuQB2CDEO0GjrlmFjF677p2_2KPk_M9oNNiLrWxj2vP019At8IfD6
CitedBy_id crossref_primary_10_1109_TASLP_2023_3313447
crossref_primary_10_1080_03610918_2018_1521974
crossref_primary_10_3390_diagnostics13142379
crossref_primary_10_4103_jpi_jpi_82_18
Cites_doi 10.1080/03610918.2012.700362
10.1080/01621459.1971.10482356
10.1109/42.363096
10.1111/1467-9884.00331
10.6028/jres.116.003
10.1111/j.1365-2818.2012.03678.x
10.1214/aos/1176344552
10.1016/j.cviu.2007.08.003
10.1201/b16923
10.1080/00031305.1996.10473566
10.1007/978-1-4899-4541-9
10.1186/1471-2105-9-42
10.1093/bioinformatics/btu302
10.1016/S0167-8655(97)00083-4
10.1186/1471-2105-8-340
10.1186/s12859-015-0762-2
10.1109/TPAMI.2007.1046
10.1080/03610918.2015.1065327
10.1109/ISBI.2009.5193098
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12859-017-1527-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 1471-2105
ExternalDocumentID 10.1186/s12859-017-1527-x
PMC5351215
A485563668
28292256
10_1186_s12859_017_1527_x
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c571t-388eacf7a841f48c7bbd6b7489ae7f9d827e28e740fae5d81cbc4799b3e5b3c33
IEDL.DBID M48
ISSN 1471-2105
IngestDate Sun Oct 26 04:15:33 EDT 2025
Tue Sep 30 15:07:01 EDT 2025
Fri Sep 05 08:03:01 EDT 2025
Tue Oct 07 05:21:12 EDT 2025
Mon Oct 20 21:53:18 EDT 2025
Mon Oct 20 16:35:04 EDT 2025
Thu Oct 16 15:19:45 EDT 2025
Mon Jul 21 05:59:40 EDT 2025
Wed Oct 01 04:15:29 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Sat Sep 06 07:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Performance measure
Correlation coefficient
Cell assays
Significance testing
Standard error
Bootstrap method
Misclassification error rate
Total error rate
Cell image segmentation
Confidence interval
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-388eacf7a841f48c7bbd6b7489ae7f9d827e28e740fae5d81cbc4799b3e5b3c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6340-2467
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-017-1527-x
PMID 28292256
PQID 1882902244
PQPubID 44065
ParticipantIDs unpaywall_primary_10_1186_s12859_017_1527_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5351215
proquest_miscellaneous_1877853177
proquest_journals_1882902244
gale_infotracmisc_A485563668
gale_infotracacademiconefile_A485563668
gale_incontextgauss_ISR_A485563668
pubmed_primary_28292256
crossref_citationtrail_10_1186_s12859_017_1527_x
crossref_primary_10_1186_s12859_017_1527_x
springer_journals_10_1186_s12859_017_1527_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-14
PublicationDateYYYYMMDD 2017-03-14
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-14
  day: 14
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References S Dimopoulos (1527_CR11) 2014; 30
1527_CR13
1527_CR14
B Efron (1527_CR16) 1993
J Chalfoun (1527_CR2) 2013; 249
AA Hill (1527_CR1) 2007; 8
B Ostle (1527_CR4) 1988
JC Wu (1527_CR18) 2014; 43
R Unnikrishnan (1527_CR6) 2007; 29
AP Zijdenbos (1527_CR7) 1994; 13
1527_CR9
N Klar (1527_CR10) 2002; 51
1527_CR23
JC Wu (1527_CR19) 2016; 45
1527_CR20
DJ Hand (1527_CR22) 1997
BL Waerden van der (1527_CR24) 1969
1527_CR25
P Bajcsy (1527_CR3) 2015; 16
WM Rand (1527_CR5) 1971; 66
RJ Hyndman (1527_CR27) 1996; 50
YJ Zhang (1527_CR8) 1997; 18
H Zhang (1527_CR12) 2008; 110
B Efron (1527_CR15) 1979; 7
JC Wu (1527_CR17) 2011; 116
IMG Dresen (1527_CR21) 2008; 9
JA Rice (1527_CR26) 2006
References_xml – volume: 43
  start-page: 225
  issue: 1
  year: 2014
  ident: 1527_CR18
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918.2012.700362
– volume: 66
  start-page: 846
  year: 1971
  ident: 1527_CR5
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1971.10482356
– volume: 13
  start-page: 716
  year: 1994
  ident: 1527_CR7
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/42.363096
– volume: 51
  start-page: 467
  year: 2002
  ident: 1527_CR10
  publication-title: Statistician
  doi: 10.1111/1467-9884.00331
– volume: 116
  start-page: 517
  year: 2011
  ident: 1527_CR17
  publication-title: J Res Natl Inst Stand Technol
  doi: 10.6028/jres.116.003
– volume: 249
  start-page: 41
  issue: 1
  year: 2013
  ident: 1527_CR2
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2012.03678.x
– volume: 7
  start-page: 1
  year: 1979
  ident: 1527_CR15
  publication-title: Ann Statistics
  doi: 10.1214/aos/1176344552
– ident: 1527_CR20
– volume: 110
  start-page: 260
  year: 2008
  ident: 1527_CR12
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2007.08.003
– ident: 1527_CR25
  doi: 10.1201/b16923
– ident: 1527_CR13
– volume-title: Statistics in research: basic concepts and techniques for research workers
  year: 1988
  ident: 1527_CR4
– volume: 50
  start-page: 361
  year: 1996
  ident: 1527_CR27
  publication-title: Am Stat
  doi: 10.1080/00031305.1996.10473566
– volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: 1527_CR16
  doi: 10.1007/978-1-4899-4541-9
– volume: 9
  start-page: 42
  year: 2008
  ident: 1527_CR21
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-9-42
– volume: 30
  start-page: 2644
  year: 2014
  ident: 1527_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu302
– ident: 1527_CR23
– volume: 18
  start-page: 963
  year: 1997
  ident: 1527_CR8
  publication-title: Pattern Recognit Lett
  doi: 10.1016/S0167-8655(97)00083-4
– volume: 8
  start-page: 340
  year: 2007
  ident: 1527_CR1
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-8-340
– volume: 16
  start-page: 330
  year: 2015
  ident: 1527_CR3
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-015-0762-2
– volume: 29
  start-page: 929
  year: 2007
  ident: 1527_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.1046
– volume-title: Construction and assessment of classification rules
  year: 1997
  ident: 1527_CR22
– volume: 45
  start-page: 1689
  issue: 5
  year: 2016
  ident: 1527_CR19
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918.2015.1065327
– volume-title: Mathematical statistics and data analysis
  year: 2006
  ident: 1527_CR26
– ident: 1527_CR14
– volume-title: Mathematical statistics
  year: 1969
  ident: 1527_CR24
– ident: 1527_CR9
  doi: 10.1109/ISBI.2009.5193098
SSID ssj0017805
Score 2.2324493
Snippet Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting...
Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance...
Background Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 168
SubjectTerms Algorithms
Analysis
Animals
Automation
Bioinformatics
Biomedical and Life Sciences
Computation
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Confidence intervals
Correlation coefficient
Correlation coefficients
Cytometry
Data analysis
image analysis and data visualization
Image Interpretation, Computer-Assisted
Image processing
Image segmentation
Imaging
Life Sciences
Mice
Microarrays
Microscopy
Microscopy, Fluorescence
Myocytes, Smooth Muscle - cytology
Performance evaluation
Research Article
Smooth muscle
Standard error (Statistics)
Statistical analysis
Statistical methods
Statistical significance
Statistics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB_qFbE-iFarq1WiCIIldD-yye6DyCktVfCQ2kLfwiabPQ_usqd7p-1_b2a_vC1YnzNhN5mPTDIzvwF4zbUIfZ7GNM-4pizWnKZFqCgzAltM5kFeF4l9mfCTc_b5Ir7YgklXC4NplZ1NrA11Xmp8Iz8MEgz5uQOHvV_-oNg1CqOrXQuNrG2tkL-rIcZuwXaIyFgj2P5wNPl62scVEMG_jW0GCT-sAsRvo2ipsb0rvRycTtdt9MYhdT2Bso-i3oU7a7vMrn5n8_nGQXV8H-61HiYZNyLxALaM3YXbTc_Jq13YQfeyQWd-CGdjYstfZk4WzVMhyWxOMKUDE4hQHsgKUTjslMwswWRSR9CAmJCyIPjoT2YLZ5FIZaaLtorJPoLz46Ozjye07bNAdSyCFY2SxJnfQmQJCwqWaKFUzhXC0mRGFGmehMKEiRHMLzITO-ZppZlIUxWZWEU6ivZgZEtrngBRsXM3hbsiKeem-MZX3I_SgjF3ycvDOFce-N3-St2CkGMvjLmsLyMJlw1LpGOJRJbISw_e9lOWDQLHTcSvkGkSkS0sps5Ms3VVyU_fTuUYYXB4xHniwZuWqCjdx3XWViK4JSAY1oByf0DpVE8PhzvZkK3qV_KvoHrwsh_GmZjOZk25RhohnJ8UCOHB40aU-rVhaNsZWe6BGAhZT4CA4MMRO_teA4PHUYxgIR4cdOK48Vv_3rKDXmL_v8FPb17yM9gJUZsw4ZHtw2j1c22eO69tpV60qvgHPEg-rQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZixQxEC5kRdQH8bZ1lSiC4BLsI1c_DovLKuiD7sK-hU46PTswk17sGXX_vanuTDO9eOBzKn2kjlRSVV8BvBZW5qkoOa0rYSnjVtCyyQ1lTmKLyTqr-yKxT5_F8Sn7eMbPIlg01sLsxu8zJd51GSKsUbSl2ICVBnfxetijRB-XFYdjwACh-WPQ8rfTJtvOVeO7s_tczYwcw6O34ebGX1SXP6rlcmcHOroLd6LrSGYDr-_BNefvw42hmeTlAziZEd9-d0uyGq79SOVrgukZmAyEvCVrRNTwc7LwBBNDA8EASELahuAFPlmsgnUhnZuvYkWSfwinR-9PDo9p7JlALZfZmhZKBVPayEqxrGHKSmNqYRBipnKyKWuVS5crJ1naVI4HRlhjmSxLUzhuClsUj2DPt949AWJ4cB1lOO6Y4HKkLjUiLcqGsXBgq3NemwTS7ZJqGwHFsa_FUvcHCyX0wAUduKCRC_pnAm_HKRcDmsbfiF8hnzSiVHhMg5lXm67TH75-0TOEtBGFECqBN5GoacPLbRWrCsIvILDVhHJ_QhnUyE6Ht-Kgoxp3OlMYZw5eDkvg5TiMMzE1zbt2gzRSBp8nkzKBx4P0jP-GYepgMEUCciJXIwGCe09H_OK8B_nmBUfgjwQOthK481l_XrKDUUj_vcBP_-vZz-BWjvqEuYxsH_bW3zbueXDI1uZFr4q_AABsLO0
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwEB6tukLAA_cRWJBBSEis0s3hI3msEKsFiRXHVlqerNhxSkXrVG0DLL8eT3OoqTiExLPHSjz5PB5nZr4BeMa1iAKeMj_PuPYp09xPi0j51AhsMZmH-aZI7O0pPxnTN-fsfA_et7Uwaq7VtGxIQ5GoeLhdhj6rqxywi4JZHi3yot70CT9ahcjE5qPNxUatvnMr9zlz7vkA9sen70afNlVGIvTdFYc10c1fzuudT7tWeuuY2k2h7OKoV-FyZRfZxbdsNts6qo6vw7JdZJ2h8mVYrdVQ_9jhf_yvWrgB1xrHloxqJN6EPWNvwaW61eXFbTgbEVt-NTMyr39KkszmBJNHMFUJkUfWyPdhJ2RqCaatOoGaLoWUBcHwApnOne0jKzOZN_VS9g6Mj1-dvTzxm44OvmYiXPtxkjhDX4gsoWFBEy2UyrlCApzMiCLNk0iYKDGCBkVmmIOJVpqKNFWxYSrWcXwXBra05j4QxZxjK9xlTDmHKDCB4kGcFpS662QesVx5ELTfUeqG7hy7bszk5tqTcFkrSzplSVSW_O7Bi27Koub6-JPwUwSHRA4Ni0k6k6xareTrjx_kCAl3eMx54sHzRqgo3cN11tQ8uCUg7VZP8qAn6Ta57g-3GJSNkVnJMMEouPPBqAdPumGciYlz1pQVygjhPLJQCA_u1ZDt1oZBdGfOuQeiB-ZOAKnH-yN2-nlDQc5ihrQkHhy2sN96rd-r7LDbGX9X8IN_kn4IVyKEPWZa0gMYrJeVeeTcxbV63BiAn7C5ZYM
  priority: 102
  providerName: Unpaywall
Title A novel measure and significance testing in data analysis of cell image segmentation
URI https://link.springer.com/article/10.1186/s12859-017-1527-x
https://www.ncbi.nlm.nih.gov/pubmed/28292256
https://www.proquest.com/docview/1882902244
https://www.proquest.com/docview/1877853177
https://pubmed.ncbi.nlm.nih.gov/PMC5351215
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-017-1527-x
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (PMC)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (WRLC)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJgQ8IL4XGJVBSEhMgXw4tvOAUKhWRqVV07ZK5SmKE6er1LpjbWH977nLF800QOIlkeKzkvh-Z5_t8-8IecNT4Tk8DOws4anNgpTbYe4pm2mBKSYzNysOiR0N-OGQ9UfBaIvU6a2qBlzcOLXDfFLDy-n7q-_rT2DwHwuDl_zDwkUWNhv7W0zSaoNLuQMDVYiZHI7Y700FpO-vNjZvrIbEwNILAeG8NUpd76s3BqvrgZTNbuo9cmdlLpL1z2Q63Riweg_I_crTpFEJjYdkS5tH5HaZe3L9mJxF1Mx_6CmdlauENDEZxWgOjB1CKNAlEnCYMZ0YinGkIFDyl9B5TnG9n05m0BnRhR7PqgNM5gkZ9g7Ouod2lWLBTgPhLm1fSuh5c5FI5uZMpkKpjCtkpEm0yMNMekJ7Ugvm5IkOQG-pSpkIQ-XrQPmp7z8l22Zu9C6hKgBPU8DsSIGH4mhHcccPc8Zgfpd5QaYs4tRNGqcV_zimwZjGxTxE8rhUSAwKiVEh8ZVF3jVVLkryjb8Jv0Y9xUhqYTBqZpysFov46-lJHCEDDvc5lxZ5Wwnlc3h5mlSHEOAXkAerJbnXkgSrS9vFNRziGrSxK3FbGpwiZpFXTTHWxEg2o-crlBECXCRXCIs8K9HT_FuNPouIFq4aAeQCb5eYyXnBCR74AfKEWGS_RuDGZ_25yfYbkP67gZ__91e9IHc9NDMMg2R7ZHt5udIvwZdbqg65JUYCrrL3pUN2oqh_2of754PB8Qk87fJup1gl6RSWDCXDwXH07Rfq9Ezm
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6ahtDGA4JxCwwwCITEFC0Xx04eEKqAqWWXB-ikvZnYcUql1imkZeuf4jfi01xoJjGe9uwTxfa52uf4OwCvmOKBx5LIzVKmXBop5iZ5IF2qObaYzPxs9Ujs-IT1T-nns-hsA343b2GwrLKxiStDnRUK78j3_RhTftbh0PezHy52jcLsatNCoxKLQ708t0e28t3go-Xv6yA4-DT80HfrrgKuirg_d8M4tsYm52lM_ZzGikuZMYkgLKnmeZLFAddBrDn18lRHdqpKKsqTRIY6kqHCC1Br8m_Q0NoSqz_8rD3g-dgfoM6c-jHbL31Eh3PRD2DzWPei4_sue4A1F3i5PLPN0d6CrYWZpcvzdDJZc4MHd-B2Hb-SXiVwd2FDmx24WXW0XO7ANgavFfbzPRj2iCl-6QmZVheRJDUZwYIRLE9CaSNzxPgwIzI2BEtVLUEFkUKKnGBKgYyn1t6RUo-m9Rspcx9Or2W_H8CmKYx-BERGNpjl9gAmbRDkaU8yL0xySu0RMguiTDrgNfsrVA1xjp02JmJ11ImZqFgiLEsEskRcOPC2_WRW4XtcRfwSmSYQN8NgYc4oXZSlGHz9InoIssNCxmIH3tREeWF_rtL6nYNdAkJtdSh3O5RWsVV3uJENURuWUvxVAwdetMP4JRbLGV0skIZzG4X5nDvwsBKldm2YOLcmnDnAO0LWEiDceHfEjL-vYMejMEIoEgf2GnFcm9a_t2yvldj_b_Djq5f8HLb6w-MjcTQ4OXwC2wFqFpZW0l3YnP9c6Kc2PpzLZyulJPDtuq3AH7V9dpI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6hIq4HxN1AAYOQkKii5vCVx9XCquWoELRS36zYcZaVdp1VkwX67_FsstGm4hDPHufwHB57Zr4BeMWNSCKesbDIuQkpMzzMykSH1ApsMVnExbpI7NMxPzyl78_YWdfntN5ku29Ckm1NA6I0ueZgWZStikt-UMeIuxaihcW2rKF3Iq9Sv7lhC4MxH_dhBATs70KZv5022Iwum-StPelyvmQfNL0FN1ZumV_8yOfzrX1pcgdudw4lGbUScBeuWHcPrrUtJi_uw8mIuOq7nZNFexlIclcQTNrAFCHkOGkQZ8NNycwRTBf1BC1MCalKgtf6ZLbwNofUdrro6pTcAzidvDsZH4ZdJ4XQMBE3YSqlN7ClyCWNSyqN0LrgGoFncivKrJCJsIm0gkZlbplnj9GGiizTqWU6NWn6EHZc5ewuEM28Qyn8IUh7RySykeZRmpWU-mNckbBCBxBtllSZDmYcu13M1fq4IblquaA8FxRyQf0M4E0_ZdlibPyN-CXySSF2hcPkmGm-qmt19PWLGiHQDU85lwG87ojKyr_c5F2tgf8FhLsaUO4NKL1ymeHwRhxUp9y1iiVGn73vQwN40Q_jTExYc7ZaIY0Q3hOKhQjgUSs9_b9h8NqbUR6AGMhVT4CQ38MRN_u2hv5mKUM4kAD2NxK49Vl_XrL9Xkj_vcCP_-vZz-H657cT9fHo-MMTuJmgamGyI92DneZ8ZZ96j63Rz9Za-Qtewzgj
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwEB6tukLAA_cRWJBBSEis0s3hI3msEKsFiRXHVlqerNhxSkXrVG0DLL8eT3OoqTiExLPHSjz5PB5nZr4BeMa1iAKeMj_PuPYp09xPi0j51AhsMZmH-aZI7O0pPxnTN-fsfA_et7Uwaq7VtGxIQ5GoeLhdhj6rqxywi4JZHi3yot70CT9ahcjE5qPNxUatvnMr9zlz7vkA9sen70afNlVGIvTdFYc10c1fzuudT7tWeuuY2k2h7OKoV-FyZRfZxbdsNts6qo6vw7JdZJ2h8mVYrdVQ_9jhf_yvWrgB1xrHloxqJN6EPWNvwaW61eXFbTgbEVt-NTMyr39KkszmBJNHMFUJkUfWyPdhJ2RqCaatOoGaLoWUBcHwApnOne0jKzOZN_VS9g6Mj1-dvTzxm44OvmYiXPtxkjhDX4gsoWFBEy2UyrlCApzMiCLNk0iYKDGCBkVmmIOJVpqKNFWxYSrWcXwXBra05j4QxZxjK9xlTDmHKDCB4kGcFpS662QesVx5ELTfUeqG7hy7bszk5tqTcFkrSzplSVSW_O7Bi27Koub6-JPwUwSHRA4Ni0k6k6xareTrjx_kCAl3eMx54sHzRqgo3cN11tQ8uCUg7VZP8qAn6Ta57g-3GJSNkVnJMMEouPPBqAdPumGciYlz1pQVygjhPLJQCA_u1ZDt1oZBdGfOuQeiB-ZOAKnH-yN2-nlDQc5ihrQkHhy2sN96rd-r7LDbGX9X8IN_kn4IVyKEPWZa0gMYrJeVeeTcxbV63BiAn7C5ZYM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+measure+and+significance+testing+in+data+analysis+of+cell+image+segmentation&rft.jtitle=BMC+bioinformatics&rft.au=Wu%2C+Jin+Chu&rft.au=Halter%2C+Michael&rft.au=Kacker%2C+Raghu+N.&rft.au=Elliott%2C+John+T.&rft.date=2017-03-14&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=18&rft_id=info:doi/10.1186%2Fs12859-017-1527-x&rft_id=info%3Apmid%2F28292256&rft.externalDocID=PMC5351215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon