Automated segmentation of normal and diseased coronary arteries – The ASOCA challenge

Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for...

Full description

Saved in:
Bibliographic Details
Published inComputerized medical imaging and graphics Vol. 97; p. 102049
Main Authors Gharleghi, Ramtin, Adikari, Dona, Ellenberger, Katy, Ooi, Sze-Yuan, Ellis, Chris, Chen, Chung-Ming, Gao, Ruochen, He, Yuting, Hussain, Raabid, Lee, Chia-Yen, Li, Jun, Ma, Jun, Nie, Ziwei, Oliveira, Bruno, Qi, Yaolei, Skandarani, Youssef, Vilaça, João L., Wang, Xiyue, Yang, Sen, Sowmya, Arcot, Beier, Susann
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0895-6111
1879-0771
1879-0771
DOI10.1016/j.compmedimag.2022.102049

Cover

Abstract Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and artefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new automated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications. [Display omitted] •Virtual coronary artery models of have been increasingly used in research and clinical settings.•Standardized dataset of coronary artery ground truth allows objective comparison of new methods.•ASOCA challenge provides automated testing and evaluation framework.
AbstractList Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and artefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new automated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications. [Display omitted] •Virtual coronary artery models of have been increasingly used in research and clinical settings.•Standardized dataset of coronary artery ground truth allows objective comparison of new methods.•ASOCA challenge provides automated testing and evaluation framework.
Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and artefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new automated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications.
AbstractCardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and artefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new automated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications.
Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and artefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new automated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications.Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary artery disease, as well as evaluating and reconstructing heart and coronary vessel structures. Reconstructed models have a wide array of for educational, training and research applications such as the study of diseased and non-diseased coronary anatomy, machine learning based disease risk prediction and in-silico and in-vitro testing of medical devices. However, coronary arteries are difficult to image due to their small size, location, and movement, causing poor resolution and artefacts. Segmentation of coronary arteries has traditionally focused on semi-automatic methods where a human expert guides the algorithm and corrects errors, which severely limits large-scale applications and integration within clinical systems. International challenges aiming to overcome this barrier have focussed on specific tasks such as centreline extraction, stenosis quantification, and segmentation of specific artery segments only. Here we present the results of the first challenge to develop fully automatic segmentation methods of full coronary artery trees and establish the first large standardized dataset of normal and diseased arteries. This forms a new automated segmentation benchmark allowing the automated processing of CTCAs directly relevant for large-scale and personalized clinical applications.
ArticleNumber 102049
Author Ellenberger, Katy
Hussain, Raabid
Chen, Chung-Ming
Oliveira, Bruno
Wang, Xiyue
Adikari, Dona
Lee, Chia-Yen
Qi, Yaolei
Ellis, Chris
Gharleghi, Ramtin
Yang, Sen
Gao, Ruochen
Li, Jun
Skandarani, Youssef
Ooi, Sze-Yuan
He, Yuting
Nie, Ziwei
Beier, Susann
Ma, Jun
Vilaça, João L.
Sowmya, Arcot
Author_xml – sequence: 1
  givenname: Ramtin
  surname: Gharleghi
  fullname: Gharleghi, Ramtin
  email: r.gharleghi@student.unsw.edu.au
  organization: School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
– sequence: 2
  givenname: Dona
  surname: Adikari
  fullname: Adikari, Dona
  organization: Prince of Wales Clinical School of Medicine, UNSW Sydney, Australia
– sequence: 3
  givenname: Katy
  surname: Ellenberger
  fullname: Ellenberger, Katy
  organization: Prince of Wales Clinical School of Medicine, UNSW Sydney, Australia
– sequence: 4
  givenname: Sze-Yuan
  surname: Ooi
  fullname: Ooi, Sze-Yuan
  organization: Prince of Wales Clinical School of Medicine, UNSW Sydney, Australia
– sequence: 5
  givenname: Chris
  surname: Ellis
  fullname: Ellis, Chris
  organization: Auckland City Hospital, Auckland, New Zealand
– sequence: 6
  givenname: Chung-Ming
  surname: Chen
  fullname: Chen, Chung-Ming
  organization: Institute of Biomedical Engineering, National Taiwan University
– sequence: 7
  givenname: Ruochen
  surname: Gao
  fullname: Gao, Ruochen
  organization: Institute of Computing Technology, Chinese Academy of Sciences, China
– sequence: 8
  givenname: Yuting
  surname: He
  fullname: He, Yuting
  organization: Southeast University, China
– sequence: 9
  givenname: Raabid
  surname: Hussain
  fullname: Hussain, Raabid
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 10
  givenname: Chia-Yen
  surname: Lee
  fullname: Lee, Chia-Yen
  organization: Department of Electrical Engineering, National United University, Taiwan
– sequence: 11
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Institute of Computing Technology, Chinese Academy of Sciences, China
– sequence: 12
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
  organization: Nanjing University of Science and Technology, China
– sequence: 13
  givenname: Ziwei
  surname: Nie
  fullname: Nie, Ziwei
  organization: Nanjing University
– sequence: 14
  givenname: Bruno
  surname: Oliveira
  fullname: Oliveira, Bruno
  organization: 2Ai - School of Technology, Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
– sequence: 15
  givenname: Yaolei
  surname: Qi
  fullname: Qi, Yaolei
  organization: Southeast University, China
– sequence: 16
  givenname: Youssef
  surname: Skandarani
  fullname: Skandarani, Youssef
  organization: ImViA Laboratory, University of Burgundy, Dijon, France
– sequence: 17
  givenname: João L.
  surname: Vilaça
  fullname: Vilaça, João L.
  organization: 2Ai - School of Technology, Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
– sequence: 18
  givenname: Xiyue
  surname: Wang
  fullname: Wang, Xiyue
  organization: College of Computer Science, Sichuan University, Chengdu, China
– sequence: 19
  givenname: Sen
  surname: Yang
  fullname: Yang, Sen
  organization: College of Biomedical Engineering, Sichuan University, Chengdu, China
– sequence: 20
  givenname: Arcot
  surname: Sowmya
  fullname: Sowmya, Arcot
  organization: School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
– sequence: 21
  givenname: Susann
  surname: Beier
  fullname: Beier, Susann
  organization: School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35334316$$D View this record in MEDLINE/PubMed
BookMark eNqVksuKFDEUhoOMOD2jryARN26qza0ucaEUzXiBgVnMiMuQTp3qSVuVtEmV0rt5B9_QJzFFjYM0CO0qEL7zn__855yhE-cdIPSCkiUltHi9XRrf73pobK83S0YYS_-MCPkILWhVyoyUJT1BC1LJPCsopafoLMYtIQkq6RN0ynPOBafFAn2px8H3eoAGR9j04AY9WO-wb7Hzodcd1q7BjY2gY2KMD97psMc6DBAsRPzr7ie-uQVcX1-tamxuddeB28BT9LjVXYRn9-85-vz-4mb1Mbu8-vBpVV9mJi_kkIFgBIwEU5WGalMaLmWheZMDtFBpmQtZUUKashKy5YVZ63VrNCcyJ4JplvNz9GbWHd1O73-k7moXUixhryhRU1pqq_5KS01pqTmtVPxqLt4F_22EOKjeRgNdpx34MSpWCJHIQpQJfXmAbv0YXBotUYUgZbLJE_X8nhrXqeGDlT95J0DOgAk-xgDtf7l9d1Br7LytIWjbHaWwmhUgbeS7haCiseBMQgOYQTXeHqXy9kDFdNZZo7uvsIf4kAtVkSmirqcrnI6QsekAGUsC9b8FjjTxG8oG8aU
CitedBy_id crossref_primary_10_1063_5_0181281
crossref_primary_10_1007_s11517_025_03284_3
crossref_primary_10_1109_TMI_2023_3319720
crossref_primary_10_1016_j_cmpb_2025_108669
crossref_primary_10_1038_s41597_023_02016_2
crossref_primary_10_1016_j_imu_2024_101540
crossref_primary_10_1016_j_media_2024_103247
crossref_primary_10_1016_j_metrad_2024_100102
crossref_primary_10_32604_cmc_2023_040329
crossref_primary_10_1016_j_bspc_2024_106021
crossref_primary_10_1098_rsos_241267
crossref_primary_10_1007_s11760_024_03409_5
crossref_primary_10_1515_bmt_2024_0396
crossref_primary_10_1038_s41467_023_40687_y
crossref_primary_10_1088_1361_6560_adc0dd
crossref_primary_10_3390_jcm14020354
crossref_primary_10_1016_j_bspc_2023_105473
crossref_primary_10_1016_j_bspc_2024_107258
crossref_primary_10_1016_j_compbiomed_2024_108615
crossref_primary_10_1002_cnm_3822
crossref_primary_10_1016_j_cmpb_2022_107015
crossref_primary_10_1136_bmjopen_2021_054881
crossref_primary_10_1016_j_media_2025_103458
crossref_primary_10_1016_j_cmpb_2024_108415
crossref_primary_10_1016_j_media_2023_102762
crossref_primary_10_1109_TNNLS_2022_3190452
Cites_doi 10.1109/TCI.2020.3025735
10.1016/j.compmedimag.2014.09.002
10.2307/1932409
10.1016/j.media.2013.05.007
10.21037/qims.2019.06.21
10.1016/j.media.2009.06.003
10.1016/j.mri.2012.05.001
10.1007/s11517-018-1904-2
10.1098/rsif.2016.0834
10.1371/journal.pone.0156837
10.1186/s12880-015-0068-x
10.1016/j.jtcvs.2016.12.054
10.1016/j.jbiomech.2016.03.038
10.1038/s41467-018-07619-7
10.1007/s10439-015-1387-3
ContentType Journal Article
Copyright 2022 The Authors
The Authors
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright Elsevier Science Ltd. Apr 2022
Copyright_xml – notice: 2022 The Authors
– notice: The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Apr 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
DOI 10.1016/j.compmedimag.2022.102049
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Nursing & Allied Health Premium
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0771
EndPage 102049
ExternalDocumentID 10.1016/j.compmedimag.2022.102049
35334316
10_1016_j_compmedimag_2022_102049
S0895611122000222
1_s2_0_S0895611122000222
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEI
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
WUQ
Z5R
ZGI
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c569t-e420ec9ec87c1ac7c3996a3d5eefe8a95498100d7849f36cbabfca3095042a253
IEDL.DBID UNPAY
ISSN 0895-6111
1879-0771
IngestDate Sun Oct 26 04:02:45 EDT 2025
Mon Sep 29 06:40:21 EDT 2025
Tue Oct 07 06:44:45 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Thu Oct 16 04:41:05 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Fri Feb 23 02:40:37 EST 2024
Tue Feb 25 19:59:05 EST 2025
Tue Oct 14 19:38:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Image segmentation
Machine learning
Coronary arteries
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-e420ec9ec87c1ac7c3996a3d5eefe8a95498100d7849f36cbabfca3095042a253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ars.els-cdn.com/content/image/1-s2.0-S0895611122000222-ga1_lrg.jpg
PMID 35334316
PQID 2664078103
PQPubID 2047475
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compmedimag_2022_102049
proquest_miscellaneous_2644020647
proquest_journals_2664078103
pubmed_primary_35334316
crossref_primary_10_1016_j_compmedimag_2022_102049
crossref_citationtrail_10_1016_j_compmedimag_2022_102049
elsevier_sciencedirect_doi_10_1016_j_compmedimag_2022_102049
elsevier_clinicalkeyesjournals_1_s2_0_S0895611122000222
elsevier_clinicalkey_doi_10_1016_j_compmedimag_2022_102049
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computerized medical imaging and graphics
PublicationTitleAlternate Comput Med Imaging Graph
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Kellman, Zhang, Markley, Tamir, Bostan, Lustig, Waller (bib18) 2020; 6
Wang, Wei, Liu, Chen, Zhou, Shen, Fishman, Yuille (bib34) 2020
Schaap, Metz, van Walsum, van der Giessen, Weustink, Mollet, Bauer, Bogunović, Castro, Deng (bib29) 2009; 13
Sun, Jansen (bib31) 2019; 9
Iaizzo, P.A., 2016.The visible heart® project and free-access website ‘atlas of human cardiac anatomy’. EP Europace 18, iv163-iv172.
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib17) 2020
Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka (bib8) 2012; 30
Lee, Kashyap, Chu (bib21) 1994; 56
Antoine, Cornat, Barakat (bib2) 2016; 13
Gharleghi, Samarasinghe, Sowmya, Beier (bib11) 2020
Beier, Ormiston, Webster, Cater, Norris, Medrano-Gracia, Young, Cowan (bib4) 2016; 44
Gharleghi, Adikari, Ellenberger, Pua, Shen, Webster, Ellis, Sowmya, Ooi, Beier (bib12) 2021
Han, Shim, Jeon, Jang, Hong, Jung, Ha, Chang (bib14) 2016; 11
Pinho, Castro, António, Bettencourt, Sousa, Pinto (bib27) 2019; 57
Gordon-Rodriguez, E., Loaiza-Ganem, G., Pleiss, G., Cunningham, J.P., 2020.Uses and abuses of the cross-entropy loss: case studies in modern deep learning. arXiv:2011.05231.
Maier-Hein, Eisenmann, Reinke, Onogur, Stankovic, Scholz, Arbel, Bogunovic, Bradley, Carass (bib24) 2018; 9
Frangi, Niessen, Vincken, Viergever (bib9) 1998
Kikinis, Pieper, Vosburgh (bib19) 2014
Hu, Shen, Sun (bib15) 2018
Medrano-Gracia, Ormiston, Webster, Beier, Young, Ellis, Wang, Smedby, Cowan (bib26) 2016; 12
Gharleghi, R., 2021.Ramtingh/ASOCA_MICCAI2020_Evaluation: MICCAI Evaluation.
Li, Wang, Hu, Yang (bib22) 2019
.
Bertels, Eelbode, Berman, Vandermeulen, Maes, Bisschops, Blaschko (bib6) 2019
Sun, Xu (bib32) 2014; 38
Taha, Hanbury (bib33) 2015; 15
Bakas, Reyes, Jakab, Bauer, Rempfler, Crimi, Shinohara, Berger, Ha, Rozycki (bib3) 2022
World Health Organization (bib1) 2012
Medrano-Gracia, Ormiston, Webster, Beier, Ellis, Wang, Young, Cowan (bib25) 2014
Kirişli, Schaap, Metz, Dharampal, Meijboom, Papadopoulou, Dedic, Nieman, de Graaf, Meijs (bib20) 2013; 17
Ronneberger, Fischer, Brox (bib28) 2015
Yoo, Spray, Austin, Yun, van Arsdell (bib35) 2017; 153
Beier, Ormiston, Webster, Cater, Norris, Medrano-Gracia, Young, Cowan (bib5) 2016; 49
Lin, Goyal, Girshick, He, Dollár (bib23) 2017
Dice (bib7) 1945; 26
Silva, Southworth, Raptis, Silva (bib30) 2018; 3
Kikinis (10.1016/j.compmedimag.2022.102049_bib19) 2014
Lin (10.1016/j.compmedimag.2022.102049_bib23) 2017
Pinho (10.1016/j.compmedimag.2022.102049_bib27) 2019; 57
Kirişli (10.1016/j.compmedimag.2022.102049_bib20) 2013; 17
Medrano-Gracia (10.1016/j.compmedimag.2022.102049_bib25) 2014
Yoo (10.1016/j.compmedimag.2022.102049_bib35) 2017; 153
Beier (10.1016/j.compmedimag.2022.102049_bib5) 2016; 49
Ronneberger (10.1016/j.compmedimag.2022.102049_bib28) 2015
Lee (10.1016/j.compmedimag.2022.102049_bib21) 1994; 56
Frangi (10.1016/j.compmedimag.2022.102049_bib9) 1998
Taha (10.1016/j.compmedimag.2022.102049_bib33) 2015; 15
Hu (10.1016/j.compmedimag.2022.102049_bib15) 2018
Antoine (10.1016/j.compmedimag.2022.102049_bib2) 2016; 13
Gharleghi (10.1016/j.compmedimag.2022.102049_bib12) 2021
Isensee (10.1016/j.compmedimag.2022.102049_bib17) 2020
Sun (10.1016/j.compmedimag.2022.102049_bib32) 2014; 38
Bakas (10.1016/j.compmedimag.2022.102049_bib3) 2022
10.1016/j.compmedimag.2022.102049_bib16
Silva (10.1016/j.compmedimag.2022.102049_bib30) 2018; 3
10.1016/j.compmedimag.2022.102049_bib13
Li (10.1016/j.compmedimag.2022.102049_bib22) 2019
10.1016/j.compmedimag.2022.102049_bib10
Han (10.1016/j.compmedimag.2022.102049_bib14) 2016; 11
Dice (10.1016/j.compmedimag.2022.102049_bib7) 1945; 26
Medrano-Gracia (10.1016/j.compmedimag.2022.102049_bib26) 2016; 12
Bertels (10.1016/j.compmedimag.2022.102049_bib6) 2019
Gharleghi (10.1016/j.compmedimag.2022.102049_bib11) 2020
Fedorov (10.1016/j.compmedimag.2022.102049_bib8) 2012; 30
Sun (10.1016/j.compmedimag.2022.102049_bib31) 2019; 9
Wang (10.1016/j.compmedimag.2022.102049_bib34) 2020
Schaap (10.1016/j.compmedimag.2022.102049_bib29) 2009; 13
World Health Organization (10.1016/j.compmedimag.2022.102049_bib1) 2012
Kellman (10.1016/j.compmedimag.2022.102049_bib18) 2020; 6
Beier (10.1016/j.compmedimag.2022.102049_bib4) 2016; 44
Maier-Hein (10.1016/j.compmedimag.2022.102049_bib24) 2018; 9
References_xml – reference: Iaizzo, P.A., 2016.The visible heart® project and free-access website ‘atlas of human cardiac anatomy’. EP Europace 18, iv163-iv172.
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib15
  article-title: Squeeze-and-excitation networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 44
  start-page: 315
  year: 2016
  end-page: 329
  ident: bib4
  article-title: Hemodynamics in idealized stented coronary arteries: important stent design considerations
  publication-title: Ann. Biomed. Eng.
– start-page: 3833
  year: 2020
  end-page: 3842
  ident: bib34
  article-title: Deep distance transform for tubular structure segmentation in ct scans
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
– year: 2022
  ident: bib3
  publication-title: Identifying Best. Mach. Learn. Algorithms brain Tumor Segm., Progress. Assess., Overall Surviv. Predict. brats Chall.
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bib7
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 38
  start-page: 651
  year: 2014
  end-page: 663
  ident: bib32
  article-title: Computational fluid dynamics in coronary artery disease
  publication-title: Comput. Med. Imaging Graph.
– volume: 153
  start-page: 1530
  year: 2017
  end-page: 1540
  ident: bib35
  article-title: Hands-on surgical training of congenital heart surgery using 3-dimensional print models
  publication-title: J. Thorac. Cardiovasc. Surg.
– volume: 30
  start-page: 1323
  year: 2012
  end-page: 1341
  ident: bib8
  article-title: 3d slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn. Reson. Imaging
– volume: 57
  start-page: 715
  year: 2019
  end-page: 729
  ident: bib27
  article-title: Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: Fsi and statistical study
  publication-title: Med. Biol. Eng. Comput.
– start-page: 92
  year: 2019
  end-page: 100
  ident: bib6
  article-title: Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 513
  year: 2014
  end-page: 520
  ident: bib25
  article-title: Construction of a coronary artery atlas from ct angiography
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2020
  ident: bib11
  publication-title: Autom. Segm. Coron. Arter.
– volume: 12
  start-page: 845
  year: 2016
  end-page: 854
  ident: bib26
  article-title: A computational atlas of normal coronary artery anatomy
  publication-title: Eur.: J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib28
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention
– volume: 15
  start-page: 1
  year: 2015
  end-page: 28
  ident: bib33
  article-title: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
– volume: 11
  year: 2016
  ident: bib14
  article-title: Automatic coronary artery segmentation using active search for branches and seemingly disconnected vessel segments from coronary ct angiography
  publication-title: PLoS One
– volume: 56
  start-page: 462
  year: 1994
  end-page: 478
  ident: bib21
  article-title: Building skeleton models via 3-d medial surface axis thinning algorithms
  publication-title: CVGIP: Graph. Models Image Process.
– volume: 3
  start-page: 420
  year: 2018
  end-page: 430
  ident: bib30
  article-title: Emerging applications of virtual reality in cardiovascular medicine
  publication-title: JACC: Basic Transl. Sci.
– reference: Gharleghi, R., 2021.Ramtingh/ASOCA_MICCAI2020_Evaluation: MICCAI Evaluation.
– volume: 13
  start-page: 701
  year: 2009
  end-page: 714
  ident: bib29
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Med. Image Anal.
– start-page: 130
  year: 1998
  end-page: 137
  ident: bib9
  article-title: Multiscale vessel enhancement filtering
  publication-title: International conference on medical image computing and computer-assisted intervention
– start-page: 510
  year: 2019
  end-page: 519
  ident: bib22
  article-title: Selective kernel networks
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib24
  article-title: Why rankings of biomedical image analysis competitions should be interpreted with care
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1356
  year: 2019
  ident: bib31
  article-title: Personalized 3d printed coronary models in coronary stenting
  publication-title: Quant. Imaging Med. Surg.
– reference: .
– reference: Gordon-Rodriguez, E., Loaiza-Ganem, G., Pleiss, G., Cunningham, J.P., 2020.Uses and abuses of the cross-entropy loss: case studies in modern deep learning. arXiv:2011.05231.
– volume: 17
  start-page: 859
  year: 2013
  end-page: 876
  ident: bib20
  article-title: Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography
  publication-title: Med. Image Anal.
– volume: 13
  year: 2016
  ident: bib2
  article-title: The stentable in vitro artery: an instrumented platform for endovascular device development and optimization
  publication-title: J. R. Soc. Interface
– volume: 6
  start-page: 1403
  year: 2020
  end-page: 1414
  ident: bib18
  article-title: Memory-efficient learning for large-scale computational imaging
  publication-title: IEEE Trans. Comput. Imaging
– year: 2012
  ident: bib1
  publication-title: The atlas of heart disease and stroke
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib23
  article-title: Focal loss for dense object detection
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– year: 2021
  ident: bib12
  article-title: Computed tomography coronary angiogram images, lumen annotations and associated data of normal and diseased coronary arteries
  publication-title: Synapse
– volume: 49
  start-page: 1570
  year: 2016
  end-page: 1582
  ident: bib5
  article-title: Impact of bifurcation angle and other anatomical characteristics on blood flow-a computational study of non-stented and stented coronary arteries
  publication-title: J. Biomech.
– start-page: 1
  year: 2020
  end-page: 9
  ident: bib17
  article-title: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
– start-page: 277
  year: 2014
  end-page: 289
  ident: bib19
  article-title: 3d slicer: a platform for subject-specific image analysis, visualization, and clinical support
  publication-title: Intraoperative imaging and image-guided therapy
– volume: 6
  start-page: 1403
  year: 2020
  ident: 10.1016/j.compmedimag.2022.102049_bib18
  article-title: Memory-efficient learning for large-scale computational imaging
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2020.3025735
– volume: 38
  start-page: 651
  year: 2014
  ident: 10.1016/j.compmedimag.2022.102049_bib32
  article-title: Computational fluid dynamics in coronary artery disease
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2014.09.002
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.compmedimag.2022.102049_bib7
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 56
  start-page: 462
  year: 1994
  ident: 10.1016/j.compmedimag.2022.102049_bib21
  article-title: Building skeleton models via 3-d medial surface axis thinning algorithms
  publication-title: CVGIP: Graph. Models Image Process.
– start-page: 2980
  year: 2017
  ident: 10.1016/j.compmedimag.2022.102049_bib23
  article-title: Focal loss for dense object detection
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– start-page: 7132
  year: 2018
  ident: 10.1016/j.compmedimag.2022.102049_bib15
  article-title: Squeeze-and-excitation networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– start-page: 277
  year: 2014
  ident: 10.1016/j.compmedimag.2022.102049_bib19
  article-title: 3d slicer: a platform for subject-specific image analysis, visualization, and clinical support
– start-page: 3833
  year: 2020
  ident: 10.1016/j.compmedimag.2022.102049_bib34
  article-title: Deep distance transform for tubular structure segmentation in ct scans
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
– start-page: 513
  year: 2014
  ident: 10.1016/j.compmedimag.2022.102049_bib25
  article-title: Construction of a coronary artery atlas from ct angiography
– start-page: 130
  year: 1998
  ident: 10.1016/j.compmedimag.2022.102049_bib9
  article-title: Multiscale vessel enhancement filtering
– volume: 17
  start-page: 859
  year: 2013
  ident: 10.1016/j.compmedimag.2022.102049_bib20
  article-title: Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.05.007
– volume: 9
  start-page: 1356
  year: 2019
  ident: 10.1016/j.compmedimag.2022.102049_bib31
  article-title: Personalized 3d printed coronary models in coronary stenting
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims.2019.06.21
– year: 2022
  ident: 10.1016/j.compmedimag.2022.102049_bib3
  publication-title: Identifying Best. Mach. Learn. Algorithms brain Tumor Segm., Progress. Assess., Overall Surviv. Predict. brats Chall.
– ident: 10.1016/j.compmedimag.2022.102049_bib16
– volume: 12
  start-page: 845
  year: 2016
  ident: 10.1016/j.compmedimag.2022.102049_bib26
  article-title: A computational atlas of normal coronary artery anatomy
  publication-title: Eur.: J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol.
– volume: 13
  start-page: 701
  year: 2009
  ident: 10.1016/j.compmedimag.2022.102049_bib29
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.06.003
– ident: 10.1016/j.compmedimag.2022.102049_bib10
– volume: 30
  start-page: 1323
  year: 2012
  ident: 10.1016/j.compmedimag.2022.102049_bib8
  article-title: 3d slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 3
  start-page: 420
  year: 2018
  ident: 10.1016/j.compmedimag.2022.102049_bib30
  article-title: Emerging applications of virtual reality in cardiovascular medicine
  publication-title: JACC: Basic Transl. Sci.
– volume: 57
  start-page: 715
  year: 2019
  ident: 10.1016/j.compmedimag.2022.102049_bib27
  article-title: Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: Fsi and statistical study
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1904-2
– year: 2020
  ident: 10.1016/j.compmedimag.2022.102049_bib11
  publication-title: Autom. Segm. Coron. Arter.
– start-page: 234
  year: 2015
  ident: 10.1016/j.compmedimag.2022.102049_bib28
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 13
  year: 2016
  ident: 10.1016/j.compmedimag.2022.102049_bib2
  article-title: The stentable in vitro artery: an instrumented platform for endovascular device development and optimization
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2016.0834
– volume: 11
  year: 2016
  ident: 10.1016/j.compmedimag.2022.102049_bib14
  article-title: Automatic coronary artery segmentation using active search for branches and seemingly disconnected vessel segments from coronary ct angiography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156837
– volume: 15
  start-page: 1
  year: 2015
  ident: 10.1016/j.compmedimag.2022.102049_bib33
  article-title: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-015-0068-x
– start-page: 1
  year: 2020
  ident: 10.1016/j.compmedimag.2022.102049_bib17
  article-title: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
– volume: 153
  start-page: 1530
  year: 2017
  ident: 10.1016/j.compmedimag.2022.102049_bib35
  article-title: Hands-on surgical training of congenital heart surgery using 3-dimensional print models
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/j.jtcvs.2016.12.054
– start-page: 510
  year: 2019
  ident: 10.1016/j.compmedimag.2022.102049_bib22
  article-title: Selective kernel networks
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
– volume: 49
  start-page: 1570
  year: 2016
  ident: 10.1016/j.compmedimag.2022.102049_bib5
  article-title: Impact of bifurcation angle and other anatomical characteristics on blood flow-a computational study of non-stented and stented coronary arteries
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.03.038
– year: 2012
  ident: 10.1016/j.compmedimag.2022.102049_bib1
– year: 2021
  ident: 10.1016/j.compmedimag.2022.102049_bib12
  article-title: Computed tomography coronary angiogram images, lumen annotations and associated data of normal and diseased coronary arteries
  publication-title: Synapse
– start-page: 92
  year: 2019
  ident: 10.1016/j.compmedimag.2022.102049_bib6
  article-title: Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.compmedimag.2022.102049_bib24
  article-title: Why rankings of biomedical image analysis competitions should be interpreted with care
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07619-7
– ident: 10.1016/j.compmedimag.2022.102049_bib13
– volume: 44
  start-page: 315
  year: 2016
  ident: 10.1016/j.compmedimag.2022.102049_bib4
  article-title: Hemodynamics in idealized stented coronary arteries: important stent design considerations
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1387-3
SSID ssj0002071
Score 2.575631
Snippet Cardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate coronary...
AbstractCardiovascular disease is a major cause of death worldwide. Computed Tomography Coronary Angiography (CTCA) is a non-invasive method used to evaluate...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102049
SubjectTerms Algorithms
Angiography
Arteries
Automation
Blood vessels
Cardiovascular disease
Cardiovascular diseases
Computed tomography
Computed Tomography Angiography
Coronary Angiography - methods
Coronary arteries
Coronary artery
Coronary artery disease
Coronary Artery Disease - diagnostic imaging
Coronary vessels
Coronary Vessels - diagnostic imaging
Health risks
Heart diseases
Humans
Image segmentation
In vitro methods and tests
Internal Medicine
Machine learning
Medical equipment
Other
Stenosis
Stents
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hDrQ9IPofoJWRek3Xf3ESxGW1KkKVgANF5WY5joOoluyK3RXigvoOfUOeBE_iBCo4rMQxiUfJzo7H32hmvgH45kMCLk1exgUXCkeY8TjnTMQ8KXPmIy5_aDVsn0fq4FT-PEvOVmDU9cJgWWXw_a1Pb7x1uDMI2hxMLy4GJzTDpkyPF3jD4oJ-WMoUpxh8v30o8-C0CbpwcYyr12DnocYLy7Yxh31pzn2oyDkSGVCk1Xz-jHqKQd_Aq0U9NTfXZjx-dC7tb8B6AJRk2H7zW1hx9TtYOwwp8_fwe7iYTzwsdSWZufPL0GpUk0lFasSrY2LqkoQ8TUksMhqYqxvS1Hr6MJrc_f1HvDGR4cnxaEhsN3zlA5zu__g1OojDNIXYJiqfx05y6mzubJZaZmxqPTRRRpSJc5XLDKb7MkZpmWYyr4SyhSkqa4SHYH5fG56Ij7BaT2r3GYjKkIeepS5zVFamKmwlWFU4pDRgqWIRZJ3-tA1U4zjxYqy7mrI_-pHqNapet6qPgPei05ZvYxmh3e5P0l1DqXeB2p8Kywinzwm7WdjMM830jGuqnxhcBHu95H82u-yLtzt70v27PF7CzCqjIoKd_rHf8pjHMbWbLHCNxKhfyTSCT60d9roS2FotmIpA9Ia5vCI3X_aLtuA1XrWFTduwOr9auC8es82Lr82mvAeyvD3r
  priority: 102
  providerName: Elsevier
Title Automated segmentation of normal and diseased coronary arteries – The ASOCA challenge
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895611122000222
https://www.clinicalkey.es/playcontent/1-s2.0-S0895611122000222
https://dx.doi.org/10.1016/j.compmedimag.2022.102049
https://www.ncbi.nlm.nih.gov/pubmed/35334316
https://www.proquest.com/docview/2664078103
https://www.proquest.com/docview/2644020647
https://ars.els-cdn.com/content/image/1-s2.0-S0895611122000222-ga1_lrg.jpg
UnpaywallVersion publishedVersion
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RRCpw4E1rKNFW4rqud9dPxMWqqAKIgFQiymm1Xq8j2tSJEkeoHBD_gX_IL2EnflDRHiLE0bJHK3tmZ77xzHwL8NymBNxXSU4zLkI8wozThDNBeZAnzGZcNmit2T5H4XDsvzkJTpr-J5yFsdmca4MC1XlZTzQgR1NZHXw5t9vrgNEldz167MU4j2mhAl8TuHA6UUxOFxP3dD7Zgn4YWFzeg_549CH9vIaRSUDxecy-4gindiK2Dft_mr2wfxuL2XYVmzNyjowGHvJrXh-sroLR23BzVc7VxVc1nV4KUEd34ax9tbov5cxdVZmrv_3F-vh_3v0e3GlwLElrw7sPN0z5ALbfNZX6h_ApXVUzi4ZNTpZmct5MOJVkVpASYfKUqDInTXkoJxqJFNTigqxbTG32Tn79-EmsDZP0-P1hSnR75ssjGB-9-ng4pM0hDlQHYVJR43PP6MToONJM6UhbRBQqkQfGFCZWWGWMmeflUewnhQh1prJCK2GRn3UnigfiMfTKWWl2gYQx0t-zyMTG8wtVZLoQrMgMMimwKGQOxK22pG4YzvGgjalsW9lO5SVFS1S0rBXtAO9E5zXNxyZCL1qTkO0cq_W80gajTYSj64TNsvEhS8nkkktPXlG4Ay87yQYm1fBn04X3WuuV3VoWpmFBl3nCgf3utvU0WD5SpZmt8BkffzaEfuTATm313bcSONEtWOiA6LbB5h_yyT9JPYVbeFW3Ue1Br1qszDOLEKtsAFvudzaAfvr67XA0aBzBbzUuYnQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hkKA9IOhvKKVG6jVd_yROgnpZrUDbFugBULlZjuMgqiW7YneFuFR9B96wT1JP4gQqOKzUa-yRk8l4_I1m5jPARxcS8EhnRZhzIfEKMx5mnImQx0XGXMTlDq2a7fNYDs-ir-fx-RIM2l4YLKv0vr_x6bW39k96Xpu9yeVl74Sm2JTp8AKvWVycH16JYp5gBPbp132dB6d11IWzQ5y-Crv3RV5Yt41J7Ct94WJFzpHJgCKv5tOH1GMQ-hzW5tVE397o0ejBwXSwAeseUZJ-89KbsGSrF7B65HPmL-FHfz4bO1xqCzK1F1e-16gi45JUCFhHRFcF8YmaghikNNDXt6Qu9nRxNPnz-444ayL9k--DPjHt7Suv4Oxg_3QwDP11CqGJZTYLbcSpNZk1aWKYNolx2ERqUcTWljbVmO9LGaVFkkZZKaTJdV4aLRwGcxtb81i8huVqXNm3QGSKRPQssamlUanL3JSClblFTgOWSBZA2upPGc81jldejFRbVPZTPVC9QtWrRvUB8E500hBuLCK01_4k1XaUOh-o3LGwiHDylLCd-t08VUxNuaLqkcUF8LmT_MdoF114u7Un1a3lABOmVhkVAex2w27PYyJHV3Y8xzkRhv0ySgJ409hhpyuBvdWCyQBEZ5iLK3Lr_77oA6wNT48O1eGX42_v4BmONFVO27A8u57b9w7AzfKdeoP-Ba3mQQ4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BVirlwLOUQEGuxNXb2M4TcVlVVBUSBamsKCfLcZwV7Ta72k2Eyon_wD_klzCzeVDRHlaIY5SMLHvGnm8yM58BXmFIIAOT5jyTKqIrzCRPpVBchnkqMOJCp7Vi-zyOjsbBu9PwtK1_ol4YjOaG6BS4zcumo4E4mspq_-sFbq99wZdy6PMTP6F-TIQKckXgIvnECD1dTIZn88lt2IhCxOUD2Bgffxx9WcHINOT0PUVfSUxdO7HYhL0_xV5Uv03JbBwFY0YpidHAJ37Nm53VdTB6F-7U5dxcfjPT6RUHdXgfzrupNXUp58O6yob2-1-sj_9n7g_gXotj2agxvIdwy5WPYPN9m6l_DJ9HdTVDNOxytnSTi7bDqWSzgpUEk6fMlDlr00M5s0SkYBaXbFViitE7-_XjJ0MbZqOTDwcjZrs7X7ZhfPj208ERby9x4DaM0oq7QPrOps4msRXGxhYRUWRUHjpXuMRQljERvp_HSZAWKrKZyQprFCI_PE6MDNUTGJSz0j0FFiVEfy9ilzg_KEyR2UKJInPEpCDiSHiQdNrStmU4p4s2prorZTvTVxStSdG6UbQHshedNzQf6wi97kxCd32sePJqdEbrCMc3Cbtle4YstdBLqX19TeEevOklW5jUwJ91B97trFf3YyFMo4Su8JUHe_1rPGkofWRKN6vpm4B-NkRB7MFOY_X9Winq6FYi8kD122D9hXz2T1LPYYuemjKqXRhUi9q9QIRYZS_brf8b6cdf6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+of+normal+and+diseased+coronary+arteries+%E2%80%93+The+ASOCA+challenge&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Gharleghi%2C+Ramtin&rft.au=Adikari%2C+Dona&rft.au=Ellenberger%2C+Katy&rft.au=Ooi%2C+Sze-Yuan&rft.date=2022-04-01&rft.issn=0895-6111&rft.volume=97&rft.spage=102049&rft_id=info:doi/10.1016%2Fj.compmedimag.2022.102049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compmedimag_2022_102049
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2Fcov200h.gif