非下采样Shearlet变换与参数化对数图像处理相结合的遥感图像增强

针对部分遥感图像整体亮度偏暗、对比度较低的特点,为提高遥感图像的视觉效果和可解译性,提出了一种基于非下采样Shearlet变换(non-subsampled shearlet transform,NSST)和参数化对数图像处理(parameterized logariihmic image processing,PLIP)模型的遥感图像增强方法。首先,遥感图像经非下采样Shearlet变换分解成低频分量和高频分量;然后依据PLIP模型对其低频分量进行增强,提高图像的对比度;同时利用改进的模糊增强方法对高频分量进行增强,突显边缘细节信息。大量试验结果表明,与双向直方图均衡增强、基于平稳小波变换的...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 44; no. 8; pp. 884 - 892
Main Author 陶飞翔 吴一全
Format Journal Article
LanguageChinese
Published 江西省数字国土重点实验室,江西 南昌 330013 2015
国土资源部地质信息技术重点实验室,北京 100037
兰州大学甘肃省西部矿产资源重点实验室,甘肃 兰州 730000
中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037
南京航空航天大学电子信息工程学院,江苏 南京,210016%南京航空航天大学电子信息工程学院,江苏 南京 210016
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2015.20140466

Cover

Abstract 针对部分遥感图像整体亮度偏暗、对比度较低的特点,为提高遥感图像的视觉效果和可解译性,提出了一种基于非下采样Shearlet变换(non-subsampled shearlet transform,NSST)和参数化对数图像处理(parameterized logariihmic image processing,PLIP)模型的遥感图像增强方法。首先,遥感图像经非下采样Shearlet变换分解成低频分量和高频分量;然后依据PLIP模型对其低频分量进行增强,提高图像的对比度;同时利用改进的模糊增强方法对高频分量进行增强,突显边缘细节信息。大量试验结果表明,与双向直方图均衡增强、基于平稳小波变换的增强、基于非下采样Contourlet变换的增强等5种图像增强方法相比,本文提出的方法在主观视觉效果和对比度、清晰度等客观定量评价指标两个方面均有优势,能更有效地提高遥感图像的对比度、增强边缘纹理细节信息,视觉效果更佳。
AbstractList 针对部分遥感图像整体亮度偏暗、对比度较低的特点,为提高遥感图像的视觉效果和可解译性,提出了一种基于非下采样Shearlet变换(non-subsampled shearlet transform,NSST)和参数化对数图像处理(parameterized logariihmic image processing,PLIP)模型的遥感图像增强方法。首先,遥感图像经非下采样Shearlet变换分解成低频分量和高频分量;然后依据PLIP模型对其低频分量进行增强,提高图像的对比度;同时利用改进的模糊增强方法对高频分量进行增强,突显边缘细节信息。大量试验结果表明,与双向直方图均衡增强、基于平稳小波变换的增强、基于非下采样Contourlet变换的增强等5种图像增强方法相比,本文提出的方法在主观视觉效果和对比度、清晰度等客观定量评价指标两个方面均有优势,能更有效地提高遥感图像的对比度、增强边缘纹理细节信息,视觉效果更佳。
P237; 针对部分遥感图像整体亮度偏暗、对比度较低的特点,为提高遥感图像的视觉效果和可解译性,提出了一种基于非下采样 Shearlet 变换(non-subsampled shearlet transform,NSST)和参数化对数图像处理(parameterized logarithmic image processing,PLIP)模型的遥感图像增强方法。首先,遥感图像经非下采样 Shearlet 变换分解成低频分量和高频分量;然后依据 PLIP 模型对其低频分量进行增强,提高图像的对比度;同时利用改进的模糊增强方法对高频分量进行增强,突显边缘细节信息。大量试验结果表明,与双向直方图均衡增强、基于平稳小波变换的增强、基于非下采样 Contourlet 变换的增强等5种图像增强方法相比,本文提出的方法在主观视觉效果和对比度、清晰度等客观定量评价指标两个方面均有优势,能更有效地提高遥感图像的对比度、增强边缘纹理细节信息,视觉效果更佳。
Abstract_FL Aiming at parts of remote sensing images with dark brightness and low contrast,a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpret-ability of remote sensing images.Firstly,a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing)model,which can improve the contrast of image,whi le the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details.A large number of experimental results show that,compared with five kinds of image enhancement methods such as bidirectional histogram equalization method,the method based on stationary wavelet transform and the method based on non-subsampled contourlet transform,the proposed method has advantages in both subjective visual effects and objective quantitative evaluation indexes such as contrast and definition, which can more effectively improve the contrast of remote sensing image and enhance edges and texture details with better visual effects.
Author 陶飞翔 吴一全
AuthorAffiliation 南京航空航天大学电子信息工程学院,江苏南京210016 国土资源部地质信息技术重点实验室,北京100037 兰州大学甘肃省西部矿产资源重点实验室,甘肃兰州730000 江西省数字国土重点实验室,江西南昌330013 中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京100037
AuthorAffiliation_xml – name: 南京航空航天大学电子信息工程学院,江苏 南京,210016%南京航空航天大学电子信息工程学院,江苏 南京 210016; 国土资源部地质信息技术重点实验室,北京 100037; 兰州大学甘肃省西部矿产资源重点实验室,甘肃 兰州 730000; 江西省数字国土重点实验室,江西 南昌 330013; 中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037
Author_FL TAO Feixiang
WU Yiquan
Author_FL_xml – sequence: 1
  fullname: TAO Feixiang
– sequence: 2
  fullname: WU Yiquan
Author_xml – sequence: 1
  fullname: 陶飞翔 吴一全
BookMark eNotkE1LAlEYhe_CIDN_Qpug5dh7Z-69M3cpUhYILZS2cme84wc21lhUy0oy6EMhikiykFrXLvugX-OdwX_RiG7OeeE8nBfOAop5DU8itIQhhTEn5motlc5m8ikdMJ0IAcJYDMUxANYw5XQeJZvNqg1AiWFSg8fR9vipPxpejtvt4OUzX5HCr8t91XkIrgej4Y3qnAZ3H-rqXr1_TY7enzrrqNdW2D0Pe8Pw51Z1L8LH1vjkLWg9z9JBX_1-L6I5V9SbMjnzBCqsrxUyG1puK7uZSec0h5qgWaTEGREcA6G6YMLhhq1jLA0JzAbuAmaWELpNXSJKpmOBISlIoKbj6pRw3UiglWntofBc4ZWLtcaB70UPi07lyJ7MABZgiLjlKedUGl55rxqRu351R_jHRcZohDBiGf_JyXpS
ClassificationCodes P237
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2015.20140466
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model
DocumentTitle_FL Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model
EndPage 892
ExternalDocumentID chxb201508010
665801648
GrantInformation_xml – fundername: 国家自然科学基金; 国土资源部地质信息技术重点实验室开放基金; 兰州大学甘肃省西部矿产资源重点实验室开放基金; 国土资源部成矿作用与资源评价重点实验室开放基金; 江西省数字国土重点实验室开放基金; 江苏高校优势学科建设工程项目Foundation support:The National Natural Science Foundation of China; Open Research Fund of MLR Key Laboratory of Geological Information Technology; Open Research Fund of Key Labora-tory of Western China’s Mineral Resources of Gansu Province; Open Research Fund of MLR Key Laboratory of Metallogeny and Mineral Assessment; Open Research Fund of Jiangxi Province Key Laboratory for Digital Land; The Priority Academic Program Development of Jiangsu Higher Education Institution
  funderid: (60872065); (217); (WCRMGS-2014-05); (ZS1406); (DLLJ201412); (60872065); (217); (WCRMGS-2014-05); (ZS1406); (DLLJ201412); The Priority Academic Program Development of Jiangsu Higher Education Institution
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
4A8
93N
ABJNI
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c570-84d964a910452a6ac93b211e3e06b09f0168aa2b5f4ad7c803e50e057cf254923
ISSN 1001-1595
IngestDate Thu May 29 04:11:07 EDT 2025
Wed Feb 14 10:28:53 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords fuzzy enhancement
遥感图像
非下采样 Shearlet 变换(NSST)
image enhancement
non-subsampled Shearlet transform (NSST)
图像增强
模糊增强
parameters logarithmic image processing (PLIP)model
remote sensing image
参数化对数图像处理(PLIP)模型
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c570-84d964a910452a6ac93b211e3e06b09f0168aa2b5f4ad7c803e50e057cf254923
Notes 11-2089/P
Aiming at parts of remote sensing images with dark brightness and low contrast, a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpret- ability of remote sensing images. Firstly, a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing) model, which can improve the contrast of image, while the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details. A large number of experimental results show that, compared with five kinds of image enhancement methods such as bidirectional histogram equalization method, the method based on stationary wavelet transform and the method based on non-subsa
PageCount 9
ParticipantIDs wanfang_journals_chxb201508010
chongqing_primary_665801648
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2015
Publisher 江西省数字国土重点实验室,江西 南昌 330013
国土资源部地质信息技术重点实验室,北京 100037
兰州大学甘肃省西部矿产资源重点实验室,甘肃 兰州 730000
中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037
南京航空航天大学电子信息工程学院,江苏 南京,210016%南京航空航天大学电子信息工程学院,江苏 南京 210016
Publisher_xml – name: 兰州大学甘肃省西部矿产资源重点实验室,甘肃 兰州 730000
– name: 中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037
– name: 国土资源部地质信息技术重点实验室,北京 100037
– name: 江西省数字国土重点实验室,江西 南昌 330013
– name: 南京航空航天大学电子信息工程学院,江苏 南京,210016%南京航空航天大学电子信息工程学院,江苏 南京 210016
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.0577745
Snippet 针对部分遥感图像整体亮度偏暗、对比度较低的特点,为提高遥感图像的视觉效果和可解译性,提出了一种基于非下采样Shearlet变换(non-subsampled shearlet...
P237; 针对部分遥感图像整体亮度偏暗、对比度较低的特点,为提高遥感图像的视觉效果和可解译性,提出了一种基于非下采样 Shearlet 变换(non-subsampled shearlet...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 884
SubjectTerms rlet变换(NSST)
参数化对数图像处理(PLIP)模型
图像增强
增强
模糊
遥感图像
非下采样Shea
Title 非下采样Shearlet变换与参数化对数图像处理相结合的遥感图像增强
URI http://lib.cqvip.com/qk/90069X/201508/665801648.html
https://d.wanfangdata.com.cn/periodical/chxb201508010
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1001-1595
  databaseCode: KQ8
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssib005437539
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1001-1595
  databaseCode: BENPR
  dateStart: 20100201
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 20221231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0058465
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61vvgiXmmtln0wvsjq7OQyyeNkO2sRFMQqfVtmZme6CG7VtqB9U4sVvLQgilisUvRZ36wX_BP-hc4u_Reek5ldRq2iwhIOuZwk52ST72SSE0KOKxnpOE6TqoyEqvKQw3-uJdNq6NUSJdyWYileFD53Xk5e4menxfTQ0LfSqaWF-ehUvLjjvZL_0SrEgV7xluw_aHbAFCKABv1CCBqG8K90TANN9QTVAQ04NYoqgzFg3sMvkNR3qPHsk9WgHBoIqhpUK0xRE9R3-4WCIkm5mKQFNY6NqVMtkfAb1OgfkrShJi_FsCDmAUjKaeBR7VAlLWGQORDGUM1sKUiyMdq3maGlNeoL2x5OdeM3nF3bP6i6TotNhSv93ktqhO10Xouy-aFr0vL0gXl_PFlJaWokEj6zLKEQyIOfLNpmeF8gefeBlSrvieT3QYsJHI-IAUQT5Rk-9zBZjGRVmq5V_jxdf-XPX-X7dVHR3LOrin-mfhFPAwoMuMPlT068LSyQgOnQb5naRXa7HsAfPClwoYx5AXGqMqaCKbDkM05wBibkAGPigwBQ0QCDihrzmNQDGw8BpLCf9IuOF9fUsNGnd2oyOhFpz3ZmrgM0sjfVOmnYmSmBqql9ZG9hDVX8fGjvJ0OL7QNkxJ_D7zOzV29VTlQsnW-_zR0kl7dfrm9tPtheXu6-_tAf2dnK8-6jja3Nx9nKne7T99nDZ9m7j0isfc3urmRvlnqr93prm73PT7LV-70XS9u333aXXhWpG-vZl0-HyFQjmKpPVouXQaqx8Jyq4i0teQhIlws3lGGsWeTWaglLHBk5OgXxqzB0I5HysOXFymGJcBKwTOLUtR4JD5PhzmwnGSEVoTmL0hbCdg3QLIxcFsUMn2lT6OsxHCVjA2k1r-UOYJoDFY-S8UJ-zWJamGvG7ZsRChxMsZpz5I_Fx8gezJnv6B0lw_M3FpJjgHHno3E7Zr4D_P-KTA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%9E%E4%B8%8B%E9%87%87%E6%A0%B7Shearlet%E5%8F%98%E6%8D%A2%E4%B8%8E%E5%8F%82%E6%95%B0%E5%8C%96%E5%AF%B9%E6%95%B0%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86%E7%9B%B8%E7%BB%93%E5%90%88%E7%9A%84%E9%81%A5%E6%84%9F%E5%9B%BE%E5%83%8F%E5%A2%9E%E5%BC%BA&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E9%99%B6%E9%A3%9E%E7%BF%94+%E5%90%B4%E4%B8%80%E5%85%A8&rft.date=2015&rft.issn=1001-1595&rft.volume=44&rft.issue=8&rft.spage=884&rft.epage=892&rft_id=info:doi/10.11947%2Fj.AGCS.2015.20140466&rft.externalDocID=665801648
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg