Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model
Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 3...
Saved in:
| Published in | Lipids in health and disease Vol. 16; no. 1; p. 42 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
20.02.2017
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1476-511X 1476-511X |
| DOI | 10.1186/s12944-017-0434-5 |
Cover
| Abstract | Background
The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people.
Methods
A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC.
Results
The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (
P
< 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (
P
< 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch.
Conclusions
In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people. |
|---|---|
| AbstractList | Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. Results The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. Conclusions In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people. The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people.BACKGROUNDThe prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people.A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC.METHODSA total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC.The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch.RESULTSThe results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch.In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.CONCLUSIONSIn conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people. The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people. Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. Results The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. Conclusions In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people. Keywords: Triglyceride, Cholesterol, Overweight, Regression, Back propagation artificial neural network Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. Methods A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. Results The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function ( P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant ( P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. Conclusions In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people. The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people. |
| ArticleNumber | 42 |
| Audience | Academic |
| Author | Ma, Jing Wang, Dan Lu, Jianxin Sun, Yanni Lin, Feiyan Yu, Jiong Cao, Hongcui Hao, Guangshu |
| Author_xml | – sequence: 1 givenname: Jing surname: Ma fullname: Ma, Jing organization: Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province – sequence: 2 givenname: Jiong surname: Yu fullname: Yu, Jiong organization: The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases – sequence: 3 givenname: Guangshu surname: Hao fullname: Hao, Guangshu organization: Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University – sequence: 4 givenname: Dan surname: Wang fullname: Wang, Dan organization: Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University – sequence: 5 givenname: Yanni surname: Sun fullname: Sun, Yanni organization: Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University – sequence: 6 givenname: Jianxin surname: Lu fullname: Lu, Jianxin organization: Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University – sequence: 7 givenname: Hongcui surname: Cao fullname: Cao, Hongcui email: chc2016@sina.com organization: The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University – sequence: 8 givenname: Feiyan surname: Lin fullname: Lin, Feiyan email: singlelin@yeah.net organization: Central laboratory, The First Affiliated Hospital of Wenzhou Medical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28219431$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1q3DAYRU1JaX7aB-imCLrpxqkky5a8KYTQPwh000J3QiN98ijI0lSyE-YB-t6VmWkzCW0JXthI517ko--0OgoxQFW9JPicENG9zYT2jNWY8BqzhtXtk-qEMN7VLSHfjw6-j6vTnK8xpph33bPqmApKetaQk-rnRc6Q8whhQtGiKbnBbzUkZwCpYJBeRw95ghQ9cgHFG0i34Ib1hDYQNx7QSmUwKAY0zn5yy4p3AVRCCYZUml3ZWopUmpx12qmlZwLv3QBBAxqjAf-8emqVz_Bi_z6rvn14__XyU3315ePny4urWrccT7Xtoce60bQx1IASWFGDuTDlv6xRVllomVCatFrzbrXSWlsLlJGVNZxaqpqziu5657BR21vlvdwkN6q0lQTLxancOZXFqVycyraE3u1Cm3k1gtFFVVJ3waicvL8T3FoO8aZESY8FLgVv9gUp_piLTTm6rIsCFSDOWRLBuWg5E_wxKO5Yj_GCvn6AXsc5haJvoRjtSEPEHTUoD9IFG8sR9VIqL5go58MEL9T5X6jyGBidLkNnXVm_F3h16OSPjN-DVQC-A3SKOSewUrtJTWUaSrPz_9VNHiQfc0X7e82FDQOkAxf_DP0CKlgEfA |
| CitedBy_id | crossref_primary_10_3233_JIFS_219145 crossref_primary_10_1007_s11277_018_5394_1 crossref_primary_10_3233_JIFS_219154 crossref_primary_10_1007_s00500_021_05860_9 crossref_primary_10_1016_j_heliyon_2024_e35067 crossref_primary_10_1007_s00217_019_03303_2 crossref_primary_10_1038_s41598_020_60462_z crossref_primary_10_1002_lpor_202100301 crossref_primary_10_1155_2021_4942657 crossref_primary_10_1155_2021_6662779 crossref_primary_10_1038_s41598_018_24230_4 crossref_primary_10_1155_2022_3591967 crossref_primary_10_3233_JIFS_219151 crossref_primary_10_32628_IJSRSET2310540 |
| Cites_doi | 10.1186/s12876-015-0254-x 10.1055/s-0035-1565175 10.1007/BF02956144 10.1371/journal.pntd.0002123 10.1002/sim.1107 10.1111/cob.12096 10.1038/oby.2009.446 10.4162/nrp.2010.4.1.36 10.1016/S0140-6736(13)61836-X 10.1249/MSS.0b013e318258ac11 10.1177/135965350701200112 10.1136/bcr-2013-008550 10.1364/BOE.5.001145 10.1186/2193-1801-2-340 10.1016/j.jstrokecerebrovasdis.2013.06.031 10.1016/j.talanta.2013.04.031 10.1152/japplphysiol.00509.2014 10.1016/j.dsx.2013.10.008 10.1007/s12529-013-9322-1 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 |
| Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12944-017-0434-5 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1476-511X |
| ExternalDocumentID | 10.1186/s12944-017-0434-5 PMC5319080 4318532681 A481900108 28219431 10_1186_s12944_017_0434_5 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Science and Technology Major Project grantid: 2012ZX10002004 – fundername: ; grantid: 2012ZX10002004 |
| GroupedDBID | --- 0R~ 29L 2WC 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESTFP ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HH5 HMCUK HYE IAO IGS IHR INH INR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P P6G PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF FRP NPM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM 2VQ 4.4 ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c570t-f9e90c3c23d2dea80a2d078d020fdafafe548ac15cc76bbcccffe241bfd72f2a3 |
| IEDL.DBID | M48 |
| ISSN | 1476-511X |
| IngestDate | Sun Oct 26 03:40:05 EDT 2025 Tue Sep 30 16:56:30 EDT 2025 Fri Sep 05 08:41:49 EDT 2025 Mon Sep 08 05:27:25 EDT 2025 Sat Oct 18 23:44:51 EDT 2025 Mon Oct 20 22:05:57 EDT 2025 Mon Oct 20 16:32:22 EDT 2025 Wed Feb 19 02:00:01 EST 2025 Wed Oct 01 00:25:01 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Sat Sep 06 07:34:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Regression Back propagation artificial neural network Triglyceride Cholesterol Overweight |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c570t-f9e90c3c23d2dea80a2d078d020fdafafe548ac15cc76bbcccffe241bfd72f2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1874261318?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 28219431 |
| PQID | 1874261318 |
| PQPubID | 42587 |
| ParticipantIDs | unpaywall_primary_10_1186_s12944_017_0434_5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5319080 proquest_miscellaneous_1877857487 proquest_miscellaneous_1870649007 proquest_journals_1874261318 gale_infotracmisc_A481900108 gale_infotracacademiconefile_A481900108 pubmed_primary_28219431 crossref_citationtrail_10_1186_s12944_017_0434_5 crossref_primary_10_1186_s12944_017_0434_5 springer_journals_10_1186_s12944_017_0434_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-20 |
| PublicationDateYYYYMMDD | 2017-02-20 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Lipids in health and disease |
| PublicationTitleAbbrev | Lipids Health Dis |
| PublicationTitleAlternate | Lipids Health Dis |
| PublicationYear | 2017 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | L Cheng (434_CR9) 2015; 15 KK Andersen (434_CR17) 2013; 22 B Larder (434_CR19) 2007; 12 HM El-Karaksy (434_CR7) 2015; 9 R Wippel (434_CR12) 2001; 9 I Peytremann-Bridevaux (434_CR3) 2008; 138 SS Andersen (434_CR4) 2015; 5 T Marotta (434_CR10) 2010; 18 SG Trost (434_CR22) 2012; 44 H AbouAssi (434_CR6) 2015; 118 J Tang (434_CR13) 2013; 8 DC Seo (434_CR1) 2014; 21 Y Lu (434_CR5) 2014; 383 434_CR8 H Ding (434_CR14) 2014; 5 N Sira (434_CR2) 2010; 4 B Lin (434_CR11) 2015; 8 T Pivetta (434_CR18) 2013; 115 A Ciampi (434_CR21) 2002; 21 J Wang (434_CR15) 2016; 124 JF Xu (434_CR16) 2013; 7 A Qaderi (434_CR20) 2013; 2 26797861 - Exp Clin Endocrinol Diabetes. 2016 Jan;124(1):34-8 25470627 - Diabetes Metab Syndr. 2015 Apr-Jun;9(2):114-9 23744048 - Int J Behav Med. 2014 Aug;21(4):682-90 23608843 - BMJ Case Rep. 2013 Apr 22;2013:null 25887309 - BMC Gastroenterol. 2015 Feb 14;15:19 23556015 - PLoS Negl Trop Dis. 2013;7(3):e2123 18481232 - Swiss Med Wkly. 2008 May 3;138(17-18):261-6 11503283 - Cent Eur J Public Health. 2001 May;9(2):95-101 25873234 - Clin Obes. 2015 Jun;5(3):127-35 12111880 - Stat Med. 2002 May 15;21(9):1309-30 24054565 - Talanta. 2013 Oct 15;115:84-93 23871726 - J Stroke Cerebrovasc Dis. 2013 Nov;22(8):e576-81 25206598 - Neural Regen Res. 2013 Jan 25;8(3):270-6 23961405 - Springerplus. 2013 Jul 24;2:340 20198207 - Nutr Res Pract. 2010 Feb;4(1):36-42 24761296 - Biomed Opt Express. 2014 Mar 12;5(4):1145-52 26885213 - Int J Clin Exp Med. 2015 Dec 15;8(12):22352-8 25882384 - J Appl Physiol (1985). 2015 Jun 15;118(12):1474-82 17503743 - Antivir Ther. 2007;12(1):15-24 22525766 - Med Sci Sports Exerc. 2012 Sep;44(9):1801-9 20019684 - Obesity (Silver Spring). 2010 Aug;18(8):1608-13 24269108 - Lancet. 2014 Mar 15;383(9921):970-83 |
| References_xml | – volume: 15 start-page: 19 year: 2015 ident: 434_CR9 publication-title: BMC Gastroenterol doi: 10.1186/s12876-015-0254-x – volume: 124 start-page: 34 year: 2016 ident: 434_CR15 publication-title: Exp Clin Endocrinol Diabetes doi: 10.1055/s-0035-1565175 – volume: 9 start-page: 95 year: 2001 ident: 434_CR12 publication-title: Cent Eur J Public Health doi: 10.1007/BF02956144 – volume: 7 start-page: e2123 year: 2013 ident: 434_CR16 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0002123 – volume: 21 start-page: 1309 year: 2002 ident: 434_CR21 publication-title: Stat Med doi: 10.1002/sim.1107 – volume: 8 start-page: 270 year: 2013 ident: 434_CR13 publication-title: Neural Regen Res – volume: 5 start-page: 127 year: 2015 ident: 434_CR4 publication-title: Clin Obes doi: 10.1111/cob.12096 – volume: 18 start-page: 1608 year: 2010 ident: 434_CR10 publication-title: Obesity (Silver Spring) doi: 10.1038/oby.2009.446 – volume: 4 start-page: 36 year: 2010 ident: 434_CR2 publication-title: Nutr Res Pract doi: 10.4162/nrp.2010.4.1.36 – volume: 8 start-page: 22352 year: 2015 ident: 434_CR11 publication-title: Int J Clin Exp Med – volume: 383 start-page: 970 year: 2014 ident: 434_CR5 publication-title: Lancet doi: 10.1016/S0140-6736(13)61836-X – volume: 44 start-page: 1801 year: 2012 ident: 434_CR22 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e318258ac11 – volume: 138 start-page: 261 year: 2008 ident: 434_CR3 publication-title: Swiss Med Wkly – volume: 12 start-page: 15 year: 2007 ident: 434_CR19 publication-title: Antivir Ther doi: 10.1177/135965350701200112 – ident: 434_CR8 doi: 10.1136/bcr-2013-008550 – volume: 5 start-page: 1145 year: 2014 ident: 434_CR14 publication-title: Biomed Opt Express doi: 10.1364/BOE.5.001145 – volume: 2 start-page: 340 year: 2013 ident: 434_CR20 publication-title: Springerplus doi: 10.1186/2193-1801-2-340 – volume: 22 start-page: e576 year: 2013 ident: 434_CR17 publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/j.jstrokecerebrovasdis.2013.06.031 – volume: 115 start-page: 84 year: 2013 ident: 434_CR18 publication-title: Talanta doi: 10.1016/j.talanta.2013.04.031 – volume: 118 start-page: 1474 year: 2015 ident: 434_CR6 publication-title: J Appl Physiol (1985) doi: 10.1152/japplphysiol.00509.2014 – volume: 9 start-page: 114 year: 2015 ident: 434_CR7 publication-title: Diabetes Metab Syndr doi: 10.1016/j.dsx.2013.10.008 – volume: 21 start-page: 682 year: 2014 ident: 434_CR1 publication-title: Int J Behav Med doi: 10.1007/s12529-013-9322-1 – reference: 26885213 - Int J Clin Exp Med. 2015 Dec 15;8(12):22352-8 – reference: 24761296 - Biomed Opt Express. 2014 Mar 12;5(4):1145-52 – reference: 23556015 - PLoS Negl Trop Dis. 2013;7(3):e2123 – reference: 23608843 - BMJ Case Rep. 2013 Apr 22;2013:null – reference: 25882384 - J Appl Physiol (1985). 2015 Jun 15;118(12):1474-82 – reference: 23871726 - J Stroke Cerebrovasc Dis. 2013 Nov;22(8):e576-81 – reference: 24269108 - Lancet. 2014 Mar 15;383(9921):970-83 – reference: 23744048 - Int J Behav Med. 2014 Aug;21(4):682-90 – reference: 22525766 - Med Sci Sports Exerc. 2012 Sep;44(9):1801-9 – reference: 18481232 - Swiss Med Wkly. 2008 May 3;138(17-18):261-6 – reference: 11503283 - Cent Eur J Public Health. 2001 May;9(2):95-101 – reference: 20019684 - Obesity (Silver Spring). 2010 Aug;18(8):1608-13 – reference: 25887309 - BMC Gastroenterol. 2015 Feb 14;15:19 – reference: 26797861 - Exp Clin Endocrinol Diabetes. 2016 Jan;124(1):34-8 – reference: 25873234 - Clin Obes. 2015 Jun;5(3):127-35 – reference: 23961405 - Springerplus. 2013 Jul 24;2:340 – reference: 25206598 - Neural Regen Res. 2013 Jan 25;8(3):270-6 – reference: 24054565 - Talanta. 2013 Oct 15;115:84-93 – reference: 25470627 - Diabetes Metab Syndr. 2015 Apr-Jun;9(2):114-9 – reference: 12111880 - Stat Med. 2002 May 15;21(9):1309-30 – reference: 20198207 - Nutr Res Pract. 2010 Feb;4(1):36-42 – reference: 17503743 - Antivir Ther. 2007;12(1):15-24 |
| SSID | ssj0020766 |
| Score | 2.2207913 |
| Snippet | Background
The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol... The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with... Background The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 42 |
| SubjectTerms | Adult Artificial intelligence Biomedical and Life Sciences Case-Control Studies Cholesterol Cholesterol - blood Clinical Nutrition Fasting Health aspects Humans Hyperlipidemia Life Sciences Linear Models Lipidology Medical Biochemistry Middle Aged Models, Biological Neural Networks (Computer) Overweight - blood Overweight persons Risk factors Triglycerides Triglycerides - blood |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9RAEB7qFXz5INr6Eq2ygihYQpNNNpt8EDmlpQg9RCz0W9jsburBuTmvd8j9AP-3M5sX7wrWzztZkp3Z2Xkys88AvOYV15WqkjBJhQ5TJWRYGROFCBWkqBOTCs-2fzbJTs_TzxfiYgcm_V0YKqvsfaJ31KbR9I_8iHrHYbSPJvhh_jOkrlGUXe1baKiutYJ57ynGbsEuJ2asEex-PJ58-TpAMETtWZfbjPPs6ApPu5SqMGQYpUkaiq3T6bqP3jikrhdQDlnUe3Bn5eZq_UvNZhsH1ckDuN9FmGzcmsRD2LFuD_bHDtH1jzV7w3zNp_-Zvge3z7rU-j78Hg8cnayp2RI_fbbWaJ_GMuUMIzfpWRWaGZs61viCakL2rC1CZ3QeGtY41tcoMopg1YIt7GVbbOv8RGSrLW0Fm27wgTLfk-cRnJ8cf_t0GnY9GkItZLQM68IWkU40Tww3VuWR4gajDoNLXRtVq9oiJFI6FlrLrKq01nVtMWqoaiN5zVXyGEaucfYpMGEpu2zSQtk45TorZKXyIos1jzNRRSqAqNdNqTsCc-qjMSs9kMmzslVnieosSZ2lCODd8Mi8Ze-4SfgtKbyknY3zatVdUMC3I46scpxS9IT4NQ_gYEsSd6TeHu5Npuw8wlX5134DeDUM05NU5eZss_IyGCHiJPJGGZkLiTgzgCetFQ6fhvA5LjAiDEBu2ecgQFzi2yNu-t1zipMrRvAQwGFvyRuv_u8VOxyM_f_r--zmZXkOd7nfiBw99wGMlouVfYEB37J62e3iP_stVf8 priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB50BS8PorteqqtEEAWXYps2TftYxGUR1icP7FvJVQ900-VckPMD_N9O0guni674nEloM5fM15l-AXhLJVVSyCzOcqbiXDAeS62TGKECZzbTOQts--dfi7NF_uWCXQz_ca_HbvexJBkidXDrsvi4xpMp9x0TPE7yLI_ZbbjDPJsXGvGC1hPKQmBeDOXLP06bHUDXw_DeOXS9R3IqlD6Ae1t3JXY_RdvunUWnj-DhkESSutf6Y7hl3CEc1Q4B9OWOvCOhrTN8Lz-Eu-dD9fwIftUTDSfpLNkgMG93Ck1QGyKcJj4SBuKEriVLR7rQM-3BO-n7zIk_8jTpHBnbEIlPUsWKrMz3vp_WhYW8OfbMFGS5R_lJwrU7T2Bx-vnbp7N4uIYhVownm9hWpkpUpmimqTaiTATVmFho3GqrhRXWIOoRKmVK8UJKpZS1BhMDaTWnlorsKRy4zpnnQJjxBWSdV8KkOVVFxaUoqyJVNC2YTEQEyaibRg0c5f6qjLYJWKUsml6dDaqz8epsWAQfpilXPUHHTcLvvcIb77y4rhLDPwj4dJ4Gq6lznyAhRC0jOJ5JotOp-fBoMs3g9OvGX2-IgBSjZARvpmE_0zeyOdNtgwwmgbgIv1GGl4wjlIzgWW-F06shQk4rTPoi4DP7nAQ8Xfh8xC1_BNpwH20RH0RwMlry3qP_fcdOJmP_9_6--K-1X8J9GvySYqw-hoPNamteYYq3ka-DS_8G2mtMEQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD50KezysEu7i7duaDA2WHHqyJZlP4axEgYte1ggezKyLq2pZ4c0YWTv-987ki8kYesY7C2gI2OdnMt3rKNPAG9oTmUu8tAPIyb9SDDu50oFPpYKnJlQRcyx7Z-dx5Np9GnGZnsw6c7ClMW8UI4sdLh5_rx0QRt_yKuTuTKNryfxyTWmq8i2UXA_iMLIZ7dgP2aIygewPz3_PP7qDhfx2EdcMWs3NX87byst7Qbnjey02znZb5_egzurai7W30VZbmSo0wdQdGtrGlOuhqtlPpQ_dmgf_8fiH8L9FsaScWN3j2BPVwdwOK6whP-2Jm-Jayx1X-wP4PZZu39_CD_HPREoqQ1ZLoqLci3RCZQmolLExmJH3VCXpKhI7bq27ecD0nS6E5t0Fakr0jVCEguTxYIs9EXT0Vu5B1mHaLgxSLFBOkrcxT-PYXr68cuHid9eBOFLxoOlb1KdBjKUNFRUaZEEgiqENgqhrlHCCKOx7hJyxKTkcZ5LKY3RCE1yozg1VIRPYFDVlX4GhGm7ha2iVOhRRGWc8lwkaTySdBSzPBAeBJ0dZLJlSbeXdZSZq5aSOGu0nqHWM6v1jHnwvp8ybyhCbhJ-Z40rs-HD_qOiPQWBb2eJuLJxZCEaFsmJB0dbkuj2cnu4M8-sDTvXmb1gEUtijNMevO6H7UzbSlfpeuVkEIbiQ_iNMjxhHItZD542Ft8vDWv0UYqw0wO-5Qu9gCUs3x6piktHXG7jPVYoHhx3XrPx6n_W2HHvWH_X7_N_kn4Bd6lzH4rZ4ggGy8VKv0SQucxftfHjF3L8eNk priority: 102 providerName: Unpaywall |
| Title | Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model |
| URI | https://link.springer.com/article/10.1186/s12944-017-0434-5 https://www.ncbi.nlm.nih.gov/pubmed/28219431 https://www.proquest.com/docview/1874261318 https://www.proquest.com/docview/1870649007 https://www.proquest.com/docview/1877857487 https://pubmed.ncbi.nlm.nih.gov/PMC5319080 https://lipidworld.biomedcentral.com/track/pdf/10.1186/s12944-017-0434-5 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: HH5 dateStart: 20020101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: RBZ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: KQ8 dateStart: 20020901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: DOA dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: A8Z dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: RPM dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1476-511X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: M48 dateStart: 20020901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: AAJSJ dateStart: 20021201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: C6C dateStart: 20020112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1476-511X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020766 issn: 1476-511X databaseCode: U2A dateStart: 20021201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tq8THA4KNj8CojIRAYspInThOHhAK1aapUqsJqFSeIsd2oFJIRtcK-gfwf3N2PtROY4iXNIovVuq7890vd7kDeEkzKjOR-a4fMOkGgnE3U8pzESpwlvsqYLba_ngSnk2D0YzNdqBtb9Us4OW10M70k5ouiuNfP9bvUeHfWYWPwreXaLMCk0vBXS_wA5ftQg8NVWw6OYyDLqhAEbLXHxvx0EU_Y9YEOa-dYstMXd2sN6zV1UzKLpx6F26vygux_imKYsNind6He42rSZJaNh7Aji734SApEWZ_X5NXxCZ_2rfq-3Br3MTYD-B30hXrJFVOlgjfi7VEQVWaiFIRs2S2vEJVkHlJKptZbSA-qbPRiTGMilQlaZMViXFlxYIs9Nc667a0ExmhretXkPlGYVBim_M8hOnpyefhmds0a3Al497SzWMde9KX1FdUaRF5gip0PxQue65ELnKN2EjIAZOSh1kmpcxzje5DlitOcyr8R7BXVqV-AoRpE2ZWQSz0IKAyjHkmojgcSDoIWeYJB7yWN6lsKpmbhhpFahFNFKY1O1NkZ2rYmTIH3nS3XNRlPG4ifm0Ynhqhw3mlaL5UwKczxbLSJDBuFALZyIHDLUpUTbk93IpM2kp2apogImzFvdSBF92wudOku5W6WlkadBVxEn4jDY8YR8DpwONaCru_hjh6EKNr6ADfks-OwBQV3x4p599scXGzJyOKcOColeSNR__7ih11wv7v9X36P8x4BneoVUuKG_oh7C0XK_0c_cBl1oddPuN96CXJ6NMIfz-cTM4_4tVhOOzbdyt9q_94nFI8700n58mXP8d0YH8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am8TgAcEGLDDASFwkpmiJE8fJw4QKbOrYWiG0SXsLju2wSiUpvWjqD-Bv8ds4di60kyhPe_ZFic_d5_g7AK9oRmUmssANQibdUDDuZkp5LoYKnOWBCplF2-_1o-55-PmCXazB7-YtjCmrbHSiVdSqlOaOfN_0jkNvH1nw_eina7pGmexq00JD1K0V1IGFGKsfdpzo-RWGcJOD409I79eUHh2efey6dZcBVzLuTd080YknA0kDRZUWsSeoQrup0I_KlchFrtGpF9JnUvIoy6SUea7R7mW54jSnIsB9b8FGGIQJBn8bHw77X762IZ_Ho6jOpfpxtD9B6xqaqg_uerjAZUvW8LpNWDCK1ws226ztXdicFSMxvxLD4YJhPLoP92qPlnQqFnwAa7rYgu1OgdH8jzl5Q2yNqb2834LbvTqVvw2_Oi0mKClzMsWjHs4lyoPSRBSKGLVsURzKIRkUpLQF3OYmgVRF78TYX0XKgjQ1kcR4zGJMxvp7Vdxb2I2MbFQwGWSwgD9KbA-gh3B-I9R6BOtFWegdIEybbLYKE6H9kMoo4ZmIk8iX1I9Y5gkHvIY2qawB003fjmFqA6c4SitypkjO1JAzZQ68a5eMKrSQVZPfGoKnRpPgvlLUDyLw6wwmV9oJjbeG8XLswO7STNQAcnm4YZm01kCT9K-8OPCyHTYrTVVdocuZnYMeKW7CV87hMeMY1zrwuOLC9tcwXPcT9EAd4Ev82U4w2OXLI8Xg0mKYG9WPwYoDew0nL3z6v09sr2X2_5_vk9XH8gI2u2e90_T0uH_yFO5QK5QUrcYurE_HM_0Mnc1p9ryWaALfblqJ_AE6Jpat |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BkQp9QNBSCBQwEgKJKmrWsePkcbWwKkcrHqjUt8jxASstzmoPVfsD-N-MnUO7FRTx7LGV2HN98eQbgNe0oqqSVRqnjKuYSS7iSuskRqgguE0144Ft_-w8O71gny75ZdvndNFVu3dXks0_DZ6lyS1PZto2Jp5nJwuMUsxXT4g4YSmL-W24wzC4-RYGo2zUIy4E6Vl7lfnHaVvB6LpL3ohJ1-sl-0vTPbi7cjO5vpLT6UZcGj-A-21CSYaNBjyEW8btw8HQIZj-uSZvSCjxDN_O92H3rL1JP4Bfw56Sk9SWLBGkT9cK1VEbIp0m3isGEoV6SiaO1KF-2gN50tScEx_-NKkd6UoSiU9Y5ZzMzfemttaFhbxqNiwVZLJB_0lCC55HcDH-8G10GrctGWLFRbKMbWGKRKWKpppqI_NEUo1JhsattlpaaQ0iIKkGXCmRVZVSylqDSUJltaCWyvQQdlztzBMg3PjLZM0KaQaMqqwQlcyLbKDoIONVIiNIurMpVctX7ttmTMuAW_KsbI6zxOMs_XGWPIJ3_ZRZQ9Zxk_Bbf-ClN2RcV8n2fwR8Ok-JVQ6ZT5YQruYRHG1JogGq7eFOZcrWASxK3-oQwSl6zAhe9cN-pi9qc6ZeBRlMCHERcaOMyLlAWBnB40YL-1dDtDwoMAGMQGzpZy_gqcO3R9zkR6AQ954XsUIEx50mbzz633fsuFf2f-_v0_9a-yXsfn0_Lr98PP_8DO7RYKIUXfgR7CznK_McM79l9SJY92-_GVMj |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD50KezysEu7i7duaDA2WHHqyJZlP4axEgYte1ggezKyLq2pZ4c0YWTv-987ki8kYesY7C2gI2OdnMt3rKNPAG9oTmUu8tAPIyb9SDDu50oFPpYKnJlQRcyx7Z-dx5Np9GnGZnsw6c7ClMW8UI4sdLh5_rx0QRt_yKuTuTKNryfxyTWmq8i2UXA_iMLIZ7dgP2aIygewPz3_PP7qDhfx2EdcMWs3NX87byst7Qbnjey02znZb5_egzurai7W30VZbmSo0wdQdGtrGlOuhqtlPpQ_dmgf_8fiH8L9FsaScWN3j2BPVwdwOK6whP-2Jm-Jayx1X-wP4PZZu39_CD_HPREoqQ1ZLoqLci3RCZQmolLExmJH3VCXpKhI7bq27ecD0nS6E5t0Fakr0jVCEguTxYIs9EXT0Vu5B1mHaLgxSLFBOkrcxT-PYXr68cuHid9eBOFLxoOlb1KdBjKUNFRUaZEEgiqENgqhrlHCCKOx7hJyxKTkcZ5LKY3RCE1yozg1VIRPYFDVlX4GhGm7ha2iVOhRRGWc8lwkaTySdBSzPBAeBJ0dZLJlSbeXdZSZq5aSOGu0nqHWM6v1jHnwvp8ybyhCbhJ-Z40rs-HD_qOiPQWBb2eJuLJxZCEaFsmJB0dbkuj2cnu4M8-sDTvXmb1gEUtijNMevO6H7UzbSlfpeuVkEIbiQ_iNMjxhHItZD542Ft8vDWv0UYqw0wO-5Qu9gCUs3x6piktHXG7jPVYoHhx3XrPx6n_W2HHvWH_X7_N_kn4Bd6lzH4rZ4ggGy8VKv0SQucxftfHjF3L8eNk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+triglyceride+and+cholesterol+in+overweight+people+based+on+multiple+linear+regression+and+artificial+intelligence+model&rft.jtitle=Lipids+in+health+and+disease&rft.au=Ma%2C+Jing&rft.au=Yu%2C+Jiong&rft.au=Hao%2C+Guangshu&rft.au=Wang%2C+Dan&rft.date=2017-02-20&rft.issn=1476-511X&rft.eissn=1476-511X&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12944-017-0434-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12944_017_0434_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-511X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-511X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-511X&client=summon |