多源遥感影像湿地检测概率潜在语义分析

提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辞率影像的 光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤含水量,组 成湿地场景的特征空间;然后利用概率潜在语义分析将湿地场景表示成多个潜在语义的组合,并用潜在 语义的权值向量来描述湿地场景的特征空间;最后利用 SVM分类器实现湿地场景的检测.试验表明, 概率潜在语义分析能够将湿地的高维特征空间映射到低维的潜在语义空间中,地物组成成分和定量环 境特征的加入能更加有效地表征湿地特征空间,提高湿地检测精度....

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 46; no. 8; pp. 1017 - 1025
Main Author 许凯 张倩倩 王彦华 刘福江 秦昆
Format Journal Article
LanguageChinese
Published 中国地质大学(武汉)信息工程学院,湖北 武汉,430074%武汉大学遥感信息工程学院,湖北 武汉,430079 2017
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2017.20160292

Cover

Abstract 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辞率影像的 光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤含水量,组 成湿地场景的特征空间;然后利用概率潜在语义分析将湿地场景表示成多个潜在语义的组合,并用潜在 语义的权值向量来描述湿地场景的特征空间;最后利用 SVM分类器实现湿地场景的检测.试验表明, 概率潜在语义分析能够将湿地的高维特征空间映射到低维的潜在语义空间中,地物组成成分和定量环 境特征的加入能更加有效地表征湿地特征空间,提高湿地检测精度.
AbstractList P237; 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辨率影像的光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤含水量,组成湿地场景的特征空间;然后利用概率潜在语义分析将湿地场景表示成多个潜在语义的组合,并用潜在语义的权值向量来描述湿地场景的特征空间;最后利用SVM分类器实现湿地场景的检测.试验表明,概率潜在语义分析能够将湿地的高维特征空间映射到低维的潜在语义空间中,地物组成成分和定量环境特征的加入能更加有效地表征湿地特征空间,提高湿地检测精度.
提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辞率影像的 光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤含水量,组 成湿地场景的特征空间;然后利用概率潜在语义分析将湿地场景表示成多个潜在语义的组合,并用潜在 语义的权值向量来描述湿地场景的特征空间;最后利用 SVM分类器实现湿地场景的检测.试验表明, 概率潜在语义分析能够将湿地的高维特征空间映射到低维的潜在语义空间中,地物组成成分和定量环 境特征的加入能更加有效地表征湿地特征空间,提高湿地检测精度.
Abstract_FL A novel wetland detection approach for multi-sources remote sensing images was proposed, which based on the probabilistic latent semantic analysis (pLSA).Firstly, spectral, texture, and subclass of wetland were extracted from high-resolution remote sensing image, and land surface temperature and soil moisture of wetland were derived from corresponding multispectral remote sensing image.The feature space of wetland scene was hence formed.Then, wetland scene was represented as a combination of several latent semantics using pLSA, and the feature space of the wetland scene was further described by weight vector of latent semantics.Finally, supporting vector machine (SVM) classifier was applied to detect the wetland scene.Experiments indicated that the adoption of pLSA is able to map the high-dimensional feature space of wetland to low-dimensional latent semantic space.Besides, the addition of subclass and quantitative environment features is able to characterize wetland feature space more effectively and improve the detection accuracy significantly.
Author 许凯 张倩倩 王彦华 刘福江 秦昆
AuthorAffiliation 中国地质大学(武汉)信息工程学院,湖北武汉430074 武汉大学遥感信息工程学院,湖北武汉430079
AuthorAffiliation_xml – name: 中国地质大学(武汉)信息工程学院,湖北 武汉,430074%武汉大学遥感信息工程学院,湖北 武汉,430079
Author_FL ZHANG Qianqian
LIU Fujiang
XU Kai
WANG Yanhua
QIN Kun
Author_FL_xml – sequence: 1
  fullname: XU Kai
– sequence: 2
  fullname: ZHANG Qianqian
– sequence: 3
  fullname: WANG Yanhua
– sequence: 4
  fullname: LIU Fujiang
– sequence: 5
  fullname: QIN Kun
Author_xml – sequence: 1
  fullname: 许凯 张倩倩 王彦华 刘福江 秦昆
BookMark eNotjztLA0EUhaeIYIz5CTaC5a5zZ3bnUYZFoxCwMP0yM9nNA91ogqidj-ADQVNL0MIHNqIWFhGCf8Yd9V-4ITbnnOLj3HtmUC5pJxFCc4BdAOnxxZZbKgfrLsHAx8IwkSSH8oAxOOBLfxoVu92mxtj3KPepzCOW3l_bj_7v4YPt3aajt_T4yg4_08GrvTuw7xf28ej78tSOBung6efl-Wt4np6d2Jv-LJqK1UY3Kv57AVWXl6rBilNZK68GpYpjfA6OZyACKTlQI2JBsn8EM7EmWglQESZCaqAezSJlWDNN_ZogknmCU1NTgGkBLUxqd1USq6Qetto7nSQ7GJrGnh7PxAIDZNz8hDONdlLfbmbkVqe5qTr7IeNESsE4p3-AkmZU
ClassificationCodes P237
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2017.20160292
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Wetland Detection from Multi-sources Remote Sensing Images Based on Probabilistic Latent Semantic Analysis
DocumentTitle_FL Wetland Detection from Multi-sources Remote Sensing Images Based on Probabilistic Latent Semantic Analysis
EndPage 1025
ExternalDocumentID chxb201708011
672998677
GrantInformation_xml – fundername: 国家重点研发计划; 地理国情监测国家测绘地理信息局重点实验室开放基金(2016NGCM09)National Key Research and Development Program of China; Key Laboratory for National Geographic State Monitoring of National Administration of Surveying, Mapping and Geoinformation
  funderid: (2016YFB0502603); (2016YFB0502603); (2016NGCM09)
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
4A8
93N
ABJNI
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c571-4c1e199713c8f8216086cfb2ba81ae0289b1343ae0360b6b35d82964873cda103
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
Wed Feb 14 09:59:07 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords wetland detection
语义信息
多源遥感
湿地检测
probabilistic latent semantic analysis
概率潜在语义分析
semantic information
multi-sources remote sensing
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c571-4c1e199713c8f8216086cfb2ba81ae0289b1343ae0360b6b35d82964873cda103
Notes 11-2089/P
A novel wetland detection approach for multi-sources remote sensing images was proposed, which based on the probabilistic latent semantic analysis (pLSA). Firstly, spectral, texture, and subclass of wetland were extracted from high-resolution remote sensing image, and land surface temperature and soil moisture of wetland were derived from corresponding multispectral remote sensing image. The feature space of wetland scene was hence formed. Then, wetland scene was represented as a combination of several latent semantics using pLSA, and the feature space of the wetland scene was further described by weight vector of latent semantics. Finally, supporting vector machine (SVM) classifier was applied to detect the wetland scene. Experiments indicated that the adoption of pLSA is able to map the high-dimensional feature space of wetland to low-dimensional latent semantic space. Besides, the addition of subclass and quantitative environment features is able to characterize wetland feature space more effectiv
PageCount 9
ParticipantIDs wanfang_journals_chxb201708011
chongqing_primary_672998677
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2017
Publisher 中国地质大学(武汉)信息工程学院,湖北 武汉,430074%武汉大学遥感信息工程学院,湖北 武汉,430079
Publisher_xml – name: 中国地质大学(武汉)信息工程学院,湖北 武汉,430074%武汉大学遥感信息工程学院,湖北 武汉,430079
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.1403165
Snippet 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辞率影像的 光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温度、土壤...
P237; 提出了一种基于概率潜在语义分析的多源遥感影像湿地检测方法.首先提取高分辨率影像的光谱、纹理和湿地场景的地物组成成分,并结合由多光谱遥感数据提取的湿地地表温...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1017
SubjectTerms 多源遥感
概率潜在语义分析
湿地检测
语义信息
Title 多源遥感影像湿地检测概率潜在语义分析
URI http://lib.cqvip.com/qk/90069X/201708/672998677.html
https://d.wanfangdata.com.cn/periodical/chxb201708011
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1001-1595
  databaseCode: KQ8
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssib005437539
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1001-1595
  databaseCode: BENPR
  dateStart: 20100201
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 20221231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0058465
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvR27btRA0IpCQ4N4KiEQXcHQRAbbu_bulus7HxESSIggpTvZPjtpuABJJEjFSzyEBKlRBAUP0SCgoAhSxM9wBv6CmbXvzpCTeBQ01t7OeHYePu_MembXsk64MmOpYLkdK6Fs7mfMjuPEsbtxKrt5nvhpTsXJ584H85f42UV_cWJyrpa1tL6WnEo3xtaV_ItVsQ_tSlWyf2HZIVHswDbaF69oYbz-kY0h8kFzUBqiAEINyoFIoW8I2qceiaA24YQtCF1qSAaybZAVhAakmhA61KMZJT0QCNFC04MUPIgEyAikMKAW4Zd3aQmRBN0G3YKIE0GpzBASZEDIKoLyiM6B71sjLiAMQUnDf4sGIm41sj2wv6EdQWhQcHDdHkFQHhzeMRAHtBo2Riglz2ElO9FHlBZ21qkgp8SCMIKWWnFRYfV1kLLg0zyzRkhppEX5Q6I7Up-EkBuNGHtoMRLMk0aVAyFxBFSTpww11J1rJHdJj8SrMJYTRKrkvrpRgVKgPfw_VMZTpUhNUGJu3ABNzshtA88fA93N5Zin5n_wp2pTIiXdodPr1-fMatm4fDfI2gToDiyTVT_LsvbdE7XiwszU-kzzImVYCroEjleejPjLHujp8vWEcDC8oTr-PZ5At5IyMC7UYwn05GXdV8WppbYXn88ZhuZD350OWuDBaK9M32WCBWoYO5Nj7ptUiUr8qvyPGD89jm3anGV5pbd0FV1OUwHYy-PeUs1ZXdhv7auizIYuXxkHrImN5YPWlF6l714rl280TjZMu1zWXD1kBf2XT4tPm99vvSruPu_vfOjfeVJsf-5vvS9e3Cw-Pipe3_76-H6xs9XfevPt3dsv2w_7D-4VzzYPWwvtaKE5b1cnqtipL1ybp25GiWUuS2UuPeRbBmmeeEks3TijnIPEZZxhkwVOEiTM70pKy5CCpd3YddgRa7K30sumrAaGBYlQOcPoJ-EYBsg4lkGeZ9wTWcKFP23NDLXRuVJunNMJMJJXtIHmtDVb6adTvU5XOz_Z-OjvEGasvdQuF0OPWZNr19az4xgerCWz5rH4AU6gwjY
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E6%BA%90%E9%81%A5%E6%84%9F%E5%BD%B1%E5%83%8F%E6%B9%BF%E5%9C%B0%E6%A3%80%E6%B5%8B%E6%A6%82%E7%8E%87%E6%BD%9C%E5%9C%A8%E8%AF%AD%E4%B9%89%E5%88%86%E6%9E%90&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E8%AE%B8%E5%87%AF&rft.au=%E5%BC%A0%E5%80%A9%E5%80%A9&rft.au=%E7%8E%8B%E5%BD%A6%E5%8D%8E&rft.au=%E5%88%98%E7%A6%8F%E6%B1%9F&rft.date=2017&rft.pub=%E4%B8%AD%E5%9B%BD%E5%9C%B0%E8%B4%A8%E5%A4%A7%E5%AD%A6%28%E6%AD%A6%E6%B1%89%29%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89%2C430074%25%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E9%81%A5%E6%84%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89%2C430079&rft.issn=1001-1595&rft.volume=46&rft.issue=8&rft.spage=1017&rft.epage=1025&rft_id=info:doi/10.11947%2Fj.AGCS.2017.20160292&rft.externalDocID=chxb201708011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg