自适应拉曼光谱成像数据去噪及其在植物细胞壁光谱分析中的应用

拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出了一种自适应拉曼光谱成像数据新型去噪法,采用优化的自适应迭代惩罚最小二乘法(Adaptive iteratively reweighted penalized least-squares,air PLS)和基于主成分分析(PCA)的干扰峰消除算法修正光谱基线漂移和宇宙射线干扰峰,具有输入参数少、光谱失真小、处理速度快、去噪结果稳定等优点。利用本方法去除了芒草(Miscanthus sinensis)细胞壁拉曼光谱成像数据(9010条...

Full description

Saved in:
Bibliographic Details
Published in分析化学 Vol. 44; no. 12; pp. 1846 - 1851
Main Author 张逊 陈胜 吴博士 杨桂花 许凤
Format Journal Article
LanguageChinese
Published 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353 2016
北京林业大学林木生物质化学北京市重点实验室,北京,100083%齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南,250353%北京林业大学林木生物质化学北京市重点实验室,北京100083
Subjects
Online AccessGet full text
ISSN0253-3820
DOI10.11895/j.issn.0253-3820.160392

Cover

Abstract 拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出了一种自适应拉曼光谱成像数据新型去噪法,采用优化的自适应迭代惩罚最小二乘法(Adaptive iteratively reweighted penalized least-squares,air PLS)和基于主成分分析(PCA)的干扰峰消除算法修正光谱基线漂移和宇宙射线干扰峰,具有输入参数少、光谱失真小、处理速度快、去噪结果稳定等优点。利用本方法去除了芒草(Miscanthus sinensis)细胞壁拉曼光谱成像数据(9010条光谱)中的噪声信号,并对去噪后数据进行PCA和聚类分析(CA),成功区分非植物光谱与植物光谱,分类结果优于未去噪数据。预期本方法可应用于其它光谱成像数据去噪,为光谱的解译和定量分析提供可靠的研究基础。
AbstractList 拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出了一种自适应拉曼光谱成像数据新型去噪法,采用优化的自适应迭代惩罚最小二乘法( Adaptive iteratively reweighted penalized least-squares,airPLS)和基于主成分分析( PCA)的干扰峰消除算法修正光谱基线漂移和宇宙射线干扰峰,具有输入参数少、光谱失真小、处理速度快、去噪结果稳定等优点。利用本方法去除了芒草( Miscanthus sinensis)细胞壁拉曼光谱成像数据(9010条光谱)中的噪声信号,并对去噪后数据进行PCA和聚类分析(CA),成功区分非植物光谱与植物光谱,分类结果优于未去噪数据。预期本方法可应用于其它光谱成像数据去噪,为光谱的解译和定量分析提供可靠的研究基础。
拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出了一种自适应拉曼光谱成像数据新型去噪法,采用优化的自适应迭代惩罚最小二乘法(Adaptive iteratively reweighted penalized least-squares,air PLS)和基于主成分分析(PCA)的干扰峰消除算法修正光谱基线漂移和宇宙射线干扰峰,具有输入参数少、光谱失真小、处理速度快、去噪结果稳定等优点。利用本方法去除了芒草(Miscanthus sinensis)细胞壁拉曼光谱成像数据(9010条光谱)中的噪声信号,并对去噪后数据进行PCA和聚类分析(CA),成功区分非植物光谱与植物光谱,分类结果优于未去噪数据。预期本方法可应用于其它光谱成像数据去噪,为光谱的解译和定量分析提供可靠的研究基础。
Abstract_FL Two inevitable noise signals, baseline drifts and cosmic spikes in Raman spectral imaging data should be eliminated before data analysis. However, current denoising methods for a single spectrum often lead to unstable results with bad reproducible properties. In this study, a novel adaptive method for denoising Raman spectral imaging data was proposed to address this issue. Adaptive iteratively reweighted penalized least-squares (airPLS) and principal component analysis (PCA) based despiking algorithm were applied to correct drifting baselines and cosmic spikes, respectively. The method offers a variety of advantages such as less parameter to be set, no spectral distortion, fast computation speed, and stable results, etc. We utilized the method to eliminate the noise signals in Raman spectral imaging data of Miscanthus sinensis ( involving 9010 spectra) , and then employed PCA and cluster analysis ( CA) to distinguish plant spectra from non-plant spectra. Theoretically, this method could be used to denoise other spectral imaging data and provide reliable foundation for achieving stable analysis results.
Author 张逊 陈胜 吴博士 杨桂花 许凤
AuthorAffiliation 北京林业大学林木生物质化学北京市重点实验室,北京100083 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353
AuthorAffiliation_xml – name: 北京林业大学林木生物质化学北京市重点实验室,北京,100083%齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南,250353%北京林业大学林木生物质化学北京市重点实验室,北京100083; 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353
Author_FL YANG Gui-Hua
WU Bo-Shi
CHEN Sheng
ZHANG Xun
XU Feng
Author_FL_xml – sequence: 1
  fullname: ZHANG Xun
– sequence: 2
  fullname: CHEN Sheng
– sequence: 3
  fullname: WU Bo-Shi
– sequence: 4
  fullname: YANG Gui-Hua
– sequence: 5
  fullname: XU Feng
Author_xml – sequence: 1
  fullname: 张逊 陈胜 吴博士 杨桂花 许凤
BookMark eNo9j01LAkEcxudgkJnfIYKOazOzzuzuMaQ3ELoIHWV3ZlZXai2XyG6VL2lherBDL3ipgwmFXSKyj9Ps2rdowOjyf-Dh9zx_ngUQ88u-AGAJwRRCpkVWSykvCPwUxETXdBMrm0LdwjEQ_7fmQTIIPAdChGDaJGYc7E4vRj-n5_KzH161w_sv2WhPx29hqydr3fBmHHZe5fVE3o5k91I23uXDMHzqRO3naNKc1gby8WzGy1YzHPS-P16iu7qqivrDRTDn2nuBSP5pAuQ21nOZLS27s7mdWctqjBhI47aFDAMyzgUT2GEWxZxwiglFgtgmgi53TIEFo9iADmMMCkocNcoUKsq5ngArs9pj23dtv5AvlY8qvnqYd6vFKoaIInWQ4pZnHCuW_cKhp8iDirdvV07y1EBQ1y2S1n8BAQaARA
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11895/j.issn.0253-3820.160392
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Adaptive Method for Denoising Raman Spectral Imaging Data and Its Applications to Spectral Analysis in Plant Cell Walls
DocumentTitle_FL Adaptive Method for Denoising Raman Spectral Imaging Data and Its Applications to Spectral Analysis in Plant Cell Walls
EndPage 1851
ExternalDocumentID fxhx201612011
671033954
GrantInformation_xml – fundername: 北京林业大学科技创新计划项目; 教育部重点科研项目; 北京市优秀博士论文导师资助项目
  funderid: (BLYJ201620); (113014A); (20131002201)
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29B
2B.
2C.
2RA
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
92E
92I
92L
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SES
SPC
SPCBC
SSK
SSZ
T5K
TCJ
TGP
U1G
U5L
~G-
~WA
-02
-0B
-SB
-S~
.5D
188
4A8
5VR
5XA
5XC
8RM
92M
93N
9D9
9DB
AAITT
AATTM
AAXKI
AAYWO
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AFUIB
AFXIZ
AGCQF
AGRNS
AIIUN
AKRWK
ANKPU
APXCP
BBR
BNPGV
CAJEB
CCEZO
CDRFL
CDYEO
CJPJV
CW7
FA0
J.9
JUIAU
M~T
PB1
PB6
PSX
Q--
R-B
RT2
S..
SSH
T8R
U1F
U5B
UY8
UZ4
W94
~LN
ID FETCH-LOGICAL-c571-da91770cddece2bc962d5d62561e5a810fdb8e2ec6270bccc0e65b3928eda9dd3
ISSN 0253-3820
IngestDate Thu May 29 04:00:23 EDT 2025
Wed Feb 14 10:05:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Cluster analysis
主成分分析
Raman spectral imaging
Spectral denoising
Penalized least-squares
惩罚最小二乘
光谱去噪
聚类分析
拉曼光谱成像
Principal component analysis
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c571-da91770cddece2bc962d5d62561e5a810fdb8e2ec6270bccc0e65b3928eda9dd3
Notes Raman spectral imaging;Spectral denoising;Penalized least-squares;Principal component analysis;Cluster analysis
Two inevitable noise signals, baseline drifts and cosmic spikes in Raman spectral imaging data should be eliminated before data analysis. However, current denoising methods for a single spectrum often lead to unstable results with bad reproducible properties. In this study, a novel adaptive method for denoising Raman spectral imaging data was proposed to address this issue. Adaptive iteratively reweighted penalized least-squares (airPLS) and principal component analysis (PCA) based despiking algorithm were applied to correct drifting baselines and cosmic spikes, respectively. The method offers a variety of advantages such as less parameter to be set, no spectral distortion, fast computation speed, and stable results, etc. We utilized the method to eliminate the noise signals in Raman spectral imaging data of Miscanthus sinensis ( involving 9010 spectra) , and then employed PCA and cluster analysis (
PageCount 6
ParticipantIDs wanfang_journals_fxhx201612011
chongqing_primary_671033954
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 分析化学
PublicationTitleAlternate Chinese Journal of Analytical Chemistry
PublicationYear 2016
Publisher 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353
北京林业大学林木生物质化学北京市重点实验室,北京,100083%齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南,250353%北京林业大学林木生物质化学北京市重点实验室,北京100083
Publisher_xml – name: 北京林业大学林木生物质化学北京市重点实验室,北京,100083%齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南,250353%北京林业大学林木生物质化学北京市重点实验室,北京100083
– name: 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353
SSID ssib001104858
ssib048394981
ssj0037577
ssib002258198
ssib007686865
ssib051370160
Score 2.0984595
Snippet 拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1846
SubjectTerms 主成分分析
光谱去噪
惩罚最小二乘
拉曼光谱成像
聚类分析
Title 自适应拉曼光谱成像数据去噪及其在植物细胞壁光谱分析中的应用
URI http://lib.cqvip.com/qk/93919X/201612/671033954.html
https://d.wanfangdata.com.cn/periodical/fxhx201612011
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0253-3820
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0037577
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0253-3820
  databaseCode: ACRLP
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 20221231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0037577
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  issn: 0253-3820
  databaseCode: AIKHN
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 20221231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0037577
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  issn: 0253-3820
  databaseCode: .~1
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0037577
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0253-3820
  databaseCode: AKRWK
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037577
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT9RAGG8QD3oxPiOihANzXOx0Ou3McaZ0Q0z0hJHbZvtYOC0-ICEcjIogaBAOePARLnpAEg1ejBH_HLuL_4XfN22Xqhgfl2aY-eZ7_Wi_b2bnYVkjrZSzlLKoFjXhbXIhINUgrsPAlTHXFgmlaQv3Dl-95o1fd69M8sm-_pHKqqW52Wg0Xjh0X8n_oAp1gCvukv0HZHtMoQLKgC88AWF4_hXGJBQEBvNKkVDikgXhkJATrYh0SegRoYmQWJCa6ACbBDc1gmibaGpoBJG2aWJE1A0xx1ZsGiMqNE0h0RoLUhpZHCmFKhhqzzQFRAnspVzsGPooSEksQF_hGVUZkYahAln0MH046oPEHlKiYi7RgijDUCoi3IqBPj6VqKbXh3GAmoBIoyTwUb2ZSMMJtLZL56mDFommAqNC6aDaB3hqowaYKVVhjtIHJCB5rHQGNZgI9Jam1RmWfOuneRtQnB4zukLBKVyjAVde2F-IAWv9nhmGhhqv5TSB8UhQelYYYDyiuXGHMRFt9dF9QA8F4CZphaHhA2Aj9grp0RTwUN1090tcHaKl6RUaOM3_hAiKGlAyrKNfsSaXHpbO8iERZvmhzUXscTirMeHY1UCZH9RZfhCcStijophHTos_80OEfw3PQnITn1HIaE8ITnGy_ErEnw4_b81PzyMkFPPUI9ZRx4d8EqLW6N2DqAQDZk8c_FbvQsrvStFb6MV8bu5f7Ukr1_OBLpd_owketDI90566Bemj2c3XbjXbU5XEc-KkdaIYMQ6r_PU_ZfUtTJ-2jgXlRY1nrBv7j3a-3XuQfd7sPFntvPySLa3u737orGxki-udZ7udtffZ073s-U62_jhb-pi92u68Weuuvu3uLe8vbmWv7-f02cpyZ2vj66d33RcPgVV3c_usNVEPJ4LxWnFfSi3mPq0lTUl9344hYYlTJ4ql5yQ88WBMQ1PeFNRuJZFInTT2HN-O4ji2U49HYK1IoWuSsHNWf3umnZ63hlPJ4COeMofGMFyiSROyoEgkMaeRAA-lA9Zgzz-Nm_mxOA0PBiuMSe4OWEOFxxrFx_JO4wcgL_yJYNA6juV8qvOi1T97ey69BMn_bDRksP8OufbKCw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%87%AA%E9%80%82%E5%BA%94%E6%8B%89%E6%9B%BC%E5%85%89%E8%B0%B1%E6%88%90%E5%83%8F%E6%95%B0%E6%8D%AE%E5%8E%BB%E5%99%AA%E5%8F%8A%E5%85%B6%E5%9C%A8%E6%A4%8D%E7%89%A9%E7%BB%86%E8%83%9E%E5%A3%81%E5%85%89%E8%B0%B1%E5%88%86%E6%9E%90%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E5%88%86%E6%9E%90%E5%8C%96%E5%AD%A6&rft.au=%E5%BC%A0%E9%80%8A&rft.au=%E9%99%88%E8%83%9C&rft.au=%E5%90%B4%E5%8D%9A%E5%A3%AB&rft.au=%E6%9D%A8%E6%A1%82%E8%8A%B1&rft.date=2016&rft.pub=%E9%BD%90%E9%B2%81%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B1%B1%E4%B8%9C%E7%9C%81%E5%88%B6%E6%B5%86%E9%80%A0%E7%BA%B8%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E6%B5%8E%E5%8D%97250353&rft.issn=0253-3820&rft.volume=44&rft.issue=12&rft.spage=1846&rft.epage=1851&rft_id=info:doi/10.11895%2Fj.issn.0253-3820.160392&rft.externalDocID=fxhx201612011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93919X%2F93919X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ffxhx%2Ffxhx.jpg