Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model

Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 3...

Full description

Saved in:
Bibliographic Details
Published inLipids in health and disease Vol. 16; no. 1; p. 42
Main Authors Ma, Jing, Yu, Jiong, Hao, Guangshu, Wang, Dan, Sun, Yanni, Lu, Jianxin, Cao, Hongcui, Lin, Feiyan
Format Journal Article
LanguageEnglish
Published London BioMed Central 20.02.2017
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1476-511X
1476-511X
DOI10.1186/s12944-017-0434-5

Cover

Abstract Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. Results The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function ( P  < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant ( P  < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. Conclusions In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.
AbstractList Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. Results The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. Conclusions In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.
The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people.BACKGROUNDThe prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people.A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC.METHODSA total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC.The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch.RESULTSThe results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch.In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.CONCLUSIONSIn conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.
The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.
Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. Results The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. Conclusions In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people. Keywords: Triglyceride, Cholesterol, Overweight, Regression, Back propagation artificial neural network
Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. Results The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function ( P  < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant ( P  < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. Conclusions In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.
The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.
ArticleNumber 42
Audience Academic
Author Ma, Jing
Wang, Dan
Lu, Jianxin
Sun, Yanni
Lin, Feiyan
Yu, Jiong
Cao, Hongcui
Hao, Guangshu
Author_xml – sequence: 1
  givenname: Jing
  surname: Ma
  fullname: Ma, Jing
  organization: Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province
– sequence: 2
  givenname: Jiong
  surname: Yu
  fullname: Yu, Jiong
  organization: The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases
– sequence: 3
  givenname: Guangshu
  surname: Hao
  fullname: Hao, Guangshu
  organization: Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University
– sequence: 4
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University
– sequence: 5
  givenname: Yanni
  surname: Sun
  fullname: Sun, Yanni
  organization: Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University
– sequence: 6
  givenname: Jianxin
  surname: Lu
  fullname: Lu, Jianxin
  organization: Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University
– sequence: 7
  givenname: Hongcui
  surname: Cao
  fullname: Cao, Hongcui
  email: chc2016@sina.com
  organization: The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University
– sequence: 8
  givenname: Feiyan
  surname: Lin
  fullname: Lin, Feiyan
  email: singlelin@yeah.net
  organization: Central laboratory, The First Affiliated Hospital of Wenzhou Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28219431$$D View this record in MEDLINE/PubMed
BookMark eNqNks1q3DAYRU1JaX7aB-imCLrpxqkky5a8KYTQPwh000J3QiN98ijI0lSyE-YB-t6VmWkzCW0JXthI517ko--0OgoxQFW9JPicENG9zYT2jNWY8BqzhtXtk-qEMN7VLSHfjw6-j6vTnK8xpph33bPqmApKetaQk-rnRc6Q8whhQtGiKbnBbzUkZwCpYJBeRw95ghQ9cgHFG0i34Ib1hDYQNx7QSmUwKAY0zn5yy4p3AVRCCYZUml3ZWopUmpx12qmlZwLv3QBBAxqjAf-8emqVz_Bi_z6rvn14__XyU3315ePny4urWrccT7Xtoce60bQx1IASWFGDuTDlv6xRVllomVCatFrzbrXSWlsLlJGVNZxaqpqziu5657BR21vlvdwkN6q0lQTLxancOZXFqVycyraE3u1Cm3k1gtFFVVJ3waicvL8T3FoO8aZESY8FLgVv9gUp_piLTTm6rIsCFSDOWRLBuWg5E_wxKO5Yj_GCvn6AXsc5haJvoRjtSEPEHTUoD9IFG8sR9VIqL5go58MEL9T5X6jyGBidLkNnXVm_F3h16OSPjN-DVQC-A3SKOSewUrtJTWUaSrPz_9VNHiQfc0X7e82FDQOkAxf_DP0CKlgEfA
CitedBy_id crossref_primary_10_3233_JIFS_219145
crossref_primary_10_1007_s11277_018_5394_1
crossref_primary_10_3233_JIFS_219154
crossref_primary_10_1007_s00500_021_05860_9
crossref_primary_10_1016_j_heliyon_2024_e35067
crossref_primary_10_1007_s00217_019_03303_2
crossref_primary_10_1038_s41598_020_60462_z
crossref_primary_10_1002_lpor_202100301
crossref_primary_10_1155_2021_4942657
crossref_primary_10_1155_2021_6662779
crossref_primary_10_1038_s41598_018_24230_4
crossref_primary_10_1155_2022_3591967
crossref_primary_10_3233_JIFS_219151
crossref_primary_10_32628_IJSRSET2310540
Cites_doi 10.1186/s12876-015-0254-x
10.1055/s-0035-1565175
10.1007/BF02956144
10.1371/journal.pntd.0002123
10.1002/sim.1107
10.1111/cob.12096
10.1038/oby.2009.446
10.4162/nrp.2010.4.1.36
10.1016/S0140-6736(13)61836-X
10.1249/MSS.0b013e318258ac11
10.1177/135965350701200112
10.1136/bcr-2013-008550
10.1364/BOE.5.001145
10.1186/2193-1801-2-340
10.1016/j.jstrokecerebrovasdis.2013.06.031
10.1016/j.talanta.2013.04.031
10.1152/japplphysiol.00509.2014
10.1016/j.dsx.2013.10.008
10.1007/s12529-013-9322-1
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12944-017-0434-5
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
MEDLINE

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1476-511X
ExternalDocumentID 10.1186/s12944-017-0434-5
PMC5319080
4318532681
A481900108
28219431
10_1186_s12944_017_0434_5
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Science and Technology Major Project
  grantid: 2012ZX10002004
– fundername: ;
  grantid: 2012ZX10002004
GroupedDBID ---
0R~
29L
2WC
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESTFP
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
FRP
NPM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
2VQ
4.4
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c570t-f9e90c3c23d2dea80a2d078d020fdafafe548ac15cc76bbcccffe241bfd72f2a3
IEDL.DBID M48
ISSN 1476-511X
IngestDate Sun Oct 26 03:40:05 EDT 2025
Tue Sep 30 16:56:30 EDT 2025
Fri Sep 05 08:41:49 EDT 2025
Mon Sep 08 05:27:25 EDT 2025
Sat Oct 18 23:44:51 EDT 2025
Mon Oct 20 22:05:57 EDT 2025
Mon Oct 20 16:32:22 EDT 2025
Wed Feb 19 02:00:01 EST 2025
Wed Oct 01 00:25:01 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Sat Sep 06 07:34:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Regression
Back propagation artificial neural network
Triglyceride
Cholesterol
Overweight
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-f9e90c3c23d2dea80a2d078d020fdafafe548ac15cc76bbcccffe241bfd72f2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1874261318?pq-origsite=%requestingapplication%&accountid=15518
PMID 28219431
PQID 1874261318
PQPubID 42587
ParticipantIDs unpaywall_primary_10_1186_s12944_017_0434_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5319080
proquest_miscellaneous_1877857487
proquest_miscellaneous_1870649007
proquest_journals_1874261318
gale_infotracmisc_A481900108
gale_infotracacademiconefile_A481900108
pubmed_primary_28219431
crossref_citationtrail_10_1186_s12944_017_0434_5
crossref_primary_10_1186_s12944_017_0434_5
springer_journals_10_1186_s12944_017_0434_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-20
PublicationDateYYYYMMDD 2017-02-20
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Lipids in health and disease
PublicationTitleAbbrev Lipids Health Dis
PublicationTitleAlternate Lipids Health Dis
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References L Cheng (434_CR9) 2015; 15
KK Andersen (434_CR17) 2013; 22
B Larder (434_CR19) 2007; 12
HM El-Karaksy (434_CR7) 2015; 9
R Wippel (434_CR12) 2001; 9
I Peytremann-Bridevaux (434_CR3) 2008; 138
SS Andersen (434_CR4) 2015; 5
T Marotta (434_CR10) 2010; 18
SG Trost (434_CR22) 2012; 44
H AbouAssi (434_CR6) 2015; 118
J Tang (434_CR13) 2013; 8
DC Seo (434_CR1) 2014; 21
Y Lu (434_CR5) 2014; 383
434_CR8
H Ding (434_CR14) 2014; 5
N Sira (434_CR2) 2010; 4
B Lin (434_CR11) 2015; 8
T Pivetta (434_CR18) 2013; 115
A Ciampi (434_CR21) 2002; 21
J Wang (434_CR15) 2016; 124
JF Xu (434_CR16) 2013; 7
A Qaderi (434_CR20) 2013; 2
26797861 - Exp Clin Endocrinol Diabetes. 2016 Jan;124(1):34-8
25470627 - Diabetes Metab Syndr. 2015 Apr-Jun;9(2):114-9
23744048 - Int J Behav Med. 2014 Aug;21(4):682-90
23608843 - BMJ Case Rep. 2013 Apr 22;2013:null
25887309 - BMC Gastroenterol. 2015 Feb 14;15:19
23556015 - PLoS Negl Trop Dis. 2013;7(3):e2123
18481232 - Swiss Med Wkly. 2008 May 3;138(17-18):261-6
11503283 - Cent Eur J Public Health. 2001 May;9(2):95-101
25873234 - Clin Obes. 2015 Jun;5(3):127-35
12111880 - Stat Med. 2002 May 15;21(9):1309-30
24054565 - Talanta. 2013 Oct 15;115:84-93
23871726 - J Stroke Cerebrovasc Dis. 2013 Nov;22(8):e576-81
25206598 - Neural Regen Res. 2013 Jan 25;8(3):270-6
23961405 - Springerplus. 2013 Jul 24;2:340
20198207 - Nutr Res Pract. 2010 Feb;4(1):36-42
24761296 - Biomed Opt Express. 2014 Mar 12;5(4):1145-52
26885213 - Int J Clin Exp Med. 2015 Dec 15;8(12):22352-8
25882384 - J Appl Physiol (1985). 2015 Jun 15;118(12):1474-82
17503743 - Antivir Ther. 2007;12(1):15-24
22525766 - Med Sci Sports Exerc. 2012 Sep;44(9):1801-9
20019684 - Obesity (Silver Spring). 2010 Aug;18(8):1608-13
24269108 - Lancet. 2014 Mar 15;383(9921):970-83
References_xml – volume: 15
  start-page: 19
  year: 2015
  ident: 434_CR9
  publication-title: BMC Gastroenterol
  doi: 10.1186/s12876-015-0254-x
– volume: 124
  start-page: 34
  year: 2016
  ident: 434_CR15
  publication-title: Exp Clin Endocrinol Diabetes
  doi: 10.1055/s-0035-1565175
– volume: 9
  start-page: 95
  year: 2001
  ident: 434_CR12
  publication-title: Cent Eur J Public Health
  doi: 10.1007/BF02956144
– volume: 7
  start-page: e2123
  year: 2013
  ident: 434_CR16
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0002123
– volume: 21
  start-page: 1309
  year: 2002
  ident: 434_CR21
  publication-title: Stat Med
  doi: 10.1002/sim.1107
– volume: 8
  start-page: 270
  year: 2013
  ident: 434_CR13
  publication-title: Neural Regen Res
– volume: 5
  start-page: 127
  year: 2015
  ident: 434_CR4
  publication-title: Clin Obes
  doi: 10.1111/cob.12096
– volume: 18
  start-page: 1608
  year: 2010
  ident: 434_CR10
  publication-title: Obesity (Silver Spring)
  doi: 10.1038/oby.2009.446
– volume: 4
  start-page: 36
  year: 2010
  ident: 434_CR2
  publication-title: Nutr Res Pract
  doi: 10.4162/nrp.2010.4.1.36
– volume: 8
  start-page: 22352
  year: 2015
  ident: 434_CR11
  publication-title: Int J Clin Exp Med
– volume: 383
  start-page: 970
  year: 2014
  ident: 434_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61836-X
– volume: 44
  start-page: 1801
  year: 2012
  ident: 434_CR22
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e318258ac11
– volume: 138
  start-page: 261
  year: 2008
  ident: 434_CR3
  publication-title: Swiss Med Wkly
– volume: 12
  start-page: 15
  year: 2007
  ident: 434_CR19
  publication-title: Antivir Ther
  doi: 10.1177/135965350701200112
– ident: 434_CR8
  doi: 10.1136/bcr-2013-008550
– volume: 5
  start-page: 1145
  year: 2014
  ident: 434_CR14
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.5.001145
– volume: 2
  start-page: 340
  year: 2013
  ident: 434_CR20
  publication-title: Springerplus
  doi: 10.1186/2193-1801-2-340
– volume: 22
  start-page: e576
  year: 2013
  ident: 434_CR17
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2013.06.031
– volume: 115
  start-page: 84
  year: 2013
  ident: 434_CR18
  publication-title: Talanta
  doi: 10.1016/j.talanta.2013.04.031
– volume: 118
  start-page: 1474
  year: 2015
  ident: 434_CR6
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.00509.2014
– volume: 9
  start-page: 114
  year: 2015
  ident: 434_CR7
  publication-title: Diabetes Metab Syndr
  doi: 10.1016/j.dsx.2013.10.008
– volume: 21
  start-page: 682
  year: 2014
  ident: 434_CR1
  publication-title: Int J Behav Med
  doi: 10.1007/s12529-013-9322-1
– reference: 26885213 - Int J Clin Exp Med. 2015 Dec 15;8(12):22352-8
– reference: 24761296 - Biomed Opt Express. 2014 Mar 12;5(4):1145-52
– reference: 23556015 - PLoS Negl Trop Dis. 2013;7(3):e2123
– reference: 23608843 - BMJ Case Rep. 2013 Apr 22;2013:null
– reference: 25882384 - J Appl Physiol (1985). 2015 Jun 15;118(12):1474-82
– reference: 23871726 - J Stroke Cerebrovasc Dis. 2013 Nov;22(8):e576-81
– reference: 24269108 - Lancet. 2014 Mar 15;383(9921):970-83
– reference: 23744048 - Int J Behav Med. 2014 Aug;21(4):682-90
– reference: 22525766 - Med Sci Sports Exerc. 2012 Sep;44(9):1801-9
– reference: 18481232 - Swiss Med Wkly. 2008 May 3;138(17-18):261-6
– reference: 11503283 - Cent Eur J Public Health. 2001 May;9(2):95-101
– reference: 20019684 - Obesity (Silver Spring). 2010 Aug;18(8):1608-13
– reference: 25887309 - BMC Gastroenterol. 2015 Feb 14;15:19
– reference: 26797861 - Exp Clin Endocrinol Diabetes. 2016 Jan;124(1):34-8
– reference: 25873234 - Clin Obes. 2015 Jun;5(3):127-35
– reference: 23961405 - Springerplus. 2013 Jul 24;2:340
– reference: 25206598 - Neural Regen Res. 2013 Jan 25;8(3):270-6
– reference: 24054565 - Talanta. 2013 Oct 15;115:84-93
– reference: 25470627 - Diabetes Metab Syndr. 2015 Apr-Jun;9(2):114-9
– reference: 12111880 - Stat Med. 2002 May 15;21(9):1309-30
– reference: 20198207 - Nutr Res Pract. 2010 Feb;4(1):36-42
– reference: 17503743 - Antivir Ther. 2007;12(1):15-24
SSID ssj0020766
Score 2.2207913
Snippet Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol...
The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with...
Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Adult
Artificial intelligence
Biomedical and Life Sciences
Case-Control Studies
Cholesterol
Cholesterol - blood
Clinical Nutrition
Fasting
Health aspects
Humans
Hyperlipidemia
Life Sciences
Linear Models
Lipidology
Medical Biochemistry
Middle Aged
Models, Biological
Neural Networks (Computer)
Overweight - blood
Overweight persons
Risk factors
Triglycerides
Triglycerides - blood
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9RAEB7qFXz5INr6Eq2ygihYQpNNNpt8EDmlpQg9RCz0W9jsburBuTmvd8j9AP-3M5sX7wrWzztZkp3Z2Xkys88AvOYV15WqkjBJhQ5TJWRYGROFCBWkqBOTCs-2fzbJTs_TzxfiYgcm_V0YKqvsfaJ31KbR9I_8iHrHYbSPJvhh_jOkrlGUXe1baKiutYJ57ynGbsEuJ2asEex-PJ58-TpAMETtWZfbjPPs6ApPu5SqMGQYpUkaiq3T6bqP3jikrhdQDlnUe3Bn5eZq_UvNZhsH1ckDuN9FmGzcmsRD2LFuD_bHDtH1jzV7w3zNp_-Zvge3z7rU-j78Hg8cnayp2RI_fbbWaJ_GMuUMIzfpWRWaGZs61viCakL2rC1CZ3QeGtY41tcoMopg1YIt7GVbbOv8RGSrLW0Fm27wgTLfk-cRnJ8cf_t0GnY9GkItZLQM68IWkU40Tww3VuWR4gajDoNLXRtVq9oiJFI6FlrLrKq01nVtMWqoaiN5zVXyGEaucfYpMGEpu2zSQtk45TorZKXyIos1jzNRRSqAqNdNqTsCc-qjMSs9kMmzslVnieosSZ2lCODd8Mi8Ze-4SfgtKbyknY3zatVdUMC3I46scpxS9IT4NQ_gYEsSd6TeHu5Npuw8wlX5134DeDUM05NU5eZss_IyGCHiJPJGGZkLiTgzgCetFQ6fhvA5LjAiDEBu2ecgQFzi2yNu-t1zipMrRvAQwGFvyRuv_u8VOxyM_f_r--zmZXkOd7nfiBw99wGMlouVfYEB37J62e3iP_stVf8
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB50BS8PorteqqtEEAWXYps2TftYxGUR1icP7FvJVQ900-VckPMD_N9O0guni674nEloM5fM15l-AXhLJVVSyCzOcqbiXDAeS62TGKECZzbTOQts--dfi7NF_uWCXQz_ca_HbvexJBkidXDrsvi4xpMp9x0TPE7yLI_ZbbjDPJsXGvGC1hPKQmBeDOXLP06bHUDXw_DeOXS9R3IqlD6Ae1t3JXY_RdvunUWnj-DhkESSutf6Y7hl3CEc1Q4B9OWOvCOhrTN8Lz-Eu-dD9fwIftUTDSfpLNkgMG93Ck1QGyKcJj4SBuKEriVLR7rQM-3BO-n7zIk_8jTpHBnbEIlPUsWKrMz3vp_WhYW8OfbMFGS5R_lJwrU7T2Bx-vnbp7N4uIYhVownm9hWpkpUpmimqTaiTATVmFho3GqrhRXWIOoRKmVK8UJKpZS1BhMDaTWnlorsKRy4zpnnQJjxBWSdV8KkOVVFxaUoqyJVNC2YTEQEyaibRg0c5f6qjLYJWKUsml6dDaqz8epsWAQfpilXPUHHTcLvvcIb77y4rhLDPwj4dJ4Gq6lznyAhRC0jOJ5JotOp-fBoMs3g9OvGX2-IgBSjZARvpmE_0zeyOdNtgwwmgbgIv1GGl4wjlIzgWW-F06shQk4rTPoi4DP7nAQ8Xfh8xC1_BNpwH20RH0RwMlry3qP_fcdOJmP_9_6--K-1X8J9GvySYqw-hoPNamteYYq3ka-DS_8G2mtMEQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD50KezysEu7i7duaDA2WHHqyJZlP4axEgYte1ggezKyLq2pZ4c0YWTv-987ki8kYesY7C2gI2OdnMt3rKNPAG9oTmUu8tAPIyb9SDDu50oFPpYKnJlQRcyx7Z-dx5Np9GnGZnsw6c7ClMW8UI4sdLh5_rx0QRt_yKuTuTKNryfxyTWmq8i2UXA_iMLIZ7dgP2aIygewPz3_PP7qDhfx2EdcMWs3NX87byst7Qbnjey02znZb5_egzurai7W30VZbmSo0wdQdGtrGlOuhqtlPpQ_dmgf_8fiH8L9FsaScWN3j2BPVwdwOK6whP-2Jm-Jayx1X-wP4PZZu39_CD_HPREoqQ1ZLoqLci3RCZQmolLExmJH3VCXpKhI7bq27ecD0nS6E5t0Fakr0jVCEguTxYIs9EXT0Vu5B1mHaLgxSLFBOkrcxT-PYXr68cuHid9eBOFLxoOlb1KdBjKUNFRUaZEEgiqENgqhrlHCCKOx7hJyxKTkcZ5LKY3RCE1yozg1VIRPYFDVlX4GhGm7ha2iVOhRRGWc8lwkaTySdBSzPBAeBJ0dZLJlSbeXdZSZq5aSOGu0nqHWM6v1jHnwvp8ybyhCbhJ-Z40rs-HD_qOiPQWBb2eJuLJxZCEaFsmJB0dbkuj2cnu4M8-sDTvXmb1gEUtijNMevO6H7UzbSlfpeuVkEIbiQ_iNMjxhHItZD542Ft8vDWv0UYqw0wO-5Qu9gCUs3x6piktHXG7jPVYoHhx3XrPx6n_W2HHvWH_X7_N_kn4Bd6lzH4rZ4ggGy8VKv0SQucxftfHjF3L8eNk
  priority: 102
  providerName: Unpaywall
Title Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model
URI https://link.springer.com/article/10.1186/s12944-017-0434-5
https://www.ncbi.nlm.nih.gov/pubmed/28219431
https://www.proquest.com/docview/1874261318
https://www.proquest.com/docview/1870649007
https://www.proquest.com/docview/1877857487
https://pubmed.ncbi.nlm.nih.gov/PMC5319080
https://lipidworld.biomedcentral.com/track/pdf/10.1186/s12944-017-0434-5
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: HH5
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: KQ8
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: A8Z
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: M48
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1476-511X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020766
  issn: 1476-511X
  databaseCode: U2A
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tq8THA4KNj8CojIRAYspInThOHhAK1aapUqsJqFSeIsd2oFJIRtcK-gfwf3N2PtROY4iXNIovVuq7890vd7kDeEkzKjOR-a4fMOkGgnE3U8pzESpwlvsqYLba_ngSnk2D0YzNdqBtb9Us4OW10M70k5ouiuNfP9bvUeHfWYWPwreXaLMCk0vBXS_wA5ftQg8NVWw6OYyDLqhAEbLXHxvx0EU_Y9YEOa-dYstMXd2sN6zV1UzKLpx6F26vygux_imKYsNind6He42rSZJaNh7Aji734SApEWZ_X5NXxCZ_2rfq-3Br3MTYD-B30hXrJFVOlgjfi7VEQVWaiFIRs2S2vEJVkHlJKptZbSA-qbPRiTGMilQlaZMViXFlxYIs9Nc667a0ExmhretXkPlGYVBim_M8hOnpyefhmds0a3Al497SzWMde9KX1FdUaRF5gip0PxQue65ELnKN2EjIAZOSh1kmpcxzje5DlitOcyr8R7BXVqV-AoRpE2ZWQSz0IKAyjHkmojgcSDoIWeYJB7yWN6lsKpmbhhpFahFNFKY1O1NkZ2rYmTIH3nS3XNRlPG4ifm0Ynhqhw3mlaL5UwKczxbLSJDBuFALZyIHDLUpUTbk93IpM2kp2apogImzFvdSBF92wudOku5W6WlkadBVxEn4jDY8YR8DpwONaCru_hjh6EKNr6ADfks-OwBQV3x4p599scXGzJyOKcOColeSNR__7ih11wv7v9X36P8x4BneoVUuKG_oh7C0XK_0c_cBl1oddPuN96CXJ6NMIfz-cTM4_4tVhOOzbdyt9q_94nFI8700n58mXP8d0YH8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am8TgAcEGLDDASFwkpmiJE8fJw4QKbOrYWiG0SXsLju2wSiUpvWjqD-Bv8ds4di60kyhPe_ZFic_d5_g7AK9oRmUmssANQibdUDDuZkp5LoYKnOWBCplF2-_1o-55-PmCXazB7-YtjCmrbHSiVdSqlOaOfN_0jkNvH1nw_eina7pGmexq00JD1K0V1IGFGKsfdpzo-RWGcJOD409I79eUHh2efey6dZcBVzLuTd080YknA0kDRZUWsSeoQrup0I_KlchFrtGpF9JnUvIoy6SUea7R7mW54jSnIsB9b8FGGIQJBn8bHw77X762IZ_Ho6jOpfpxtD9B6xqaqg_uerjAZUvW8LpNWDCK1ws226ztXdicFSMxvxLD4YJhPLoP92qPlnQqFnwAa7rYgu1OgdH8jzl5Q2yNqb2834LbvTqVvw2_Oi0mKClzMsWjHs4lyoPSRBSKGLVsURzKIRkUpLQF3OYmgVRF78TYX0XKgjQ1kcR4zGJMxvp7Vdxb2I2MbFQwGWSwgD9KbA-gh3B-I9R6BOtFWegdIEybbLYKE6H9kMoo4ZmIk8iX1I9Y5gkHvIY2qawB003fjmFqA6c4SitypkjO1JAzZQ68a5eMKrSQVZPfGoKnRpPgvlLUDyLw6wwmV9oJjbeG8XLswO7STNQAcnm4YZm01kCT9K-8OPCyHTYrTVVdocuZnYMeKW7CV87hMeMY1zrwuOLC9tcwXPcT9EAd4Ev82U4w2OXLI8Xg0mKYG9WPwYoDew0nL3z6v09sr2X2_5_vk9XH8gI2u2e90_T0uH_yFO5QK5QUrcYurE_HM_0Mnc1p9ryWaALfblqJ_AE6Jpat
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BkQp9QNBSCBQwEgKJKmrWsePkcbWwKkcrHqjUt8jxASstzmoPVfsD-N-MnUO7FRTx7LGV2HN98eQbgNe0oqqSVRqnjKuYSS7iSuskRqgguE0144Ft_-w8O71gny75ZdvndNFVu3dXks0_DZ6lyS1PZto2Jp5nJwuMUsxXT4g4YSmL-W24wzC4-RYGo2zUIy4E6Vl7lfnHaVvB6LpL3ohJ1-sl-0vTPbi7cjO5vpLT6UZcGj-A-21CSYaNBjyEW8btw8HQIZj-uSZvSCjxDN_O92H3rL1JP4Bfw56Sk9SWLBGkT9cK1VEbIp0m3isGEoV6SiaO1KF-2gN50tScEx_-NKkd6UoSiU9Y5ZzMzfemttaFhbxqNiwVZLJB_0lCC55HcDH-8G10GrctGWLFRbKMbWGKRKWKpppqI_NEUo1JhsattlpaaQ0iIKkGXCmRVZVSylqDSUJltaCWyvQQdlztzBMg3PjLZM0KaQaMqqwQlcyLbKDoIONVIiNIurMpVctX7ttmTMuAW_KsbI6zxOMs_XGWPIJ3_ZRZQ9Zxk_Bbf-ClN2RcV8n2fwR8Ok-JVQ6ZT5YQruYRHG1JogGq7eFOZcrWASxK3-oQwSl6zAhe9cN-pi9qc6ZeBRlMCHERcaOMyLlAWBnB40YL-1dDtDwoMAGMQGzpZy_gqcO3R9zkR6AQ954XsUIEx50mbzz633fsuFf2f-_v0_9a-yXsfn0_Lr98PP_8DO7RYKIUXfgR7CznK_McM79l9SJY92-_GVMj
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD50KezysEu7i7duaDA2WHHqyJZlP4axEgYte1ggezKyLq2pZ4c0YWTv-987ki8kYesY7C2gI2OdnMt3rKNPAG9oTmUu8tAPIyb9SDDu50oFPpYKnJlQRcyx7Z-dx5Np9GnGZnsw6c7ClMW8UI4sdLh5_rx0QRt_yKuTuTKNryfxyTWmq8i2UXA_iMLIZ7dgP2aIygewPz3_PP7qDhfx2EdcMWs3NX87byst7Qbnjey02znZb5_egzurai7W30VZbmSo0wdQdGtrGlOuhqtlPpQ_dmgf_8fiH8L9FsaScWN3j2BPVwdwOK6whP-2Jm-Jayx1X-wP4PZZu39_CD_HPREoqQ1ZLoqLci3RCZQmolLExmJH3VCXpKhI7bq27ecD0nS6E5t0Fakr0jVCEguTxYIs9EXT0Vu5B1mHaLgxSLFBOkrcxT-PYXr68cuHid9eBOFLxoOlb1KdBjKUNFRUaZEEgiqENgqhrlHCCKOx7hJyxKTkcZ5LKY3RCE1yozg1VIRPYFDVlX4GhGm7ha2iVOhRRGWc8lwkaTySdBSzPBAeBJ0dZLJlSbeXdZSZq5aSOGu0nqHWM6v1jHnwvp8ybyhCbhJ-Z40rs-HD_qOiPQWBb2eJuLJxZCEaFsmJB0dbkuj2cnu4M8-sDTvXmb1gEUtijNMevO6H7UzbSlfpeuVkEIbiQ_iNMjxhHItZD542Ft8vDWv0UYqw0wO-5Qu9gCUs3x6piktHXG7jPVYoHhx3XrPx6n_W2HHvWH_X7_N_kn4Bd6lzH4rZ4ggGy8VKv0SQucxftfHjF3L8eNk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+triglyceride+and+cholesterol+in+overweight+people+based+on+multiple+linear+regression+and+artificial+intelligence+model&rft.jtitle=Lipids+in+health+and+disease&rft.au=Ma%2C+Jing&rft.au=Yu%2C+Jiong&rft.au=Hao%2C+Guangshu&rft.au=Wang%2C+Dan&rft.date=2017-02-20&rft.issn=1476-511X&rft.eissn=1476-511X&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12944-017-0434-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12944_017_0434_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-511X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-511X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-511X&client=summon