A data‐driven algorithm to determine 1 H ‐ MRS basis set composition
Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend on the precise list of constituent metabolite basis functions used (the "basis set"). The absence of clear consensus on the "ideal" composition or objective criteria to determine the suit...
Saved in:
| Published in | Magnetic resonance in medicine |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
16.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 |
| DOI | 10.1002/mrm.70030 |
Cover
| Abstract | Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend on the precise list of constituent metabolite basis functions used (the "basis set"). The absence of clear consensus on the "ideal" composition or objective criteria to determine the suitability of a particular basis set contributes to the poor reproducibility of MRS. In this proof-of-concept study, we demonstrate a novel, data-driven approach for deciding the basis-set composition using Akaike information criteria (AIC).
We have developed an algorithm that iteratively adds metabolites to the basis set using iterative modeling, informed by AIC scores. We investigated two quantitative "stopping conditions," referred to as max-AIC and zero-amplitude, and whether to optimize the selection of basis set on a per-spectrum basis or at the group level. The algorithm was tested using two groups of synthetic in vivo-like spectra representing healthy brain and tumor spectra, respectively, and the derived basis sets (and metabolite amplitude estimates) were compared to the ground truth.
All derived basis sets correctly identified high-concentration metabolites and provided reasonable fits of the spectra. At the single-spectrum level, the two stopping conditions derived the underlying basis set with 84% to 88% accuracy. When optimizing across a group, basis set determination accuracy improved to 89% to 92%.
Data-driven determination of the basis set composition is feasible. With refinement, this approach could provide a valuable data-driven way to derive or refine basis sets, reducing the operator bias of MRS analyses, enhancing the objectivity of quantitative analyses, and increasing the clinical viability of MRS. |
|---|---|
| AbstractList | Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend on the precise list of constituent metabolite basis functions used (the "basis set"). The absence of clear consensus on the "ideal" composition or objective criteria to determine the suitability of a particular basis set contributes to the poor reproducibility of MRS. In this proof-of-concept study, we demonstrate a novel, data-driven approach for deciding the basis-set composition using Akaike information criteria (AIC).
We have developed an algorithm that iteratively adds metabolites to the basis set using iterative modeling, informed by AIC scores. We investigated two quantitative "stopping conditions," referred to as max-AIC and zero-amplitude, and whether to optimize the selection of basis set on a per-spectrum basis or at the group level. The algorithm was tested using two groups of synthetic in vivo-like spectra representing healthy brain and tumor spectra, respectively, and the derived basis sets (and metabolite amplitude estimates) were compared to the ground truth.
All derived basis sets correctly identified high-concentration metabolites and provided reasonable fits of the spectra. At the single-spectrum level, the two stopping conditions derived the underlying basis set with 84% to 88% accuracy. When optimizing across a group, basis set determination accuracy improved to 89% to 92%.
Data-driven determination of the basis set composition is feasible. With refinement, this approach could provide a valuable data-driven way to derive or refine basis sets, reducing the operator bias of MRS analyses, enhancing the objectivity of quantitative analyses, and increasing the clinical viability of MRS. |
| Author | Simicic, Dunja Oeltzschner, Georg Alcicek, Seyma Zöllner, Helge J. Davies‐Jenkins, Christopher W. Edden, Richard A. E. |
| Author_xml | – sequence: 1 givenname: Christopher W. orcidid: 0000-0002-6015-762X surname: Davies‐Jenkins fullname: Davies‐Jenkins, Christopher W. organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA – sequence: 2 givenname: Helge J. orcidid: 0000-0002-7148-292X surname: Zöllner fullname: Zöllner, Helge J. organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA – sequence: 3 givenname: Dunja orcidid: 0000-0002-6600-2696 surname: Simicic fullname: Simicic, Dunja organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA – sequence: 4 givenname: Seyma orcidid: 0000-0002-9447-4906 surname: Alcicek fullname: Alcicek, Seyma organization: Institute of Neuroradiology, University Hospital Frankfurt Goethe University Frankfurt/Main Germany, University Cancer Center Frankfurt (UCT) Frankfurt/Main Germany, Frankfurt Cancer Institute (FCI) Frankfurt/Main Germany – sequence: 5 givenname: Richard A. E. surname: Edden fullname: Edden, Richard A. E. organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA – sequence: 6 givenname: Georg orcidid: 0000-0003-3083-9811 surname: Oeltzschner fullname: Oeltzschner, Georg organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40818091$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kEtOwzAURS1URD8wYAPIUwYp7yV2nQyrCghSERJ0HvkXMKrjyg5IzFgCa2QlBAqM7uToXt0zJaMudJaQU4Q5AuQXPvq5ACjggEyQ53mW84qNyAQEg6zAio3JNKVnAKgqwY7ImEGJJVQ4IfWSGtnLz_cPE92r7ajcPobo-idP-0CN7W30rrMUaU0HiN7eP1Alk0s02Z7q4Hchud6F7pgctnKb7Mlvzsjm6nKzqrP13fXNarnONBeYCa3yYVpXprSoeN4aAa0upbELIY3CkvFSamGEWqgCJXDecrSMCYbawAKKGTnb1-5elLem2UXnZXxr_h4NwPke0DGkFG37jyA037aawVbzY6v4AgLXXOE |
| Cites_doi | 10.1002/nbm.3804 10.1007/b97636 10.1016/j.jneumeth.2020.108827 10.2307/2533006 10.1002/nbm.4910 10.1080/03610927808827599 10.1002/mrm.27810 10.1177/2515245920954925 10.1002/mrm.29370 10.1002/nbm.4854 10.1002/mrm.28942 10.1002/mrm.27742 10.1038/nature08617 10.1214/aos/1176344136 10.1002/nbm.4484 10.1002/mrm.28385 10.1002/mrm.30110 10.1016/j.jmr.2022.107257 10.2307/2988185 10.3389/fcell.2021.651317 10.1162/imag_a_00025 10.3389/fnins.2012.00149 10.1111/j.2517‐6161.1996.tb02080.x 10.1002/mrm.30209 10.1002/mrm.27824 10.1186/s12888‐024‐05646‐x 10.1002/nbm.4257 10.1002/nbm.4702 10.1038/s41562‐020‐0912‐z 10.3758/BF03206482 10.1007/BF02294361 10.1038/nm.2682 10.1093/neuonc/noz031 10.1002/nbm.4393 10.1002/mrm.29252 10.1016/j.nic.2010.04.003 10.1002/mrm.1910300604 10.1080/02664760902899774 10.1038/s41467‐022‐31347‐8 10.1002/mrm.26091 10.1109/TAC.1974.1100705 10.1002/mrm.26615 10.1002/nbm.4482 10.1016/j.neuroimage.2022.119740 10.1177/1745691616658637 10.1016/j.neuroimage.2015.07.042 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION NPM |
| DOI | 10.1002/mrm.70030 |
| DatabaseName | CrossRef PubMed |
| DatabaseTitle | CrossRef PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| ExternalDocumentID | 40818091 10_1002_mrm_70030 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIH HHS grantid: R01 EB023963 – fundername: Deutsche Krebshilfe – fundername: NIH HHS grantid: R00 AG062230 – fundername: Mildred Scheel Career Center – fundername: NIH HHS grantid: P41 EB031771 – fundername: NIH HHS grantid: R01 EB035529 – fundername: NIH HHS grantid: K99 AG080084 – fundername: NIH HHS grantid: R21 EB033516 – fundername: NIH HHS grantid: R01 EB016089 |
| GroupedDBID | --- -DZ .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS F00 F01 F04 FUBAC G-S G.N GNP GODZA H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT NPM |
| ID | FETCH-LOGICAL-c571-7cb2818c9d8e1b52fd70fc8ade67adb18458ac7d7b6b31a055f51e44741cd0603 |
| ISSN | 0740-3194 |
| IngestDate | Thu Aug 28 04:35:57 EDT 2025 Wed Oct 01 05:37:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | model selection 2HG magnetic resonance spectroscopy basis set cystathionine information criteria |
| Language | English |
| License | 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c571-7cb2818c9d8e1b52fd70fc8ade67adb18458ac7d7b6b31a055f51e44741cd0603 |
| ORCID | 0000-0002-7148-292X 0000-0003-3083-9811 0000-0002-9447-4906 0000-0002-6015-762X 0000-0002-6600-2696 |
| PMID | 40818091 |
| ParticipantIDs | pubmed_primary_40818091 crossref_primary_10_1002_mrm_70030 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-16 2025-Aug-16 |
| PublicationDateYYYYMMDD | 2025-08-16 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| References | e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 e_1_2_10_47_1 39314430 - bioRxiv. 2025 Jun 22:2024.09.11.612503. doi: 10.1101/2024.09.11.612503. |
| References_xml | – ident: e_1_2_10_9_1 doi: 10.1002/nbm.3804 – ident: e_1_2_10_17_1 doi: 10.1007/b97636 – ident: e_1_2_10_25_1 doi: 10.1016/j.jneumeth.2020.108827 – ident: e_1_2_10_14_1 doi: 10.2307/2533006 – ident: e_1_2_10_10_1 doi: 10.1002/nbm.4910 – ident: e_1_2_10_13_1 doi: 10.1080/03610927808827599 – ident: e_1_2_10_19_1 doi: 10.1002/mrm.27810 – ident: e_1_2_10_41_1 doi: 10.1177/2515245920954925 – ident: e_1_2_10_22_1 doi: 10.1002/mrm.29370 – ident: e_1_2_10_35_1 doi: 10.1002/nbm.4854 – ident: e_1_2_10_31_1 doi: 10.1002/mrm.28942 – ident: e_1_2_10_3_1 doi: 10.1002/mrm.27742 – ident: e_1_2_10_4_1 doi: 10.1038/nature08617 – ident: e_1_2_10_15_1 doi: 10.1214/aos/1176344136 – ident: e_1_2_10_32_1 doi: 10.1002/nbm.4484 – ident: e_1_2_10_18_1 doi: 10.1002/mrm.28385 – ident: e_1_2_10_24_1 doi: 10.1002/mrm.30110 – ident: e_1_2_10_11_1 doi: 10.1016/j.jmr.2022.107257 – ident: e_1_2_10_45_1 doi: 10.2307/2988185 – ident: e_1_2_10_33_1 doi: 10.3389/fcell.2021.651317 – ident: e_1_2_10_36_1 doi: 10.1162/imag_a_00025 – ident: e_1_2_10_43_1 doi: 10.3389/fnins.2012.00149 – ident: e_1_2_10_38_1 doi: 10.1111/j.2517‐6161.1996.tb02080.x – ident: e_1_2_10_26_1 doi: 10.1002/mrm.30209 – ident: e_1_2_10_37_1 doi: 10.1002/mrm.27824 – ident: e_1_2_10_5_1 doi: 10.1186/s12888‐024‐05646‐x – ident: e_1_2_10_2_1 doi: 10.1002/nbm.4257 – ident: e_1_2_10_29_1 doi: 10.1002/nbm.4702 – ident: e_1_2_10_42_1 doi: 10.1038/s41562‐020‐0912‐z – ident: e_1_2_10_44_1 doi: 10.3758/BF03206482 – ident: e_1_2_10_46_1 doi: 10.1007/BF02294361 – ident: e_1_2_10_21_1 doi: 10.1038/nm.2682 – ident: e_1_2_10_20_1 doi: 10.1093/neuonc/noz031 – ident: e_1_2_10_34_1 doi: 10.1002/nbm.4393 – ident: e_1_2_10_6_1 doi: 10.1002/mrm.29252 – ident: e_1_2_10_7_1 doi: 10.1016/j.nic.2010.04.003 – ident: e_1_2_10_27_1 doi: 10.1002/mrm.1910300604 – ident: e_1_2_10_16_1 doi: 10.1080/02664760902899774 – ident: e_1_2_10_39_1 doi: 10.1038/s41467‐022‐31347‐8 – ident: e_1_2_10_23_1 doi: 10.1002/mrm.26091 – ident: e_1_2_10_12_1 doi: 10.1109/TAC.1974.1100705 – ident: e_1_2_10_47_1 doi: 10.1002/mrm.26615 – ident: e_1_2_10_30_1 doi: 10.1002/nbm.4482 – ident: e_1_2_10_28_1 doi: 10.1016/j.neuroimage.2022.119740 – ident: e_1_2_10_40_1 doi: 10.1177/1745691616658637 – ident: e_1_2_10_8_1 doi: 10.1016/j.neuroimage.2015.07.042 – reference: 39314430 - bioRxiv. 2025 Jun 22:2024.09.11.612503. doi: 10.1101/2024.09.11.612503. |
| SSID | ssj0009974 |
| Score | 2.4851015 |
| SecondaryResourceType | online_first |
| Snippet | Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend on the precise list of constituent metabolite basis functions used... |
| SourceID | pubmed crossref |
| SourceType | Index Database |
| Title | A data‐driven algorithm to determine 1 H ‐ MRS basis set composition |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40818091 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0740-3194 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgiGkvCAZsY4AsxFvkkaRx7D52A1RNKg9bkSZeKv9KKWrSqQ0P8Ndz5zhpNoYEvESVk6bSffX5PvvuO0Le5sXAmtRoJjOuWFbAVJS5EiyWQ6PjtID5hYXCk0_5-HN2fsWvtl0cfXVJrU_MzzvrSv4HVRgDXLFK9h-Q7V4KA_AZ8IUrIAzXv8J4FGGCJ7NrdFmRWs5XQPW_lhhP2pDm4qIkGrPJxWUE69ViE21c7dPIQ65WPzadqHnlGklnjM9xxi-q3w7fMQnebdi5w54Lt_UJom7H5guewJ_my2UoqIHlbe56Z1CLEt7qu6tDCP2tWxtGSxh13kNfuh9hzQibEinHXdYkSFoHRwokF6hVdqebbmRfy3V5ItDL9J8BC1-XHq8M1fbippfXLU3s9tZ98iAFb44tO95fbGXDhkCSWhWpOH3X_c4e2W2_eSMMuUEofGAxfUweBUZARw28T8g9V-2T3Ukw-z556JN0zeYpOR3RHt60w5vWK9rhTRPq8aYebwp40x7ez8j044fp2ZiFHhjMcJEwYTTKdZmhlS7RPC2siAsjlXW5UFYDPedSGWGFzvUgUTHnBU9clkGcaGycx4PnZKdaVe6QUIglDZBXbYQDCiwNVu9gAt9AKp4NZXpE3rQWmV03SiezRtM6nYEFZ96CR-SgsVX3SGvQF3-8c0z2tn-Rl2SnXn93ryCSq_VrD9svU3pGdg |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+algorithm+to+determine+1+H-MRS+basis+set+composition&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Davies-Jenkins%2C+Christopher+W&rft.au=Z%C3%B6llner%2C+Helge+J&rft.au=Simicic%2C+Dunja&rft.au=Alcicek%2C+Seyma&rft.date=2025-08-16&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.70030&rft_id=info%3Apmid%2F40818091&rft.externalDocID=40818091 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |