A data‐driven algorithm to determine 1 H ‐ MRS basis set composition

Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend on the precise list of constituent metabolite basis functions used (the "basis set"). The absence of clear consensus on the "ideal" composition or objective criteria to determine the suit...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine
Main Authors Davies‐Jenkins, Christopher W., Zöllner, Helge J., Simicic, Dunja, Alcicek, Seyma, Edden, Richard A. E., Oeltzschner, Georg
Format Journal Article
LanguageEnglish
Published United States 16.08.2025
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
DOI10.1002/mrm.70030

Cover

Abstract Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend on the precise list of constituent metabolite basis functions used (the "basis set"). The absence of clear consensus on the "ideal" composition or objective criteria to determine the suitability of a particular basis set contributes to the poor reproducibility of MRS. In this proof-of-concept study, we demonstrate a novel, data-driven approach for deciding the basis-set composition using Akaike information criteria (AIC). We have developed an algorithm that iteratively adds metabolites to the basis set using iterative modeling, informed by AIC scores. We investigated two quantitative "stopping conditions," referred to as max-AIC and zero-amplitude, and whether to optimize the selection of basis set on a per-spectrum basis or at the group level. The algorithm was tested using two groups of synthetic in vivo-like spectra representing healthy brain and tumor spectra, respectively, and the derived basis sets (and metabolite amplitude estimates) were compared to the ground truth. All derived basis sets correctly identified high-concentration metabolites and provided reasonable fits of the spectra. At the single-spectrum level, the two stopping conditions derived the underlying basis set with 84% to 88% accuracy. When optimizing across a group, basis set determination accuracy improved to 89% to 92%. Data-driven determination of the basis set composition is feasible. With refinement, this approach could provide a valuable data-driven way to derive or refine basis sets, reducing the operator bias of MRS analyses, enhancing the objectivity of quantitative analyses, and increasing the clinical viability of MRS.
AbstractList Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend on the precise list of constituent metabolite basis functions used (the "basis set"). The absence of clear consensus on the "ideal" composition or objective criteria to determine the suitability of a particular basis set contributes to the poor reproducibility of MRS. In this proof-of-concept study, we demonstrate a novel, data-driven approach for deciding the basis-set composition using Akaike information criteria (AIC). We have developed an algorithm that iteratively adds metabolites to the basis set using iterative modeling, informed by AIC scores. We investigated two quantitative "stopping conditions," referred to as max-AIC and zero-amplitude, and whether to optimize the selection of basis set on a per-spectrum basis or at the group level. The algorithm was tested using two groups of synthetic in vivo-like spectra representing healthy brain and tumor spectra, respectively, and the derived basis sets (and metabolite amplitude estimates) were compared to the ground truth. All derived basis sets correctly identified high-concentration metabolites and provided reasonable fits of the spectra. At the single-spectrum level, the two stopping conditions derived the underlying basis set with 84% to 88% accuracy. When optimizing across a group, basis set determination accuracy improved to 89% to 92%. Data-driven determination of the basis set composition is feasible. With refinement, this approach could provide a valuable data-driven way to derive or refine basis sets, reducing the operator bias of MRS analyses, enhancing the objectivity of quantitative analyses, and increasing the clinical viability of MRS.
Author Simicic, Dunja
Oeltzschner, Georg
Alcicek, Seyma
Zöllner, Helge J.
Davies‐Jenkins, Christopher W.
Edden, Richard A. E.
Author_xml – sequence: 1
  givenname: Christopher W.
  orcidid: 0000-0002-6015-762X
  surname: Davies‐Jenkins
  fullname: Davies‐Jenkins, Christopher W.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
– sequence: 2
  givenname: Helge J.
  orcidid: 0000-0002-7148-292X
  surname: Zöllner
  fullname: Zöllner, Helge J.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
– sequence: 3
  givenname: Dunja
  orcidid: 0000-0002-6600-2696
  surname: Simicic
  fullname: Simicic, Dunja
  organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
– sequence: 4
  givenname: Seyma
  orcidid: 0000-0002-9447-4906
  surname: Alcicek
  fullname: Alcicek, Seyma
  organization: Institute of Neuroradiology, University Hospital Frankfurt Goethe University Frankfurt/Main Germany, University Cancer Center Frankfurt (UCT) Frankfurt/Main Germany, Frankfurt Cancer Institute (FCI) Frankfurt/Main Germany
– sequence: 5
  givenname: Richard A. E.
  surname: Edden
  fullname: Edden, Richard A. E.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
– sequence: 6
  givenname: Georg
  orcidid: 0000-0003-3083-9811
  surname: Oeltzschner
  fullname: Oeltzschner, Georg
  organization: The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40818091$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtOwzAURS1URD8wYAPIUwYp7yV2nQyrCghSERJ0HvkXMKrjyg5IzFgCa2QlBAqM7uToXt0zJaMudJaQU4Q5AuQXPvq5ACjggEyQ53mW84qNyAQEg6zAio3JNKVnAKgqwY7ImEGJJVQ4IfWSGtnLz_cPE92r7ajcPobo-idP-0CN7W30rrMUaU0HiN7eP1Alk0s02Z7q4Hchud6F7pgctnKb7Mlvzsjm6nKzqrP13fXNarnONBeYCa3yYVpXprSoeN4aAa0upbELIY3CkvFSamGEWqgCJXDecrSMCYbawAKKGTnb1-5elLem2UXnZXxr_h4NwPke0DGkFG37jyA037aawVbzY6v4AgLXXOE
Cites_doi 10.1002/nbm.3804
10.1007/b97636
10.1016/j.jneumeth.2020.108827
10.2307/2533006
10.1002/nbm.4910
10.1080/03610927808827599
10.1002/mrm.27810
10.1177/2515245920954925
10.1002/mrm.29370
10.1002/nbm.4854
10.1002/mrm.28942
10.1002/mrm.27742
10.1038/nature08617
10.1214/aos/1176344136
10.1002/nbm.4484
10.1002/mrm.28385
10.1002/mrm.30110
10.1016/j.jmr.2022.107257
10.2307/2988185
10.3389/fcell.2021.651317
10.1162/imag_a_00025
10.3389/fnins.2012.00149
10.1111/j.2517‐6161.1996.tb02080.x
10.1002/mrm.30209
10.1002/mrm.27824
10.1186/s12888‐024‐05646‐x
10.1002/nbm.4257
10.1002/nbm.4702
10.1038/s41562‐020‐0912‐z
10.3758/BF03206482
10.1007/BF02294361
10.1038/nm.2682
10.1093/neuonc/noz031
10.1002/nbm.4393
10.1002/mrm.29252
10.1016/j.nic.2010.04.003
10.1002/mrm.1910300604
10.1080/02664760902899774
10.1038/s41467‐022‐31347‐8
10.1002/mrm.26091
10.1109/TAC.1974.1100705
10.1002/mrm.26615
10.1002/nbm.4482
10.1016/j.neuroimage.2022.119740
10.1177/1745691616658637
10.1016/j.neuroimage.2015.07.042
ContentType Journal Article
Copyright 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
DOI 10.1002/mrm.70030
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
ExternalDocumentID 40818091
10_1002_mrm_70030
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: R01 EB023963
– fundername: Deutsche Krebshilfe
– fundername: NIH HHS
  grantid: R00 AG062230
– fundername: Mildred Scheel Career Center
– fundername: NIH HHS
  grantid: P41 EB031771
– fundername: NIH HHS
  grantid: R01 EB035529
– fundername: NIH HHS
  grantid: K99 AG080084
– fundername: NIH HHS
  grantid: R21 EB033516
– fundername: NIH HHS
  grantid: R01 EB016089
GroupedDBID ---
-DZ
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
F00
F01
F04
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
NPM
ID FETCH-LOGICAL-c571-7cb2818c9d8e1b52fd70fc8ade67adb18458ac7d7b6b31a055f51e44741cd0603
ISSN 0740-3194
IngestDate Thu Aug 28 04:35:57 EDT 2025
Wed Oct 01 05:37:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords model selection
2HG
magnetic resonance spectroscopy
basis set
cystathionine
information criteria
Language English
License 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c571-7cb2818c9d8e1b52fd70fc8ade67adb18458ac7d7b6b31a055f51e44741cd0603
ORCID 0000-0002-7148-292X
0000-0003-3083-9811
0000-0002-9447-4906
0000-0002-6015-762X
0000-0002-6600-2696
PMID 40818091
ParticipantIDs pubmed_primary_40818091
crossref_primary_10_1002_mrm_70030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-16
2025-Aug-16
PublicationDateYYYYMMDD 2025-08-16
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
References e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
e_1_2_10_47_1
39314430 - bioRxiv. 2025 Jun 22:2024.09.11.612503. doi: 10.1101/2024.09.11.612503.
References_xml – ident: e_1_2_10_9_1
  doi: 10.1002/nbm.3804
– ident: e_1_2_10_17_1
  doi: 10.1007/b97636
– ident: e_1_2_10_25_1
  doi: 10.1016/j.jneumeth.2020.108827
– ident: e_1_2_10_14_1
  doi: 10.2307/2533006
– ident: e_1_2_10_10_1
  doi: 10.1002/nbm.4910
– ident: e_1_2_10_13_1
  doi: 10.1080/03610927808827599
– ident: e_1_2_10_19_1
  doi: 10.1002/mrm.27810
– ident: e_1_2_10_41_1
  doi: 10.1177/2515245920954925
– ident: e_1_2_10_22_1
  doi: 10.1002/mrm.29370
– ident: e_1_2_10_35_1
  doi: 10.1002/nbm.4854
– ident: e_1_2_10_31_1
  doi: 10.1002/mrm.28942
– ident: e_1_2_10_3_1
  doi: 10.1002/mrm.27742
– ident: e_1_2_10_4_1
  doi: 10.1038/nature08617
– ident: e_1_2_10_15_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_10_32_1
  doi: 10.1002/nbm.4484
– ident: e_1_2_10_18_1
  doi: 10.1002/mrm.28385
– ident: e_1_2_10_24_1
  doi: 10.1002/mrm.30110
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jmr.2022.107257
– ident: e_1_2_10_45_1
  doi: 10.2307/2988185
– ident: e_1_2_10_33_1
  doi: 10.3389/fcell.2021.651317
– ident: e_1_2_10_36_1
  doi: 10.1162/imag_a_00025
– ident: e_1_2_10_43_1
  doi: 10.3389/fnins.2012.00149
– ident: e_1_2_10_38_1
  doi: 10.1111/j.2517‐6161.1996.tb02080.x
– ident: e_1_2_10_26_1
  doi: 10.1002/mrm.30209
– ident: e_1_2_10_37_1
  doi: 10.1002/mrm.27824
– ident: e_1_2_10_5_1
  doi: 10.1186/s12888‐024‐05646‐x
– ident: e_1_2_10_2_1
  doi: 10.1002/nbm.4257
– ident: e_1_2_10_29_1
  doi: 10.1002/nbm.4702
– ident: e_1_2_10_42_1
  doi: 10.1038/s41562‐020‐0912‐z
– ident: e_1_2_10_44_1
  doi: 10.3758/BF03206482
– ident: e_1_2_10_46_1
  doi: 10.1007/BF02294361
– ident: e_1_2_10_21_1
  doi: 10.1038/nm.2682
– ident: e_1_2_10_20_1
  doi: 10.1093/neuonc/noz031
– ident: e_1_2_10_34_1
  doi: 10.1002/nbm.4393
– ident: e_1_2_10_6_1
  doi: 10.1002/mrm.29252
– ident: e_1_2_10_7_1
  doi: 10.1016/j.nic.2010.04.003
– ident: e_1_2_10_27_1
  doi: 10.1002/mrm.1910300604
– ident: e_1_2_10_16_1
  doi: 10.1080/02664760902899774
– ident: e_1_2_10_39_1
  doi: 10.1038/s41467‐022‐31347‐8
– ident: e_1_2_10_23_1
  doi: 10.1002/mrm.26091
– ident: e_1_2_10_12_1
  doi: 10.1109/TAC.1974.1100705
– ident: e_1_2_10_47_1
  doi: 10.1002/mrm.26615
– ident: e_1_2_10_30_1
  doi: 10.1002/nbm.4482
– ident: e_1_2_10_28_1
  doi: 10.1016/j.neuroimage.2022.119740
– ident: e_1_2_10_40_1
  doi: 10.1177/1745691616658637
– ident: e_1_2_10_8_1
  doi: 10.1016/j.neuroimage.2015.07.042
– reference: 39314430 - bioRxiv. 2025 Jun 22:2024.09.11.612503. doi: 10.1101/2024.09.11.612503.
SSID ssj0009974
Score 2.4851015
SecondaryResourceType online_first
Snippet Metabolite amplitude estimates derived from linear combination modeling of MR spectra depend on the precise list of constituent metabolite basis functions used...
SourceID pubmed
crossref
SourceType Index Database
Title A data‐driven algorithm to determine 1 H ‐ MRS basis set composition
URI https://www.ncbi.nlm.nih.gov/pubmed/40818091
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgiGkvCAZsY4AsxFvkkaRx7D52A1RNKg9bkSZeKv9KKWrSqQ0P8Ndz5zhpNoYEvESVk6bSffX5PvvuO0Le5sXAmtRoJjOuWFbAVJS5EiyWQ6PjtID5hYXCk0_5-HN2fsWvtl0cfXVJrU_MzzvrSv4HVRgDXLFK9h-Q7V4KA_AZ8IUrIAzXv8J4FGGCJ7NrdFmRWs5XQPW_lhhP2pDm4qIkGrPJxWUE69ViE21c7dPIQ65WPzadqHnlGklnjM9xxi-q3w7fMQnebdi5w54Lt_UJom7H5guewJ_my2UoqIHlbe56Z1CLEt7qu6tDCP2tWxtGSxh13kNfuh9hzQibEinHXdYkSFoHRwokF6hVdqebbmRfy3V5ItDL9J8BC1-XHq8M1fbippfXLU3s9tZ98iAFb44tO95fbGXDhkCSWhWpOH3X_c4e2W2_eSMMuUEofGAxfUweBUZARw28T8g9V-2T3Ukw-z556JN0zeYpOR3RHt60w5vWK9rhTRPq8aYebwp40x7ez8j044fp2ZiFHhjMcJEwYTTKdZmhlS7RPC2siAsjlXW5UFYDPedSGWGFzvUgUTHnBU9clkGcaGycx4PnZKdaVe6QUIglDZBXbYQDCiwNVu9gAt9AKp4NZXpE3rQWmV03SiezRtM6nYEFZ96CR-SgsVX3SGvQF3-8c0z2tn-Rl2SnXn93ryCSq_VrD9svU3pGdg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+algorithm+to+determine+1+H-MRS+basis+set+composition&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Davies-Jenkins%2C+Christopher+W&rft.au=Z%C3%B6llner%2C+Helge+J&rft.au=Simicic%2C+Dunja&rft.au=Alcicek%2C+Seyma&rft.date=2025-08-16&rft.eissn=1522-2594&rft_id=info:doi/10.1002%2Fmrm.70030&rft_id=info%3Apmid%2F40818091&rft.externalDocID=40818091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon