Application of Generative Autoencoder in De Novo Molecular Design

A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative auto...

Full description

Saved in:
Bibliographic Details
Published inMolecular informatics Vol. 37; no. 1-2
Main Authors Blaschke, Thomas, Olivecrona, Marcus, Engkvist, Ola, Bajorath, Jürgen, Chen, Hongming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1868-1743
1868-1751
1868-1751
DOI10.1002/minf.201700123

Cover

Abstract A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified.
AbstractList A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified.
A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type2 and compounds similar to known active compounds not included in the trainings set were identified.
A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified.A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified.
Author Olivecrona, Marcus
Engkvist, Ola
Bajorath, Jürgen
Blaschke, Thomas
Chen, Hongming
AuthorAffiliation 2 University of Bonn, Bonn Aachen International Center for Information Technology BIT, Life Science Informatics Dahlmannstrasse 2 53113 Bonn Germany
1 Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit AstraZeneca R&D Gothenburg 431 83 Mölndal Sweden
AuthorAffiliation_xml – name: 1 Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit AstraZeneca R&D Gothenburg 431 83 Mölndal Sweden
– name: 2 University of Bonn, Bonn Aachen International Center for Information Technology BIT, Life Science Informatics Dahlmannstrasse 2 53113 Bonn Germany
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0003-2674-799X
  surname: Blaschke
  fullname: Blaschke, Thomas
  email: thomas.blaschke@uni-bonn.de
  organization: University of Bonn, Bonn Aachen International Center for Information Technology BIT, Life Science Informatics
– sequence: 2
  givenname: Marcus
  surname: Olivecrona
  fullname: Olivecrona, Marcus
  organization: AstraZeneca R&D Gothenburg
– sequence: 3
  givenname: Ola
  surname: Engkvist
  fullname: Engkvist, Ola
  organization: AstraZeneca R&D Gothenburg
– sequence: 4
  givenname: Jürgen
  surname: Bajorath
  fullname: Bajorath, Jürgen
  organization: University of Bonn, Bonn Aachen International Center for Information Technology BIT, Life Science Informatics
– sequence: 5
  givenname: Hongming
  surname: Chen
  fullname: Chen, Hongming
  email: hongming.chen@astrazeneca.com
  organization: AstraZeneca R&D Gothenburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29235269$$D View this record in MEDLINE/PubMed
BookMark eNqFUUlPAyEYJUbjfvVoJvHipZVlFriYNHVNXC56JjPMh2IoVJip8d9LrdYlMXKBD957eby3hVadd4DQHsFDgjE9mhinhxSTCmNC2QraJLzkA1IVZHV5ztkG2o3xCafFaFlxsY42qKCsoKXYRKPRdGqNqjvjXeZ1dg4OQppmkI36zoNTvoWQGZedQHbjZz679hZUb-uQbqJ5cDtoTdc2wu7Hvo3uz07vxheDq9vzy_HoaqCKirBBoYCXDLSGhhaUgSibnAoNShMGOW5wo5pCAGmVIHnLad0AVqoiumx5Qzll2-h4oTvtmwm0ClwXaiunwUzq8Cp9beTPF2ce5YOfyYKzkvMqCRx-CAT_3EPs5MREBdbWDnwfJRFVmeesYCRBD35Bn3wfXPqepClrzgWu5oL73x0trXymmwD5AqCCjzGAlsp071Eng8ZKguW8RznvUS57TLThL9qn8p8EsSC8GAuv_6Dl9eXN2Rf3DVGgsEY
CitedBy_id crossref_primary_10_1016_j_matdes_2022_110888
crossref_primary_10_1021_acs_jcim_3c01466
crossref_primary_10_3389_fcimb_2020_00388
crossref_primary_10_3390_app10113769
crossref_primary_10_1021_acs_jcim_1c01289
crossref_primary_10_1021_acs_jmedchem_1c00927
crossref_primary_10_1039_D3SC05281H
crossref_primary_10_2174_0113895575271267231123160503
crossref_primary_10_1038_s41529_024_00518_x
crossref_primary_10_1016_j_commatsci_2021_110360
crossref_primary_10_1038_s41598_020_78537_2
crossref_primary_10_1088_2632_2153_abe808
crossref_primary_10_1109_JBHI_2020_2977009
crossref_primary_10_4155_fmc_2018_0188
crossref_primary_10_1186_s40779_024_00510_1
crossref_primary_10_1007_s13721_021_00351_1
crossref_primary_10_1016_j_drudis_2020_01_020
crossref_primary_10_1002_minf_201900126
crossref_primary_10_1021_acs_jcim_4c00234
crossref_primary_10_1021_acs_jpcc_0c01195
crossref_primary_10_3389_fchem_2023_1292027
crossref_primary_10_1038_s41587_020_0417_3
crossref_primary_10_1039_D1SC02783B
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_1021_acs_jcim_1c00746
crossref_primary_10_1016_j_bmcl_2018_06_046
crossref_primary_10_1016_j_drudis_2018_06_016
crossref_primary_10_1021_acs_chemrev_1c00107
crossref_primary_10_1021_acs_chemrev_8b00728
crossref_primary_10_1073_pnas_2404676121
crossref_primary_10_1186_s13321_022_00599_3
crossref_primary_10_1002_wcms_1651
crossref_primary_10_1093_bib_bbab277
crossref_primary_10_1007_s00894_021_04674_8
crossref_primary_10_1021_acs_jcim_3c00355
crossref_primary_10_1021_acsmedchemlett_0c00088
crossref_primary_10_1002_minf_201800041
crossref_primary_10_1007_s11030_021_10266_8
crossref_primary_10_1109_TKDE_2021_3052150
crossref_primary_10_2196_28114
crossref_primary_10_1016_j_ailsci_2022_100045
crossref_primary_10_4155_fmc_2021_0269
crossref_primary_10_3390_biom12040508
crossref_primary_10_1109_TNNLS_2021_3106392
crossref_primary_10_1007_s10822_021_00379_5
crossref_primary_10_1039_D1CP02963K
crossref_primary_10_1021_acs_jpca_0c00042
crossref_primary_10_1039_D1RA03086H
crossref_primary_10_1021_acschemneuro_4c00405
crossref_primary_10_1016_j_drudis_2019_07_006
crossref_primary_10_1016_j_drudis_2022_03_006
crossref_primary_10_1016_j_molstruc_2021_131249
crossref_primary_10_1093_bioinformatics_btac296
crossref_primary_10_1021_acsomega_2c02253
crossref_primary_10_1038_s41524_021_00658_7
crossref_primary_10_1038_s41578_018_0005_z
crossref_primary_10_1038_s41598_021_81889_y
crossref_primary_10_1021_acssuschemeng_3c01191
crossref_primary_10_2477_jccj_2019_0023
crossref_primary_10_1021_acsomega_0c01149
crossref_primary_10_1039_D1CC07035E
crossref_primary_10_1186_s13321_019_0397_9
crossref_primary_10_1016_j_drudis_2024_103992
crossref_primary_10_1093_bioinformatics_btad157
crossref_primary_10_1038_s42256_022_00463_x
crossref_primary_10_1007_s10994_024_06638_4
crossref_primary_10_1038_s41598_019_47148_x
crossref_primary_10_3390_biom13050833
crossref_primary_10_1080_17460441_2018_1547278
crossref_primary_10_1186_s13321_019_0341_z
crossref_primary_10_1039_D0CP03620J
crossref_primary_10_1186_s13321_023_00766_0
crossref_primary_10_1002_jccs_202300066
crossref_primary_10_1109_TCBB_2024_3477592
crossref_primary_10_1021_acs_jcim_9b00732
crossref_primary_10_1021_acs_jcim_0c01328
crossref_primary_10_1021_acs_jmedchem_0c01148
crossref_primary_10_1038_s41598_021_94897_9
crossref_primary_10_1021_acs_jcim_0c01441
crossref_primary_10_1016_j_compbiomed_2022_105403
crossref_primary_10_1039_C8SC04175J
crossref_primary_10_1021_acs_jpca_9b01398
crossref_primary_10_1186_s13321_021_00497_0
crossref_primary_10_1186_s13321_023_00696_x
crossref_primary_10_1186_s13321_020_00454_3
crossref_primary_10_1016_j_isci_2022_104661
crossref_primary_10_1038_s41598_020_79682_4
crossref_primary_10_1121_10_0008929
crossref_primary_10_1002_minf_201700153
crossref_primary_10_3389_fphar_2020_00770
crossref_primary_10_1186_s13321_020_00439_2
crossref_primary_10_1021_acs_molpharmaceut_3c00129
crossref_primary_10_1021_acs_jcim_8b00751
crossref_primary_10_1007_s42773_025_00446_2
crossref_primary_10_2174_1573409914666181018141602
crossref_primary_10_1021_acs_jcim_0c00343
crossref_primary_10_2174_1568026623666221017143244
crossref_primary_10_3390_molecules25143250
crossref_primary_10_3390_molecules23102520
crossref_primary_10_1021_acsomega_1c00991
crossref_primary_10_1248_cpb_c19_00625
crossref_primary_10_1021_acsomega_9b04162
crossref_primary_10_1007_s11227_024_06250_2
crossref_primary_10_1039_C9ME00039A
crossref_primary_10_1021_acs_jpca_1c08191
crossref_primary_10_1021_acs_jcim_8b00626
crossref_primary_10_1002_ps_8455
crossref_primary_10_1021_acs_jcim_2c00671
crossref_primary_10_3390_biom8040131
crossref_primary_10_1007_s10822_020_00300_6
crossref_primary_10_1038_s41573_019_0050_3
crossref_primary_10_1063_5_0131067
crossref_primary_10_1021_acs_analchem_9b02348
crossref_primary_10_3390_ijms22169099
crossref_primary_10_1177_10943420211010930
crossref_primary_10_1021_acscentsci_9b00576
crossref_primary_10_1016_j_csbj_2022_07_045
crossref_primary_10_1038_s41551_021_00689_x
crossref_primary_10_3390_ncrna6040047
crossref_primary_10_1186_s13321_021_00566_4
crossref_primary_10_1002_advs_202101864
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_1093_bib_bbz144
crossref_primary_10_1088_2632_2153_abcf91
crossref_primary_10_1007_s12257_020_0049_y
crossref_primary_10_1080_17460441_2023_2134340
crossref_primary_10_2217_pgs_2018_0008
crossref_primary_10_1021_acs_jcim_4c02019
crossref_primary_10_1002_jcc_27295
crossref_primary_10_1021_acs_jcim_0c00120
crossref_primary_10_1093_mnras_stab588
crossref_primary_10_1021_acs_jcim_3c01736
crossref_primary_10_1016_j_patter_2023_100678
crossref_primary_10_1021_acsomega_2c01404
crossref_primary_10_1371_journal_pone_0255597
crossref_primary_10_3390_antibiotics11101451
crossref_primary_10_1016_j_compchemeng_2024_108989
crossref_primary_10_1002_aic_17971
crossref_primary_10_1021_acs_jcim_0c00915
crossref_primary_10_1021_acs_jcim_1c00469
crossref_primary_10_1093_bib_bbae142
crossref_primary_10_1021_acs_jctc_2c00114
crossref_primary_10_1186_s13321_020_00441_8
crossref_primary_10_3390_s20185021
crossref_primary_10_1016_j_drudis_2024_104133
crossref_primary_10_1021_acs_jcim_8b00839
crossref_primary_10_1016_j_drudis_2022_103356
crossref_primary_10_1021_acs_molpharmaceut_9b00520
crossref_primary_10_1016_j_ces_2022_118119
crossref_primary_10_4155_fmc_2018_0358
crossref_primary_10_1021_acs_jmedchem_3c00485
crossref_primary_10_1021_acs_jcim_9b00266
crossref_primary_10_1021_acs_jcim_9b00367
crossref_primary_10_1002_mef2_18
crossref_primary_10_1021_acs_jmedchem_9b02044
crossref_primary_10_1021_acs_jcim_0c01234
crossref_primary_10_1021_acs_jcim_0c01355
crossref_primary_10_1248_cpb_c23_00039
crossref_primary_10_3390_molecules26227061
crossref_primary_10_1371_journal_pcbi_1008504
crossref_primary_10_1016_j_drudis_2019_03_026
crossref_primary_10_1021_acs_jcim_1c01573
crossref_primary_10_1093_petrology_egae036
crossref_primary_10_1038_s43588_023_00548_6
crossref_primary_10_1007_s10694_021_01109_x
crossref_primary_10_1007_s44254_023_00047_x
crossref_primary_10_1080_17460441_2022_2019704
crossref_primary_10_1002_wcms_1395
crossref_primary_10_3390_ijms22189983
crossref_primary_10_1186_s13321_020_00425_8
crossref_primary_10_1186_s13321_019_0393_0
crossref_primary_10_3389_fphar_2024_1331062
crossref_primary_10_1021_acs_jcim_3c00735
crossref_primary_10_1242_jcs_262095
crossref_primary_10_1021_acs_chemrev_0c00901
crossref_primary_10_1088_1361_648X_abb895
crossref_primary_10_1111_imr_13236
crossref_primary_10_1038_s41573_023_00832_0
crossref_primary_10_1007_s00894_023_05523_6
crossref_primary_10_1021_acs_jcim_2c00123
crossref_primary_10_1080_17460441_2024_2313475
crossref_primary_10_1186_s13321_024_00829_w
crossref_primary_10_1021_acs_jcim_0c01019
crossref_primary_10_1186_s13321_020_00475_y
crossref_primary_10_1109_TCBB_2021_3074401
crossref_primary_10_1111_cbdd_13526
crossref_primary_10_1021_acs_jcim_0c01496
crossref_primary_10_1186_s13321_022_00623_6
crossref_primary_10_1021_acs_jcim_2c00258
crossref_primary_10_1038_s41524_023_01099_0
crossref_primary_10_3389_fphar_2020_565644
crossref_primary_10_1021_acs_molpharmaceut_1c00791
crossref_primary_10_1088_2632_2153_abae75
crossref_primary_10_3390_molecules25153446
crossref_primary_10_1016_j_abb_2020_108730
crossref_primary_10_1002_wcms_1408
crossref_primary_10_1186_s13321_018_0287_6
crossref_primary_10_3389_fchem_2022_1012507
crossref_primary_10_1016_j_drudis_2021_09_006
crossref_primary_10_1073_pnas_1818763116
crossref_primary_10_2174_1381612827666210129123231
crossref_primary_10_1002_minf_202300183
crossref_primary_10_1021_acs_jcim_2c01471
crossref_primary_10_1039_D0CP02319A
crossref_primary_10_1021_acscentsci_7b00572
crossref_primary_10_1007_s10822_020_00310_4
crossref_primary_10_1186_s13321_020_00473_0
crossref_primary_10_1021_acs_jcim_4c00252
crossref_primary_10_1080_17460441_2018_1465407
crossref_primary_10_1021_acs_molpharmaceut_8b00839
crossref_primary_10_1021_acs_jpcb_1c06437
crossref_primary_10_1038_s42256_020_0174_5
crossref_primary_10_1021_acs_jcim_0c01032
crossref_primary_10_1002_jcc_27315
crossref_primary_10_1016_j_addr_2023_114974
crossref_primary_10_1002_eng2_12274
crossref_primary_10_1002_wcms_1513
crossref_primary_10_3390_kinasesphosphatases1020008
crossref_primary_10_1039_D0CS01065K
crossref_primary_10_3390_biom13020393
crossref_primary_10_1093_bib_bbaa407
crossref_primary_10_1146_annurev_matsci_082019_105100
crossref_primary_10_3390_molecules23092384
crossref_primary_10_4155_fmc_2018_0449
Cites_doi 10.1021/ci100050t
10.12688/f1000research.12228.1
10.1016/j.jmgm.2003.10.002
10.1002/wics.101
10.1023/A:1008306431147
10.1186/s13321-017-0203-5
10.1186/1758-2946-1-4
10.1021/acs.jcim.6b00754
10.1186/s13321-017-0235-x
10.1021/acs.jcim.5b00628
10.1093/nar/gkr777
10.1162/neco.1989.1.2.270
10.1038/nchem.1243
10.1021/ci500747n
10.7551/mitpress/3206.001.0001
10.1021/ci034047q
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
7U7
8FD
C1K
FR3
JQ2
K9.
P64
7X8
5PM
DOI 10.1002/minf.201700123
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Biotechnology Research Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1868-1751
EndPage n/a
ExternalDocumentID PMC5836887
29235269
10_1002_minf_201700123
MINF201700123
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union's Horizon 2020 research and innovation program
  funderid: 676434
– fundername: European Union's Horizon 2020 research and innovation program
  grantid: 676434
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
1OC
24P
31~
33P
3SF
50Y
50Z
52S
52U
52W
53G
5VS
702
8-0
8-1
8-3
8-4
8-5
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HGLYW
HVGLF
HZ~
J0M
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
PQQKQ
Q.N
QB0
R.K
ROL
RX1
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WRC
WXSBR
WYISQ
XG1
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7TM
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
JQ2
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5713-5ce863effeb2523e96b429fecf13e40b0bcb59e1dc914d82abe0cc71f6d8b2823
IEDL.DBID DR2
ISSN 1868-1743
1868-1751
IngestDate Thu Aug 21 18:20:31 EDT 2025
Thu Sep 04 17:22:14 EDT 2025
Wed Aug 13 09:54:47 EDT 2025
Thu Apr 03 07:08:36 EDT 2025
Tue Jul 01 04:18:20 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
Wed Jan 22 16:41:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords chemoinformatics
deep learning
inverse QSAR
Autoencoder
de novo molecular design
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5713-5ce863effeb2523e96b429fecf13e40b0bcb59e1dc914d82abe0cc71f6d8b2823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2674-799X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201700123
PMID 29235269
PQID 2001889077
PQPubID 2034649
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5836887
proquest_miscellaneous_1976443531
proquest_journals_2001889077
pubmed_primary_29235269
crossref_citationtrail_10_1002_minf_201700123
crossref_primary_10_1002_minf_201700123
wiley_primary_10_1002_minf_201700123_MINF201700123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Molecular informatics
PublicationTitleAlternate Mol Inform
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2004; 22
2017; 6
1989; 1
2015; 55
2017; 57
2008
2017
2016
2005
2015
2014
2003
2013
2002
2010; 2
2012; 4
2009; 1
2017; 9
1997; 9
2003; 43
2016; 56
2010; 50
1998; 13
2012; 40
e_1_2_7_6_1
Kingma D. P. (e_1_2_7_36_1) 2014
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Duvenaud D. (e_1_2_7_18_1) 2015
e_1_2_7_16_1
e_1_2_7_2_1
Goodfellow I. J. (e_1_2_7_15_1) 2014
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Simard P. Y. (e_1_2_7_23_1) 2003
e_1_2_7_26_1
Goodfellow I. (e_1_2_7_19_1) 2016
Klambauer G. (e_1_2_7_24_1) 2017
e_1_2_7_27_1
Jaeger H. (e_1_2_7_28_1) 2002
Lei T. (e_1_2_7_22_1) 2015
e_1_2_7_30_1
Gómez-Bombarelli R. (e_1_2_7_13_1) 2016
Kadurin A. (e_1_2_7_14_1) 2017
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
Scholz M. (e_1_2_7_17_1) 2008
Kingma D. P. (e_1_2_7_25_1) 2013
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Jaques N. (e_1_2_7_5_1) 2016
Makhzani A. (e_1_2_7_29_1) 2015
Segler M. H. S. (e_1_2_7_3_1) 2017
Chung J. (e_1_2_7_21_1) 2014
References_xml – year: 2013
  publication-title: ArXiv:1312.6114 Cs Stat
– volume: 1
  start-page: 4
  year: 2009
  publication-title: J. Cheminf.
– year: 2005
– year: 2014
  publication-title: ArXiv:1412.6980 Cs
– volume: 2
  start-page: 433
  year: 2010
  end-page: 459
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– volume: 40
  start-page: 1100
  year: 2012
  end-page: 1107
  publication-title: Nucleic Acids Res.
– start-page: 958
  year: 2003
– volume: 43
  start-page: 1200
  year: 2003
  end-page: 1207
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 6
  start-page: 1285
  year: 2017
  publication-title: F1000Research
– volume: 9
  start-page: 17
  year: 2017
  publication-title: J. Cheminf.
– year: 2016
  publication-title: ArXiv:1610.02415 Phys.
– year: 2014
  publication-title: ArXiv:1412.3555 Cs
– volume: 56
  start-page: 286
  year: 2016
  end-page: 299
  publication-title: J. Chem. Inf. Model.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  publication-title: Neural Comput
– year: 2014
  publication-title: ArXiv:1406.2661 Cs Stat
– year: 2016
– volume: 9
  start-page: 48
  year: 2017
  publication-title: J. Cheminf.
– year: 2017
  publication-title: ArXiv:1701.01329 Phys. Stat
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  publication-title: J. Glob. Optim.
– volume: 22
  start-page: 263
  year: 2004
  end-page: 273
  publication-title: J. Mol. Graphics
– year: 2002
– start-page: 44
  year: 2008
  end-page: 67
  publication-title: SpringerLink
– volume: 4
  start-page: 90
  year: 2012
  end-page: 98
  publication-title: Nat. Chem.
– volume: 50
  start-page: 742
  year: 2010
  end-page: 754
  publication-title: J. Chem. Inf. Model.
– volume: 55
  start-page: 263
  year: 2015
  end-page: 274
  publication-title: J. Chem. Inf. Model.
– year: 2015
  publication-title: ArXiv:1508.04112 Cs
– year: 2015
  publication-title: ArXiv:1511.05644 Cs
– year: 2017
  publication-title: ArXiv:1706.02515 Cs Stat
– volume: 57
  start-page: 875
  year: 2017
  end-page: 882
  publication-title: J. Chem. Inf. Model.
– year: 2015
  publication-title: ArXiv:1509.09292 Cs Stat
– year: 2017
  publication-title: Mol. Pharm.
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  publication-title: Neural Comput.
– year: 2016
  publication-title: ArXiv:1611.02796 Cs
– ident: e_1_2_7_34_1
– year: 2014
  ident: e_1_2_7_36_1
  publication-title: ArXiv:1412.6980 Cs
– ident: e_1_2_7_39_1
  doi: 10.1021/ci100050t
– ident: e_1_2_7_12_1
  doi: 10.12688/f1000research.12228.1
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jmgm.2003.10.002
– ident: e_1_2_7_16_1
  doi: 10.1002/wics.101
– start-page: 44
  year: 2008
  ident: e_1_2_7_17_1
  publication-title: SpringerLink
– ident: e_1_2_7_32_1
  doi: 10.1023/A:1008306431147
– ident: e_1_2_7_37_1
  doi: 10.1186/s13321-017-0203-5
– volume-title: A Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the “Echo State Network” Approach
  year: 2002
  ident: e_1_2_7_28_1
– year: 2015
  ident: e_1_2_7_22_1
  publication-title: ArXiv:1508.04112 Cs
– year: 2016
  ident: e_1_2_7_13_1
  publication-title: ArXiv:1610.02415 Phys.
– year: 2016
  ident: e_1_2_7_5_1
  publication-title: ArXiv:1611.02796 Cs
– ident: e_1_2_7_9_1
  doi: 10.1186/1758-2946-1-4
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.jcim.6b00754
– year: 2017
  ident: e_1_2_7_24_1
  publication-title: ArXiv:1706.02515 Cs Stat
– ident: e_1_2_7_33_1
– ident: e_1_2_7_7_1
  doi: 10.1186/s13321-017-0235-x
– year: 2014
  ident: e_1_2_7_21_1
  publication-title: ArXiv:1412.3555 Cs
– year: 2015
  ident: e_1_2_7_29_1
  publication-title: ArXiv:1511.05644 Cs
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_7_19_1
– year: 2014
  ident: e_1_2_7_15_1
  publication-title: ArXiv:1406.2661 Cs Stat
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.jcim.5b00628
– ident: e_1_2_7_35_1
  doi: 10.1093/nar/gkr777
– start-page: 958
  volume-title: Proc. Seventh Int. Conf. Doc. Anal. Recognit. – Vol. 2
  year: 2003
  ident: e_1_2_7_23_1
– year: 2015
  ident: e_1_2_7_18_1
  publication-title: ArXiv:1509.09292 Cs Stat
– year: 2017
  ident: e_1_2_7_3_1
  publication-title: ArXiv:1701.01329 Phys. Stat
– ident: e_1_2_7_27_1
  doi: 10.1162/neco.1989.1.2.270
– ident: e_1_2_7_30_1
– ident: e_1_2_7_38_1
– ident: e_1_2_7_6_1
  doi: 10.1038/nchem.1243
– year: 2013
  ident: e_1_2_7_25_1
  publication-title: ArXiv:1312.6114 Cs Stat
– ident: e_1_2_7_2_1
  doi: 10.1021/ci500747n
– ident: e_1_2_7_31_1
  doi: 10.7551/mitpress/3206.001.0001
– ident: e_1_2_7_11_1
  doi: 10.1021/ci034047q
– ident: e_1_2_7_20_1
  doi: 10.1162/neco.1997.9.8.1735
– year: 2017
  ident: e_1_2_7_14_1
  publication-title: Mol. Pharm.
– ident: e_1_2_7_26_1
SSID ssj0000326789
Score 2.6066067
Snippet A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Autoencoder
Chemical fingerprinting
chemoinformatics
Computational chemistry
Computer applications
de novo molecular design
Deep Learning
Dopamine
Drug Design
Energy management
inverse QSAR
Machine learning
Pharmacology
Physiochemistry
Quantitative Structure-Activity Relationship
Title Application of Generative Autoencoder in De Novo Molecular Design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201700123
https://www.ncbi.nlm.nih.gov/pubmed/29235269
https://www.proquest.com/docview/2001889077
https://www.proquest.com/docview/1976443531
https://pubmed.ncbi.nlm.nih.gov/PMC5836887
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xnvayjW1s2Rgy0gQvBGzHiZ3HaqwCpFbVBBJvke04GgKSibaT2K_nHDcpHUKT2FsSO05s3_k-2-fvAL7qqg2JI2NnrIlFTm2sqgQVjxrODEUDY_1B4dE4Oz4XpxfpxYNT_IEfol9w85rRjtdewbWZHi5JQ2-wB7xrlmxhAQ7CLMk8ef7RD94vslAEJ7INg-dZ4WOPvjviRsoPV0tYNUyP0OZjp8mHYLa1RsPXoLt6BCeUq4P5zBzYP39RPP5PRd_AqwVUJYMgWxuw5uq3sDsJXNd3--RseXRruk92yWTJgn33DgaD5dY4aSoS-K394EoG81nj-TNLd0sua3LkyLj53ZBRF6kXn3i3kvdwPvx-9u04XsRriG2Kc904tU5lifdDMRznty7PDFq7ytmKJU5QQ1Ec0tyx0uZMlIpr46i1klVZqQxO_ZJNWK-b2n0EIrUUWCanGpXYptyUuhRa8kTkSqQ0iyDuOquwCzJzH1Pjugg0zLzwrVb0rRbBXp__V6DxeDLnVtf3xUKdpz5WJ1Mqp1JGsNMnoyL63RVdu2Y-LRgCO4HgM2ERfAii0n-KI4z2odwjkCtC1GfwJN-rKfXlz5bsO1VJhoYgAt7KyD_-vhidjIf93afnvPQZXuK1CstMW7A-u527Lwi8ZmYbXnAx2W5V7B5VXSaQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BeIAXvj8CA4yExsuyOY4TO48VUHWwVhPqJN6i2HHEBCRobZHGX8-d3aSUCSHBY2zHie0738_2-XcAL6vGh8RRsTPWxLLgNtZNiorHjUgMRwNj6aLwdJZPTuW7j1nvTUh3YQI_xLDhRprh52tScNqQPtywhn7FISDfLOVxwVW45g_pCBd9EMM2C0d4onwgPOKFjwl_99SNXBxuV7Ftmi7hzctuk7_CWW-PxrfA9C0JbiifD1ZLc2B__Eby-F9NvQ0312iVjYJ43YErrr0LeyeB7vpin803t7cW-2yPnWyIsC_uwWi0OR1nXcMCxTXNr2y0WnZEoVm7c3bWsjeOzbrvHZv2wXoxhTxL7sPp-O389SReh2yIbYbL3TizTucpuaIYgUtcV-QGDV7jbJOkTnLDUSKywiW1LRJZa1EZx61VSZPX2uDqL30AO23XukfAVKUk1il4hXpsM2HqqpaVEqkstMx4HkHcj1Zp13zmFFbjSxmYmEVJvVYOvRbBq6H8t8Dk8ceSu_3gl2uNXlC4zkTrgisVwYshG3WRDliq1nWrRZkgtpOIP9MkgodBVoZPCUTSFM09ArUlRUMB4vnezmnPPnm-70ynOdqCCIQXkr_8fTk9mo2Hp8f_8tJzuD6ZT4_L46PZ-ydwA9N12HXahZ3l-co9RRy2NM-8pv0ExFIp1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tTEJ7mWCDLYwPT0LwQoTtOLHzWAEVDFr1ASTeothxBNKWINoi8d_vLmlTKoQm8RjH-dCdz_c7-_w7gP28bEri6NBbZ0OVcheaMkLD41YKy9HBODooPBgm5zfq9218--IUf8sP0S24kWU08zUZ-ENRHi9IQ_-iBig1Szew4CN8Ujj4aIxLNepWWTiiE93UwSNa-JDg95y5kcvj5Vcse6ZXcPN11uRLNNu4o_4afJnhSNZrFb8OH3z1FQ5GLRH18xG7XpyrGh-xAzZaUFQ_f4Neb7FvzeqSteTTNPOx3nRSE7ll4R_ZfcVOPRvWTzUbzMvoYgvlfGzATf_s-uQ8nBVTCF2MgWgYO2-SiJJErMTg06eJRVdUeleKyCtuOeoqTr0oXCpUYWRuPXdOizIpjMW4LNqElaqu_A9gOtcoayF5jhbmYmmLvFC5lpFKjYp5EkA4F2TmZkzjVPDiT9ZyJMuMBJ91gg_gsOv_0HJsvNlze66XbGZrYyqkKYzBIF8H8Ku7jVZCWx955evpOBOIuhQiw0gE8L1VY_cpiRiX6qwHoJcU3HUgBu7lO9X9XcPEHZsowVk6ANkMhf_8fTa4GPa7q633PLQHq6PTfnZ1Mbz8CZ-x2bTLQduwMnmc-h0ESBO729jAPy2LByY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Generative+Autoencoder+in+De+Novo+Molecular+Design&rft.jtitle=Molecular+informatics&rft.au=Blaschke%2C+Thomas&rft.au=Olivecrona%2C+Marcus&rft.au=Engkvist%2C+Ola&rft.au=Bajorath%2C+Jurgen&rft.date=2018-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1868-1743&rft.eissn=1868-1751&rft.volume=37&rft.issue=1-2&rft_id=info:doi/10.1002%2Fminf.201700123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-1743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-1743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-1743&client=summon