自适应拉曼光谱成像数据去噪及其在植物细胞壁光谱分析中的应用
拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出了一种自适应拉曼光谱成像数据新型去噪法,采用优化的自适应迭代惩罚最小二乘法(Adaptive iteratively reweighted penalized least-squares,air PLS)和基于主成分分析(PCA)的干扰峰消除算法修正光谱基线漂移和宇宙射线干扰峰,具有输入参数少、光谱失真小、处理速度快、去噪结果稳定等优点。利用本方法去除了芒草(Miscanthus sinensis)细胞壁拉曼光谱成像数据(9010条...
Saved in:
Published in | 分析化学 Vol. 44; no. 12; pp. 1846 - 1851 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353
2016
北京林业大学林木生物质化学北京市重点实验室,北京,100083%齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南,250353%北京林业大学林木生物质化学北京市重点实验室,北京100083 |
Subjects | |
Online Access | Get full text |
ISSN | 0253-3820 |
DOI | 10.11895/j.issn.0253-3820.160392 |
Cover
Abstract | 拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出了一种自适应拉曼光谱成像数据新型去噪法,采用优化的自适应迭代惩罚最小二乘法(Adaptive iteratively reweighted penalized least-squares,air PLS)和基于主成分分析(PCA)的干扰峰消除算法修正光谱基线漂移和宇宙射线干扰峰,具有输入参数少、光谱失真小、处理速度快、去噪结果稳定等优点。利用本方法去除了芒草(Miscanthus sinensis)细胞壁拉曼光谱成像数据(9010条光谱)中的噪声信号,并对去噪后数据进行PCA和聚类分析(CA),成功区分非植物光谱与植物光谱,分类结果优于未去噪数据。预期本方法可应用于其它光谱成像数据去噪,为光谱的解译和定量分析提供可靠的研究基础。 |
---|---|
AbstractList | 拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出了一种自适应拉曼光谱成像数据新型去噪法,采用优化的自适应迭代惩罚最小二乘法( Adaptive iteratively reweighted penalized least-squares,airPLS)和基于主成分分析( PCA)的干扰峰消除算法修正光谱基线漂移和宇宙射线干扰峰,具有输入参数少、光谱失真小、处理速度快、去噪结果稳定等优点。利用本方法去除了芒草( Miscanthus sinensis)细胞壁拉曼光谱成像数据(9010条光谱)中的噪声信号,并对去噪后数据进行PCA和聚类分析(CA),成功区分非植物光谱与植物光谱,分类结果优于未去噪数据。预期本方法可应用于其它光谱成像数据去噪,为光谱的解译和定量分析提供可靠的研究基础。 拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出了一种自适应拉曼光谱成像数据新型去噪法,采用优化的自适应迭代惩罚最小二乘法(Adaptive iteratively reweighted penalized least-squares,air PLS)和基于主成分分析(PCA)的干扰峰消除算法修正光谱基线漂移和宇宙射线干扰峰,具有输入参数少、光谱失真小、处理速度快、去噪结果稳定等优点。利用本方法去除了芒草(Miscanthus sinensis)细胞壁拉曼光谱成像数据(9010条光谱)中的噪声信号,并对去噪后数据进行PCA和聚类分析(CA),成功区分非植物光谱与植物光谱,分类结果优于未去噪数据。预期本方法可应用于其它光谱成像数据去噪,为光谱的解译和定量分析提供可靠的研究基础。 |
Abstract_FL | Two inevitable noise signals, baseline drifts and cosmic spikes in Raman spectral imaging data should be eliminated before data analysis. However, current denoising methods for a single spectrum often lead to unstable results with bad reproducible properties. In this study, a novel adaptive method for denoising Raman spectral imaging data was proposed to address this issue. Adaptive iteratively reweighted penalized least-squares (airPLS) and principal component analysis (PCA) based despiking algorithm were applied to correct drifting baselines and cosmic spikes, respectively. The method offers a variety of advantages such as less parameter to be set, no spectral distortion, fast computation speed, and stable results, etc. We utilized the method to eliminate the noise signals in Raman spectral imaging data of Miscanthus sinensis ( involving 9010 spectra) , and then employed PCA and cluster analysis ( CA) to distinguish plant spectra from non-plant spectra. Theoretically, this method could be used to denoise other spectral imaging data and provide reliable foundation for achieving stable analysis results. |
Author | 张逊 陈胜 吴博士 杨桂花 许凤 |
AuthorAffiliation | 北京林业大学林木生物质化学北京市重点实验室,北京100083 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353 |
AuthorAffiliation_xml | – name: 北京林业大学林木生物质化学北京市重点实验室,北京,100083%齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南,250353%北京林业大学林木生物质化学北京市重点实验室,北京100083; 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353 |
Author_FL | YANG Gui-Hua WU Bo-Shi CHEN Sheng ZHANG Xun XU Feng |
Author_FL_xml | – sequence: 1 fullname: ZHANG Xun – sequence: 2 fullname: CHEN Sheng – sequence: 3 fullname: WU Bo-Shi – sequence: 4 fullname: YANG Gui-Hua – sequence: 5 fullname: XU Feng |
Author_xml | – sequence: 1 fullname: 张逊 陈胜 吴博士 杨桂花 许凤 |
BookMark | eNo9j01LAkEcxudgkJnfIYKOazOzzuzuMaQ3ELoIHWV3ZlZXai2XyG6VL2lherBDL3ipgwmFXSKyj9Ps2rdowOjyf-Dh9zx_ngUQ88u-AGAJwRRCpkVWSykvCPwUxETXdBMrm0LdwjEQ_7fmQTIIPAdChGDaJGYc7E4vRj-n5_KzH161w_sv2WhPx29hqydr3fBmHHZe5fVE3o5k91I23uXDMHzqRO3naNKc1gby8WzGy1YzHPS-P16iu7qqivrDRTDn2nuBSP5pAuQ21nOZLS27s7mdWctqjBhI47aFDAMyzgUT2GEWxZxwiglFgtgmgi53TIEFo9iADmMMCkocNcoUKsq5ngArs9pj23dtv5AvlY8qvnqYd6vFKoaIInWQ4pZnHCuW_cKhp8iDirdvV07y1EBQ1y2S1n8BAQaARA |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11895/j.issn.0253-3820.160392 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Adaptive Method for Denoising Raman Spectral Imaging Data and Its Applications to Spectral Analysis in Plant Cell Walls |
DocumentTitle_FL | Adaptive Method for Denoising Raman Spectral Imaging Data and Its Applications to Spectral Analysis in Plant Cell Walls |
EndPage | 1851 |
ExternalDocumentID | fxhx201612011 671033954 |
GrantInformation_xml | – fundername: 北京林业大学科技创新计划项目; 教育部重点科研项目; 北京市优秀博士论文导师资助项目 funderid: (BLYJ201620); (113014A); (20131002201) |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 2B. 2C. 2RA 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 92E 92I 92L AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CQIGP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SES SPC SPCBC SSK SSZ T5K TCJ TGP U1G U5L ~G- ~WA -02 -0B -SB -S~ .5D 188 4A8 5VR 5XA 5XC 8RM 92M 93N 9D9 9DB AAITT AATTM AAXKI AAYWO ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AFUIB AFXIZ AGCQF AGRNS AIIUN AKRWK ANKPU APXCP BBR BNPGV CAJEB CCEZO CDRFL CDYEO CJPJV CW7 FA0 J.9 JUIAU M~T PB1 PB6 PSX Q-- R-B RT2 S.. SSH T8R U1F U5B UY8 UZ4 W94 ~LN |
ID | FETCH-LOGICAL-c571-da91770cddece2bc962d5d62561e5a810fdb8e2ec6270bccc0e65b3928eda9dd3 |
ISSN | 0253-3820 |
IngestDate | Thu May 29 04:00:23 EDT 2025 Wed Feb 14 10:05:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Cluster analysis 主成分分析 Raman spectral imaging Spectral denoising Penalized least-squares 惩罚最小二乘 光谱去噪 聚类分析 拉曼光谱成像 Principal component analysis |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c571-da91770cddece2bc962d5d62561e5a810fdb8e2ec6270bccc0e65b3928eda9dd3 |
Notes | Raman spectral imaging;Spectral denoising;Penalized least-squares;Principal component analysis;Cluster analysis Two inevitable noise signals, baseline drifts and cosmic spikes in Raman spectral imaging data should be eliminated before data analysis. However, current denoising methods for a single spectrum often lead to unstable results with bad reproducible properties. In this study, a novel adaptive method for denoising Raman spectral imaging data was proposed to address this issue. Adaptive iteratively reweighted penalized least-squares (airPLS) and principal component analysis (PCA) based despiking algorithm were applied to correct drifting baselines and cosmic spikes, respectively. The method offers a variety of advantages such as less parameter to be set, no spectral distortion, fast computation speed, and stable results, etc. We utilized the method to eliminate the noise signals in Raman spectral imaging data of Miscanthus sinensis ( involving 9010 spectra) , and then employed PCA and cluster analysis ( |
PageCount | 6 |
ParticipantIDs | wanfang_journals_fxhx201612011 chongqing_primary_671033954 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 分析化学 |
PublicationTitleAlternate | Chinese Journal of Analytical Chemistry |
PublicationYear | 2016 |
Publisher | 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353 北京林业大学林木生物质化学北京市重点实验室,北京,100083%齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南,250353%北京林业大学林木生物质化学北京市重点实验室,北京100083 |
Publisher_xml | – name: 北京林业大学林木生物质化学北京市重点实验室,北京,100083%齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南,250353%北京林业大学林木生物质化学北京市重点实验室,北京100083 – name: 齐鲁工业大学山东省制浆造纸科学与技术重点实验室,济南250353 |
SSID | ssib001104858 ssib048394981 ssj0037577 ssib002258198 ssib007686865 ssib051370160 |
Score | 2.0984595 |
Snippet | 拉曼光谱成像数据存在基线漂移与宇宙射线干扰峰两类噪声信号,无法直接用于光谱分析研究,必须去除。现有单光谱去噪方法处理结果不稳定、可重复性差。针对这一问题,本研究提出... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 1846 |
SubjectTerms | 主成分分析 光谱去噪 惩罚最小二乘 拉曼光谱成像 聚类分析 |
Title | 自适应拉曼光谱成像数据去噪及其在植物细胞壁光谱分析中的应用 |
URI | http://lib.cqvip.com/qk/93919X/201612/671033954.html https://d.wanfangdata.com.cn/periodical/fxhx201612011 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0253-3820 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037577 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0253-3820 databaseCode: ACRLP dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 20221231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037577 providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals issn: 0253-3820 databaseCode: AIKHN dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 20221231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037577 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 issn: 0253-3820 databaseCode: .~1 dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037577 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0253-3820 databaseCode: AKRWK dateStart: 20060101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037577 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT9RAGG8QD3oxPiOihANzXOx0Ou3McaZ0Q0z0hJHbZvtYOC0-ICEcjIogaBAOePARLnpAEg1ejBH_HLuL_4XfN22Xqhgfl2aY-eZ7_Wi_b2bnYVkjrZSzlLKoFjXhbXIhINUgrsPAlTHXFgmlaQv3Dl-95o1fd69M8sm-_pHKqqW52Wg0Xjh0X8n_oAp1gCvukv0HZHtMoQLKgC88AWF4_hXGJBQEBvNKkVDikgXhkJATrYh0SegRoYmQWJCa6ACbBDc1gmibaGpoBJG2aWJE1A0xx1ZsGiMqNE0h0RoLUhpZHCmFKhhqzzQFRAnspVzsGPooSEksQF_hGVUZkYahAln0MH046oPEHlKiYi7RgijDUCoi3IqBPj6VqKbXh3GAmoBIoyTwUb2ZSMMJtLZL56mDFommAqNC6aDaB3hqowaYKVVhjtIHJCB5rHQGNZgI9Jam1RmWfOuneRtQnB4zukLBKVyjAVde2F-IAWv9nhmGhhqv5TSB8UhQelYYYDyiuXGHMRFt9dF9QA8F4CZphaHhA2Aj9grp0RTwUN1090tcHaKl6RUaOM3_hAiKGlAyrKNfsSaXHpbO8iERZvmhzUXscTirMeHY1UCZH9RZfhCcStijophHTos_80OEfw3PQnITn1HIaE8ITnGy_ErEnw4_b81PzyMkFPPUI9ZRx4d8EqLW6N2DqAQDZk8c_FbvQsrvStFb6MV8bu5f7Ukr1_OBLpd_owketDI90566Bemj2c3XbjXbU5XEc-KkdaIYMQ6r_PU_ZfUtTJ-2jgXlRY1nrBv7j3a-3XuQfd7sPFntvPySLa3u737orGxki-udZ7udtffZ073s-U62_jhb-pi92u68Weuuvu3uLe8vbmWv7-f02cpyZ2vj66d33RcPgVV3c_usNVEPJ4LxWnFfSi3mPq0lTUl9344hYYlTJ4ql5yQ88WBMQ1PeFNRuJZFInTT2HN-O4ji2U49HYK1IoWuSsHNWf3umnZ63hlPJ4COeMofGMFyiSROyoEgkMaeRAA-lA9Zgzz-Nm_mxOA0PBiuMSe4OWEOFxxrFx_JO4wcgL_yJYNA6juV8qvOi1T97ey69BMn_bDRksP8OufbKCw |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%87%AA%E9%80%82%E5%BA%94%E6%8B%89%E6%9B%BC%E5%85%89%E8%B0%B1%E6%88%90%E5%83%8F%E6%95%B0%E6%8D%AE%E5%8E%BB%E5%99%AA%E5%8F%8A%E5%85%B6%E5%9C%A8%E6%A4%8D%E7%89%A9%E7%BB%86%E8%83%9E%E5%A3%81%E5%85%89%E8%B0%B1%E5%88%86%E6%9E%90%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E5%88%86%E6%9E%90%E5%8C%96%E5%AD%A6&rft.au=%E5%BC%A0%E9%80%8A&rft.au=%E9%99%88%E8%83%9C&rft.au=%E5%90%B4%E5%8D%9A%E5%A3%AB&rft.au=%E6%9D%A8%E6%A1%82%E8%8A%B1&rft.date=2016&rft.pub=%E9%BD%90%E9%B2%81%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B1%B1%E4%B8%9C%E7%9C%81%E5%88%B6%E6%B5%86%E9%80%A0%E7%BA%B8%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E6%B5%8E%E5%8D%97250353&rft.issn=0253-3820&rft.volume=44&rft.issue=12&rft.spage=1846&rft.epage=1851&rft_id=info:doi/10.11895%2Fj.issn.0253-3820.160392&rft.externalDocID=fxhx201612011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93919X%2F93919X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ffxhx%2Ffxhx.jpg |