双模型结合进一步降低预测均方根误差和均方根相对误差的方法
前期研究工作提出了以预测均方根相对误差最小为回归目标的方法(Minimization of prediction relative error,MPRE),它能使得预测结果的均方根相对误差更小。偏最小二乘法(Partial least squares,PLS)是以预测均方根误差为回归目标,能使得预测结果的均方根误差更小。基于多模型结合的思想,提出将MPRE与PLS相结合的双模型结合多元校正方法。本方法步骤为:(1)分别采用MPRE与PLS法对校正集建模;(2)计算阈值;(3)分别采用已建立好的MPRE与PLS模型进行预测;(4)将预测结果与阈值进行比较,得到预测结果。通过对酒精的近红外光谱与汽...
Saved in:
Published in | 分析化学 Vol. 43; no. 5; pp. 754 - 758 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
西北大学分析科学研究所,西安710069
2015
西安文理学院化学与化学工程学院,西安710065%第二炮兵工程大学,西安,710025%西北大学分析科学研究所,西安,710069 |
Subjects | |
Online Access | Get full text |
ISSN | 0253-3820 |
DOI | 10.11895/j.issn.0253-3820.140915 |
Cover
Abstract | 前期研究工作提出了以预测均方根相对误差最小为回归目标的方法(Minimization of prediction relative error,MPRE),它能使得预测结果的均方根相对误差更小。偏最小二乘法(Partial least squares,PLS)是以预测均方根误差为回归目标,能使得预测结果的均方根误差更小。基于多模型结合的思想,提出将MPRE与PLS相结合的双模型结合多元校正方法。本方法步骤为:(1)分别采用MPRE与PLS法对校正集建模;(2)计算阈值;(3)分别采用已建立好的MPRE与PLS模型进行预测;(4)将预测结果与阈值进行比较,得到预测结果。通过对酒精的近红外光谱与汽油紫外光谱进行定量分析结果表明,本方法可进一步减小预测均方根误差与相对误差。 |
---|---|
AbstractList | 前期研究工作提出了以预测均方根相对误差最小为回归目标的方法(Minimization of prediction relative error,MPRE),它能使得预测结果的均方根相对误差更小。偏最小二乘法(Partial least squares,PLS)是以预测均方根误差为回归目标,能使得预测结果的均方根误差更小。基于多模型结合的思想,提出将MPRE与PLS相结合的双模型结合多元校正方法。本方法步骤为:(1)分别采用MPRE与PLS法对校正集建模;(2)计算阈值;(3)分别采用已建立好的MPRE与PLS模型进行预测;(4)将预测结果与阈值进行比较,得到预测结果。通过对酒精的近红外光谱与汽油紫外光谱进行定量分析结果表明,本方法可进一步减小预测均方根误差与相对误差。 前期研究工作提出了以预测均方根相对误差最小为回归目标的方法(Minimization of prediction relative error,MPRE),它能使得预测结果的均方根相对误差更小.偏最小二乘法(Partial least squares,PLS)是以预测均方根误差为回归目标,能使得预测结果的均方根误差更小.基于多模型结合的思想,提出将MPRE与PLS相结合的双模型结合多元校正方法.本方法步骤为:(1)分别采用MPRE与PLS法对校正集建模;(2)计算阈值;(3)分别采用已建立好的MPRE与PLS模型进行预测;(4)将预测结果与阈值进行比较,得到预测结果.通过对酒精的近红外光谱与汽油紫外光谱进行定量分析结果表明,本方法可进一步减小预测均方根误差与相对误差. |
Author | 吴雪梅 刘志强 张天龙 李华 |
AuthorAffiliation | 西北大学分析科学研究所,西安710069 西安文理学院化学与化学工程学院,西安710065 第二炮兵工程大学,西安710025 |
AuthorAffiliation_xml | – name: 西北大学分析科学研究所,西安710069;西安文理学院化学与化学工程学院,西安710065%第二炮兵工程大学,西安,710025%西北大学分析科学研究所,西安,710069 |
Author_FL | LIU Zhi-Qiang LI Hua WU Xue-Mei ZHANG Tian-Long |
Author_FL_xml | – sequence: 1 fullname: WU Xue-Mei – sequence: 2 fullname: LIU Zhi-Qiang – sequence: 3 fullname: ZHANG Tian-Long – sequence: 4 fullname: LI Hua |
Author_xml | – sequence: 1 fullname: 吴雪梅 刘志强 张天龙 李华 |
BookMark | eNo9jU1LAkEcxudgkJnfIYKOa_-Z2dmdOYb0BkKXvcvssqsrNZZLZLcOQoH2QlFQUlQQdCkPESkRfRln1W_RhuLpefjx43nmUEpVlY_QAoYcxlyw5UoujCKVA8KoQTlJsAkCsxRKT9EsykZR6AJgDCZnPI0cfd6KX5_0Q3PwfaUvToa_7X73KH57Gd2e9n_ORs-N-LOp74_jm1782Bt2OvrrXV-2pmTQ7urOhA_uGv_w43oezQRyO_Kzk8wgZ23VyW8Yha31zfxKwfCYDYZrEmq5JGDAmOQyIH7SuRTC9iVQApILCZ60PYk5s4VwAdsCAiCUcOyaPs2gpfHsgVSBVKVipbpfU8lhMaiX6wRwsgwEEm9x7HnlqirthYm5Wwt3ZO2waFkmx8K2gP4BU_p-Cg |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11895/j.issn.0253-3820.140915 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | A Method Based on Double Models Combination to Further Reduce Root-Mean-Square Error and Relative Error of Prediction |
DocumentTitle_FL | A Method Based on Double Models Combination to Further Reduce Root-Mean-Square Error and Relative Error of Prediction |
EndPage | 758 |
ExternalDocumentID | fxhx201505020 664819760 |
GrantInformation_xml | – fundername: 国家自然科学基金; 高等学校博士学科点专项科研基金(No.20126101110019)资助 This work was supported by the National Natural Science Foundation of China; the Research Fund for the Doctoral Program of Higher Education,China funderid: (.21175106,21375105); (.21175106,21375105); (20126101110019) |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 2B. 2C. 2RA 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 92E 92I 92L AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CQIGP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SES SPC SPCBC SSK SSZ T5K TCJ TGP U1G U5L ~G- ~WA -02 -0B -SB -S~ .5D 188 4A8 5VR 5XA 5XC 8RM 92M 93N 9D9 9DB AAITT AATTM AAXKI AAYWO ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AFUIB AFXIZ AGCQF AGRNS AIIUN AKRWK ANKPU APXCP BBR BNPGV CAJEB CCEZO CDRFL CDYEO CJPJV CW7 FA0 J.9 JUIAU M~T PB1 PB6 PSX Q-- R-B RT2 S.. SSH T8R U1F U5B UY8 UZ4 W94 ~LN |
ID | FETCH-LOGICAL-c570-b4236b2f5055a8af2e2f58a997ea0320a89a0ca7ca185799b01790f023281b4e3 |
ISSN | 0253-3820 |
IngestDate | Thu May 29 04:00:22 EDT 2025 Wed Feb 14 10:30:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 双模型 均方根相对误差 The root-mean-square relative error 多元校正 Double models Multivariate calibration 均方根误差 Root-mean-square error |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c570-b4236b2f5055a8af2e2f58a997ea0320a89a0ca7ca185799b01790f023281b4e3 |
Notes | Double models; Multivariate calibration; The root-mean-square relative error; Root-mean-squareerror 22-1125/O6 WU Xue-Mei, LIU Zhi-Qiang, ZHANG Tian-Long , LI Hua 1 ( Institute of Analytical Science, Northwest University, Xi'an 710069, China) 2(Department of Chemistry and Chemical Engineering, Xi'an University, Xi'an 710065, China) 3( The Second Artillery Engineering University, Xi'an 710025, China) A method for multivariate calibration with minimization of root-mean-square relative error of prediction (RMSREP) has been proposed in previous work, and the method in this paper is named MPRE method. MPRE is based on the use of back-propagation artificial neural network (BP-ANN). The regression objective of MPRE method is to minimize RMSREP by changing the output values of BP-ANN. Partial least squares (PLS) model was widely used in analytical field as it can minimize the root-mean-square error of prediction (RMSEP). A method based on double models combination that employed the idea of ensemble MPRE and PLS models i |
PageCount | 5 |
ParticipantIDs | wanfang_journals_fxhx201505020 chongqing_primary_664819760 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | 分析化学 |
PublicationTitleAlternate | Chinese Journal of Analytical Chemistry |
PublicationTitle_FL | Chinese Journal of Analytical Chemistry |
PublicationYear | 2015 |
Publisher | 西北大学分析科学研究所,西安710069 西安文理学院化学与化学工程学院,西安710065%第二炮兵工程大学,西安,710025%西北大学分析科学研究所,西安,710069 |
Publisher_xml | – name: 西北大学分析科学研究所,西安710069 – name: 西安文理学院化学与化学工程学院,西安710065%第二炮兵工程大学,西安,710025%西北大学分析科学研究所,西安,710069 |
SSID | ssib001104858 ssib048394981 ssj0037577 ssib002258198 ssib007686865 ssib051370160 |
Score | 2.0576653 |
Snippet | 前期研究工作提出了以预测均方根相对误差最小为回归目标的方法(Minimization of prediction relative error,MPRE),它能使得预测结果的均方根相对误差更小。偏最小二乘... 前期研究工作提出了以预测均方根相对误差最小为回归目标的方法(Minimization of prediction relative error,MPRE),它能使得预测结果的均方根相对误差更小.偏最小二乘... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 754 |
SubjectTerms | 双模型 均方根相对误差 均方根误差 多元校正 |
Title | 双模型结合进一步降低预测均方根误差和均方根相对误差的方法 |
URI | http://lib.cqvip.com/qk/93919X/201505/664819760.html https://d.wanfangdata.com.cn/periodical/fxhx201505020 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0253-3820 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037577 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0253-3820 databaseCode: ACRLP dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 20221231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037577 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0253-3820 databaseCode: .~1 dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037577 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0253-3820 databaseCode: AIKHN dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 20221231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037577 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0253-3820 databaseCode: AKRWK dateStart: 20060101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037577 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNLT1oJfiJ9Zq6cGcyqyzM5OvY2Y7SxH0tEJvS2Y60562VlsoPYiHgkLrB4qCFkUFwYvuQcQWEf9MZ7f9F75kstMRa1FhGbIv7728vDdJXjLJC0KXSZ1Cq1HEUYooJ4gZdVSSZY4naJz6iTsXp_q887XrdOZGcHWWzA4Nj1Z2La0sx7Vk7dBzJf9jVYCBXfUp2X-wbMkUAJAG-8ITLAzPv7IxjgjmTcwbOKJYcizrGiIizEMcMRyGWPgG4mLOccRx2MQCsgIccr3FQVNNY0lwJLAQmE-brGnMIw2RHuaBxgmJYQh8IItpiACgMOSuSUDRTf0DnJBhGRlkzwh2BBXTwoAkgAO0h_MBHGnFKMlDHxdXZg68aqMHqBE1aJGur4Y0NIlmDnUsFyCtPsLAVDrEUhqJQFgyZfkII5LWFTOJBg7llE1Jw1oGWArNIITCxJQptlAb0VrkUXUxpThIantbj_iOzz23OjQUEaRsEyCVfp4Vka-ty8CK6PO_j0ZcEDMc6RJqZQk1HWTMlv1rrG9KA_DQGHWH0TGPgesEHXTtTjU-H3S4lc_Y0BkD_sF_mDtSfvDZOgDvNxAHB4tJ3Wc6ouDAVfEZMVeTlpINtrqB3Ff-ILWOQbKw2JlfAs_KHHTrZKozX_HJWifRqJ1MTcqiZZxCQ2sLp9HxxuAOwzOolT_a7H14m7_e6H97mj--v_dja3f7bu_j-_0XD3a_P9x_t977spG_utd7vtN7s7PX7eZfP-VPNktIf2s771p4_-W6Bn5-dha1mlGrMePYe0SchDDXiWHGQGMvA1-fKK4yL4U0V0KwVLm-5youlJsoligdF02IWA9SbgbOrAdzuiD1z6GRzmInPY8mKSUxZUxlAcwzVKCU4EpRlmTeXD2O63NjaLxUTvtmES6mXRp1DE1YdbVtJ3K7na0urOoX0SUwb7twJPk4OqExi_W_i2hk-dZKegk84uV4wrwlPwH52pWA |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8F%8C%E6%A8%A1%E5%9E%8B%E7%BB%93%E5%90%88%E8%BF%9B%E4%B8%80%E6%AD%A5%E9%99%8D%E4%BD%8E%E9%A2%84%E6%B5%8B%E5%9D%87%E6%96%B9%E6%A0%B9%E8%AF%AF%E5%B7%AE%E5%92%8C%E5%9D%87%E6%96%B9%E6%A0%B9%E7%9B%B8%E5%AF%B9%E8%AF%AF%E5%B7%AE%E7%9A%84%E6%96%B9%E6%B3%95&rft.jtitle=%E5%88%86%E6%9E%90%E5%8C%96%E5%AD%A6&rft.au=%E5%90%B4%E9%9B%AA%E6%A2%85+%E5%88%98%E5%BF%97%E5%BC%BA+%E5%BC%A0%E5%A4%A9%E9%BE%99+%E6%9D%8E%E5%8D%8E&rft.date=2015&rft.issn=0253-3820&rft.volume=43&rft.issue=5&rft.spage=754&rft.epage=758&rft_id=info:doi/10.11895%2Fj.issn.0253-3820.140915&rft.externalDocID=664819760 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93919X%2F93919X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ffxhx%2Ffxhx.jpg |