Application of Generative Autoencoder in De Novo Molecular Design
A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative auto...
Saved in:
Published in | Molecular informatics Vol. 37; no. 1-2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1868-1743 1868-1751 1868-1751 |
DOI | 10.1002/minf.201700123 |
Cover
Abstract | A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified. |
---|---|
AbstractList | A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified. A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type2 and compounds similar to known active compounds not included in the trainings set were identified. A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified.A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified. |
Author | Olivecrona, Marcus Engkvist, Ola Bajorath, Jürgen Blaschke, Thomas Chen, Hongming |
AuthorAffiliation | 2 University of Bonn, Bonn Aachen International Center for Information Technology BIT, Life Science Informatics Dahlmannstrasse 2 53113 Bonn Germany 1 Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit AstraZeneca R&D Gothenburg 431 83 Mölndal Sweden |
AuthorAffiliation_xml | – name: 1 Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit AstraZeneca R&D Gothenburg 431 83 Mölndal Sweden – name: 2 University of Bonn, Bonn Aachen International Center for Information Technology BIT, Life Science Informatics Dahlmannstrasse 2 53113 Bonn Germany |
Author_xml | – sequence: 1 givenname: Thomas orcidid: 0000-0003-2674-799X surname: Blaschke fullname: Blaschke, Thomas email: thomas.blaschke@uni-bonn.de organization: University of Bonn, Bonn Aachen International Center for Information Technology BIT, Life Science Informatics – sequence: 2 givenname: Marcus surname: Olivecrona fullname: Olivecrona, Marcus organization: AstraZeneca R&D Gothenburg – sequence: 3 givenname: Ola surname: Engkvist fullname: Engkvist, Ola organization: AstraZeneca R&D Gothenburg – sequence: 4 givenname: Jürgen surname: Bajorath fullname: Bajorath, Jürgen organization: University of Bonn, Bonn Aachen International Center for Information Technology BIT, Life Science Informatics – sequence: 5 givenname: Hongming surname: Chen fullname: Chen, Hongming email: hongming.chen@astrazeneca.com organization: AstraZeneca R&D Gothenburg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29235269$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUlPAyEYJUbjfvVoJvHipZVlFriYNHVNXC56JjPMh2IoVJip8d9LrdYlMXKBD957eby3hVadd4DQHsFDgjE9mhinhxSTCmNC2QraJLzkA1IVZHV5ztkG2o3xCafFaFlxsY42qKCsoKXYRKPRdGqNqjvjXeZ1dg4OQppmkI36zoNTvoWQGZedQHbjZz679hZUb-uQbqJ5cDtoTdc2wu7Hvo3uz07vxheDq9vzy_HoaqCKirBBoYCXDLSGhhaUgSibnAoNShMGOW5wo5pCAGmVIHnLad0AVqoiumx5Qzll2-h4oTvtmwm0ClwXaiunwUzq8Cp9beTPF2ce5YOfyYKzkvMqCRx-CAT_3EPs5MREBdbWDnwfJRFVmeesYCRBD35Bn3wfXPqepClrzgWu5oL73x0trXymmwD5AqCCjzGAlsp071Eng8ZKguW8RznvUS57TLThL9qn8p8EsSC8GAuv_6Dl9eXN2Rf3DVGgsEY |
CitedBy_id | crossref_primary_10_1016_j_matdes_2022_110888 crossref_primary_10_1021_acs_jcim_3c01466 crossref_primary_10_3389_fcimb_2020_00388 crossref_primary_10_3390_app10113769 crossref_primary_10_1021_acs_jcim_1c01289 crossref_primary_10_1021_acs_jmedchem_1c00927 crossref_primary_10_1039_D3SC05281H crossref_primary_10_2174_0113895575271267231123160503 crossref_primary_10_1038_s41529_024_00518_x crossref_primary_10_1016_j_commatsci_2021_110360 crossref_primary_10_1038_s41598_020_78537_2 crossref_primary_10_1088_2632_2153_abe808 crossref_primary_10_1109_JBHI_2020_2977009 crossref_primary_10_4155_fmc_2018_0188 crossref_primary_10_1186_s40779_024_00510_1 crossref_primary_10_1007_s13721_021_00351_1 crossref_primary_10_1016_j_drudis_2020_01_020 crossref_primary_10_1002_minf_201900126 crossref_primary_10_1021_acs_jcim_4c00234 crossref_primary_10_1021_acs_jpcc_0c01195 crossref_primary_10_3389_fchem_2023_1292027 crossref_primary_10_1038_s41587_020_0417_3 crossref_primary_10_1039_D1SC02783B crossref_primary_10_1007_s11030_021_10217_3 crossref_primary_10_1021_acs_jcim_1c00746 crossref_primary_10_1016_j_bmcl_2018_06_046 crossref_primary_10_1016_j_drudis_2018_06_016 crossref_primary_10_1021_acs_chemrev_1c00107 crossref_primary_10_1021_acs_chemrev_8b00728 crossref_primary_10_1073_pnas_2404676121 crossref_primary_10_1186_s13321_022_00599_3 crossref_primary_10_1002_wcms_1651 crossref_primary_10_1093_bib_bbab277 crossref_primary_10_1007_s00894_021_04674_8 crossref_primary_10_1021_acs_jcim_3c00355 crossref_primary_10_1021_acsmedchemlett_0c00088 crossref_primary_10_1002_minf_201800041 crossref_primary_10_1007_s11030_021_10266_8 crossref_primary_10_1109_TKDE_2021_3052150 crossref_primary_10_2196_28114 crossref_primary_10_1016_j_ailsci_2022_100045 crossref_primary_10_4155_fmc_2021_0269 crossref_primary_10_3390_biom12040508 crossref_primary_10_1109_TNNLS_2021_3106392 crossref_primary_10_1007_s10822_021_00379_5 crossref_primary_10_1039_D1CP02963K crossref_primary_10_1021_acs_jpca_0c00042 crossref_primary_10_1039_D1RA03086H crossref_primary_10_1021_acschemneuro_4c00405 crossref_primary_10_1016_j_drudis_2019_07_006 crossref_primary_10_1016_j_drudis_2022_03_006 crossref_primary_10_1016_j_molstruc_2021_131249 crossref_primary_10_1093_bioinformatics_btac296 crossref_primary_10_1021_acsomega_2c02253 crossref_primary_10_1038_s41524_021_00658_7 crossref_primary_10_1038_s41578_018_0005_z crossref_primary_10_1038_s41598_021_81889_y crossref_primary_10_1021_acssuschemeng_3c01191 crossref_primary_10_2477_jccj_2019_0023 crossref_primary_10_1021_acsomega_0c01149 crossref_primary_10_1039_D1CC07035E crossref_primary_10_1186_s13321_019_0397_9 crossref_primary_10_1016_j_drudis_2024_103992 crossref_primary_10_1093_bioinformatics_btad157 crossref_primary_10_1038_s42256_022_00463_x crossref_primary_10_1007_s10994_024_06638_4 crossref_primary_10_1038_s41598_019_47148_x crossref_primary_10_3390_biom13050833 crossref_primary_10_1080_17460441_2018_1547278 crossref_primary_10_1186_s13321_019_0341_z crossref_primary_10_1039_D0CP03620J crossref_primary_10_1186_s13321_023_00766_0 crossref_primary_10_1002_jccs_202300066 crossref_primary_10_1109_TCBB_2024_3477592 crossref_primary_10_1021_acs_jcim_9b00732 crossref_primary_10_1021_acs_jcim_0c01328 crossref_primary_10_1021_acs_jmedchem_0c01148 crossref_primary_10_1038_s41598_021_94897_9 crossref_primary_10_1021_acs_jcim_0c01441 crossref_primary_10_1016_j_compbiomed_2022_105403 crossref_primary_10_1039_C8SC04175J crossref_primary_10_1021_acs_jpca_9b01398 crossref_primary_10_1186_s13321_021_00497_0 crossref_primary_10_1186_s13321_023_00696_x crossref_primary_10_1186_s13321_020_00454_3 crossref_primary_10_1016_j_isci_2022_104661 crossref_primary_10_1038_s41598_020_79682_4 crossref_primary_10_1121_10_0008929 crossref_primary_10_1002_minf_201700153 crossref_primary_10_3389_fphar_2020_00770 crossref_primary_10_1186_s13321_020_00439_2 crossref_primary_10_1021_acs_molpharmaceut_3c00129 crossref_primary_10_1021_acs_jcim_8b00751 crossref_primary_10_1007_s42773_025_00446_2 crossref_primary_10_2174_1573409914666181018141602 crossref_primary_10_1021_acs_jcim_0c00343 crossref_primary_10_2174_1568026623666221017143244 crossref_primary_10_3390_molecules25143250 crossref_primary_10_3390_molecules23102520 crossref_primary_10_1021_acsomega_1c00991 crossref_primary_10_1248_cpb_c19_00625 crossref_primary_10_1021_acsomega_9b04162 crossref_primary_10_1007_s11227_024_06250_2 crossref_primary_10_1039_C9ME00039A crossref_primary_10_1021_acs_jpca_1c08191 crossref_primary_10_1021_acs_jcim_8b00626 crossref_primary_10_1002_ps_8455 crossref_primary_10_1021_acs_jcim_2c00671 crossref_primary_10_3390_biom8040131 crossref_primary_10_1007_s10822_020_00300_6 crossref_primary_10_1038_s41573_019_0050_3 crossref_primary_10_1063_5_0131067 crossref_primary_10_1021_acs_analchem_9b02348 crossref_primary_10_3390_ijms22169099 crossref_primary_10_1177_10943420211010930 crossref_primary_10_1021_acscentsci_9b00576 crossref_primary_10_1016_j_csbj_2022_07_045 crossref_primary_10_1038_s41551_021_00689_x crossref_primary_10_3390_ncrna6040047 crossref_primary_10_1186_s13321_021_00566_4 crossref_primary_10_1002_advs_202101864 crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_1093_bib_bbz144 crossref_primary_10_1088_2632_2153_abcf91 crossref_primary_10_1007_s12257_020_0049_y crossref_primary_10_1080_17460441_2023_2134340 crossref_primary_10_2217_pgs_2018_0008 crossref_primary_10_1021_acs_jcim_4c02019 crossref_primary_10_1002_jcc_27295 crossref_primary_10_1021_acs_jcim_0c00120 crossref_primary_10_1093_mnras_stab588 crossref_primary_10_1021_acs_jcim_3c01736 crossref_primary_10_1016_j_patter_2023_100678 crossref_primary_10_1021_acsomega_2c01404 crossref_primary_10_1371_journal_pone_0255597 crossref_primary_10_3390_antibiotics11101451 crossref_primary_10_1016_j_compchemeng_2024_108989 crossref_primary_10_1002_aic_17971 crossref_primary_10_1021_acs_jcim_0c00915 crossref_primary_10_1021_acs_jcim_1c00469 crossref_primary_10_1093_bib_bbae142 crossref_primary_10_1021_acs_jctc_2c00114 crossref_primary_10_1186_s13321_020_00441_8 crossref_primary_10_3390_s20185021 crossref_primary_10_1016_j_drudis_2024_104133 crossref_primary_10_1021_acs_jcim_8b00839 crossref_primary_10_1016_j_drudis_2022_103356 crossref_primary_10_1021_acs_molpharmaceut_9b00520 crossref_primary_10_1016_j_ces_2022_118119 crossref_primary_10_4155_fmc_2018_0358 crossref_primary_10_1021_acs_jmedchem_3c00485 crossref_primary_10_1021_acs_jcim_9b00266 crossref_primary_10_1021_acs_jcim_9b00367 crossref_primary_10_1002_mef2_18 crossref_primary_10_1021_acs_jmedchem_9b02044 crossref_primary_10_1021_acs_jcim_0c01234 crossref_primary_10_1021_acs_jcim_0c01355 crossref_primary_10_1248_cpb_c23_00039 crossref_primary_10_3390_molecules26227061 crossref_primary_10_1371_journal_pcbi_1008504 crossref_primary_10_1016_j_drudis_2019_03_026 crossref_primary_10_1021_acs_jcim_1c01573 crossref_primary_10_1093_petrology_egae036 crossref_primary_10_1038_s43588_023_00548_6 crossref_primary_10_1007_s10694_021_01109_x crossref_primary_10_1007_s44254_023_00047_x crossref_primary_10_1080_17460441_2022_2019704 crossref_primary_10_1002_wcms_1395 crossref_primary_10_3390_ijms22189983 crossref_primary_10_1186_s13321_020_00425_8 crossref_primary_10_1186_s13321_019_0393_0 crossref_primary_10_3389_fphar_2024_1331062 crossref_primary_10_1021_acs_jcim_3c00735 crossref_primary_10_1242_jcs_262095 crossref_primary_10_1021_acs_chemrev_0c00901 crossref_primary_10_1088_1361_648X_abb895 crossref_primary_10_1111_imr_13236 crossref_primary_10_1038_s41573_023_00832_0 crossref_primary_10_1007_s00894_023_05523_6 crossref_primary_10_1021_acs_jcim_2c00123 crossref_primary_10_1080_17460441_2024_2313475 crossref_primary_10_1186_s13321_024_00829_w crossref_primary_10_1021_acs_jcim_0c01019 crossref_primary_10_1186_s13321_020_00475_y crossref_primary_10_1109_TCBB_2021_3074401 crossref_primary_10_1111_cbdd_13526 crossref_primary_10_1021_acs_jcim_0c01496 crossref_primary_10_1186_s13321_022_00623_6 crossref_primary_10_1021_acs_jcim_2c00258 crossref_primary_10_1038_s41524_023_01099_0 crossref_primary_10_3389_fphar_2020_565644 crossref_primary_10_1021_acs_molpharmaceut_1c00791 crossref_primary_10_1088_2632_2153_abae75 crossref_primary_10_3390_molecules25153446 crossref_primary_10_1016_j_abb_2020_108730 crossref_primary_10_1002_wcms_1408 crossref_primary_10_1186_s13321_018_0287_6 crossref_primary_10_3389_fchem_2022_1012507 crossref_primary_10_1016_j_drudis_2021_09_006 crossref_primary_10_1073_pnas_1818763116 crossref_primary_10_2174_1381612827666210129123231 crossref_primary_10_1002_minf_202300183 crossref_primary_10_1021_acs_jcim_2c01471 crossref_primary_10_1039_D0CP02319A crossref_primary_10_1021_acscentsci_7b00572 crossref_primary_10_1007_s10822_020_00310_4 crossref_primary_10_1186_s13321_020_00473_0 crossref_primary_10_1021_acs_jcim_4c00252 crossref_primary_10_1080_17460441_2018_1465407 crossref_primary_10_1021_acs_molpharmaceut_8b00839 crossref_primary_10_1021_acs_jpcb_1c06437 crossref_primary_10_1038_s42256_020_0174_5 crossref_primary_10_1021_acs_jcim_0c01032 crossref_primary_10_1002_jcc_27315 crossref_primary_10_1016_j_addr_2023_114974 crossref_primary_10_1002_eng2_12274 crossref_primary_10_1002_wcms_1513 crossref_primary_10_3390_kinasesphosphatases1020008 crossref_primary_10_1039_D0CS01065K crossref_primary_10_3390_biom13020393 crossref_primary_10_1093_bib_bbaa407 crossref_primary_10_1146_annurev_matsci_082019_105100 crossref_primary_10_3390_molecules23092384 crossref_primary_10_4155_fmc_2018_0449 |
Cites_doi | 10.1021/ci100050t 10.12688/f1000research.12228.1 10.1016/j.jmgm.2003.10.002 10.1002/wics.101 10.1023/A:1008306431147 10.1186/s13321-017-0203-5 10.1186/1758-2946-1-4 10.1021/acs.jcim.6b00754 10.1186/s13321-017-0235-x 10.1021/acs.jcim.5b00628 10.1093/nar/gkr777 10.1162/neco.1989.1.2.270 10.1038/nchem.1243 10.1021/ci500747n 10.7551/mitpress/3206.001.0001 10.1021/ci034047q 10.1162/neco.1997.9.8.1735 |
ContentType | Journal Article |
Copyright | 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TM 7U7 8FD C1K FR3 JQ2 K9. P64 7X8 5PM |
DOI | 10.1002/minf.201700123 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Biotechnology Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1868-1751 |
EndPage | n/a |
ExternalDocumentID | PMC5836887 29235269 10_1002_minf_201700123 MINF201700123 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Union's Horizon 2020 research and innovation program funderid: 676434 – fundername: European Union's Horizon 2020 research and innovation program grantid: 676434 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 1OC 24P 31~ 33P 3SF 50Y 50Z 52S 52U 52W 53G 5VS 702 8-0 8-1 8-3 8-4 8-5 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HGLYW HVGLF HZ~ J0M LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X PQQKQ Q.N QB0 R.K ROL RX1 SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIH WIK WOHZO WRC WXSBR WYISQ XG1 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QO 7TM 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 JQ2 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5713-5ce863effeb2523e96b429fecf13e40b0bcb59e1dc914d82abe0cc71f6d8b2823 |
IEDL.DBID | DR2 |
ISSN | 1868-1743 1868-1751 |
IngestDate | Thu Aug 21 18:20:31 EDT 2025 Thu Sep 04 17:22:14 EDT 2025 Wed Aug 13 09:54:47 EDT 2025 Thu Apr 03 07:08:36 EDT 2025 Tue Jul 01 04:18:20 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 Wed Jan 22 16:41:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | chemoinformatics deep learning inverse QSAR Autoencoder de novo molecular design |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5713-5ce863effeb2523e96b429fecf13e40b0bcb59e1dc914d82abe0cc71f6d8b2823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2674-799X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201700123 |
PMID | 29235269 |
PQID | 2001889077 |
PQPubID | 2034649 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5836887 proquest_miscellaneous_1976443531 proquest_journals_2001889077 pubmed_primary_29235269 crossref_citationtrail_10_1002_minf_201700123 crossref_primary_10_1002_minf_201700123 wiley_primary_10_1002_minf_201700123_MINF201700123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Molecular informatics |
PublicationTitleAlternate | Mol Inform |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2004; 22 2017; 6 1989; 1 2015; 55 2017; 57 2008 2017 2016 2005 2015 2014 2003 2013 2002 2010; 2 2012; 4 2009; 1 2017; 9 1997; 9 2003; 43 2016; 56 2010; 50 1998; 13 2012; 40 e_1_2_7_6_1 Kingma D. P. (e_1_2_7_36_1) 2014 e_1_2_7_4_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Duvenaud D. (e_1_2_7_18_1) 2015 e_1_2_7_16_1 e_1_2_7_2_1 Goodfellow I. J. (e_1_2_7_15_1) 2014 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Simard P. Y. (e_1_2_7_23_1) 2003 e_1_2_7_26_1 Goodfellow I. (e_1_2_7_19_1) 2016 Klambauer G. (e_1_2_7_24_1) 2017 e_1_2_7_27_1 Jaeger H. (e_1_2_7_28_1) 2002 Lei T. (e_1_2_7_22_1) 2015 e_1_2_7_30_1 Gómez-Bombarelli R. (e_1_2_7_13_1) 2016 Kadurin A. (e_1_2_7_14_1) 2017 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 Scholz M. (e_1_2_7_17_1) 2008 Kingma D. P. (e_1_2_7_25_1) 2013 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Jaques N. (e_1_2_7_5_1) 2016 Makhzani A. (e_1_2_7_29_1) 2015 Segler M. H. S. (e_1_2_7_3_1) 2017 Chung J. (e_1_2_7_21_1) 2014 |
References_xml | – year: 2013 publication-title: ArXiv:1312.6114 Cs Stat – volume: 1 start-page: 4 year: 2009 publication-title: J. Cheminf. – year: 2005 – year: 2014 publication-title: ArXiv:1412.6980 Cs – volume: 2 start-page: 433 year: 2010 end-page: 459 publication-title: Wiley Interdiscip. Rev. Comput. Stat. – volume: 40 start-page: 1100 year: 2012 end-page: 1107 publication-title: Nucleic Acids Res. – start-page: 958 year: 2003 – volume: 43 start-page: 1200 year: 2003 end-page: 1207 publication-title: J. Chem. Inf. Comput. Sci. – volume: 6 start-page: 1285 year: 2017 publication-title: F1000Research – volume: 9 start-page: 17 year: 2017 publication-title: J. Cheminf. – year: 2016 publication-title: ArXiv:1610.02415 Phys. – year: 2014 publication-title: ArXiv:1412.3555 Cs – volume: 56 start-page: 286 year: 2016 end-page: 299 publication-title: J. Chem. Inf. Model. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 publication-title: Neural Comput – year: 2014 publication-title: ArXiv:1406.2661 Cs Stat – year: 2016 – volume: 9 start-page: 48 year: 2017 publication-title: J. Cheminf. – year: 2017 publication-title: ArXiv:1701.01329 Phys. Stat – volume: 13 start-page: 455 year: 1998 end-page: 492 publication-title: J. Glob. Optim. – volume: 22 start-page: 263 year: 2004 end-page: 273 publication-title: J. Mol. Graphics – year: 2002 – start-page: 44 year: 2008 end-page: 67 publication-title: SpringerLink – volume: 4 start-page: 90 year: 2012 end-page: 98 publication-title: Nat. Chem. – volume: 50 start-page: 742 year: 2010 end-page: 754 publication-title: J. Chem. Inf. Model. – volume: 55 start-page: 263 year: 2015 end-page: 274 publication-title: J. Chem. Inf. Model. – year: 2015 publication-title: ArXiv:1508.04112 Cs – year: 2015 publication-title: ArXiv:1511.05644 Cs – year: 2017 publication-title: ArXiv:1706.02515 Cs Stat – volume: 57 start-page: 875 year: 2017 end-page: 882 publication-title: J. Chem. Inf. Model. – year: 2015 publication-title: ArXiv:1509.09292 Cs Stat – year: 2017 publication-title: Mol. Pharm. – volume: 1 start-page: 270 year: 1989 end-page: 280 publication-title: Neural Comput. – year: 2016 publication-title: ArXiv:1611.02796 Cs – ident: e_1_2_7_34_1 – year: 2014 ident: e_1_2_7_36_1 publication-title: ArXiv:1412.6980 Cs – ident: e_1_2_7_39_1 doi: 10.1021/ci100050t – ident: e_1_2_7_12_1 doi: 10.12688/f1000research.12228.1 – ident: e_1_2_7_8_1 doi: 10.1016/j.jmgm.2003.10.002 – ident: e_1_2_7_16_1 doi: 10.1002/wics.101 – start-page: 44 year: 2008 ident: e_1_2_7_17_1 publication-title: SpringerLink – ident: e_1_2_7_32_1 doi: 10.1023/A:1008306431147 – ident: e_1_2_7_37_1 doi: 10.1186/s13321-017-0203-5 – volume-title: A Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the “Echo State Network” Approach year: 2002 ident: e_1_2_7_28_1 – year: 2015 ident: e_1_2_7_22_1 publication-title: ArXiv:1508.04112 Cs – year: 2016 ident: e_1_2_7_13_1 publication-title: ArXiv:1610.02415 Phys. – year: 2016 ident: e_1_2_7_5_1 publication-title: ArXiv:1611.02796 Cs – ident: e_1_2_7_9_1 doi: 10.1186/1758-2946-1-4 – ident: e_1_2_7_4_1 doi: 10.1021/acs.jcim.6b00754 – year: 2017 ident: e_1_2_7_24_1 publication-title: ArXiv:1706.02515 Cs Stat – ident: e_1_2_7_33_1 – ident: e_1_2_7_7_1 doi: 10.1186/s13321-017-0235-x – year: 2014 ident: e_1_2_7_21_1 publication-title: ArXiv:1412.3555 Cs – year: 2015 ident: e_1_2_7_29_1 publication-title: ArXiv:1511.05644 Cs – volume-title: Deep Learning year: 2016 ident: e_1_2_7_19_1 – year: 2014 ident: e_1_2_7_15_1 publication-title: ArXiv:1406.2661 Cs Stat – ident: e_1_2_7_10_1 doi: 10.1021/acs.jcim.5b00628 – ident: e_1_2_7_35_1 doi: 10.1093/nar/gkr777 – start-page: 958 volume-title: Proc. Seventh Int. Conf. Doc. Anal. Recognit. – Vol. 2 year: 2003 ident: e_1_2_7_23_1 – year: 2015 ident: e_1_2_7_18_1 publication-title: ArXiv:1509.09292 Cs Stat – year: 2017 ident: e_1_2_7_3_1 publication-title: ArXiv:1701.01329 Phys. Stat – ident: e_1_2_7_27_1 doi: 10.1162/neco.1989.1.2.270 – ident: e_1_2_7_30_1 – ident: e_1_2_7_38_1 – ident: e_1_2_7_6_1 doi: 10.1038/nchem.1243 – year: 2013 ident: e_1_2_7_25_1 publication-title: ArXiv:1312.6114 Cs Stat – ident: e_1_2_7_2_1 doi: 10.1021/ci500747n – ident: e_1_2_7_31_1 doi: 10.7551/mitpress/3206.001.0001 – ident: e_1_2_7_11_1 doi: 10.1021/ci034047q – ident: e_1_2_7_20_1 doi: 10.1162/neco.1997.9.8.1735 – year: 2017 ident: e_1_2_7_14_1 publication-title: Mol. Pharm. – ident: e_1_2_7_26_1 |
SSID | ssj0000326789 |
Score | 2.6066067 |
Snippet | A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Autoencoder Chemical fingerprinting chemoinformatics Computational chemistry Computer applications de novo molecular design Deep Learning Dopamine Drug Design Energy management inverse QSAR Machine learning Pharmacology Physiochemistry Quantitative Structure-Activity Relationship |
Title | Application of Generative Autoencoder in De Novo Molecular Design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201700123 https://www.ncbi.nlm.nih.gov/pubmed/29235269 https://www.proquest.com/docview/2001889077 https://www.proquest.com/docview/1976443531 https://pubmed.ncbi.nlm.nih.gov/PMC5836887 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xnvayjW1s2Rgy0gQvBGzHiZ3HaqwCpFbVBBJvke04GgKSibaT2K_nHDcpHUKT2FsSO05s3_k-2-fvAL7qqg2JI2NnrIlFTm2sqgQVjxrODEUDY_1B4dE4Oz4XpxfpxYNT_IEfol9w85rRjtdewbWZHi5JQ2-wB7xrlmxhAQ7CLMk8ef7RD94vslAEJ7INg-dZ4WOPvjviRsoPV0tYNUyP0OZjp8mHYLa1RsPXoLt6BCeUq4P5zBzYP39RPP5PRd_AqwVUJYMgWxuw5uq3sDsJXNd3--RseXRruk92yWTJgn33DgaD5dY4aSoS-K394EoG81nj-TNLd0sua3LkyLj53ZBRF6kXn3i3kvdwPvx-9u04XsRriG2Kc904tU5lifdDMRznty7PDFq7ytmKJU5QQ1Ec0tyx0uZMlIpr46i1klVZqQxO_ZJNWK-b2n0EIrUUWCanGpXYptyUuhRa8kTkSqQ0iyDuOquwCzJzH1Pjugg0zLzwrVb0rRbBXp__V6DxeDLnVtf3xUKdpz5WJ1Mqp1JGsNMnoyL63RVdu2Y-LRgCO4HgM2ERfAii0n-KI4z2odwjkCtC1GfwJN-rKfXlz5bsO1VJhoYgAt7KyD_-vhidjIf93afnvPQZXuK1CstMW7A-u527Lwi8ZmYbXnAx2W5V7B5VXSaQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BeIAXvj8CA4yExsuyOY4TO48VUHWwVhPqJN6i2HHEBCRobZHGX8-d3aSUCSHBY2zHie0738_2-XcAL6vGh8RRsTPWxLLgNtZNiorHjUgMRwNj6aLwdJZPTuW7j1nvTUh3YQI_xLDhRprh52tScNqQPtywhn7FISDfLOVxwVW45g_pCBd9EMM2C0d4onwgPOKFjwl_99SNXBxuV7Ftmi7hzctuk7_CWW-PxrfA9C0JbiifD1ZLc2B__Eby-F9NvQ0312iVjYJ43YErrr0LeyeB7vpin803t7cW-2yPnWyIsC_uwWi0OR1nXcMCxTXNr2y0WnZEoVm7c3bWsjeOzbrvHZv2wXoxhTxL7sPp-O389SReh2yIbYbL3TizTucpuaIYgUtcV-QGDV7jbJOkTnLDUSKywiW1LRJZa1EZx61VSZPX2uDqL30AO23XukfAVKUk1il4hXpsM2HqqpaVEqkstMx4HkHcj1Zp13zmFFbjSxmYmEVJvVYOvRbBq6H8t8Dk8ceSu_3gl2uNXlC4zkTrgisVwYshG3WRDliq1nWrRZkgtpOIP9MkgodBVoZPCUTSFM09ArUlRUMB4vnezmnPPnm-70ynOdqCCIQXkr_8fTk9mo2Hp8f_8tJzuD6ZT4_L46PZ-ydwA9N12HXahZ3l-co9RRy2NM-8pv0ExFIp1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tTEJ7mWCDLYwPT0LwQoTtOLHzWAEVDFr1ASTeothxBNKWINoi8d_vLmlTKoQm8RjH-dCdz_c7-_w7gP28bEri6NBbZ0OVcheaMkLD41YKy9HBODooPBgm5zfq9218--IUf8sP0S24kWU08zUZ-ENRHi9IQ_-iBig1Szew4CN8Ujj4aIxLNepWWTiiE93UwSNa-JDg95y5kcvj5Vcse6ZXcPN11uRLNNu4o_4afJnhSNZrFb8OH3z1FQ5GLRH18xG7XpyrGh-xAzZaUFQ_f4Neb7FvzeqSteTTNPOx3nRSE7ll4R_ZfcVOPRvWTzUbzMvoYgvlfGzATf_s-uQ8nBVTCF2MgWgYO2-SiJJErMTg06eJRVdUeleKyCtuOeoqTr0oXCpUYWRuPXdOizIpjMW4LNqElaqu_A9gOtcoayF5jhbmYmmLvFC5lpFKjYp5EkA4F2TmZkzjVPDiT9ZyJMuMBJ91gg_gsOv_0HJsvNlze66XbGZrYyqkKYzBIF8H8Ku7jVZCWx955evpOBOIuhQiw0gE8L1VY_cpiRiX6qwHoJcU3HUgBu7lO9X9XcPEHZsowVk6ANkMhf_8fTa4GPa7q633PLQHq6PTfnZ1Mbz8CZ-x2bTLQduwMnmc-h0ESBO729jAPy2LByY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Generative+Autoencoder+in+De+Novo+Molecular+Design&rft.jtitle=Molecular+informatics&rft.au=Blaschke%2C+Thomas&rft.au=Olivecrona%2C+Marcus&rft.au=Engkvist%2C+Ola&rft.au=Bajorath%2C+Jurgen&rft.date=2018-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1868-1743&rft.eissn=1868-1751&rft.volume=37&rft.issue=1-2&rft_id=info:doi/10.1002%2Fminf.201700123&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-1743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-1743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-1743&client=summon |