VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering
Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision...
Saved in:
| Published in | BMC genomics Vol. 16; no. 1; p. 875 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
28.10.2015
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/s12864-015-2050-y |
Cover
| Abstract | Background
The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data.
Results
We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information.
We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants.
This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision.
Conclusions
VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at
http://bioinformatics.mit.bme.hu/VariantMetaCaller
. |
|---|---|
| AbstractList | The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller. Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. Results We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. Conclusions VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller . The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data.BACKGROUNDThe low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data.We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision.RESULTSWe evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision.VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller .CONCLUSIONSVariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller . The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller . Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. Results We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. Conclusions VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller. Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. Results We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. Conclusions VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at Keywords: Next-generation sequencing, Variant calling, Support Vector Machine |
| ArticleNumber | 875 |
| Audience | Academic |
| Author | Bolgár, Bence Szalai, Csaba Gézsi, András Sarkozy, Peter Antal, Péter Marx, Péter |
| Author_xml | – sequence: 1 givenname: András surname: Gézsi fullname: Gézsi, András email: gezsi.andras@gmail.com organization: Department of Genetics, Cell- and Immunobiology, Semmelweis University, Department of Measurement and Information Systems, Budapest University of Technology and Economics – sequence: 2 givenname: Bence surname: Bolgár fullname: Bolgár, Bence organization: Department of Measurement and Information Systems, Budapest University of Technology and Economics – sequence: 3 givenname: Péter surname: Marx fullname: Marx, Péter organization: Department of Measurement and Information Systems, Budapest University of Technology and Economics – sequence: 4 givenname: Peter surname: Sarkozy fullname: Sarkozy, Peter organization: Department of Measurement and Information Systems, Budapest University of Technology and Economics – sequence: 5 givenname: Csaba surname: Szalai fullname: Szalai, Csaba organization: Department of Genetics, Cell- and Immunobiology, Semmelweis University – sequence: 6 givenname: Péter surname: Antal fullname: Antal, Péter organization: Department of Measurement and Information Systems, Budapest University of Technology and Economics |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26510841$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl2L1DAUhousuB_6A7yRgjcKdu1Jm7SzF8IyrLqwIvh1GzLp6Zilk3STdNz5957aUWcWFelFA3meN-nbc5wcWGcxSR5DfgpQi5cBWC3KLAeesZzn2eZecgRlBRkDUR7srA-T4xCu8xyqmvEHySETHPK6hKOk-6K8UTa-w6jmquvQn6VqiG6lIjZpOwTjbOradD1hqSbG2GXamx5pgSFtnU9vBtozUUWzxhdp71GbUcwWKowppovoyXqY3G9VF_DR9n2SfH598Wn-Nrt6_-Zyfn6VaV5BzECgaLho1Ew1CwGtyhlq-sgGBRd1zXFRIHAoRc3FQldNWStk1WyGM2gLpllxkrApd7C92nyjK8vem5XyGwm5HKuTU3WSUuVYndyQ9GqS-mGxwkajjV79Fp0ycn_Hmq9y6dayFIyuzSng2TbAu5sBQ5QrEzR2nbLohiChoiMrLnIg9Okd9NoN3lInRFWzuuB1sUMtVYfS2NbRuXoMlee8hEKUjJdEnf6BoqfBldE0MFQ_7gvP9wRiIt7GpRpCkJcfP-yzT3ZL-dXGzwEiACZAexeCx_a_mq7uOPrH7LixV9P909z-2NCP84R-p7e_St8B_CD5vQ |
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btw587 crossref_primary_10_1038_s41587_021_01031_1 crossref_primary_10_3389_fgene_2023_1148147 crossref_primary_10_1038_s41598_023_34925_y crossref_primary_10_1371_journal_pone_0262574 crossref_primary_10_1093_hmg_ddaa225 crossref_primary_10_1038_ejhg_2017_32 crossref_primary_10_1002_ctm2_152 crossref_primary_10_1186_s12881_020_01059_1 crossref_primary_10_1590_1678_4685_gmb_2020_0047 crossref_primary_10_1038_hdy_2016_102 crossref_primary_10_1016_j_immuni_2019_05_006 crossref_primary_10_1038_s41598_019_39108_2 crossref_primary_10_1371_journal_pone_0274354 crossref_primary_10_1007_s40291_017_0268_x crossref_primary_10_1371_journal_pone_0207747 crossref_primary_10_1093_dnares_dsy033 crossref_primary_10_1186_s12859_019_2791_8 crossref_primary_10_3390_genes15040469 |
| Cites_doi | 10.1186/1471-2105-14-274 10.1093/bioinformatics/btu067 10.1093/bioinformatics/btt172 10.1038/nmeth.2656 10.1101/gr.107524.110 10.1093/bioinformatics/btt407 10.1093/bioinformatics/btu030 10.1186/s13059-014-0509-9 10.1111/j.1467-9868.2010.00746.x 10.1126/science.1219240 10.1186/1479-7364-8-14 10.1073/pnas.1530509100 10.1371/journal.pone.0075619 10.1093/bioinformatics/btr708 10.1007/s10994-007-5018-6 10.1093/bioinformatics/btr509 10.1002/path.4365 10.1093/bioinformatics/btp324 10.1186/1471-2105-15-104 10.1038/nmeth.1923 10.1093/bioinformatics/btr026 10.1186/1471-2164-13-341 10.1145/1961189.1961199 10.1111/j.2517-6161.1995.tb02031.x 10.1093/bib/bbs013 10.1186/gm432 10.1371/journal.pone.0086664 10.1038/ng.806 |
| ContentType | Journal Article |
| Copyright | Gézsi et al. 2015 COPYRIGHT 2015 BioMed Central Ltd. Copyright BioMed Central 2015 |
| Copyright_xml | – notice: Gézsi et al. 2015 – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Copyright BioMed Central 2015 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12864-015-2050-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| ExternalDocumentID | 10.1186/s12864-015-2050-y PMC4625715 4017080001 A541364254 26510841 10_1186_s12864_015_2050_y |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States United Kingdom |
| GeographicLocations_xml | – name: United Kingdom – name: United States |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ AIXEN ALIPV C24 CGR CUY CVF ECM EIF NPM 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c571t-16e6d56da9adb61fa02ec015de656885eb3e15146856bc7d48ae2799e91f32c23 |
| IEDL.DBID | UNPAY |
| ISSN | 1471-2164 |
| IngestDate | Wed Oct 29 12:19:42 EDT 2025 Tue Sep 30 16:42:05 EDT 2025 Thu Oct 02 07:43:03 EDT 2025 Tue Oct 07 05:24:07 EDT 2025 Mon Oct 20 22:50:30 EDT 2025 Mon Oct 20 16:57:24 EDT 2025 Thu Oct 16 16:17:46 EDT 2025 Thu Jan 02 22:21:21 EST 2025 Wed Oct 01 03:03:24 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Sat Sep 06 07:21:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Next-generation sequencing Support Vector Machine Variant calling |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c571t-16e6d56da9adb61fa02ec015de656885eb3e15146856bc7d48ae2799e91f32c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-015-2050-y |
| PMID | 26510841 |
| PQID | 1779835831 |
| PQPubID | 44682 |
| ParticipantIDs | unpaywall_primary_10_1186_s12864_015_2050_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_4625715 proquest_miscellaneous_1728675601 proquest_journals_1779835831 gale_infotracmisc_A541364254 gale_infotracacademiconefile_A541364254 gale_incontextgauss_ISR_A541364254 pubmed_primary_26510841 crossref_primary_10_1186_s12864_015_2050_y crossref_citationtrail_10_1186_s12864_015_2050_y springer_journals_10_1186_s12864_015_2050_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-28 |
| PublicationDateYYYYMMDD | 2015-10-28 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2015 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | JA Tennessen (2050_CR13) 2012; 337 BL Cantarel (2050_CR11) 2014; 15 M Salto-Tellez (2050_CR21) 2014; 234 M Pirooznia (2050_CR5) 2014; 8 K Boyd (2050_CR15) 2013 L Ilie (2050_CR34) 2013; 29 Y Benjamini (2050_CR20) 2010; 72 A Sifrim (2050_CR22) 2013; 10 AY Cheng (2050_CR7) 2014; 30 L Song (2050_CR35) 2014; 15 X Yu (2050_CR3) 2013; 14 2050_CR40 GA Van der Auwera (2050_CR9) 2013 MA Quail (2050_CR8) 2012; 13 2050_CR23 B Langmead (2050_CR28) 2012; 9 JD Storey (2050_CR19) 2003; 100 BD O’Fallon (2050_CR10) 2013; 29 MH Park (2050_CR2) 2014; 9 2050_CR25 JA Neuman (2050_CR6) 2013; 14 A McKenna (2050_CR32) 2010; 20 J O’Rawe (2050_CR1) 2013; 5 W Huang (2050_CR24) 2012; 28 R Schmieder (2050_CR26) 2011; 27 HT Lin (2050_CR37) 2007; 68 H Li (2050_CR27) 2009; 25 MA DePristo (2050_CR29) 2011; 43 Y Heo (2050_CR33) 2014; 30 H Li (2050_CR31) 2011; 27 X Liu (2050_CR4) 2013; 8 2050_CR30 2050_CR12 2050_CR17 2050_CR16 2050_CR38 JC Platt (2050_CR39) 1999; 10 2050_CR14 Y Benjamini (2050_CR18) 1995; 57 CC Chang (2050_CR36) 2011; 2 23620357 - Bioinformatics. 2013 Jun 1;29(11):1361-6 23853064 - Bioinformatics. 2013 Oct 1;29(19):2490-3 25078893 - Hum Genomics. 2014;8:14 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 24558117 - Bioinformatics. 2014 Jun 15;30(12):1707-13 21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93 20644199 - Genome Res. 2010 Sep;20(9):1297-303 23537139 - Genome Med. 2013 Mar 27;5(3):28 24756835 - J Pathol. 2014 Sep;234(1):5-10 24044377 - BMC Bioinformatics. 2013;14:274 24489763 - PLoS One. 2014;9(1):e86664 21278185 - Bioinformatics. 2011 Mar 15;27(6):863-4 22604720 - Science. 2012 Jul 6;337(6090):64-9 21478889 - Nat Genet. 2011 May;43(5):491-8 24086590 - PLoS One. 2013;8(9):e75619 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 24076761 - Nat Methods. 2013 Nov;10(11):1083-4 22707752 - Brief Bioinform. 2013 Jan;14(1):46-55 25398208 - Genome Biol. 2014;15(11):509 24725768 - BMC Bioinformatics. 2014;15:104 22388286 - Nat Methods. 2012 Apr;9(4):357-9 22827831 - BMC Genomics. 2012;13:341 24451628 - Bioinformatics. 2014 May 15;30(10):1354-62 22199392 - Bioinformatics. 2012 Feb 15;28(4):593-4 25431634 - Curr Protoc Bioinformatics. 2013;43:11.10.1-33 |
| References_xml | – volume: 14 start-page: 274 issue: 1 year: 2013 ident: 2050_CR3 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-274 – volume: 30 start-page: 1707 issue: 12 year: 2014 ident: 2050_CR7 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btu067 – ident: 2050_CR30 – volume: 29 start-page: 1361 issue: 11 year: 2013 ident: 2050_CR10 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btt172 – volume: 10 start-page: 1083 issue: 11 year: 2013 ident: 2050_CR22 publication-title: Nat Methods doi: 10.1038/nmeth.2656 – volume: 20 start-page: 1297 issue: 9 year: 2010 ident: 2050_CR32 publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 29 start-page: 2490 issue: 19 year: 2013 ident: 2050_CR34 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btt407 – volume: 30 start-page: 1354 issue: 10 year: 2014 ident: 2050_CR33 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btu030 – volume: 15 start-page: 509 issue: 11 year: 2014 ident: 2050_CR35 publication-title: Genome Biol doi: 10.1186/s13059-014-0509-9 – volume: 72 start-page: 405 issue: 4 year: 2010 ident: 2050_CR20 publication-title: J R Stat Soci: Series B (Stat Methodol) doi: 10.1111/j.1467-9868.2010.00746.x – volume: 337 start-page: 64 issue: 6090 year: 2012 ident: 2050_CR13 publication-title: Science (New York, N.Y.) doi: 10.1126/science.1219240 – volume: 8 start-page: 14 issue: 1 year: 2014 ident: 2050_CR5 publication-title: Hum Genomics doi: 10.1186/1479-7364-8-14 – ident: 2050_CR12 – volume: 100 start-page: 9440 issue: 16 year: 2003 ident: 2050_CR19 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1530509100 – ident: 2050_CR14 – volume: 8 start-page: 75619 issue: 9 year: 2013 ident: 2050_CR4 publication-title: PloS One doi: 10.1371/journal.pone.0075619 – ident: 2050_CR16 – ident: 2050_CR40 – volume: 28 start-page: 593 issue: 4 year: 2012 ident: 2050_CR24 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btr708 – volume: 68 start-page: 267 issue: 3 year: 2007 ident: 2050_CR37 publication-title: Mach Learn doi: 10.1007/s10994-007-5018-6 – ident: 2050_CR25 – ident: 2050_CR23 – volume: 27 start-page: 2987 issue: 21 year: 2011 ident: 2050_CR31 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btr509 – volume-title: Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science year: 2013 ident: 2050_CR15 – volume: 234 start-page: 5 issue: 1 year: 2014 ident: 2050_CR21 publication-title: J Pathol doi: 10.1002/path.4365 – volume: 25 start-page: 1754 issue: 14 year: 2009 ident: 2050_CR27 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btp324 – volume: 15 start-page: 104 issue: 1 year: 2014 ident: 2050_CR11 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-104 – volume: 9 start-page: 357 issue: 4 year: 2012 ident: 2050_CR28 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 27 start-page: 863 issue: 6 year: 2011 ident: 2050_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr026 – volume-title: Current Protocols in Bioinformatics year: 2013 ident: 2050_CR9 – volume: 13 start-page: 341 issue: 1 year: 2012 ident: 2050_CR8 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-341 – volume: 2 start-page: 27 year: 2011 ident: 2050_CR36 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – ident: 2050_CR38 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 2050_CR18 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 10 start-page: 61 issue: 3 year: 1999 ident: 2050_CR39 publication-title: Adv Large Margin Classifiers – volume: 14 start-page: 46 issue: 1 year: 2013 ident: 2050_CR6 publication-title: Brief Bioinform doi: 10.1093/bib/bbs013 – ident: 2050_CR17 – volume: 5 start-page: 28 issue: 3 year: 2013 ident: 2050_CR1 publication-title: Genome Med doi: 10.1186/gm432 – volume: 9 start-page: 86664 issue: 1 year: 2014 ident: 2050_CR2 publication-title: PloS One doi: 10.1371/journal.pone.0086664 – volume: 43 start-page: 491 issue: 5 year: 2011 ident: 2050_CR29 publication-title: Nat Genet doi: 10.1038/ng.806 – reference: 24086590 - PLoS One. 2013;8(9):e75619 – reference: 25431634 - Curr Protoc Bioinformatics. 2013;43:11.10.1-33 – reference: 24558117 - Bioinformatics. 2014 Jun 15;30(12):1707-13 – reference: 22604720 - Science. 2012 Jul 6;337(6090):64-9 – reference: 22827831 - BMC Genomics. 2012;13:341 – reference: 20644199 - Genome Res. 2010 Sep;20(9):1297-303 – reference: 23620357 - Bioinformatics. 2013 Jun 1;29(11):1361-6 – reference: 21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93 – reference: 25398208 - Genome Biol. 2014;15(11):509 – reference: 22199392 - Bioinformatics. 2012 Feb 15;28(4):593-4 – reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 – reference: 21278185 - Bioinformatics. 2011 Mar 15;27(6):863-4 – reference: 24725768 - BMC Bioinformatics. 2014;15:104 – reference: 22707752 - Brief Bioinform. 2013 Jan;14(1):46-55 – reference: 25078893 - Hum Genomics. 2014;8:14 – reference: 24044377 - BMC Bioinformatics. 2013;14:274 – reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 – reference: 24076761 - Nat Methods. 2013 Nov;10(11):1083-4 – reference: 24451628 - Bioinformatics. 2014 May 15;30(10):1354-62 – reference: 23537139 - Genome Med. 2013 Mar 27;5(3):28 – reference: 24489763 - PLoS One. 2014;9(1):e86664 – reference: 21478889 - Nat Genet. 2011 May;43(5):491-8 – reference: 23853064 - Bioinformatics. 2013 Oct 1;29(19):2490-3 – reference: 24756835 - J Pathol. 2014 Sep;234(1):5-10 |
| SSID | ssj0017825 |
| Score | 2.284427 |
| Snippet | Background
The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing... The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research... Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 875 |
| SubjectTerms | Algorithms Animal Genetics and Genomics Benchmarks Bioinformatics Biomedical and Life Sciences Biotechnology industry Exome Genetic aspects Genomics High-Throughput Nucleotide Sequencing - methods Human and rodent genomics Humans Life Sciences Methodology Methodology Article Microarrays Microbial Genetics and Genomics Pipe lines Plant Genetics and Genomics Proteomics Software - standards |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1raxQxMNQron4Q365WWUUQrEsvuc1jBZFaWqrQQ6qVfgvZbKIHx-727la5f-_MvrwtWD9nstlMJvPIvAh55byMY8tcZEUCBgqjPlKW0UhR6Z0aTzytKzGdTMXxWfz5nJ9vkWmXC4NhlR1PrBl1Vlh8I9-jUiagLagJ_VBeRNg1Cr2rXQsN07ZWyN7XJcaukW2GlbFGZPvj4fTLae9XAHnIW98mVWJvCdxZYBQGB2rh42g9kE6XefSGkLocQNl7UW-RG1VemvVvM59vCKqjO-R2q2GG-w1J3CVbLr9Hrjc9J9f3yfw7WMeAzhO3MgfYSGXxLjTVqgDN1WWhr_D1LCx8-KsBC-EMMWM9LGclpq67ZQhqbnhRmbxOTwNm-TYsF22nngiFInxlhj54mPWAnB0dfjs4jtqWC5Hlkq4iKpzIuMhMYrJUUG_GzFlAT-ZA71OKg-ntQEeIheIitTKLlXFMJolLqJ8wyyYPySgvcveYhMpmVDojx8zTmPpUyYmTLkFxmKbeqICMO1Rr29Yjx7YYc13bJUro5nQ0LK_xdPQ6IG_6KWVTjOMq4Jd4fhqLXOQYRfPDVMul_vT1VO9zEN1gePE4IK9bIF_A4ta0SQmwBayLNYDcGUDCLbTD4Y5MdMsFlvovzQbkRT-MMzGyLXdFhTDw3xLt4oA8aqiq3xsTwDFVDCNyQG89ANYGH47ks591jfAY7FpJeUB2O8rc-K1_o2y3J97_I_jJ1Vt-Sm4yvFgg55naIaPVonLPQIFbpc_bW_kHHyNEMw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1ri9QwMJwnon4Q31ZPiSIKntVNtnlUEDkOj1NYP6gr9y2kaaILS7f7qLr_3pm2W7fH-ficSdLMIzPTycwQ8tgHlSSO-9jJFBwUzkKsHWexZip4PRgGVldiGn2Qx-Pk_Yk42SGb6HmLwOWZrh32kxovpi9-ztdvQOBf1wKv5csl3LES31IIoLkYxOsn5TzGvlIYf22bbJwj50F3pdjcYZT8jjOAfhR1_pFiMQfPoY17nrlqT3Odvr-3FNjpx5VdhPUyuVgVpV3_sNPplhI7ukqutNYnPWjY5RrZ8cV1cqHpR7m-QaZfwHMGVI_8yh5ik5XFK2qr1QysWp_TUOGfNToL9HsDRoG-mM1Oy0mJae1-ScEEpvPKFnXqGlykz2m5aLv4xKgwYZUJxudh1k0yPnr7-fA4btsxxE4otoqZ9DIXMrepzTPJgh1w7wA9uQebUGsBbrkH-yGRWsjMqTzR1nOVpj5lYcgdH94iu8Ws8HcI1S5nyls14IElLGRaDb3yKarKLAtWR2SwQbVxba1ybJkxNbXPoqVpqGNge4PUMeuIPOumlE2hjr8BP0L6GSyAUeALm6-2Wi7Nu08fzYEAtQ5OmUgi8rQFCjPY3Nk2YQGOgDWzepB7PUiQUNcf3rCJ2TC4YUqlYP3qIYvIw24YZ-Krt8LPKoSB71boM0fkdsNV3dm4hNtUJzCievzWAWDd8P5IMflW1w9PwOdVTERkf8OZW5_1Z5Ttd8z7bwTf_Y8z3SOXOEoXGAJc75Hd1aLy98HCW2UPaiH9BcSDTDk priority: 102 providerName: Scholars Portal – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1ri9QwMOiJeH4Qn2f1lCiC4F2xyTaP-m05PE7h_KCu3LeQpokuLN11u1X23zvTF9vDB37OJG3nkZnpvAh54YNKU8d97GQGDgpnIdaOs1gzFbxOJoE1nZjOP8izWfr-Qlx0ddxVn-3ehySbm7oRay1fV3CTSsyYEEBZkcTbq-SawG5ewMQzPh1CB6DyRBe-_O22kQK6fA3v6KHLOZJDoPQmuVGXK7v9aReLHV10epvc6oxIOm2pfodc8eVdcr0dK7m9RxZfwAEGjJ37jT3BWSnrN9TWmyUYp76gocYfZHQZ6I8WjAKZsCidruYrrE73FQVLln6vbdlUoMF9eExX624YT4x6D06ZY5gddt0ns9O3n0_O4m6qQuyEYpuYSS8LIQub2SKXLNiEewfoKTyYdloL8K49mAGp1ELmThWptp6rLPMZCxPu-OQB2SuXpX9IqHYFU96qhAeWspBrNfHKZ6jx8jxYHZGkR7VxXctxnHyxMI3roaVpqWPg8QapY7YReTVsWbX9Nv4G_BzpZ7CPRYmJMl9tXVXm3aePZipAO4NvJdKIvOyAwhIe7mxXdwCfgK2vRpCHI0gQNDde7tnEdIJeGaZUBkasnrCIPBuWcScmr5V-WSMMvLdC1zciBy1XDd_GJVyKOoUVNeK3AQDbf49Xyvm3pg14Cq6rYiIiRz1n7rzWn1F2NDDvvxH86L_Ofkz2OcoZaHauD8neZl37J2CybfKnjYj-Al_dOq0 priority: 102 providerName: Springer Nature |
| Title | VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering |
| URI | https://link.springer.com/article/10.1186/s12864-015-2050-y https://www.ncbi.nlm.nih.gov/pubmed/26510841 https://www.proquest.com/docview/1779835831 https://www.proquest.com/docview/1728675601 https://pubmed.ncbi.nlm.nih.gov/PMC4625715 https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-015-2050-y |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3bbtMw1GKtEOOB-yUwqoCQkBjpajexHd5KtWkgtZoGReUpchx7VGRpaBJQ-XqOkzRqKi5C4iVK5eMmxz7X-FwQeq40c11JlCOpDw4KwdrhkmCHY6YVHww1LisxTab0dOa-m3vzuh2QyYUJL6UpTnq5kFl_OwE9rvIbTP8EtTpKI12xO6dHGUhYaiIpPNhxb-Cs91CXemCYd1B3Nj0bfSrzixh2CHgG9bnmL-e1NNOufN5SULvBk80J6nV0rUhSsf4u4nhLSZ3cRPEGvSo25Uu_yMO-_LFT-fE_4X8L3aiNWXtUUd9tdEUld9DVqr3l-i6KP4IjDjs3UbkYm54tq9e2KPIlGMkqsnVhPtTZS21_q8BsIBeTHG-ni9RkyavMBova_lqIpMyEA7n8yk5XdVMgx-hf-JeFOe6HWffQ7OT4w_jUqbs7ONJjOHcwVTTyaCR8EYUUazEgSgIWkQITk3MPvHwF5ohLuUdDySKXC0WY7ysf6yGRZHgfdZJloh4im8sIMyXYgGjsYh1yNlRM-UbzhqEW3EKDzc4Gsi59bjpwxEHpAnEaVIsYwOMDs4jB2kIvmylpVffjT8DPDLkEpp5GYgJ2LkSRZcHb9-fByAMrAXw8z7XQixpIL-HhUtT5D4CCKcHVgjxoQQLDy_bwhiqDWuBkAWbMB2OaD7GFnjbDZqYJokvUsjAw8N7MuOAWelARcYMboSCcuQsjrEXeDYApQ94eSRafy3LkLrjQDHsWOtwwwtZr_X7JDhte-fsCP_on6Mdonxh2AAuD8APUyVeFegKmYx720B6bsx7qvjmenp3DrzEd98rPMHCduByuMwL3leD4CaobcBc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWjwgPgmMCAgEBIjWp0msYM0oTE2tWyt0D7Q3ozj2FCpSrKmYeo_x9_GXb5oJjGe9uxzEvvO97vL-e4Iea0N8zzlakcFITgoLjUOVy51OGVG817f0LIS02gcDE69L2f-2Qr53eTC4LXKRieWijpOFf4j36KMhWAt8D79mJ072DUKo6tNCw1Zt1aIt8sSY3Vix4FeXIALl28PPwO_37ju_t7J7sCpuww4ymd07tBAB7EfxDKUcRRQI3uuVgCSsQZTh3MfvE0NsOgF3A8ixWKPS-2yMNQhNX1XYeEDgIA1r--F4Pytfdobfz1q4xiAv34dS6U82MoBDQK89eGDdPo9Z9FBw8uYsASKly9stlHbW2S9SDK5uJDT6RIw7t8ht2uL1t6pRPAuWdHJPXKj6nG5uE-m38AbB_aN9FzuYuOW2QdbFvMULGUd26bAv3V2auxfFZkNMoMZ8nY2yTBVXuc2mNX2eSGTMh0OlPN7O5vVnYEcBGF4ygRj_jDrATm9ls1_SFaTNNGPic1VTJmWrOca6lETcdbXTIcIv1FkJLdIr9lqoer659iGYypKP4gHouKOgNcL5I5YWORdOyWrin9cRfwK-SewqEaCt3Z-yCLPxfD4SOz4YCqAo-d7FnlbE5kUXq5knQQBS8A6XB3KjQ4lnHrVHW7ERNRaJxd_z4hFXrbDOBNv0iU6LZAGvpuhH26RR5VUtWtzA9DQ3IMR1pG3lgBrkXdHksnPsia5B340o75FNhvJXPqsf2_ZZiu8_9_gJ1cv-QVZH5yMDsXhcHzwlNx08ZCBjeHyDbI6nxX6GRiP8-h5fUJt8v26lcIfAFOBDQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZbtQw0IIirgfETaCAQUhIlKhrb3yEt2qhaoFWCCjqm-U4Nqy0yoZNAtq_Z2aTjTYVh3j22Enm8MxkLkKe-aCSxHEfO5mCg8JZiLXjLNZMBa9H48BWnZiOjuXBSfL2VJx2c06rdbb7OiTZ1jRgl6ai3i3z0Iq4lrsV3KoSsycEUFmM4uV5ciEB5YYjDCZy0ocRQP2JLpT5220DZXT2St7QSWfzJfug6VVyuSlKu_xpZ7MNvbR_nVzrDEq613LADXLOFzfJxXbE5PIWmX0BZxiwd-RrO8G5KYtX1Db1HAxVn9PQ4M8yOg_0RwtGgWRYoE7LaYmV6r6iYNXS740tVtVocDe-pOWiG8wTow6EU6YYcoddt8nJ_pvPk4O4m7AQO6FYHTPpZS5kblObZ5IFO-LeAXpyD2ae1gI8bQ8mQSK1kJlTeaKt5ypNfcrCmDs-vkO2innh7xGqXc6Ut2rEA0tYyLQae-VT1H5ZFqyOyGiNauO69uM4BWNmVm6IlqaljoHHG6SOWUbkRb-lbHtv_A34KdLPYE-LApNmvtqmqszhp49mT4CmBj9LJBF53gGFOTzc2a4GAT4B22ANILcHkCB0bri8ZhPTCX1lmFIpGLR6zCLypF_GnZjIVvh5gzDw3grd4Ijcbbmq_zYu4YLUCayoAb_1ANgKfLhSTL-tWoIn4MYqJiKys-bMjdf6M8p2eub9N4Lv_9fZj8mlD6_3zfvD43cPyBWOIgcKn-ttslUvGv8QLLk6e7SS1l-mlkG_ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELagKwQ8cB-BBQWEhMSSbu3GR3irVqwWpF0hoGh5ihzHhopsGpoEVH49M00aNRWHkHj2OIntOb6J5yDkiXUyDA2zgREROCiMukAZRgNFpbNqNHZ0VYnp-EQcTcPXp_y0bQeEuTDJmcHipGczUw43E9CzJr8B-yfYxX6RukbcldgvQcMKjKTgcOJ8FCzPkx3BAZgPyM705M3k4yq_SNKAgWfQ3mv-cl7PMm3r5w0DtR082d2gXiYX67zQy-86yzaM1OFVkq2X18SmfBnWVTI0P7YqP_6n9V8jV1ow608a7rtOztn8BrnQtLdc3iTZB3DE4eSObaUPsGfL4oWv62oOINmmvqvxR50_d_63hswHdsHkeL-YFZglb0sfELX_tdb5KhMO9PJzv1i0TYECtL_wlBle98OsW2R6-PL9wVHQdncIDJe0CqiwIuUi1ZFOE0GdHjFrYBWpBYipFAcv3wIcCYXiIjEyDZW2TEaRjagbM8PGt8kgn-f2LvGVSam0Wo6YoyF1iZJjK22EljdJnFYeGa1PNjZt6XPswJHFKxdIibjZxBheH-MmxkuPPOumFE3djz8RP0Z2ibGeRo4BO590XZbxq3dv4wkHlAA-Hg898rQlcnN4udFt_gMsAUtw9Sh3e5Qg8KY_vObKuFU4ZUyljABMqzH1yKNuGGdiEF1u5zXSwHdLdME9cqdh4m5tTIByViGMyB57dwRYhrw_ks8-r8qRh-BCS8o9srcWhI3P-v2W7XWy8vcNvvdP1PfJJYbiAAiDqV0yqBa1fQDQsUoetirhJ4ghagE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VariantMetaCaller%3A+automated+fusion+of+variant+calling+pipelines+for+quantitative%2C+precision-based+filtering&rft.jtitle=BMC+genomics&rft.au=G%C3%A9zsi%2C+Andr%C3%A1s&rft.au=Bolg%C3%A1r%2C+Bence&rft.au=Marx%2C+P%C3%A9ter&rft.au=Sarkozy%2C+Peter&rft.date=2015-10-28&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=16&rft.spage=875&rft_id=info:doi/10.1186%2Fs12864-015-2050-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |