自适应高斯滤波与SFIM模型相结合的全色多光谱影像融合方法

全色-多光谱影像融合技术可以显著提高遥感影像的地物判别能力,但是空间信息融入度与光谱信息保真度是相互矛盾的一组性质,一般方法往往无法平衡这两方面。SFIM算法具有良好的光谱信息保持能力,但是其空间信息融入度较差,影响了整体的融合效果。为此,本文分析了SFIM模型的原理与特点,提出一种自适应高斯滤波与SFIM模型相结合的全色多光谱影像融合方法(AGSFIM)。以均值调整后的多光谱整体平均梯度为标准来计算高斯滤波的最优参数,将下采样全色影像的清晰度调整至同样水平,以保证融合结果的空间信息融入度与光谱信息保真度之间的平衡。利用6种融合算法对"北京二号"(Beijing-2)、"资源三号"02星(ZY...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 47; no. 1; pp. 82 - 90
Main Author 王密;何鲁晓;程宇峰;常学立
Format Journal Article
LanguageChinese
Published 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉,430079%武汉大学资源与环境科学学院,湖北武汉,430079 2018
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2018.20170421

Cover

Abstract 全色-多光谱影像融合技术可以显著提高遥感影像的地物判别能力,但是空间信息融入度与光谱信息保真度是相互矛盾的一组性质,一般方法往往无法平衡这两方面。SFIM算法具有良好的光谱信息保持能力,但是其空间信息融入度较差,影响了整体的融合效果。为此,本文分析了SFIM模型的原理与特点,提出一种自适应高斯滤波与SFIM模型相结合的全色多光谱影像融合方法(AGSFIM)。以均值调整后的多光谱整体平均梯度为标准来计算高斯滤波的最优参数,将下采样全色影像的清晰度调整至同样水平,以保证融合结果的空间信息融入度与光谱信息保真度之间的平衡。利用6种融合算法对"北京二号"(Beijing-2)、"资源三号"02星(ZY-3 02)数据进行对比试验,表明在良好的光谱保持能力的前提下,改进方法可以有效克服SFIM算法空间信息融入不足的缺点。
AbstractList 全色-多光谱影像融合技术可以显著提高遥感影像的地物判别能力,但是空间信息融入度与光谱信息保真度是相互矛盾的一组性质,一般方法往往无法平衡这两方面。SFIM算法具有良好的光谱信息保持能力,但是其空间信息融入度较差,影响了整体的融合效果。为此,本文分析了SFIM模型的原理与特点,提出一种自适应高斯滤波与SFIM模型相结合的全色多光谱影像融合方法(AGSFIM)。以均值调整后的多光谱整体平均梯度为标准来计算高斯滤波的最优参数,将下采样全色影像的清晰度调整至同样水平,以保证融合结果的空间信息融入度与光谱信息保真度之间的平衡。利用6种融合算法对"北京二号"(Beijing-2)、"资源三号"02星(ZY-3 02)数据进行对比试验,表明在良好的光谱保持能力的前提下,改进方法可以有效克服SFIM算法空间信息融入不足的缺点。
P237; 全色一多光谱影像融合技术可以显著提高遥感影像的地物判别能力,但是空间信息融入度与光谱信息保真度是相互矛盾的一组性质,一般方法往往无法平衡这两方面.SFIM算法具有良好的光谱信息保持能力,但是其空间信息融入度较差,影响了整体的融合效果.为此,本文分析了SFIM模型的原理与特点,提出一种自适应高斯滤波与SFIM模型相结合的全色多光谱影像融合方法(AGSFIM).以均值调整后的多光谱整体平均梯度为标准来计算高斯滤波的最优参数,将下采样全色影像的清晰度调整至同样水平,以保证融合结果的空间信息融入度与光谱信息保真度之间的平衡.利用6种融合算法对“北京二号”(Beijing-2)、“资源三号”02星(ZY-3 02)数据进行对比试验,表明在良好的光谱保持能力的前提下,改进方法可以有效克服SFIM算法空间信息融入不足的缺点.
Abstract_FL Panchromatic and multi-spectral fusion technology can increase feature discriminant ability of remote sensing images.However,the abilities of fusing spatial information and keeping spectral information are conflict,and are hard to be balanced by common algorithms.SFIM (smoothing filter-based intensity modulation) can keep spectral information effectively,but is difficult to fuse spatial information which will reduces the holistic effect.Pointing to this problem,this paper analyzes the principles and characters of SFIM model,and proposes a fusion method combined with adaptive Gaussian filter and SFIM model (AGSFIM).Computing optimal parameter of Gaussian filter based on entirety mean-value-adjusted average gradient of multi-spectral bands,and adjusting down-sampled panchromatic image to same sharpness level which can confirm the balances of spatial information fusing ability and spectral information keeping ability.Beijing-2 and ZY-3 02 data are applied to test and six different fusion methods are used to compare.The experiments show that AGSFIM can effectively overcome SFIM's shortage and increase fusion images' spatial information.
Author 王密;何鲁晓;程宇峰;常学立
AuthorAffiliation 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079;武汉大学资源与环境科学学院,湖北武汉430079
AuthorAffiliation_xml – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉,430079%武汉大学资源与环境科学学院,湖北武汉,430079
Author_FL CHANG Xueli
HE Luxiao
CHENG Yufeng
WANG Mi
Author_FL_xml – sequence: 1
  fullname: WANG Mi
– sequence: 2
  fullname: HE Luxiao
– sequence: 3
  fullname: CHENG Yufeng
– sequence: 4
  fullname: CHANG Xueli
Author_xml – sequence: 1
  fullname: 王密;何鲁晓;程宇峰;常学立
BookMark eNotj01LAlEYhe_CIDN_Qpug5di9M_fO9S5F0gTDhe6Hd8YZP6ixlKh2UUlJ9AGVhIFQuJBalLmxpH_THcd_0Yhx4LyL83BezhIKuTXXRmiF4BghgvL1aiyRTuZjKibxmXFMVRJCYYIxUQgTbBFFG42KiTGjGmeaCKOcf_46PT6R3_fTt0ev_e6Ne97w5Xd0nU9ltrz-s-xeTp5Gk_GdvL2YdM5ks--3PmWvI5st_2Mgfwby9MbvXgWp1_7yhg_LaMGB7YYd_b8RVEhtFJKbSjaXziQTWcViHCtxYTkYQOgOMCiCTUGY2NY4BUotTJgZB26DZmmYMdV2CAWVFnVwzCIBU-iqFkFr89oDcB1wS0a1tl93g4eGVT40Z_sxCRRwq3POKtfc0l4lIHfrlR2oHxk6p1TlAaf9AVPueCs
ClassificationCodes P237
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2018.20170421
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Panchromatic and Multi-spectral Fusion Method Combined with Adaptive Gaussian Filter and SFIM Model
DocumentTitle_FL Panchromatic and Multi-spectral Fusion Method Combined with Adaptive Gaussian Filter and SFIM Model
EndPage 90
ExternalDocumentID chxb201801010
674427801
GrantInformation_xml – fundername: The National Natural Science Foundation of China (Nos.41701527,91438203,91638301)国家自然科学基金
  funderid: (41701527,91438203,91638301)
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
4A8
93N
ABJNI
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c570-89cf0aa96fa5adae4a9b0e374a44c015b8a7ea3c30552ef14a24d6afbd1ab9623
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
Wed Feb 14 10:09:34 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords adaptive
Gaussian filter
自适应
image fusion
SFIM model
高斯滤波
影像融合
SFIM模型
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c570-89cf0aa96fa5adae4a9b0e374a44c015b8a7ea3c30552ef14a24d6afbd1ab9623
Notes 11-2089/P
adaptive;Gaussian filter;image fusion;SFIM model
Panchromatic and multi-spectral fusion technology can increase feature discriminant ability of remote sensing images.However,the abilities of fusing spatial information and keeping spectral information are conflict,and are hard to be balanced by common algorithms.SFIM(smoothing filter-based intensity modulation)can keep spectral information effectively,but is difficult to fuse spatial information which will reduces the holistic effect.Pointing to this problem,this paper analyzes the principles and characters of SFIM model,and proposes a fusion method combined with adaptive Gaussian filter and SFIM model(AGSFIM).Computing optimal parameter of Gaussian filter based on entirety mean-value-adjusted average gradient of multi-spectral bands,and adjusting down-sampled panchromatic image to same sharpness level which can confirm the balances of spatial information fusing ability and spectral information keeping ability.Beijing-2 and ZY-3 02 data are applied to
PageCount 9
ParticipantIDs wanfang_journals_chxb201801010
chongqing_primary_674427801
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2018
Publisher 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉,430079%武汉大学资源与环境科学学院,湖北武汉,430079
Publisher_xml – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉,430079%武汉大学资源与环境科学学院,湖北武汉,430079
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.1783338
Snippet 全色-多光谱影像融合技术可以显著提高遥感影像的地物判别能力,但是空间信息融入度与光谱信息保真度是相互矛盾的一组性质,一般方法往往无法平衡这两方面。SFIM算法具有良好...
P237; 全色一多光谱影像融合技术可以显著提高遥感影像的地物判别能力,但是空间信息融入度与光谱信息保真度是相互矛盾的一组性质,一般方法往往无法平衡这两方面.SFIM算法具...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 82
SubjectTerms SFIM模型
影像融合
自适应
高斯滤波
Title 自适应高斯滤波与SFIM模型相结合的全色多光谱影像融合方法
URI http://lib.cqvip.com/qk/90069X/201801/674427801.html
https://d.wanfangdata.com.cn/periodical/chxb201801010
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1001-1595
  databaseCode: KQ8
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssib005437539
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1001-1595
  databaseCode: BENPR
  dateStart: 20100201
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 20221231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0058465
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFJ8gXrwYPwOiZA_W2-rMTjttj-3urGiCxoAJt013dkYuLiqQKCejEiXGj0QlBBMSDQeiB0UuKPG_cRf4L3yvM-wOSiJ42bz09eP3PtK-zravjnM-9r0IZkS3GAd-UqSBiIum4SVF4zZEnbmR17DXxYavBUM36dUxNtbTu5A7tTQ9Vb8Yzex5r-R_rAplYFe8JXsAy3Y6hQKgwb7wCxaG333ZmISCwGZeKRJKPLIgSiRkRCsiKZYoTaQgYUBkQFQVCa2JopbwiYLKlGjoIRypXhnGUiWI8rALGRKhSciJ1FgDCGgpfcuCYWyJVERQLBEMGyIUSbRFAGMAN2VBIbC0S7TtWVcyQvhEVJGFY1VyPVu4WmYo07cxd8JnW8gybDoVD4arEBUgSyii2I4LYRWRysFQfBF0ORRxSIZKAsTCs6NKIv18YxAqaxyilhG8D4J0qzDUjc5D4KhzofOfUrJ5H93eqngHK2gBVWOVpfguMf6UUCJCxayEoNmqxV-1pgosq2qxcFsnhxuNV8kE0IHth1tdc_QULTMWGACdBcxZzkoAUqlskUg0BlqrTCTfA3-pTH2I_4Bg-5NOWOlSH1Ro8h0fzMyVygK-Cf6BsoCfebnmHUKivaDaAXHm1mA85QdRNssv0mla1l2TUbripk9XZbFb-vLs31GBpNyGBepyeQSPc9oznRzWK68bBnUOp0bj9-tYB7MvuoecwyX80ofHPW7kNy6wbRD5wBjWsVziP0Z9zrr5dvFVBxp0E3Myz-d-IDsbddwFMHsuIxM9u2uIwC_tBRszwYxPNG_dhfjWXjdsJqZ5KxcZjx5zjmZb2oJK56fjTs_M-AmnT03in2wTtx8ULhQsnX5DnTzpXN96-mn74aPWj7fbnxfa81_aG8vttY-_1l_iNNRe-dBaer75fn1z403r9bPNxSet2ZWtuW-t5cXW7NzW19XWz9XW41dbSy-A257_3l57d8oZrYaj5aFi9q5LMWLcLQoZJa4xMkgMMw0TUyPrbuxzaiiNYHdSF4bHxo8wF2EpTjxqSrQRmKTe8Exdgt5PO73NiWbc5xSMF1CWeIkLURKFMNuwRsBZhCleY84S0-8MdNRUu5Om76kFnOL7Qq7X7wxmiqtlk_pkbZfxz_yrwoBzBOn0k-xZp3fq3nR8DjYpU_VB6y-_AfVe6fI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%87%AA%E9%80%82%E5%BA%94%E9%AB%98%E6%96%AF%E6%BB%A4%E6%B3%A2%E4%B8%8ESFIM%E6%A8%A1%E5%9E%8B%E7%9B%B8%E7%BB%93%E5%90%88%E7%9A%84%E5%85%A8%E8%89%B2%E5%A4%9A%E5%85%89%E8%B0%B1%E5%BD%B1%E5%83%8F%E8%9E%8D%E5%90%88%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%AF%86&rft.au=%E4%BD%95%E9%B2%81%E6%99%93&rft.au=%E7%A8%8B%E5%AE%87%E5%B3%B0&rft.au=%E5%B8%B8%E5%AD%A6%E7%AB%8B&rft.date=2018&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E9%81%A5%E6%84%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89%2C430079%25%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E4%B8%8E%E7%8E%AF%E5%A2%83%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89%2C430079&rft.issn=1001-1595&rft.volume=47&rft.issue=1&rft.spage=82&rft.epage=90&rft_id=info:doi/10.11947%2Fj.AGCS.2018.20170421&rft.externalDocID=chxb201801010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg