多源遥感影像湿地检测概率潜在语义分析
提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辞率影像的 光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤含水量,组 成湿地场景的特征空间;然后利用概率潜在语义分析将湿地场景表示成多个潜在语义的组合,并用潜在 语义的权值向量来描述湿地场景的特征空间;最后利用 SVM分类器实现湿地场景的检测.试验表明, 概率潜在语义分析能够将湿地的高维特征空间映射到低维的潜在语义空间中,地物组成成分和定量环 境特征的加入能更加有效地表征湿地特征空间,提高湿地检测精度....
Saved in:
Published in | 测绘学报 Vol. 46; no. 8; pp. 1017 - 1025 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国地质大学(武汉)信息工程学院,湖北 武汉,430074%武汉大学遥感信息工程学院,湖北 武汉,430079
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-1595 |
DOI | 10.11947/j.AGCS.2017.20160292 |
Cover
Abstract | 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辞率影像的 光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤含水量,组 成湿地场景的特征空间;然后利用概率潜在语义分析将湿地场景表示成多个潜在语义的组合,并用潜在 语义的权值向量来描述湿地场景的特征空间;最后利用 SVM分类器实现湿地场景的检测.试验表明, 概率潜在语义分析能够将湿地的高维特征空间映射到低维的潜在语义空间中,地物组成成分和定量环 境特征的加入能更加有效地表征湿地特征空间,提高湿地检测精度. |
---|---|
AbstractList | P237; 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辨率影像的光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤含水量,组成湿地场景的特征空间;然后利用概率潜在语义分析将湿地场景表示成多个潜在语义的组合,并用潜在语义的权值向量来描述湿地场景的特征空间;最后利用SVM分类器实现湿地场景的检测.试验表明,概率潜在语义分析能够将湿地的高维特征空间映射到低维的潜在语义空间中,地物组成成分和定量环境特征的加入能更加有效地表征湿地特征空间,提高湿地检测精度. 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辞率影像的 光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤含水量,组 成湿地场景的特征空间;然后利用概率潜在语义分析将湿地场景表示成多个潜在语义的组合,并用潜在 语义的权值向量来描述湿地场景的特征空间;最后利用 SVM分类器实现湿地场景的检测.试验表明, 概率潜在语义分析能够将湿地的高维特征空间映射到低维的潜在语义空间中,地物组成成分和定量环 境特征的加入能更加有效地表征湿地特征空间,提高湿地检测精度. |
Abstract_FL | A novel wetland detection approach for multi-sources remote sensing images was proposed, which based on the probabilistic latent semantic analysis (pLSA).Firstly, spectral, texture, and subclass of wetland were extracted from high-resolution remote sensing image, and land surface temperature and soil moisture of wetland were derived from corresponding multispectral remote sensing image.The feature space of wetland scene was hence formed.Then, wetland scene was represented as a combination of several latent semantics using pLSA, and the feature space of the wetland scene was further described by weight vector of latent semantics.Finally, supporting vector machine (SVM) classifier was applied to detect the wetland scene.Experiments indicated that the adoption of pLSA is able to map the high-dimensional feature space of wetland to low-dimensional latent semantic space.Besides, the addition of subclass and quantitative environment features is able to characterize wetland feature space more effectively and improve the detection accuracy significantly. |
Author | 许凯 张倩倩 王彦华 刘福江 秦昆 |
AuthorAffiliation | 中国地质大学(武汉)信息工程学院,湖北武汉430074 武汉大学遥感信息工程学院,湖北武汉430079 |
AuthorAffiliation_xml | – name: 中国地质大学(武汉)信息工程学院,湖北 武汉,430074%武汉大学遥感信息工程学院,湖北 武汉,430079 |
Author_FL | ZHANG Qianqian LIU Fujiang XU Kai WANG Yanhua QIN Kun |
Author_FL_xml | – sequence: 1 fullname: XU Kai – sequence: 2 fullname: ZHANG Qianqian – sequence: 3 fullname: WANG Yanhua – sequence: 4 fullname: LIU Fujiang – sequence: 5 fullname: QIN Kun |
Author_xml | – sequence: 1 fullname: 许凯 张倩倩 王彦华 刘福江 秦昆 |
BookMark | eNotjztLA0EUhaeIYIz5CTaC5a5zZ3bnUYZFoxCwMP0yM9nNA91ogqidj-ADQVNL0MIHNqIWFhGCf8Yd9V-4ITbnnOLj3HtmUC5pJxFCc4BdAOnxxZZbKgfrLsHAx8IwkSSH8oAxOOBLfxoVu92mxtj3KPepzCOW3l_bj_7v4YPt3aajt_T4yg4_08GrvTuw7xf28ej78tSOBung6efl-Wt4np6d2Jv-LJqK1UY3Kv57AVWXl6rBilNZK68GpYpjfA6OZyACKTlQI2JBsn8EM7EmWglQESZCaqAezSJlWDNN_ZogknmCU1NTgGkBLUxqd1USq6Qetto7nSQ7GJrGnh7PxAIDZNz8hDONdlLfbmbkVqe5qTr7IeNESsE4p3-AkmZU |
ClassificationCodes | P237 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11947/j.AGCS.2017.20160292 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitleAlternate | Wetland Detection from Multi-sources Remote Sensing Images Based on Probabilistic Latent Semantic Analysis |
DocumentTitle_FL | Wetland Detection from Multi-sources Remote Sensing Images Based on Probabilistic Latent Semantic Analysis |
EndPage | 1025 |
ExternalDocumentID | chxb201708011 672998677 |
GrantInformation_xml | – fundername: 国家重点研发计划; 地理国情监测国家测绘地理信息局重点实验室开放基金(2016NGCM09)National Key Research and Development Program of China; Key Laboratory for National Geographic State Monitoring of National Administration of Surveying, Mapping and Geoinformation funderid: (2016YFB0502603); (2016YFB0502603); (2016NGCM09) |
GroupedDBID | -01 2B. 2C. 2RA 5VS 5XA 5XB 7X2 92E 92I 92L ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI BKSAR CCEZO CCPQU CCVFK CQIGP CW9 GROUPED_DOAJ HCIFZ IPNFZ M0K M7P OK1 P2P PATMY PCBAR PIMPY PYCSY RIG TCJ TGP U1G U5K W94 ~WA 4A8 93N ABJNI AEUYN PHGZM PHGZT PMFND PSX |
ID | FETCH-LOGICAL-c571-4c1e199713c8f8216086cfb2ba81ae0289b1343ae0360b6b35d82964873cda103 |
ISSN | 1001-1595 |
IngestDate | Thu May 29 04:11:08 EDT 2025 Wed Feb 14 09:59:07 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Keywords | wetland detection 语义信息 多源遥感 湿地检测 probabilistic latent semantic analysis 概率潜在语义分析 semantic information multi-sources remote sensing |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c571-4c1e199713c8f8216086cfb2ba81ae0289b1343ae0360b6b35d82964873cda103 |
Notes | 11-2089/P A novel wetland detection approach for multi-sources remote sensing images was proposed, which based on the probabilistic latent semantic analysis (pLSA). Firstly, spectral, texture, and subclass of wetland were extracted from high-resolution remote sensing image, and land surface temperature and soil moisture of wetland were derived from corresponding multispectral remote sensing image. The feature space of wetland scene was hence formed. Then, wetland scene was represented as a combination of several latent semantics using pLSA, and the feature space of the wetland scene was further described by weight vector of latent semantics. Finally, supporting vector machine (SVM) classifier was applied to detect the wetland scene. Experiments indicated that the adoption of pLSA is able to map the high-dimensional feature space of wetland to low-dimensional latent semantic space. Besides, the addition of subclass and quantitative environment features is able to characterize wetland feature space more effectiv |
PageCount | 9 |
ParticipantIDs | wanfang_journals_chxb201708011 chongqing_primary_672998677 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 测绘学报 |
PublicationTitleAlternate | Acta Geodaetica et Cartographica Sinica |
PublicationTitle_FL | Acta Geodaetica et Cartographica Sinica |
PublicationYear | 2017 |
Publisher | 中国地质大学(武汉)信息工程学院,湖北 武汉,430074%武汉大学遥感信息工程学院,湖北 武汉,430079 |
Publisher_xml | – name: 中国地质大学(武汉)信息工程学院,湖北 武汉,430074%武汉大学遥感信息工程学院,湖北 武汉,430079 |
SSID | ssib005437539 ssib038074662 ssib051373695 ssib002263888 ssib000862384 ssj0058465 |
Score | 2.1403165 |
Snippet | 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辞率影像的 光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤... P237; 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辨率影像的光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 1017 |
SubjectTerms | 多源遥感 概率潜在语义分析 湿地检测 语义信息 |
Title | 多源遥感影像湿地检测概率潜在语义分析 |
URI | http://lib.cqvip.com/qk/90069X/201708/672998677.html https://d.wanfangdata.com.cn/periodical/chxb201708011 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1001-1595 databaseCode: KQ8 dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssib005437539 providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central issn: 1001-1595 databaseCode: BENPR dateStart: 20100201 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 20221231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0058465 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvR27btRA0IpCQ4N4KiEQXcHQRAbbu_bulus7HxESSIggpTvZPjtpuABJJEjFSzyEBKlRBAUP0SCgoAhSxM9wBv6CmbXvzpCTeBQ01t7OeHYePu_MembXsk64MmOpYLkdK6Fs7mfMjuPEsbtxKrt5nvhpTsXJ584H85f42UV_cWJyrpa1tL6WnEo3xtaV_ItVsQ_tSlWyf2HZIVHswDbaF69oYbz-kY0h8kFzUBqiAEINyoFIoW8I2qceiaA24YQtCF1qSAaybZAVhAakmhA61KMZJT0QCNFC04MUPIgEyAikMKAW4Zd3aQmRBN0G3YKIE0GpzBASZEDIKoLyiM6B71sjLiAMQUnDf4sGIm41sj2wv6EdQWhQcHDdHkFQHhzeMRAHtBo2Riglz2ElO9FHlBZ21qkgp8SCMIKWWnFRYfV1kLLg0zyzRkhppEX5Q6I7Up-EkBuNGHtoMRLMk0aVAyFxBFSTpww11J1rJHdJj8SrMJYTRKrkvrpRgVKgPfw_VMZTpUhNUGJu3ABNzshtA88fA93N5Zin5n_wp2pTIiXdodPr1-fMatm4fDfI2gToDiyTVT_LsvbdE7XiwszU-kzzImVYCroEjleejPjLHujp8vWEcDC8oTr-PZ5At5IyMC7UYwn05GXdV8WppbYXn88ZhuZD350OWuDBaK9M32WCBWoYO5Nj7ptUiUr8qvyPGD89jm3anGV5pbd0FV1OUwHYy-PeUs1ZXdhv7auizIYuXxkHrImN5YPWlF6l714rl280TjZMu1zWXD1kBf2XT4tPm99vvSruPu_vfOjfeVJsf-5vvS9e3Cw-Pipe3_76-H6xs9XfevPt3dsv2w_7D-4VzzYPWwvtaKE5b1cnqtipL1ybp25GiWUuS2UuPeRbBmmeeEks3TijnIPEZZxhkwVOEiTM70pKy5CCpd3YddgRa7K30sumrAaGBYlQOcPoJ-EYBsg4lkGeZ9wTWcKFP23NDLXRuVJunNMJMJJXtIHmtDVb6adTvU5XOz_Z-OjvEGasvdQuF0OPWZNr19az4xgerCWz5rH4AU6gwjY |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E6%BA%90%E9%81%A5%E6%84%9F%E5%BD%B1%E5%83%8F%E6%B9%BF%E5%9C%B0%E6%A3%80%E6%B5%8B%E6%A6%82%E7%8E%87%E6%BD%9C%E5%9C%A8%E8%AF%AD%E4%B9%89%E5%88%86%E6%9E%90&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E8%AE%B8%E5%87%AF&rft.au=%E5%BC%A0%E5%80%A9%E5%80%A9&rft.au=%E7%8E%8B%E5%BD%A6%E5%8D%8E&rft.au=%E5%88%98%E7%A6%8F%E6%B1%9F&rft.date=2017&rft.pub=%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E5%A4%A7%E5%AD%A6%28%E6%AD%A6%E6%B1%89%29%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89%2C430074%25%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E9%81%A5%E6%84%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89%2C430079&rft.issn=1001-1595&rft.volume=46&rft.issue=8&rft.spage=1017&rft.epage=1025&rft_id=info:doi/10.11947%2Fj.AGCS.2017.20160292&rft.externalDocID=chxb201708011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg |