VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering

Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 16; no. 1; p. 875
Main Authors Gézsi, András, Bolgár, Bence, Marx, Péter, Sarkozy, Peter, Szalai, Csaba, Antal, Péter
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.10.2015
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-015-2050-y

Cover

Abstract Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. Results We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. Conclusions VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller .
AbstractList The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller.
Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. Results We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. Conclusions VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller .
The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data.BACKGROUNDThe low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data.We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision.RESULTSWe evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision.VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller .CONCLUSIONSVariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller .
The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller .
Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. Results We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. Conclusions VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at http://bioinformatics.mit.bme.hu/VariantMetaCaller.
Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research and clinical practice. A wide range of variant annotations can be used for filtering call sets in order to improve the precision of the variant calls, but the choice of the appropriate filtering thresholds is not straightforward. Variant quality score recalibration provides an alternative solution to hard filtering, but it requires large-scale, genomic data. Results We evaluated germline variant calling pipelines based on BWA and Bowtie 2 aligners in combination with GATK UnifiedGenotyper, GATK HaplotypeCaller, FreeBayes and SAMtools variant callers, using simulated and real benchmark sequencing data (NA12878 with Illumina Platinum Genomes). We argue that these pipelines are not merely discordant, but they extract complementary useful information. We introduce VariantMetaCaller to test the hypothesis that the automated fusion of measurement related information allows better performance than the recommended hard-filtering settings or recalibration and the fusion of the individual call sets without using annotations. VariantMetaCaller uses Support Vector Machines to combine multiple information sources generated by variant calling pipelines and estimates probabilities of variants. This novel method had significantly higher sensitivity and precision than the individual variant callers in all target region sizes, ranging from a few hundred kilobases to whole exomes. We also demonstrated that VariantMetaCaller supports a quantitative, precision based filtering of variants under wider conditions. Specifically, the computed probabilities of the variants can be used to order the variants, and for a given threshold, probabilities can be used to estimate precision. Precision then can be directly translated to the number of true called variants, or equivalently, to the number of false calls, which allows finding problem-specific balance between sensitivity and precision. Conclusions VariantMetaCaller can be applied to small target regions and whole exomes as well, and it can be used in cases of organisms for which highly accurate variant call sets are not yet available, therefore it can be a viable alternative to hard filtering in cases where variant quality score recalibration cannot be used. VariantMetaCaller is freely available at Keywords: Next-generation sequencing, Variant calling, Support Vector Machine
ArticleNumber 875
Audience Academic
Author Bolgár, Bence
Szalai, Csaba
Gézsi, András
Sarkozy, Peter
Antal, Péter
Marx, Péter
Author_xml – sequence: 1
  givenname: András
  surname: Gézsi
  fullname: Gézsi, András
  email: gezsi.andras@gmail.com
  organization: Department of Genetics, Cell- and Immunobiology, Semmelweis University, Department of Measurement and Information Systems, Budapest University of Technology and Economics
– sequence: 2
  givenname: Bence
  surname: Bolgár
  fullname: Bolgár, Bence
  organization: Department of Measurement and Information Systems, Budapest University of Technology and Economics
– sequence: 3
  givenname: Péter
  surname: Marx
  fullname: Marx, Péter
  organization: Department of Measurement and Information Systems, Budapest University of Technology and Economics
– sequence: 4
  givenname: Peter
  surname: Sarkozy
  fullname: Sarkozy, Peter
  organization: Department of Measurement and Information Systems, Budapest University of Technology and Economics
– sequence: 5
  givenname: Csaba
  surname: Szalai
  fullname: Szalai, Csaba
  organization: Department of Genetics, Cell- and Immunobiology, Semmelweis University
– sequence: 6
  givenname: Péter
  surname: Antal
  fullname: Antal, Péter
  organization: Department of Measurement and Information Systems, Budapest University of Technology and Economics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26510841$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhousuB_6A7yRgjcKdu1Jm7SzF8IyrLqwIvh1GzLp6Zilk3STdNz5957aUWcWFelFA3meN-nbc5wcWGcxSR5DfgpQi5cBWC3KLAeesZzn2eZecgRlBRkDUR7srA-T4xCu8xyqmvEHySETHPK6hKOk-6K8UTa-w6jmquvQn6VqiG6lIjZpOwTjbOradD1hqSbG2GXamx5pgSFtnU9vBtozUUWzxhdp71GbUcwWKowppovoyXqY3G9VF_DR9n2SfH598Wn-Nrt6_-Zyfn6VaV5BzECgaLho1Ew1CwGtyhlq-sgGBRd1zXFRIHAoRc3FQldNWStk1WyGM2gLpllxkrApd7C92nyjK8vem5XyGwm5HKuTU3WSUuVYndyQ9GqS-mGxwkajjV79Fp0ycn_Hmq9y6dayFIyuzSng2TbAu5sBQ5QrEzR2nbLohiChoiMrLnIg9Okd9NoN3lInRFWzuuB1sUMtVYfS2NbRuXoMlee8hEKUjJdEnf6BoqfBldE0MFQ_7gvP9wRiIt7GpRpCkJcfP-yzT3ZL-dXGzwEiACZAexeCx_a_mq7uOPrH7LixV9P909z-2NCP84R-p7e_St8B_CD5vQ
CitedBy_id crossref_primary_10_1093_bioinformatics_btw587
crossref_primary_10_1038_s41587_021_01031_1
crossref_primary_10_3389_fgene_2023_1148147
crossref_primary_10_1038_s41598_023_34925_y
crossref_primary_10_1371_journal_pone_0262574
crossref_primary_10_1093_hmg_ddaa225
crossref_primary_10_1038_ejhg_2017_32
crossref_primary_10_1002_ctm2_152
crossref_primary_10_1186_s12881_020_01059_1
crossref_primary_10_1590_1678_4685_gmb_2020_0047
crossref_primary_10_1038_hdy_2016_102
crossref_primary_10_1016_j_immuni_2019_05_006
crossref_primary_10_1038_s41598_019_39108_2
crossref_primary_10_1371_journal_pone_0274354
crossref_primary_10_1007_s40291_017_0268_x
crossref_primary_10_1371_journal_pone_0207747
crossref_primary_10_1093_dnares_dsy033
crossref_primary_10_1186_s12859_019_2791_8
crossref_primary_10_3390_genes15040469
Cites_doi 10.1186/1471-2105-14-274
10.1093/bioinformatics/btu067
10.1093/bioinformatics/btt172
10.1038/nmeth.2656
10.1101/gr.107524.110
10.1093/bioinformatics/btt407
10.1093/bioinformatics/btu030
10.1186/s13059-014-0509-9
10.1111/j.1467-9868.2010.00746.x
10.1126/science.1219240
10.1186/1479-7364-8-14
10.1073/pnas.1530509100
10.1371/journal.pone.0075619
10.1093/bioinformatics/btr708
10.1007/s10994-007-5018-6
10.1093/bioinformatics/btr509
10.1002/path.4365
10.1093/bioinformatics/btp324
10.1186/1471-2105-15-104
10.1038/nmeth.1923
10.1093/bioinformatics/btr026
10.1186/1471-2164-13-341
10.1145/1961189.1961199
10.1111/j.2517-6161.1995.tb02031.x
10.1093/bib/bbs013
10.1186/gm432
10.1371/journal.pone.0086664
10.1038/ng.806
ContentType Journal Article
Copyright Gézsi et al. 2015
COPYRIGHT 2015 BioMed Central Ltd.
Copyright BioMed Central 2015
Copyright_xml – notice: Gézsi et al. 2015
– notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Copyright BioMed Central 2015
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12864-015-2050-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
ExternalDocumentID 10.1186/s12864-015-2050-y
PMC4625715
4017080001
A541364254
26510841
10_1186_s12864_015_2050_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
United Kingdom
GeographicLocations_xml – name: United Kingdom
– name: United States
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
AIXEN
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
2VQ
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c571t-16e6d56da9adb61fa02ec015de656885eb3e15146856bc7d48ae2799e91f32c23
IEDL.DBID UNPAY
ISSN 1471-2164
IngestDate Wed Oct 29 12:19:42 EDT 2025
Tue Sep 30 16:42:05 EDT 2025
Thu Oct 02 07:43:03 EDT 2025
Tue Oct 07 05:24:07 EDT 2025
Mon Oct 20 22:50:30 EDT 2025
Mon Oct 20 16:57:24 EDT 2025
Thu Oct 16 16:17:46 EDT 2025
Thu Jan 02 22:21:21 EST 2025
Wed Oct 01 03:03:24 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Sat Sep 06 07:21:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Next-generation sequencing
Support Vector Machine
Variant calling
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-16e6d56da9adb61fa02ec015de656885eb3e15146856bc7d48ae2799e91f32c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-015-2050-y
PMID 26510841
PQID 1779835831
PQPubID 44682
ParticipantIDs unpaywall_primary_10_1186_s12864_015_2050_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4625715
proquest_miscellaneous_1728675601
proquest_journals_1779835831
gale_infotracmisc_A541364254
gale_infotracacademiconefile_A541364254
gale_incontextgauss_ISR_A541364254
pubmed_primary_26510841
crossref_primary_10_1186_s12864_015_2050_y
crossref_citationtrail_10_1186_s12864_015_2050_y
springer_journals_10_1186_s12864_015_2050_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-28
PublicationDateYYYYMMDD 2015-10-28
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References JA Tennessen (2050_CR13) 2012; 337
BL Cantarel (2050_CR11) 2014; 15
M Salto-Tellez (2050_CR21) 2014; 234
M Pirooznia (2050_CR5) 2014; 8
K Boyd (2050_CR15) 2013
L Ilie (2050_CR34) 2013; 29
Y Benjamini (2050_CR20) 2010; 72
A Sifrim (2050_CR22) 2013; 10
AY Cheng (2050_CR7) 2014; 30
L Song (2050_CR35) 2014; 15
X Yu (2050_CR3) 2013; 14
2050_CR40
GA Van der Auwera (2050_CR9) 2013
MA Quail (2050_CR8) 2012; 13
2050_CR23
B Langmead (2050_CR28) 2012; 9
JD Storey (2050_CR19) 2003; 100
BD O’Fallon (2050_CR10) 2013; 29
MH Park (2050_CR2) 2014; 9
2050_CR25
JA Neuman (2050_CR6) 2013; 14
A McKenna (2050_CR32) 2010; 20
J O’Rawe (2050_CR1) 2013; 5
W Huang (2050_CR24) 2012; 28
R Schmieder (2050_CR26) 2011; 27
HT Lin (2050_CR37) 2007; 68
H Li (2050_CR27) 2009; 25
MA DePristo (2050_CR29) 2011; 43
Y Heo (2050_CR33) 2014; 30
H Li (2050_CR31) 2011; 27
X Liu (2050_CR4) 2013; 8
2050_CR30
2050_CR12
2050_CR17
2050_CR16
2050_CR38
JC Platt (2050_CR39) 1999; 10
2050_CR14
Y Benjamini (2050_CR18) 1995; 57
CC Chang (2050_CR36) 2011; 2
23620357 - Bioinformatics. 2013 Jun 1;29(11):1361-6
23853064 - Bioinformatics. 2013 Oct 1;29(19):2490-3
25078893 - Hum Genomics. 2014;8:14
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
24558117 - Bioinformatics. 2014 Jun 15;30(12):1707-13
21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93
20644199 - Genome Res. 2010 Sep;20(9):1297-303
23537139 - Genome Med. 2013 Mar 27;5(3):28
24756835 - J Pathol. 2014 Sep;234(1):5-10
24044377 - BMC Bioinformatics. 2013;14:274
24489763 - PLoS One. 2014;9(1):e86664
21278185 - Bioinformatics. 2011 Mar 15;27(6):863-4
22604720 - Science. 2012 Jul 6;337(6090):64-9
21478889 - Nat Genet. 2011 May;43(5):491-8
24086590 - PLoS One. 2013;8(9):e75619
12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
24076761 - Nat Methods. 2013 Nov;10(11):1083-4
22707752 - Brief Bioinform. 2013 Jan;14(1):46-55
25398208 - Genome Biol. 2014;15(11):509
24725768 - BMC Bioinformatics. 2014;15:104
22388286 - Nat Methods. 2012 Apr;9(4):357-9
22827831 - BMC Genomics. 2012;13:341
24451628 - Bioinformatics. 2014 May 15;30(10):1354-62
22199392 - Bioinformatics. 2012 Feb 15;28(4):593-4
25431634 - Curr Protoc Bioinformatics. 2013;43:11.10.1-33
References_xml – volume: 14
  start-page: 274
  issue: 1
  year: 2013
  ident: 2050_CR3
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-274
– volume: 30
  start-page: 1707
  issue: 12
  year: 2014
  ident: 2050_CR7
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btu067
– ident: 2050_CR30
– volume: 29
  start-page: 1361
  issue: 11
  year: 2013
  ident: 2050_CR10
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btt172
– volume: 10
  start-page: 1083
  issue: 11
  year: 2013
  ident: 2050_CR22
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2656
– volume: 20
  start-page: 1297
  issue: 9
  year: 2010
  ident: 2050_CR32
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 29
  start-page: 2490
  issue: 19
  year: 2013
  ident: 2050_CR34
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btt407
– volume: 30
  start-page: 1354
  issue: 10
  year: 2014
  ident: 2050_CR33
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btu030
– volume: 15
  start-page: 509
  issue: 11
  year: 2014
  ident: 2050_CR35
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0509-9
– volume: 72
  start-page: 405
  issue: 4
  year: 2010
  ident: 2050_CR20
  publication-title: J R Stat Soci: Series B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2010.00746.x
– volume: 337
  start-page: 64
  issue: 6090
  year: 2012
  ident: 2050_CR13
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1219240
– volume: 8
  start-page: 14
  issue: 1
  year: 2014
  ident: 2050_CR5
  publication-title: Hum Genomics
  doi: 10.1186/1479-7364-8-14
– ident: 2050_CR12
– volume: 100
  start-page: 9440
  issue: 16
  year: 2003
  ident: 2050_CR19
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1530509100
– ident: 2050_CR14
– volume: 8
  start-page: 75619
  issue: 9
  year: 2013
  ident: 2050_CR4
  publication-title: PloS One
  doi: 10.1371/journal.pone.0075619
– ident: 2050_CR16
– ident: 2050_CR40
– volume: 28
  start-page: 593
  issue: 4
  year: 2012
  ident: 2050_CR24
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btr708
– volume: 68
  start-page: 267
  issue: 3
  year: 2007
  ident: 2050_CR37
  publication-title: Mach Learn
  doi: 10.1007/s10994-007-5018-6
– ident: 2050_CR25
– ident: 2050_CR23
– volume: 27
  start-page: 2987
  issue: 21
  year: 2011
  ident: 2050_CR31
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btr509
– volume-title: Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science
  year: 2013
  ident: 2050_CR15
– volume: 234
  start-page: 5
  issue: 1
  year: 2014
  ident: 2050_CR21
  publication-title: J Pathol
  doi: 10.1002/path.4365
– volume: 25
  start-page: 1754
  issue: 14
  year: 2009
  ident: 2050_CR27
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btp324
– volume: 15
  start-page: 104
  issue: 1
  year: 2014
  ident: 2050_CR11
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-104
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  ident: 2050_CR28
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 27
  start-page: 863
  issue: 6
  year: 2011
  ident: 2050_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr026
– volume-title: Current Protocols in Bioinformatics
  year: 2013
  ident: 2050_CR9
– volume: 13
  start-page: 341
  issue: 1
  year: 2012
  ident: 2050_CR8
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-341
– volume: 2
  start-page: 27
  year: 2011
  ident: 2050_CR36
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– ident: 2050_CR38
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 2050_CR18
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 10
  start-page: 61
  issue: 3
  year: 1999
  ident: 2050_CR39
  publication-title: Adv Large Margin Classifiers
– volume: 14
  start-page: 46
  issue: 1
  year: 2013
  ident: 2050_CR6
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs013
– ident: 2050_CR17
– volume: 5
  start-page: 28
  issue: 3
  year: 2013
  ident: 2050_CR1
  publication-title: Genome Med
  doi: 10.1186/gm432
– volume: 9
  start-page: 86664
  issue: 1
  year: 2014
  ident: 2050_CR2
  publication-title: PloS One
  doi: 10.1371/journal.pone.0086664
– volume: 43
  start-page: 491
  issue: 5
  year: 2011
  ident: 2050_CR29
  publication-title: Nat Genet
  doi: 10.1038/ng.806
– reference: 24086590 - PLoS One. 2013;8(9):e75619
– reference: 25431634 - Curr Protoc Bioinformatics. 2013;43:11.10.1-33
– reference: 24558117 - Bioinformatics. 2014 Jun 15;30(12):1707-13
– reference: 22604720 - Science. 2012 Jul 6;337(6090):64-9
– reference: 22827831 - BMC Genomics. 2012;13:341
– reference: 20644199 - Genome Res. 2010 Sep;20(9):1297-303
– reference: 23620357 - Bioinformatics. 2013 Jun 1;29(11):1361-6
– reference: 21903627 - Bioinformatics. 2011 Nov 1;27(21):2987-93
– reference: 25398208 - Genome Biol. 2014;15(11):509
– reference: 22199392 - Bioinformatics. 2012 Feb 15;28(4):593-4
– reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
– reference: 21278185 - Bioinformatics. 2011 Mar 15;27(6):863-4
– reference: 24725768 - BMC Bioinformatics. 2014;15:104
– reference: 22707752 - Brief Bioinform. 2013 Jan;14(1):46-55
– reference: 25078893 - Hum Genomics. 2014;8:14
– reference: 24044377 - BMC Bioinformatics. 2013;14:274
– reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9
– reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
– reference: 24076761 - Nat Methods. 2013 Nov;10(11):1083-4
– reference: 24451628 - Bioinformatics. 2014 May 15;30(10):1354-62
– reference: 23537139 - Genome Med. 2013 Mar 27;5(3):28
– reference: 24489763 - PLoS One. 2014;9(1):e86664
– reference: 21478889 - Nat Genet. 2011 May;43(5):491-8
– reference: 23853064 - Bioinformatics. 2013 Oct 1;29(19):2490-3
– reference: 24756835 - J Pathol. 2014 Sep;234(1):5-10
SSID ssj0017825
Score 2.284427
Snippet Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing...
The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing in research...
Background The low concordance between different variant calling methods still poses a challenge for the wide-spread application of next-generation sequencing...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 875
SubjectTerms Algorithms
Animal Genetics and Genomics
Benchmarks
Bioinformatics
Biomedical and Life Sciences
Biotechnology industry
Exome
Genetic aspects
Genomics
High-Throughput Nucleotide Sequencing - methods
Human and rodent genomics
Humans
Life Sciences
Methodology
Methodology Article
Microarrays
Microbial Genetics and Genomics
Pipe lines
Plant Genetics and Genomics
Proteomics
Software - standards
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1raxQxMNQron4Q365WWUUQrEsvuc1jBZFaWqrQQ6qVfgvZbKIHx-727la5f-_MvrwtWD9nstlMJvPIvAh55byMY8tcZEUCBgqjPlKW0UhR6Z0aTzytKzGdTMXxWfz5nJ9vkWmXC4NhlR1PrBl1Vlh8I9-jUiagLagJ_VBeRNg1Cr2rXQsN07ZWyN7XJcaukW2GlbFGZPvj4fTLae9XAHnIW98mVWJvCdxZYBQGB2rh42g9kE6XefSGkLocQNl7UW-RG1VemvVvM59vCKqjO-R2q2GG-w1J3CVbLr9Hrjc9J9f3yfw7WMeAzhO3MgfYSGXxLjTVqgDN1WWhr_D1LCx8-KsBC-EMMWM9LGclpq67ZQhqbnhRmbxOTwNm-TYsF22nngiFInxlhj54mPWAnB0dfjs4jtqWC5Hlkq4iKpzIuMhMYrJUUG_GzFlAT-ZA71OKg-ntQEeIheIitTKLlXFMJolLqJ8wyyYPySgvcveYhMpmVDojx8zTmPpUyYmTLkFxmKbeqICMO1Rr29Yjx7YYc13bJUro5nQ0LK_xdPQ6IG_6KWVTjOMq4Jd4fhqLXOQYRfPDVMul_vT1VO9zEN1gePE4IK9bIF_A4ta0SQmwBayLNYDcGUDCLbTD4Y5MdMsFlvovzQbkRT-MMzGyLXdFhTDw3xLt4oA8aqiq3xsTwDFVDCNyQG89ANYGH47ks591jfAY7FpJeUB2O8rc-K1_o2y3J97_I_jJ1Vt-Sm4yvFgg55naIaPVonLPQIFbpc_bW_kHHyNEMw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1ri9QwMJwnon4Q31ZPiSIKntVNtnlUEDkOj1NYP6gr9y2kaaILS7f7qLr_3pm2W7fH-ficSdLMIzPTycwQ8tgHlSSO-9jJFBwUzkKsHWexZip4PRgGVldiGn2Qx-Pk_Yk42SGb6HmLwOWZrh32kxovpi9-ztdvQOBf1wKv5csl3LES31IIoLkYxOsn5TzGvlIYf22bbJwj50F3pdjcYZT8jjOAfhR1_pFiMQfPoY17nrlqT3Odvr-3FNjpx5VdhPUyuVgVpV3_sNPplhI7ukqutNYnPWjY5RrZ8cV1cqHpR7m-QaZfwHMGVI_8yh5ik5XFK2qr1QysWp_TUOGfNToL9HsDRoG-mM1Oy0mJae1-ScEEpvPKFnXqGlykz2m5aLv4xKgwYZUJxudh1k0yPnr7-fA4btsxxE4otoqZ9DIXMrepzTPJgh1w7wA9uQebUGsBbrkH-yGRWsjMqTzR1nOVpj5lYcgdH94iu8Ws8HcI1S5nyls14IElLGRaDb3yKarKLAtWR2SwQbVxba1ybJkxNbXPoqVpqGNge4PUMeuIPOumlE2hjr8BP0L6GSyAUeALm6-2Wi7Nu08fzYEAtQ5OmUgi8rQFCjPY3Nk2YQGOgDWzepB7PUiQUNcf3rCJ2TC4YUqlYP3qIYvIw24YZ-Krt8LPKoSB71boM0fkdsNV3dm4hNtUJzCievzWAWDd8P5IMflW1w9PwOdVTERkf8OZW5_1Z5Ttd8z7bwTf_Y8z3SOXOEoXGAJc75Hd1aLy98HCW2UPaiH9BcSDTDk
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1ri9QwMOiJeH4Qn2f1lCiC4F2xyTaP-m05PE7h_KCu3LeQpokuLN11u1X23zvTF9vDB37OJG3nkZnpvAh54YNKU8d97GQGDgpnIdaOs1gzFbxOJoE1nZjOP8izWfr-Qlx0ddxVn-3ehySbm7oRay1fV3CTSsyYEEBZkcTbq-SawG5ewMQzPh1CB6DyRBe-_O22kQK6fA3v6KHLOZJDoPQmuVGXK7v9aReLHV10epvc6oxIOm2pfodc8eVdcr0dK7m9RxZfwAEGjJ37jT3BWSnrN9TWmyUYp76gocYfZHQZ6I8WjAKZsCidruYrrE73FQVLln6vbdlUoMF9eExX624YT4x6D06ZY5gddt0ns9O3n0_O4m6qQuyEYpuYSS8LIQub2SKXLNiEewfoKTyYdloL8K49mAGp1ELmThWptp6rLPMZCxPu-OQB2SuXpX9IqHYFU96qhAeWspBrNfHKZ6jx8jxYHZGkR7VxXctxnHyxMI3roaVpqWPg8QapY7YReTVsWbX9Nv4G_BzpZ7CPRYmJMl9tXVXm3aePZipAO4NvJdKIvOyAwhIe7mxXdwCfgK2vRpCHI0gQNDde7tnEdIJeGaZUBkasnrCIPBuWcScmr5V-WSMMvLdC1zciBy1XDd_GJVyKOoUVNeK3AQDbf49Xyvm3pg14Cq6rYiIiRz1n7rzWn1F2NDDvvxH86L_Ofkz2OcoZaHauD8neZl37J2CybfKnjYj-Al_dOq0
  priority: 102
  providerName: Springer Nature
Title VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering
URI https://link.springer.com/article/10.1186/s12864-015-2050-y
https://www.ncbi.nlm.nih.gov/pubmed/26510841
https://www.proquest.com/docview/1779835831
https://www.proquest.com/docview/1728675601
https://pubmed.ncbi.nlm.nih.gov/PMC4625715
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-015-2050-y
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3bbtMw1GKtEOOB-yUwqoCQkBjpajexHd5KtWkgtZoGReUpchx7VGRpaBJQ-XqOkzRqKi5C4iVK5eMmxz7X-FwQeq40c11JlCOpDw4KwdrhkmCHY6YVHww1LisxTab0dOa-m3vzuh2QyYUJL6UpTnq5kFl_OwE9rvIbTP8EtTpKI12xO6dHGUhYaiIpPNhxb-Cs91CXemCYd1B3Nj0bfSrzixh2CHgG9bnmL-e1NNOufN5SULvBk80J6nV0rUhSsf4u4nhLSZ3cRPEGvSo25Uu_yMO-_LFT-fE_4X8L3aiNWXtUUd9tdEUld9DVqr3l-i6KP4IjDjs3UbkYm54tq9e2KPIlGMkqsnVhPtTZS21_q8BsIBeTHG-ni9RkyavMBova_lqIpMyEA7n8yk5XdVMgx-hf-JeFOe6HWffQ7OT4w_jUqbs7ONJjOHcwVTTyaCR8EYUUazEgSgIWkQITk3MPvHwF5ohLuUdDySKXC0WY7ysf6yGRZHgfdZJloh4im8sIMyXYgGjsYh1yNlRM-UbzhqEW3EKDzc4Gsi59bjpwxEHpAnEaVIsYwOMDs4jB2kIvmylpVffjT8DPDLkEpp5GYgJ2LkSRZcHb9-fByAMrAXw8z7XQixpIL-HhUtT5D4CCKcHVgjxoQQLDy_bwhiqDWuBkAWbMB2OaD7GFnjbDZqYJokvUsjAw8N7MuOAWelARcYMboSCcuQsjrEXeDYApQ94eSRafy3LkLrjQDHsWOtwwwtZr_X7JDhte-fsCP_on6Mdonxh2AAuD8APUyVeFegKmYx720B6bsx7qvjmenp3DrzEd98rPMHCduByuMwL3leD4CaobcBc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWjwgPgmMCAgEBIjWp0msYM0oTE2tWyt0D7Q3ozj2FCpSrKmYeo_x9_GXb5oJjGe9uxzEvvO97vL-e4Iea0N8zzlakcFITgoLjUOVy51OGVG817f0LIS02gcDE69L2f-2Qr53eTC4LXKRieWijpOFf4j36KMhWAt8D79mJ072DUKo6tNCw1Zt1aIt8sSY3Vix4FeXIALl28PPwO_37ju_t7J7sCpuww4ymd07tBAB7EfxDKUcRRQI3uuVgCSsQZTh3MfvE0NsOgF3A8ixWKPS-2yMNQhNX1XYeEDgIA1r--F4Pytfdobfz1q4xiAv34dS6U82MoBDQK89eGDdPo9Z9FBw8uYsASKly9stlHbW2S9SDK5uJDT6RIw7t8ht2uL1t6pRPAuWdHJPXKj6nG5uE-m38AbB_aN9FzuYuOW2QdbFvMULGUd26bAv3V2auxfFZkNMoMZ8nY2yTBVXuc2mNX2eSGTMh0OlPN7O5vVnYEcBGF4ygRj_jDrATm9ls1_SFaTNNGPic1VTJmWrOca6lETcdbXTIcIv1FkJLdIr9lqoer659iGYypKP4gHouKOgNcL5I5YWORdOyWrin9cRfwK-SewqEaCt3Z-yCLPxfD4SOz4YCqAo-d7FnlbE5kUXq5knQQBS8A6XB3KjQ4lnHrVHW7ERNRaJxd_z4hFXrbDOBNv0iU6LZAGvpuhH26RR5VUtWtzA9DQ3IMR1pG3lgBrkXdHksnPsia5B340o75FNhvJXPqsf2_ZZiu8_9_gJ1cv-QVZH5yMDsXhcHzwlNx08ZCBjeHyDbI6nxX6GRiP8-h5fUJt8v26lcIfAFOBDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZbtQw0IIirgfETaCAQUhIlKhrb3yEt2qhaoFWCCjqm-U4Nqy0yoZNAtq_Z2aTjTYVh3j22Enm8MxkLkKe-aCSxHEfO5mCg8JZiLXjLNZMBa9H48BWnZiOjuXBSfL2VJx2c06rdbb7OiTZ1jRgl6ai3i3z0Iq4lrsV3KoSsycEUFmM4uV5ciEB5YYjDCZy0ocRQP2JLpT5220DZXT2St7QSWfzJfug6VVyuSlKu_xpZ7MNvbR_nVzrDEq613LADXLOFzfJxXbE5PIWmX0BZxiwd-RrO8G5KYtX1Db1HAxVn9PQ4M8yOg_0RwtGgWRYoE7LaYmV6r6iYNXS740tVtVocDe-pOWiG8wTow6EU6YYcoddt8nJ_pvPk4O4m7AQO6FYHTPpZS5kblObZ5IFO-LeAXpyD2ae1gI8bQ8mQSK1kJlTeaKt5ypNfcrCmDs-vkO2innh7xGqXc6Ut2rEA0tYyLQae-VT1H5ZFqyOyGiNauO69uM4BWNmVm6IlqaljoHHG6SOWUbkRb-lbHtv_A34KdLPYE-LApNmvtqmqszhp49mT4CmBj9LJBF53gGFOTzc2a4GAT4B22ANILcHkCB0bri8ZhPTCX1lmFIpGLR6zCLypF_GnZjIVvh5gzDw3grd4Ijcbbmq_zYu4YLUCayoAb_1ANgKfLhSTL-tWoIn4MYqJiKys-bMjdf6M8p2eub9N4Lv_9fZj8mlD6_3zfvD43cPyBWOIgcKn-ttslUvGv8QLLk6e7SS1l-mlkG_
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELagKwQ8cB-BBQWEhMSSbu3GR3irVqwWpF0hoGh5ihzHhopsGpoEVH49M00aNRWHkHj2OIntOb6J5yDkiXUyDA2zgREROCiMukAZRgNFpbNqNHZ0VYnp-EQcTcPXp_y0bQeEuTDJmcHipGczUw43E9CzJr8B-yfYxX6RukbcldgvQcMKjKTgcOJ8FCzPkx3BAZgPyM705M3k4yq_SNKAgWfQ3mv-cl7PMm3r5w0DtR082d2gXiYX67zQy-86yzaM1OFVkq2X18SmfBnWVTI0P7YqP_6n9V8jV1ow608a7rtOztn8BrnQtLdc3iTZB3DE4eSObaUPsGfL4oWv62oOINmmvqvxR50_d_63hswHdsHkeL-YFZglb0sfELX_tdb5KhMO9PJzv1i0TYECtL_wlBle98OsW2R6-PL9wVHQdncIDJe0CqiwIuUi1ZFOE0GdHjFrYBWpBYipFAcv3wIcCYXiIjEyDZW2TEaRjagbM8PGt8kgn-f2LvGVSam0Wo6YoyF1iZJjK22EljdJnFYeGa1PNjZt6XPswJHFKxdIibjZxBheH-MmxkuPPOumFE3djz8RP0Z2ibGeRo4BO590XZbxq3dv4wkHlAA-Hg898rQlcnN4udFt_gMsAUtw9Sh3e5Qg8KY_vObKuFU4ZUyljABMqzH1yKNuGGdiEF1u5zXSwHdLdME9cqdh4m5tTIByViGMyB57dwRYhrw_ks8-r8qRh-BCS8o9srcWhI3P-v2W7XWy8vcNvvdP1PfJJYbiAAiDqV0yqBa1fQDQsUoetirhJ4ghagE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VariantMetaCaller%3A+automated+fusion+of+variant+calling+pipelines+for+quantitative%2C+precision-based+filtering&rft.jtitle=BMC+genomics&rft.au=G%C3%A9zsi%2C+Andr%C3%A1s&rft.au=Bolg%C3%A1r%2C+Bence&rft.au=Marx%2C+P%C3%A9ter&rft.au=Sarkozy%2C+Peter&rft.date=2015-10-28&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=16&rft.spage=875&rft_id=info:doi/10.1186%2Fs12864-015-2050-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon