Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2
The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 350; no. 6258; p. 291 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
16.10.2015
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aac4383 |
Cover
Abstract | The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site.
Science
, this issue p.
10.1126/science.aac4383
; see also p.
278
The structure of a gene silencing complex reveals how it self-activates and is inhibited by a cancer-associated chromatin mutation.
[Also see Perspective by
Schapira
]
Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast
Chaetomium thermophilum
in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-
l
-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site. |
---|---|
AbstractList | Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site. The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site. Science, this issue p. 10.1126/science.aac4383; see also p. 278 Polycomb-group (PcG) proteins are key epigenetic regulators of cell identity determination and maintenance. As one of the main PcG protein complexes, polycomb repressive complex 2 (PRC2) mediates trimethylation of histone H3 at lysine 27 (H3K27me3), a hallmark of gene silencing and facultative heterochromatin formation. Dysregulation of PRC2 function is broadly linked to human diseases, including hematological malignancies, Weaver syndrome, and childhood glioblastoma. PRC2 consists of four core subunits--Ezh2, Eed, Suz12, and Rbbp4--among which Ezh2 is the catalytic subunit, which minimally requires Eed and Suz12 for catalysis. Although the histone methyltransferase activity of PRC2 was discovered more than a decade ago, the catalytic mechanism of PRC2 remains poorly understood. In addition, the end product of PRC2 catalysis, H3K27me3, is known to interact with Eed to stimulate the enzymatic activity of PRC2 allosterically. The details of this positive feedback loop, which is believed to account for spreading of the repressive H3K27me3 histone mark on silent chromatin, are also not fully understood. Additionally, a histone H3K27M missense mutation found in some pediatric brain cancers leads to a global decrease in the amount of H3K27me3 by inhibiting PRC2 through a so far uncharacterized mechanism. To begin to address these outstanding questions regarding PRC2 function and regulation, we report the crystal structures of an active PRC2 complex of 170 kD from the fungus Chaetomium thermophilum in both basal and stimulated states at 2.7 and 2.3 resolution, respectively. As an evolutionarily conserved complex, PRC2 proteins from different species share compositional and functional similarities. Indeed, some fundamental aspects of human PRC2 catalysis and regulation, in particular the H3K27me3-mediated enzyme stimulation and the H3K27M-mediated enzyme inhibition, were faithfully recapitulated in our assays with the reconstituted minimal fungal PRC2, containing Ezh2, Eed, and the VEFS domain of Suz12 [Suz12(VEFS)], which was also used for crystallization. An S-adenosyl-l -homocysteine (SAH) cofactor and an inhibiting H3K27M cancer mutant peptide bound to the catalytic SET domain of Ezh2 were captured in the crystal structures of both basal and stimulated complexes. In addition, a stimulating H3K27me3 peptide bound to both Ezh2 and Eed was also resolved in the latter. Structural analysis and accompanying biochemical assays provided the following mechanistic insights into PRC2 catalysis and regulation. First, Ezh2, Eed, and Suz12(VEFS) associate intimately. The Eed subunit is engulfed by a belt-like structural feature of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer enzyme activity. Second, two separate regions of Ezh2, including the SET activation loop (SAL) and SET, are together required to form the active catalytic domain of PRC2. Eed and Suz12(VEFS) are structurally important in maintaining the positioning and local conformation of the SAL of Ezh2, which may explain, at least in part, the indispensable role of Eed and Suz12 in PRC2 catalysis. Third, the H3K27M cancer mutant inhibits PRC2 enzyme activity by a direct competition mechanism, with residue H3R26, in the context of the lysine-to-methionine mutation, occupying the lysine access channel of the active site and thus occluding substrate binding. Lastly, the flexible stimulation-responsive motif (SRM) of Ezh2 responds to H3K27me3-mediated enzyme stimulation by forming a sandwich-like assembly with the H3K27me3 peptide and Eed. The SRM exhibits a dramatic disorder-to-order conformational transition upon binding of this stimulating peptide. This initiates an allosterically regulated pathway that communicates with the active site. This work has resolved some long-standing questions regarding PRC2 structure and function and provides a structural framework for future functional studies. PRC2 is a representative of a distinct family of lysine methyltransferases. The unique structural arrangement of PRC2 revealed here underlies PRC2-mediated H3K27 trimethylation. The enzymatic activity of PRC2 is subject to complex regulation by a plethora of protein factors and noncoding RNAs in cells. Regulatory signals transmitted from discrete, distant surfaces of PRC2, such as that transferred by the SRM of Ezh2, are interpreted and integrated at the enzyme active site to generate distinct cellular outputs. The Ezh2, Eed, and Suz12(VEFS) subunits are shown as gray, light blue, and light brown surfaces, respectively, except for the SET activation loop (SAL), the stimulation-responsive motif (SRM), and the SET regions of Ezh2, which are highlighted as cartoons. The SAL is colored in green, SRM in pink, and SET in blue. Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site. The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site. Science , this issue p. 10.1126/science.aac4383 ; see also p. 278 The structure of a gene silencing complex reveals how it self-activates and is inhibited by a cancer-associated chromatin mutation. [Also see Perspective by Schapira ] Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl- l -homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site. A tripartite gene silencing complexThe formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site.Science, this issue p. 10.1126/science.aac4383; see also p. 278 Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site. Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site. The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site. |
Author | Jiao, Lianying Liu, Xin |
Author_xml | – sequence: 1 givenname: Lianying surname: Jiao fullname: Jiao, Lianying – sequence: 2 givenname: Xin surname: Liu fullname: Liu, Xin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26472914$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAUtFAR3RbOnECWuHBJ-_wRJ74gVRVQRCUOwImD5TgO61XWDrZTyL_Hyy4FegBOlv1m3puZ5xN05IO3CD0mcEYIFefJOOuNPdPacNaye2hFQNaVpMCO0AqAiaqFpj5GJyltAEpNsgfomAreUEn4Cn16n-Ns8hz1iDudXMJhwGuXcpmDr9hb2uAc3dbm9TLq7ILH3YK1x9pkd2PxFMbFhG2Ho52iTWn3Vu7TaL9h-hDdH_SY7KPDeYo-vnr54fKqun73-s3lxXVlaiFzZQgYM7Qd2F4L2bc1CElb0YlmgLa3NRGWaNETCrXtOW00aRkVjaW67zrRc3aKYN939pNevupxVFPRrOOiCKhdTuqQkzrkVCgv9pRp7ra2N9bnksAtLWin_qx4t1afw42qKQVCoDR4fmgQw5fZpqy2Lhk7jtrbMCdFJHDKRHHyb2hDqaScEVmgz-5AN2GOvoRXUMU0ASA7v09_F3-r-udWC-B8DzAxpBTt8B951HcYxuUf-y7u3fgX3pM9b1N-TPylhDdc8uLpO2EE1AI |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1002_tcr_201800034 crossref_primary_10_1016_j_sbi_2018_07_002 crossref_primary_10_1038_s41598_023_50964_x crossref_primary_10_3389_fcell_2020_00600 crossref_primary_10_1021_acs_biochem_8b01064 crossref_primary_10_1155_2016_5653862 crossref_primary_10_1002_ange_201810007 crossref_primary_10_1021_acs_biochem_8b00894 crossref_primary_10_1186_s13072_022_00439_6 crossref_primary_10_1186_s43556_025_00254_x crossref_primary_10_7554_eLife_62682 crossref_primary_10_1016_j_cellin_2024_100195 crossref_primary_10_1038_s41594_018_0023_y crossref_primary_10_1038_s41388_021_01982_4 crossref_primary_10_1186_s13072_018_0242_9 crossref_primary_10_1038_s41594_019_0197_y crossref_primary_10_1016_j_ab_2017_01_014 crossref_primary_10_1016_j_str_2019_01_016 crossref_primary_10_1080_15592294_2018_1475980 crossref_primary_10_1111_jcmm_15806 crossref_primary_10_1186_s13148_024_01666_2 crossref_primary_10_3389_fgene_2022_1058741 crossref_primary_10_1016_j_cbpa_2019_01_022 crossref_primary_10_1016_j_jmb_2016_11_019 crossref_primary_10_1016_j_molcel_2019_12_019 crossref_primary_10_1146_annurev_micro_102215_095757 crossref_primary_10_1073_pnas_2010003118 crossref_primary_10_3390_epigenomes3020012 crossref_primary_10_1038_s41598_018_37699_w crossref_primary_10_1101_gad_309013_117 crossref_primary_10_1021_acs_biochem_5b01210 crossref_primary_10_1101_gad_311936_118 crossref_primary_10_1371_journal_pone_0169855 crossref_primary_10_1021_jacs_9b02321 crossref_primary_10_1038_ncomms11384 crossref_primary_10_1534_genetics_115_185116 crossref_primary_10_1016_j_molcel_2018_03_020 crossref_primary_10_1042_BST20200728 crossref_primary_10_1038_s41467_017_01897_3 crossref_primary_10_1101_gad_328773_119 crossref_primary_10_1038_s41419_021_03753_1 crossref_primary_10_1039_D1MD00274K crossref_primary_10_1158_1541_7786_MCR_16_0389 crossref_primary_10_1021_acs_jmedchem_0c01344 crossref_primary_10_1038_s41416_019_0615_2 crossref_primary_10_3390_cells9020397 crossref_primary_10_1016_j_jpha_2022_11_009 crossref_primary_10_1093_nar_gkw723 crossref_primary_10_1016_j_molcel_2018_03_019 crossref_primary_10_1111_nyas_15033 crossref_primary_10_1016_j_chembiol_2019_11_006 crossref_primary_10_1016_j_blre_2022_100988 crossref_primary_10_1016_j_ejcb_2022_151238 crossref_primary_10_1016_j_ejmech_2022_114419 crossref_primary_10_1021_acs_jmedchem_7b01375 crossref_primary_10_1021_acscombsci_6b00174 crossref_primary_10_1016_j_gene_2017_07_069 crossref_primary_10_1093_nar_gkaa073 crossref_primary_10_1042_BST20210450 crossref_primary_10_3390_molecules24244492 crossref_primary_10_1093_nar_gkab844 crossref_primary_10_1007_s12672_021_00450_5 crossref_primary_10_1073_pnas_1522691113 crossref_primary_10_1186_s13072_020_00369_1 crossref_primary_10_1016_j_devcel_2018_05_023 crossref_primary_10_1038_s41580_021_00341_1 crossref_primary_10_1016_j_molcel_2022_07_008 crossref_primary_10_1016_j_cell_2017_08_002 crossref_primary_10_1371_journal_pone_0190245 crossref_primary_10_1126_science_adh0059 crossref_primary_10_1016_j_tcb_2019_05_004 crossref_primary_10_1038_s10038_019_0585_5 crossref_primary_10_1038_s41374_022_00741_7 crossref_primary_10_1007_s11060_020_03538_0 crossref_primary_10_1111_1462_2920_13427 crossref_primary_10_1016_j_ejmech_2019_111715 crossref_primary_10_1038_s41580_021_00398_y crossref_primary_10_1021_acs_jmedchem_3c00504 crossref_primary_10_1021_acs_jmedchem_6b00855 crossref_primary_10_1042_BST20190255 crossref_primary_10_1038_s41576_020_00312_w crossref_primary_10_1093_nar_gky1323 crossref_primary_10_3389_fonc_2023_1216289 crossref_primary_10_3390_cancers11050660 crossref_primary_10_3390_cells9122721 crossref_primary_10_1080_15592294_2020_1767372 crossref_primary_10_1016_j_molcel_2024_07_030 crossref_primary_10_1038_s41375_020_0816_y crossref_primary_10_1002_cbic_201800744 crossref_primary_10_1016_j_tplants_2021_06_006 crossref_primary_10_1016_j_bbadis_2016_12_009 crossref_primary_10_1016_j_jbc_2023_103073 crossref_primary_10_1021_acs_jmedchem_0c02261 crossref_primary_10_4155_fmc_2022_0010 crossref_primary_10_1021_acs_chemrev_8b00008 crossref_primary_10_1038_s41467_019_09981_6 crossref_primary_10_1042_BST20160173 crossref_primary_10_3892_ijmm_2017_3115 crossref_primary_10_1093_nar_gkab304 crossref_primary_10_1371_journal_pone_0167744 crossref_primary_10_1002_anie_201810007 crossref_primary_10_1073_pnas_1620955114 crossref_primary_10_1126_science_abc3393 crossref_primary_10_1158_0008_5472_CAN_19_0428 crossref_primary_10_7717_peerj_18656 crossref_primary_10_1038_s41467_022_34431_1 crossref_primary_10_1016_j_ceb_2020_10_015 crossref_primary_10_1073_pnas_1605523113 crossref_primary_10_1016_j_drudis_2024_103986 crossref_primary_10_1038_nrc_2016_148 crossref_primary_10_1016_j_sbi_2020_10_017 crossref_primary_10_1126_science_aai8236 crossref_primary_10_1038_s41375_021_01494_w crossref_primary_10_1038_s41573_020_00108_x crossref_primary_10_1016_j_bbagrm_2019_01_002 crossref_primary_10_1186_s13046_019_1030_5 crossref_primary_10_3390_jof9121187 crossref_primary_10_1186_s40164_023_00405_2 crossref_primary_10_3390_ijms22020512 crossref_primary_10_1016_j_biopha_2024_116624 crossref_primary_10_1038_s41568_021_00357_x crossref_primary_10_7554_eLife_36696 crossref_primary_10_1016_j_molcel_2024_08_025 crossref_primary_10_3390_genes11060638 crossref_primary_10_1038_s41594_025_01487_8 crossref_primary_10_1007_s00018_017_2596_8 crossref_primary_10_1038_srep33608 crossref_primary_10_1016_j_pharmthera_2019_107406 crossref_primary_10_1038_s41467_019_10404_9 crossref_primary_10_1074_jbc_R117_800367 crossref_primary_10_1142_S2737416524300013 crossref_primary_10_1182_blood_2019000578 crossref_primary_10_1042_BST20200238 crossref_primary_10_1111_cbdd_13702 crossref_primary_10_1016_j_pbi_2015_11_010 crossref_primary_10_1021_acs_chemrev_6b00801 crossref_primary_10_1126_sciadv_aau5935 crossref_primary_10_1016_j_devcel_2022_03_014 crossref_primary_10_18632_oncotarget_10321 crossref_primary_10_1039_C7MD00052A crossref_primary_10_1038_s41556_018_0258_1 crossref_primary_10_1016_j_sbi_2021_06_012 crossref_primary_10_1021_acs_jmedchem_6b01473 crossref_primary_10_1016_j_isci_2021_102070 crossref_primary_10_1126_sciadv_adf2451 crossref_primary_10_1074_jbc_M117_787572 crossref_primary_10_1038_s41594_019_0290_2 crossref_primary_10_1038_aps_2017_7 crossref_primary_10_1016_j_tig_2017_01_006 crossref_primary_10_1021_acs_jmedchem_1c02148 crossref_primary_10_1021_acs_biochem_5b01191 crossref_primary_10_1101_cshperspect_a026666 crossref_primary_10_1038_s41586_019_1528_1 crossref_primary_10_1016_j_cbpa_2020_06_001 crossref_primary_10_1038_s41467_018_04455_7 crossref_primary_10_1158_2159_8290_CD_16_0800 crossref_primary_10_1016_j_phrs_2021_105865 crossref_primary_10_1016_j_tig_2021_06_003 crossref_primary_10_1126_science_aai8266 crossref_primary_10_1038_s41580_022_00518_2 crossref_primary_10_7554_eLife_31558 crossref_primary_10_1186_s13148_021_01057_x crossref_primary_10_1016_j_molcel_2017_02_003 crossref_primary_10_1016_j_molcel_2016_04_013 crossref_primary_10_1080_17568919_2024_2380243 crossref_primary_10_1016_j_tig_2020_12_006 crossref_primary_10_1007_s41048_018_0063_1 crossref_primary_10_1038_s41467_020_19722_9 crossref_primary_10_2139_ssrn_3188494 crossref_primary_10_1016_j_molcel_2018_01_039 crossref_primary_10_1016_j_canlet_2023_216143 crossref_primary_10_1038_s41467_019_09140_x crossref_primary_10_1073_pnas_1819029116 crossref_primary_10_1111_iju_13404 crossref_primary_10_1038_s41594_024_01452_x crossref_primary_10_7554_eLife_17903 crossref_primary_10_3389_fgene_2022_873398 crossref_primary_10_1021_acs_jmedchem_6b01576 crossref_primary_10_3390_genes13122382 crossref_primary_10_1016_j_ejmech_2022_114144 crossref_primary_10_1016_j_lfs_2021_120047 crossref_primary_10_1038_s41401_019_0247_3 crossref_primary_10_3390_ijms23179574 crossref_primary_10_7554_eLife_18591 crossref_primary_10_1098_rsob_230271 crossref_primary_10_1371_journal_pgen_1010945 crossref_primary_10_1038_s41598_018_27175_w crossref_primary_10_1038_ncomms11316 crossref_primary_10_1242_dev_196329 crossref_primary_10_1080_14728222_2019_1696309 crossref_primary_10_1080_15592294_2017_1377870 crossref_primary_10_1080_15476286_2019_1565283 crossref_primary_10_1016_j_ejmech_2025_117463 crossref_primary_10_1021_acssynbio_1c00394 crossref_primary_10_1093_nar_gkab441 crossref_primary_10_1016_j_molcel_2019_03_011 crossref_primary_10_1002_cbdv_202500198 crossref_primary_10_1038_s42003_022_04264_1 crossref_primary_10_1016_j_phrs_2017_10_013 crossref_primary_10_1016_j_gde_2016_03_013 crossref_primary_10_2147_OTT_S417190 crossref_primary_10_1016_j_gde_2016_03_012 crossref_primary_10_1126_sciadv_adl4529 crossref_primary_10_1126_science_aar5700 crossref_primary_10_1021_acs_jmedchem_2c02028 crossref_primary_10_1093_nar_gkaa1262 crossref_primary_10_7554_eLife_61964 crossref_primary_10_1038_nm_4092 crossref_primary_10_1002_pro_3535 crossref_primary_10_3390_cancers17030437 crossref_primary_10_1016_j_ctarc_2017_06_003 crossref_primary_10_1016_j_molcel_2018_08_010 crossref_primary_10_3390_epigenomes6010003 crossref_primary_10_1038_s41594_018_0036_6 crossref_primary_10_1093_genetics_iyae041 crossref_primary_10_1038_nchembio_2304 crossref_primary_10_15252_embj_201593377 crossref_primary_10_1016_j_tibs_2017_04_003 crossref_primary_10_1038_nchembio_2306 crossref_primary_10_1167_iovs_19_27556 crossref_primary_10_1002_ajmg_c_31748 crossref_primary_10_1080_15592294_2018_1503491 crossref_primary_10_1016_j_molcel_2016_05_004 crossref_primary_10_1002_pro_3085 crossref_primary_10_3389_fimmu_2024_1467774 crossref_primary_10_1042_BST20200660 crossref_primary_10_1134_S1022795421030042 crossref_primary_10_3390_biomedicines6030085 crossref_primary_10_1002_pro_3647 crossref_primary_10_1038_s41598_019_43005_z crossref_primary_10_1126_science_aaj2335 crossref_primary_10_1126_science_aaf6236 crossref_primary_10_1177_17588359241306026 crossref_primary_10_1016_j_sbi_2016_01_013 crossref_primary_10_3389_fcell_2022_1026406 crossref_primary_10_1038_onc_2017_309 crossref_primary_10_1073_pnas_1615546113 crossref_primary_10_1080_15476286_2020_1790140 crossref_primary_10_3390_ijms19123707 crossref_primary_10_3389_fonc_2022_894585 crossref_primary_10_1111_cpr_13413 crossref_primary_10_1002_ajmg_c_31754 crossref_primary_10_1016_j_tibs_2018_04_009 crossref_primary_10_1111_jcmm_13142 crossref_primary_10_1242_dev_202169 crossref_primary_10_1101_gad_279141_116 crossref_primary_10_1128_microbiolspec_FUNK_0054_2017 crossref_primary_10_3389_fimmu_2021_724276 crossref_primary_10_3389_fonc_2021_739830 crossref_primary_10_1016_j_bbagrm_2022_194851 crossref_primary_10_1016_j_devcel_2018_11_047 crossref_primary_10_3390_genes14040938 crossref_primary_10_7554_eLife_17667 crossref_primary_10_1038_s41467_021_21130_6 crossref_primary_10_1089_dna_2020_6138 crossref_primary_10_1038_s41556_019_0403_5 crossref_primary_10_1186_s12860_022_00451_4 crossref_primary_10_1038_aps_2017_59 crossref_primary_10_1016_j_sbi_2018_03_007 crossref_primary_10_1021_acs_jmedchem_1c00226 crossref_primary_10_1007_s10555_024_10167_w crossref_primary_10_1016_j_cbpa_2018_03_003 crossref_primary_10_1016_j_biopha_2023_115897 crossref_primary_10_1016_j_rpor_2020_04_010 crossref_primary_10_1016_j_pbi_2016_08_002 crossref_primary_10_1016_j_molcel_2019_07_031 crossref_primary_10_3389_fcell_2022_1010601 crossref_primary_10_1016_j_bbagrm_2022_194840 crossref_primary_10_1021_acs_biochem_5b01129 crossref_primary_10_1073_pnas_1914866117 crossref_primary_10_1016_j_bbapap_2017_06_018 crossref_primary_10_1021_acs_jmedchem_3c02053 crossref_primary_10_1038_nsmb_3488 crossref_primary_10_1101_cshperspect_a026575 crossref_primary_10_1093_narcan_zcab039 crossref_primary_10_1038_nsmb_3487 crossref_primary_10_1021_acs_biochem_1c00603 crossref_primary_10_1126_science_aad5203 crossref_primary_10_1021_acschembio_6b00366 crossref_primary_10_1038_ncomms13661 crossref_primary_10_1002_bies_201600150 crossref_primary_10_3389_fgene_2022_1011228 crossref_primary_10_1007_s11515_016_1399_x |
Cites_doi | 10.1016/j.ajhg.2011.11.018 10.1038/nature08398 10.1016/j.str.2007.08.007 10.1002/jcc.20084 10.1107/S0907444910045749 10.1016/j.molcel.2013.10.030 10.1074/jbc.M513425200 10.1128/MCB.00307-13 10.7554/eLife.00005 10.1038/ng.621 10.1016/S1097-2765(04)00185-6 10.1038/nrm1314 10.1126/science.1118947 10.1056/NEJMoa1013343 10.1371/journal.pone.0083737 10.1016/j.cell.2011.06.039 10.1016/j.tibs.2010.04.003 10.1093/nar/22.22.4673 10.1038/nm.2651 10.1016/j.sbi.2003.10.003 10.1016/S0076-6879(97)76066-X 10.1016/j.gde.2004.02.001 10.1038/nrg3603 10.1107/S0907444909052925 10.1038/ncb1787 10.1016/j.mrfmmm.2008.07.010 10.1038/nrm2763 10.1038/nsmb.2669 10.1021/ja307060p 10.1073/pnas.1008937107 10.1016/j.molcel.2014.12.020 10.1038/ng.620 10.1126/science.1225237 10.1073/pnas.1116418109 10.1107/S0907444996012255 10.1101/gad.1983810 10.1107/S0021889807021206 10.1371/journal.pone.0084147 10.1016/j.molcel.2011.03.025 10.1182/blood-2011-07-367243 10.1038/nature09784 10.1107/S0907444904019158 10.1016/j.ceb.2012.01.008 10.1126/science.1232245 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Association for the Advancement of Science Copyright © 2015, American Association for the Advancement of Science. Copyright © 2015, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2015 American Association for the Advancement of Science – notice: Copyright © 2015, American Association for the Advancement of Science. – notice: Copyright © 2015, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM ADTOC UNPAY |
DOI | 10.1126/science.aac4383 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef Solid State and Superconductivity Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 291 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:5220110 PMC5220110 3863653821 26472914 10_1126_science_aac4383 24749424 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM114576 – fundername: NIGMS NIH HHS grantid: GM114576 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM .GJ .GO .HR 0-V 186 3EH 4.4 41~ 42X 4R4 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS ABDPE ABJCF ABUWG ACQAM ACTDY ADBBV ADTOC ADZCM AEUYN AFCHL AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQEDU PQGLB PROAC PSQYO PTHSS PV9 PYCSY R05 RNS RZL SJFOW SKT UBY UHU UKHRP UNPAY VOH WOQ WOW X7L XIH XKJ XOL YJ6 YXB ZCG ZGI ZVL ZVM ZXP ZY4 ~H1 |
ID | FETCH-LOGICAL-c569t-c10ccf8b0eda69d85069286b67f08de516e1a6d1205ed427a183267e2adbb6d43 |
IEDL.DBID | UNPAY |
ISSN | 0036-8075 1095-9203 |
IngestDate | Wed Aug 20 00:14:43 EDT 2025 Tue Sep 30 16:50:50 EDT 2025 Fri Sep 05 03:18:24 EDT 2025 Wed Oct 01 14:40:57 EDT 2025 Fri Jul 25 09:43:40 EDT 2025 Mon Jul 21 05:55:08 EDT 2025 Wed Oct 01 01:06:10 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Thu Jul 03 22:32:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6258 |
Language | English |
License | http://www.sciencemag.org/about/science-licenses-journal-article-reuse Copyright © 2015, American Association for the Advancement of Science. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-c10ccf8b0eda69d85069286b67f08de516e1a6d1205ed427a183267e2adbb6d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5220110 |
PMID | 26472914 |
PQID | 1732610014 |
PQPubID | 1256 |
PageCount | 1 |
ParticipantIDs | unpaywall_primary_10_1126_science_aac4383 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5220110 proquest_miscellaneous_1904236692 proquest_miscellaneous_1722924319 proquest_journals_1732610014 pubmed_primary_26472914 crossref_primary_10_1126_science_aac4383 crossref_citationtrail_10_1126_science_aac4383 jstor_primary_24749424 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-16 |
PublicationDateYYYYMMDD | 2015-10-16 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2015 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 24096405 - Nat Struct Mol Biol. 2013 Oct;20(10):1147-55 14675547 - Curr Opin Struct Biol. 2003 Dec;13(6):699-705 20601953 - Nat Genet. 2010 Aug;42(8):722-6 21549310 - Mol Cell. 2011 May 6;42(3):330-41 22323599 - Proc Natl Acad Sci U S A. 2012 Feb 21;109 (8):2989-94 22053108 - Blood. 2012 Feb 2;119(5):1208-13 22237151 - Nat Med. 2012 Feb 06;18(2):298-301 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 15040448 - Nat Rev Mol Cell Biol. 2004 Feb;5(2):158-63 21248841 - Nature. 2011 Jan 20;469(7330):343-9 19767730 - Nature. 2009 Oct 8;461(7265):762-7 15099518 - Mol Cell. 2004 Apr 23;14 (2):183-93 20974918 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19266-71 16224021 - Science. 2005 Oct 14;310(5746):306-10 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 23539183 - Science. 2013 May 17;340(6134):857-61 21784248 - Cell. 2011 Jul 22;146(2):277-89 23043551 - J Am Chem Soc. 2012 Oct 31;134(43):18004-14 15196462 - Curr Opin Genet Dev. 2004 Apr;14 (2):155-64 18931660 - Nat Cell Biol. 2008 Nov;10 (11):1291-300 16431907 - J Biol Chem. 2006 Mar 31;281(13):8365-70 24217316 - Nat Rev Genet. 2013 Dec;14(12):853-64 18723033 - Mutat Res. 2008 Dec 1;647(1-2):21-9 24100017 - Mol Cell Biol. 2013 Dec;33(24):4844-56 26472895 - Science. 2015 Oct 16;350(6258):278-9 15299926 - Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 23110252 - Elife. 2012 Oct 30;1:e00005 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 17937919 - Structure. 2007 Oct;15(10 ):1306-15 22923582 - Science. 2012 Aug 24;337(6097):971-5 20451393 - Trends Biochem Sci. 2010 Oct;35(10):565-74 19738629 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708 27754618 - Methods Enzymol. 1997;276:307-26 21123648 - Genes Dev. 2010 Dec 1;24(23 ):2615-20 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 22336329 - Curr Opin Cell Biol. 2012 Jun;24(3):405-14 21714648 - N Engl J Med. 2011 Jun 30;364(26):2496-506 24367637 - PLoS One. 2013 Dec 19;8(12 ):e84147 21460441 - Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 20601954 - Nat Genet. 2010 Aug;42(8):665-7 28008037 - Science. 2016 Dec 23;354(6319):1543 24367611 - PLoS One. 2013 Dec 19;8(12 ):e83737 25620564 - Mol Cell. 2015 Mar 5;57(5):769-83 24289921 - Mol Cell. 2014 Jan 9;53(1):49-62 22177091 - Am J Hum Genet. 2012 Jan 13;90(1):110-8 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 |
References_xml | – ident: e_1_3_2_22_2 doi: 10.1016/j.ajhg.2011.11.018 – ident: e_1_3_2_11_2 doi: 10.1038/nature08398 – ident: e_1_3_2_15_2 doi: 10.1016/j.str.2007.08.007 – ident: e_1_3_2_47_2 doi: 10.1002/jcc.20084 – ident: e_1_3_2_43_2 – ident: e_1_3_2_39_2 doi: 10.1107/S0907444910045749 – ident: e_1_3_2_9_2 doi: 10.1016/j.molcel.2013.10.030 – ident: e_1_3_2_37_2 doi: 10.1074/jbc.M513425200 – ident: e_1_3_2_30_2 doi: 10.1128/MCB.00307-13 – ident: e_1_3_2_14_2 doi: 10.7554/eLife.00005 – ident: e_1_3_2_20_2 doi: 10.1038/ng.621 – ident: e_1_3_2_36_2 doi: 10.1016/S1097-2765(04)00185-6 – ident: e_1_3_2_26_2 doi: 10.1038/nrm1314 – ident: e_1_3_2_27_2 doi: 10.1126/science.1118947 – ident: e_1_3_2_34_2 doi: 10.1056/NEJMoa1013343 – ident: e_1_3_2_16_2 doi: 10.1371/journal.pone.0083737 – ident: e_1_3_2_24_2 doi: 10.1016/j.cell.2011.06.039 – ident: e_1_3_2_25_2 doi: 10.1016/j.tibs.2010.04.003 – ident: e_1_3_2_46_2 doi: 10.1093/nar/22.22.4673 – ident: e_1_3_2_28_2 doi: 10.1038/nm.2651 – ident: e_1_3_2_32_2 doi: 10.1016/j.sbi.2003.10.003 – ident: e_1_3_2_38_2 doi: 10.1016/S0076-6879(97)76066-X – ident: e_1_3_2_45_2 – ident: e_1_3_2_2_2 doi: 10.1016/j.gde.2004.02.001 – ident: e_1_3_2_7_2 doi: 10.1038/nrg3603 – ident: e_1_3_2_40_2 doi: 10.1107/S0907444909052925 – ident: e_1_3_2_10_2 doi: 10.1038/ncb1787 – ident: e_1_3_2_19_2 doi: 10.1016/j.mrfmmm.2008.07.010 – ident: e_1_3_2_3_2 doi: 10.1038/nrm2763 – ident: e_1_3_2_6_2 doi: 10.1038/nsmb.2669 – ident: e_1_3_2_33_2 doi: 10.1021/ja307060p – ident: e_1_3_2_12_2 doi: 10.1073/pnas.1008937107 – ident: e_1_3_2_13_2 doi: 10.1016/j.molcel.2014.12.020 – ident: e_1_3_2_21_2 doi: 10.1038/ng.620 – ident: e_1_3_2_8_2 doi: 10.1126/science.1225237 – ident: e_1_3_2_35_2 doi: 10.1073/pnas.1116418109 – ident: e_1_3_2_42_2 doi: 10.1107/S0907444996012255 – ident: e_1_3_2_31_2 doi: 10.1101/gad.1983810 – ident: e_1_3_2_44_2 doi: 10.1107/S0021889807021206 – ident: e_1_3_2_17_2 doi: 10.1371/journal.pone.0084147 – ident: e_1_3_2_18_2 doi: 10.1016/j.molcel.2011.03.025 – ident: e_1_3_2_29_2 doi: 10.1182/blood-2011-07-367243 – ident: e_1_3_2_4_2 doi: 10.1038/nature09784 – ident: e_1_3_2_41_2 doi: 10.1107/S0907444904019158 – ident: e_1_3_2_5_2 doi: 10.1016/j.ceb.2012.01.008 – ident: e_1_3_2_23_2 doi: 10.1126/science.1232245 – reference: 25620564 - Mol Cell. 2015 Mar 5;57(5):769-83 – reference: 18931660 - Nat Cell Biol. 2008 Nov;10 (11):1291-300 – reference: 23110252 - Elife. 2012 Oct 30;1:e00005 – reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 – reference: 15299926 - Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 – reference: 20451393 - Trends Biochem Sci. 2010 Oct;35(10):565-74 – reference: 20601954 - Nat Genet. 2010 Aug;42(8):665-7 – reference: 24289921 - Mol Cell. 2014 Jan 9;53(1):49-62 – reference: 24367611 - PLoS One. 2013 Dec 19;8(12 ):e83737 – reference: 22923582 - Science. 2012 Aug 24;337(6097):971-5 – reference: 16224021 - Science. 2005 Oct 14;310(5746):306-10 – reference: 22237151 - Nat Med. 2012 Feb 06;18(2):298-301 – reference: 22336329 - Curr Opin Cell Biol. 2012 Jun;24(3):405-14 – reference: 17937919 - Structure. 2007 Oct;15(10 ):1306-15 – reference: 21549310 - Mol Cell. 2011 May 6;42(3):330-41 – reference: 21248841 - Nature. 2011 Jan 20;469(7330):343-9 – reference: 15099518 - Mol Cell. 2004 Apr 23;14 (2):183-93 – reference: 15040448 - Nat Rev Mol Cell Biol. 2004 Feb;5(2):158-63 – reference: 21460441 - Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 – reference: 24100017 - Mol Cell Biol. 2013 Dec;33(24):4844-56 – reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 – reference: 21784248 - Cell. 2011 Jul 22;146(2):277-89 – reference: 22177091 - Am J Hum Genet. 2012 Jan 13;90(1):110-8 – reference: 19738629 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708 – reference: 18723033 - Mutat Res. 2008 Dec 1;647(1-2):21-9 – reference: 26472895 - Science. 2015 Oct 16;350(6258):278-9 – reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 – reference: 23043551 - J Am Chem Soc. 2012 Oct 31;134(43):18004-14 – reference: 21123648 - Genes Dev. 2010 Dec 1;24(23 ):2615-20 – reference: 20601953 - Nat Genet. 2010 Aug;42(8):722-6 – reference: 14675547 - Curr Opin Struct Biol. 2003 Dec;13(6):699-705 – reference: 16431907 - J Biol Chem. 2006 Mar 31;281(13):8365-70 – reference: 24096405 - Nat Struct Mol Biol. 2013 Oct;20(10):1147-55 – reference: 23539183 - Science. 2013 May 17;340(6134):857-61 – reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 – reference: 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 – reference: 24217316 - Nat Rev Genet. 2013 Dec;14(12):853-64 – reference: 24367637 - PLoS One. 2013 Dec 19;8(12 ):e84147 – reference: 19767730 - Nature. 2009 Oct 8;461(7265):762-7 – reference: 21714648 - N Engl J Med. 2011 Jun 30;364(26):2496-506 – reference: 20974918 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19266-71 – reference: 28008037 - Science. 2016 Dec 23;354(6319):1543 – reference: 22053108 - Blood. 2012 Feb 2;119(5):1208-13 – reference: 15196462 - Curr Opin Genet Dev. 2004 Apr;14 (2):155-64 – reference: 27754618 - Methods Enzymol. 1997;276:307-26 – reference: 22323599 - Proc Natl Acad Sci U S A. 2012 Feb 21;109 (8):2989-94 |
SSID | ssj0009593 |
Score | 2.6151028 |
Snippet | The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this... Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of... A tripartite gene silencing complexThe formation of specialized cell types during development involves the silencing of genes not required in those cell types.... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 291 |
SubjectTerms | Allosteric Regulation Amino Acid Sequence Cancer Catalysis Catalytic Domain Chaetomium - genetics Chaetomium - metabolism Contact Crystal structure Crystallization Crystallography, X-Ray Enzymatic activity Feedback (Response) Fungal Proteins - antagonists & inhibitors Fungal Proteins - chemistry Fungal Proteins - metabolism Gene Silencing Genes Histones Histones - metabolism Humans Jumonji Domain-Containing Histone Demethylases - metabolism Literary Devices Lysine Methylation Molecular Sequence Data Mutation Neoplasms - genetics Peptides Polycomb Repressive Complex 2 - antagonists & inhibitors Polycomb Repressive Complex 2 - chemistry Polycomb Repressive Complex 2 - metabolism Protein Structure, Tertiary RESEARCH ARTICLE SUMMARY S-Adenosylhomocysteine - chemistry S-Adenosylhomocysteine - metabolism Stimulation Structural analysis Structural Analysis (Linguistics) Structural Analysis (Science) Transcription, Genetic Yeast Yeasts |
Title | Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2 |
URI | https://www.jstor.org/stable/24749424 https://www.ncbi.nlm.nih.gov/pubmed/26472914 https://www.proquest.com/docview/1732610014 https://www.proquest.com/docview/1722924319 https://www.proquest.com/docview/1904236692 https://pubmed.ncbi.nlm.nih.gov/PMC5220110 https://www.ncbi.nlm.nih.gov/pmc/articles/5220110 |
UnpaywallVersion | submittedVersion |
Volume | 350 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1095-9203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009593 issn: 1095-9203 databaseCode: ABDBF dateStart: 19900105 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Pb9MwFMefRivELowNxsLGZCQO2yGZ4zhOcuwGVQViQkClIQ6R7ThaRZZWtBWUv36244R1_NKu9Wsa11_bz8o3nwfwMjZnDJxxX6QZ9qlkpS84VX7EScFLrZoG9vzunI3G9M1FfLEBYfsujDXtSzEJ6uoqqCeX1ls5u5InrU_sRCcMZs-6B31mnin1oD8-fz_4fAuuG2JTg5DgyOF8brwoE3AuDaBzbSdqzIh_SjN_d0s-WNYzvvrOq-rGVjTcgg9tJxoHytdguRCB_HmL73inXj6Chy4xRYOmaRs2VL0D95tSlasd2HaLwBwdOVL18WP48tHSZw25A-ntcDJH0xJZgnGt0Ch6SxK0MOUDtBgayx0SK8RrxO0ii2bTaqUFL9A3Z8fVn1mLu_qByBMYD19_Ohv5rlqDL2OWLXwZYinLVGBVcJYVhoSXkZQJlpQ4LVQcMhVyVoQEx6qgJOFmMWGJIrwQghU02oVerW9vDxBPdCIZYo4TVlJ9KcGUSouUyjJSURYpD4J25HLpUOamokaV2yMNYbkb6twNtQdH3RdmDcXj76G7VgpdHKEJzSihHhy02sjdPJ_nYaL7YDBWuvlF16xnqHnswms1XZoYQvQpV691_4jJjD-J6X_Mg6eN3H7dgCH8Z-YXkjUhdgGGEL7eoiVlSeFORR4cd5L9X_-f3SF2Hzb19S3JNmQH0NOaU891jrYQh9AfnL46HR662XkNOIFABg |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Pb9MwFMefRicEF2CDQWAgI3HYDskcx3GS44SYKhATAioNcYhsx9EqsrSiraD89Tw7TljHL-1av6Zx_bX9rHzzeQAvUnvGoIUMVV7QkGtRh0pyEyaSVbJG1XSw57enYjzhr8_Ssy2I-3dhnGlfq2nUNhdROz133sr5hT7qfWJHmDDYPesGbAv7TGkE25PTd8efrsB1Y2prEDKaeJzPpRdlIim1BXRu7ESdGfFPaebvbslbq3Yu199k01zaik7uwvu-E50D5Uu0WqpI_7jCd7xWL-_BHZ-YkuOuaQe2TLsLN7tSletd2PGLwIIceFL14X34_MHRZy25g-B2OF2QWU0cwbg1ZJy8YRlZ2vIBKIbOckfUmsiWSLfIkvmsWaPgFfnq7bj4mbO4m--EPYDJyauPL8ehr9YQ6lQUy1DHVOs6V9RUUhSVJeEVLBdKZDXNK5PGwsRSVDGjqak4y6RdTERmmKyUEhVP9mDU4u09AiIzTCRjKmkmao6XUsKYvMq5rhOTFIkJIOpHrtQeZW4rajSlO9IwUfqhLv1QB3AwfGHeUTz-HrrnpDDEMZ7xgjMewH6vjdLP80UZZ9gHi7HC5udDM85Q-9hFtma2sjGM4SkX17p_xBTWnyTwHwvgYSe3XzdgCf-F_YVsQ4hDgCWEb7agpBwp3KsogMNBsv_r_-NrxD6B23h9R7KNxT6MUHPmKeZoS_XMz8qfQMI-lA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+of+histone+H3K27+trimethylation+by+an+active+polycomb+repressive+complex+2&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Jiao%2C+Lianying&rft.au=Liu%2C+Xin&rft.date=2015-10-16&rft.eissn=1095-9203&rft.volume=350&rft.issue=6258&rft.spage=aac4383&rft_id=info:doi/10.1126%2Fscience.aac4383&rft_id=info%3Apmid%2F26472914&rft.externalDocID=26472914 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |