Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2

The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 350; no. 6258; p. 291
Main Authors Jiao, Lianying, Liu, Xin
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 16.10.2015
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aac4383

Cover

Abstract The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site. Science , this issue p. 10.1126/science.aac4383 ; see also p. 278 The structure of a gene silencing complex reveals how it self-activates and is inhibited by a cancer-associated chromatin mutation. [Also see Perspective by Schapira ] Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl- l -homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site.
AbstractList Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site.
The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site. Science, this issue p. 10.1126/science.aac4383; see also p. 278 Polycomb-group (PcG) proteins are key epigenetic regulators of cell identity determination and maintenance. As one of the main PcG protein complexes, polycomb repressive complex 2 (PRC2) mediates trimethylation of histone H3 at lysine 27 (H3K27me3), a hallmark of gene silencing and facultative heterochromatin formation. Dysregulation of PRC2 function is broadly linked to human diseases, including hematological malignancies, Weaver syndrome, and childhood glioblastoma. PRC2 consists of four core subunits--Ezh2, Eed, Suz12, and Rbbp4--among which Ezh2 is the catalytic subunit, which minimally requires Eed and Suz12 for catalysis. Although the histone methyltransferase activity of PRC2 was discovered more than a decade ago, the catalytic mechanism of PRC2 remains poorly understood. In addition, the end product of PRC2 catalysis, H3K27me3, is known to interact with Eed to stimulate the enzymatic activity of PRC2 allosterically. The details of this positive feedback loop, which is believed to account for spreading of the repressive H3K27me3 histone mark on silent chromatin, are also not fully understood. Additionally, a histone H3K27M missense mutation found in some pediatric brain cancers leads to a global decrease in the amount of H3K27me3 by inhibiting PRC2 through a so far uncharacterized mechanism. To begin to address these outstanding questions regarding PRC2 function and regulation, we report the crystal structures of an active PRC2 complex of 170 kD from the fungus Chaetomium thermophilum in both basal and stimulated states at 2.7 and 2.3 resolution, respectively. As an evolutionarily conserved complex, PRC2 proteins from different species share compositional and functional similarities. Indeed, some fundamental aspects of human PRC2 catalysis and regulation, in particular the H3K27me3-mediated enzyme stimulation and the H3K27M-mediated enzyme inhibition, were faithfully recapitulated in our assays with the reconstituted minimal fungal PRC2, containing Ezh2, Eed, and the VEFS domain of Suz12 [Suz12(VEFS)], which was also used for crystallization. An S-adenosyl-l -homocysteine (SAH) cofactor and an inhibiting H3K27M cancer mutant peptide bound to the catalytic SET domain of Ezh2 were captured in the crystal structures of both basal and stimulated complexes. In addition, a stimulating H3K27me3 peptide bound to both Ezh2 and Eed was also resolved in the latter. Structural analysis and accompanying biochemical assays provided the following mechanistic insights into PRC2 catalysis and regulation. First, Ezh2, Eed, and Suz12(VEFS) associate intimately. The Eed subunit is engulfed by a belt-like structural feature of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer enzyme activity. Second, two separate regions of Ezh2, including the SET activation loop (SAL) and SET, are together required to form the active catalytic domain of PRC2. Eed and Suz12(VEFS) are structurally important in maintaining the positioning and local conformation of the SAL of Ezh2, which may explain, at least in part, the indispensable role of Eed and Suz12 in PRC2 catalysis. Third, the H3K27M cancer mutant inhibits PRC2 enzyme activity by a direct competition mechanism, with residue H3R26, in the context of the lysine-to-methionine mutation, occupying the lysine access channel of the active site and thus occluding substrate binding. Lastly, the flexible stimulation-responsive motif (SRM) of Ezh2 responds to H3K27me3-mediated enzyme stimulation by forming a sandwich-like assembly with the H3K27me3 peptide and Eed. The SRM exhibits a dramatic disorder-to-order conformational transition upon binding of this stimulating peptide. This initiates an allosterically regulated pathway that communicates with the active site. This work has resolved some long-standing questions regarding PRC2 structure and function and provides a structural framework for future functional studies. PRC2 is a representative of a distinct family of lysine methyltransferases. The unique structural arrangement of PRC2 revealed here underlies PRC2-mediated H3K27 trimethylation. The enzymatic activity of PRC2 is subject to complex regulation by a plethora of protein factors and noncoding RNAs in cells. Regulatory signals transmitted from discrete, distant surfaces of PRC2, such as that transferred by the SRM of Ezh2, are interpreted and integrated at the enzyme active site to generate distinct cellular outputs. The Ezh2, Eed, and Suz12(VEFS) subunits are shown as gray, light blue, and light brown surfaces, respectively, except for the SET activation loop (SAL), the stimulation-responsive motif (SRM), and the SET regions of Ezh2, which are highlighted as cartoons. The SAL is colored in green, SRM in pink, and SET in blue. Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site.
The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site. Science , this issue p. 10.1126/science.aac4383 ; see also p. 278 The structure of a gene silencing complex reveals how it self-activates and is inhibited by a cancer-associated chromatin mutation. [Also see Perspective by Schapira ] Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl- l -homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site.
A tripartite gene silencing complexThe formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site.Science, this issue p. 10.1126/science.aac4383; see also p. 278 Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site.
Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site. The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this silencing process is the polycomb repressive complex 2 (PRC2), which methylates histone H3 on lysine residue 27 (H3K27me). Jiao and Liu determined the x-ray crystal structure of a functional PRC2 complex from a thermophilic yeast species (see the Perspective by Schapira). The intimate association of the three subunits confers stability to PRC2. The structure also reveals how the reaction product, H3K27me, stimulates PRC2 allosterically and how a cancer-associated histone mutation blocks the PRC2 active site.
Author Jiao, Lianying
Liu, Xin
Author_xml – sequence: 1
  givenname: Lianying
  surname: Jiao
  fullname: Jiao, Lianying
– sequence: 2
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26472914$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUtFAR3RbOnECWuHBJ-_wRJ74gVRVQRCUOwImD5TgO61XWDrZTyL_Hyy4FegBOlv1m3puZ5xN05IO3CD0mcEYIFefJOOuNPdPacNaye2hFQNaVpMCO0AqAiaqFpj5GJyltAEpNsgfomAreUEn4Cn16n-Ns8hz1iDudXMJhwGuXcpmDr9hb2uAc3dbm9TLq7ILH3YK1x9pkd2PxFMbFhG2Ho52iTWn3Vu7TaL9h-hDdH_SY7KPDeYo-vnr54fKqun73-s3lxXVlaiFzZQgYM7Qd2F4L2bc1CElb0YlmgLa3NRGWaNETCrXtOW00aRkVjaW67zrRc3aKYN939pNevupxVFPRrOOiCKhdTuqQkzrkVCgv9pRp7ra2N9bnksAtLWin_qx4t1afw42qKQVCoDR4fmgQw5fZpqy2Lhk7jtrbMCdFJHDKRHHyb2hDqaScEVmgz-5AN2GOvoRXUMU0ASA7v09_F3-r-udWC-B8DzAxpBTt8B951HcYxuUf-y7u3fgX3pM9b1N-TPylhDdc8uLpO2EE1AI
CODEN SCIEAS
CitedBy_id crossref_primary_10_1002_tcr_201800034
crossref_primary_10_1016_j_sbi_2018_07_002
crossref_primary_10_1038_s41598_023_50964_x
crossref_primary_10_3389_fcell_2020_00600
crossref_primary_10_1021_acs_biochem_8b01064
crossref_primary_10_1155_2016_5653862
crossref_primary_10_1002_ange_201810007
crossref_primary_10_1021_acs_biochem_8b00894
crossref_primary_10_1186_s13072_022_00439_6
crossref_primary_10_1186_s43556_025_00254_x
crossref_primary_10_7554_eLife_62682
crossref_primary_10_1016_j_cellin_2024_100195
crossref_primary_10_1038_s41594_018_0023_y
crossref_primary_10_1038_s41388_021_01982_4
crossref_primary_10_1186_s13072_018_0242_9
crossref_primary_10_1038_s41594_019_0197_y
crossref_primary_10_1016_j_ab_2017_01_014
crossref_primary_10_1016_j_str_2019_01_016
crossref_primary_10_1080_15592294_2018_1475980
crossref_primary_10_1111_jcmm_15806
crossref_primary_10_1186_s13148_024_01666_2
crossref_primary_10_3389_fgene_2022_1058741
crossref_primary_10_1016_j_cbpa_2019_01_022
crossref_primary_10_1016_j_jmb_2016_11_019
crossref_primary_10_1016_j_molcel_2019_12_019
crossref_primary_10_1146_annurev_micro_102215_095757
crossref_primary_10_1073_pnas_2010003118
crossref_primary_10_3390_epigenomes3020012
crossref_primary_10_1038_s41598_018_37699_w
crossref_primary_10_1101_gad_309013_117
crossref_primary_10_1021_acs_biochem_5b01210
crossref_primary_10_1101_gad_311936_118
crossref_primary_10_1371_journal_pone_0169855
crossref_primary_10_1021_jacs_9b02321
crossref_primary_10_1038_ncomms11384
crossref_primary_10_1534_genetics_115_185116
crossref_primary_10_1016_j_molcel_2018_03_020
crossref_primary_10_1042_BST20200728
crossref_primary_10_1038_s41467_017_01897_3
crossref_primary_10_1101_gad_328773_119
crossref_primary_10_1038_s41419_021_03753_1
crossref_primary_10_1039_D1MD00274K
crossref_primary_10_1158_1541_7786_MCR_16_0389
crossref_primary_10_1021_acs_jmedchem_0c01344
crossref_primary_10_1038_s41416_019_0615_2
crossref_primary_10_3390_cells9020397
crossref_primary_10_1016_j_jpha_2022_11_009
crossref_primary_10_1093_nar_gkw723
crossref_primary_10_1016_j_molcel_2018_03_019
crossref_primary_10_1111_nyas_15033
crossref_primary_10_1016_j_chembiol_2019_11_006
crossref_primary_10_1016_j_blre_2022_100988
crossref_primary_10_1016_j_ejcb_2022_151238
crossref_primary_10_1016_j_ejmech_2022_114419
crossref_primary_10_1021_acs_jmedchem_7b01375
crossref_primary_10_1021_acscombsci_6b00174
crossref_primary_10_1016_j_gene_2017_07_069
crossref_primary_10_1093_nar_gkaa073
crossref_primary_10_1042_BST20210450
crossref_primary_10_3390_molecules24244492
crossref_primary_10_1093_nar_gkab844
crossref_primary_10_1007_s12672_021_00450_5
crossref_primary_10_1073_pnas_1522691113
crossref_primary_10_1186_s13072_020_00369_1
crossref_primary_10_1016_j_devcel_2018_05_023
crossref_primary_10_1038_s41580_021_00341_1
crossref_primary_10_1016_j_molcel_2022_07_008
crossref_primary_10_1016_j_cell_2017_08_002
crossref_primary_10_1371_journal_pone_0190245
crossref_primary_10_1126_science_adh0059
crossref_primary_10_1016_j_tcb_2019_05_004
crossref_primary_10_1038_s10038_019_0585_5
crossref_primary_10_1038_s41374_022_00741_7
crossref_primary_10_1007_s11060_020_03538_0
crossref_primary_10_1111_1462_2920_13427
crossref_primary_10_1016_j_ejmech_2019_111715
crossref_primary_10_1038_s41580_021_00398_y
crossref_primary_10_1021_acs_jmedchem_3c00504
crossref_primary_10_1021_acs_jmedchem_6b00855
crossref_primary_10_1042_BST20190255
crossref_primary_10_1038_s41576_020_00312_w
crossref_primary_10_1093_nar_gky1323
crossref_primary_10_3389_fonc_2023_1216289
crossref_primary_10_3390_cancers11050660
crossref_primary_10_3390_cells9122721
crossref_primary_10_1080_15592294_2020_1767372
crossref_primary_10_1016_j_molcel_2024_07_030
crossref_primary_10_1038_s41375_020_0816_y
crossref_primary_10_1002_cbic_201800744
crossref_primary_10_1016_j_tplants_2021_06_006
crossref_primary_10_1016_j_bbadis_2016_12_009
crossref_primary_10_1016_j_jbc_2023_103073
crossref_primary_10_1021_acs_jmedchem_0c02261
crossref_primary_10_4155_fmc_2022_0010
crossref_primary_10_1021_acs_chemrev_8b00008
crossref_primary_10_1038_s41467_019_09981_6
crossref_primary_10_1042_BST20160173
crossref_primary_10_3892_ijmm_2017_3115
crossref_primary_10_1093_nar_gkab304
crossref_primary_10_1371_journal_pone_0167744
crossref_primary_10_1002_anie_201810007
crossref_primary_10_1073_pnas_1620955114
crossref_primary_10_1126_science_abc3393
crossref_primary_10_1158_0008_5472_CAN_19_0428
crossref_primary_10_7717_peerj_18656
crossref_primary_10_1038_s41467_022_34431_1
crossref_primary_10_1016_j_ceb_2020_10_015
crossref_primary_10_1073_pnas_1605523113
crossref_primary_10_1016_j_drudis_2024_103986
crossref_primary_10_1038_nrc_2016_148
crossref_primary_10_1016_j_sbi_2020_10_017
crossref_primary_10_1126_science_aai8236
crossref_primary_10_1038_s41375_021_01494_w
crossref_primary_10_1038_s41573_020_00108_x
crossref_primary_10_1016_j_bbagrm_2019_01_002
crossref_primary_10_1186_s13046_019_1030_5
crossref_primary_10_3390_jof9121187
crossref_primary_10_1186_s40164_023_00405_2
crossref_primary_10_3390_ijms22020512
crossref_primary_10_1016_j_biopha_2024_116624
crossref_primary_10_1038_s41568_021_00357_x
crossref_primary_10_7554_eLife_36696
crossref_primary_10_1016_j_molcel_2024_08_025
crossref_primary_10_3390_genes11060638
crossref_primary_10_1038_s41594_025_01487_8
crossref_primary_10_1007_s00018_017_2596_8
crossref_primary_10_1038_srep33608
crossref_primary_10_1016_j_pharmthera_2019_107406
crossref_primary_10_1038_s41467_019_10404_9
crossref_primary_10_1074_jbc_R117_800367
crossref_primary_10_1142_S2737416524300013
crossref_primary_10_1182_blood_2019000578
crossref_primary_10_1042_BST20200238
crossref_primary_10_1111_cbdd_13702
crossref_primary_10_1016_j_pbi_2015_11_010
crossref_primary_10_1021_acs_chemrev_6b00801
crossref_primary_10_1126_sciadv_aau5935
crossref_primary_10_1016_j_devcel_2022_03_014
crossref_primary_10_18632_oncotarget_10321
crossref_primary_10_1039_C7MD00052A
crossref_primary_10_1038_s41556_018_0258_1
crossref_primary_10_1016_j_sbi_2021_06_012
crossref_primary_10_1021_acs_jmedchem_6b01473
crossref_primary_10_1016_j_isci_2021_102070
crossref_primary_10_1126_sciadv_adf2451
crossref_primary_10_1074_jbc_M117_787572
crossref_primary_10_1038_s41594_019_0290_2
crossref_primary_10_1038_aps_2017_7
crossref_primary_10_1016_j_tig_2017_01_006
crossref_primary_10_1021_acs_jmedchem_1c02148
crossref_primary_10_1021_acs_biochem_5b01191
crossref_primary_10_1101_cshperspect_a026666
crossref_primary_10_1038_s41586_019_1528_1
crossref_primary_10_1016_j_cbpa_2020_06_001
crossref_primary_10_1038_s41467_018_04455_7
crossref_primary_10_1158_2159_8290_CD_16_0800
crossref_primary_10_1016_j_phrs_2021_105865
crossref_primary_10_1016_j_tig_2021_06_003
crossref_primary_10_1126_science_aai8266
crossref_primary_10_1038_s41580_022_00518_2
crossref_primary_10_7554_eLife_31558
crossref_primary_10_1186_s13148_021_01057_x
crossref_primary_10_1016_j_molcel_2017_02_003
crossref_primary_10_1016_j_molcel_2016_04_013
crossref_primary_10_1080_17568919_2024_2380243
crossref_primary_10_1016_j_tig_2020_12_006
crossref_primary_10_1007_s41048_018_0063_1
crossref_primary_10_1038_s41467_020_19722_9
crossref_primary_10_2139_ssrn_3188494
crossref_primary_10_1016_j_molcel_2018_01_039
crossref_primary_10_1016_j_canlet_2023_216143
crossref_primary_10_1038_s41467_019_09140_x
crossref_primary_10_1073_pnas_1819029116
crossref_primary_10_1111_iju_13404
crossref_primary_10_1038_s41594_024_01452_x
crossref_primary_10_7554_eLife_17903
crossref_primary_10_3389_fgene_2022_873398
crossref_primary_10_1021_acs_jmedchem_6b01576
crossref_primary_10_3390_genes13122382
crossref_primary_10_1016_j_ejmech_2022_114144
crossref_primary_10_1016_j_lfs_2021_120047
crossref_primary_10_1038_s41401_019_0247_3
crossref_primary_10_3390_ijms23179574
crossref_primary_10_7554_eLife_18591
crossref_primary_10_1098_rsob_230271
crossref_primary_10_1371_journal_pgen_1010945
crossref_primary_10_1038_s41598_018_27175_w
crossref_primary_10_1038_ncomms11316
crossref_primary_10_1242_dev_196329
crossref_primary_10_1080_14728222_2019_1696309
crossref_primary_10_1080_15592294_2017_1377870
crossref_primary_10_1080_15476286_2019_1565283
crossref_primary_10_1016_j_ejmech_2025_117463
crossref_primary_10_1021_acssynbio_1c00394
crossref_primary_10_1093_nar_gkab441
crossref_primary_10_1016_j_molcel_2019_03_011
crossref_primary_10_1002_cbdv_202500198
crossref_primary_10_1038_s42003_022_04264_1
crossref_primary_10_1016_j_phrs_2017_10_013
crossref_primary_10_1016_j_gde_2016_03_013
crossref_primary_10_2147_OTT_S417190
crossref_primary_10_1016_j_gde_2016_03_012
crossref_primary_10_1126_sciadv_adl4529
crossref_primary_10_1126_science_aar5700
crossref_primary_10_1021_acs_jmedchem_2c02028
crossref_primary_10_1093_nar_gkaa1262
crossref_primary_10_7554_eLife_61964
crossref_primary_10_1038_nm_4092
crossref_primary_10_1002_pro_3535
crossref_primary_10_3390_cancers17030437
crossref_primary_10_1016_j_ctarc_2017_06_003
crossref_primary_10_1016_j_molcel_2018_08_010
crossref_primary_10_3390_epigenomes6010003
crossref_primary_10_1038_s41594_018_0036_6
crossref_primary_10_1093_genetics_iyae041
crossref_primary_10_1038_nchembio_2304
crossref_primary_10_15252_embj_201593377
crossref_primary_10_1016_j_tibs_2017_04_003
crossref_primary_10_1038_nchembio_2306
crossref_primary_10_1167_iovs_19_27556
crossref_primary_10_1002_ajmg_c_31748
crossref_primary_10_1080_15592294_2018_1503491
crossref_primary_10_1016_j_molcel_2016_05_004
crossref_primary_10_1002_pro_3085
crossref_primary_10_3389_fimmu_2024_1467774
crossref_primary_10_1042_BST20200660
crossref_primary_10_1134_S1022795421030042
crossref_primary_10_3390_biomedicines6030085
crossref_primary_10_1002_pro_3647
crossref_primary_10_1038_s41598_019_43005_z
crossref_primary_10_1126_science_aaj2335
crossref_primary_10_1126_science_aaf6236
crossref_primary_10_1177_17588359241306026
crossref_primary_10_1016_j_sbi_2016_01_013
crossref_primary_10_3389_fcell_2022_1026406
crossref_primary_10_1038_onc_2017_309
crossref_primary_10_1073_pnas_1615546113
crossref_primary_10_1080_15476286_2020_1790140
crossref_primary_10_3390_ijms19123707
crossref_primary_10_3389_fonc_2022_894585
crossref_primary_10_1111_cpr_13413
crossref_primary_10_1002_ajmg_c_31754
crossref_primary_10_1016_j_tibs_2018_04_009
crossref_primary_10_1111_jcmm_13142
crossref_primary_10_1242_dev_202169
crossref_primary_10_1101_gad_279141_116
crossref_primary_10_1128_microbiolspec_FUNK_0054_2017
crossref_primary_10_3389_fimmu_2021_724276
crossref_primary_10_3389_fonc_2021_739830
crossref_primary_10_1016_j_bbagrm_2022_194851
crossref_primary_10_1016_j_devcel_2018_11_047
crossref_primary_10_3390_genes14040938
crossref_primary_10_7554_eLife_17667
crossref_primary_10_1038_s41467_021_21130_6
crossref_primary_10_1089_dna_2020_6138
crossref_primary_10_1038_s41556_019_0403_5
crossref_primary_10_1186_s12860_022_00451_4
crossref_primary_10_1038_aps_2017_59
crossref_primary_10_1016_j_sbi_2018_03_007
crossref_primary_10_1021_acs_jmedchem_1c00226
crossref_primary_10_1007_s10555_024_10167_w
crossref_primary_10_1016_j_cbpa_2018_03_003
crossref_primary_10_1016_j_biopha_2023_115897
crossref_primary_10_1016_j_rpor_2020_04_010
crossref_primary_10_1016_j_pbi_2016_08_002
crossref_primary_10_1016_j_molcel_2019_07_031
crossref_primary_10_3389_fcell_2022_1010601
crossref_primary_10_1016_j_bbagrm_2022_194840
crossref_primary_10_1021_acs_biochem_5b01129
crossref_primary_10_1073_pnas_1914866117
crossref_primary_10_1016_j_bbapap_2017_06_018
crossref_primary_10_1021_acs_jmedchem_3c02053
crossref_primary_10_1038_nsmb_3488
crossref_primary_10_1101_cshperspect_a026575
crossref_primary_10_1093_narcan_zcab039
crossref_primary_10_1038_nsmb_3487
crossref_primary_10_1021_acs_biochem_1c00603
crossref_primary_10_1126_science_aad5203
crossref_primary_10_1021_acschembio_6b00366
crossref_primary_10_1038_ncomms13661
crossref_primary_10_1002_bies_201600150
crossref_primary_10_3389_fgene_2022_1011228
crossref_primary_10_1007_s11515_016_1399_x
Cites_doi 10.1016/j.ajhg.2011.11.018
10.1038/nature08398
10.1016/j.str.2007.08.007
10.1002/jcc.20084
10.1107/S0907444910045749
10.1016/j.molcel.2013.10.030
10.1074/jbc.M513425200
10.1128/MCB.00307-13
10.7554/eLife.00005
10.1038/ng.621
10.1016/S1097-2765(04)00185-6
10.1038/nrm1314
10.1126/science.1118947
10.1056/NEJMoa1013343
10.1371/journal.pone.0083737
10.1016/j.cell.2011.06.039
10.1016/j.tibs.2010.04.003
10.1093/nar/22.22.4673
10.1038/nm.2651
10.1016/j.sbi.2003.10.003
10.1016/S0076-6879(97)76066-X
10.1016/j.gde.2004.02.001
10.1038/nrg3603
10.1107/S0907444909052925
10.1038/ncb1787
10.1016/j.mrfmmm.2008.07.010
10.1038/nrm2763
10.1038/nsmb.2669
10.1021/ja307060p
10.1073/pnas.1008937107
10.1016/j.molcel.2014.12.020
10.1038/ng.620
10.1126/science.1225237
10.1073/pnas.1116418109
10.1107/S0907444996012255
10.1101/gad.1983810
10.1107/S0021889807021206
10.1371/journal.pone.0084147
10.1016/j.molcel.2011.03.025
10.1182/blood-2011-07-367243
10.1038/nature09784
10.1107/S0907444904019158
10.1016/j.ceb.2012.01.008
10.1126/science.1232245
ContentType Journal Article
Copyright Copyright © 2015 American Association for the Advancement of Science
Copyright © 2015, American Association for the Advancement of Science.
Copyright © 2015, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2015 American Association for the Advancement of Science
– notice: Copyright © 2015, American Association for the Advancement of Science.
– notice: Copyright © 2015, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1126/science.aac4383
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
CrossRef
Solid State and Superconductivity Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 291
ExternalDocumentID oai:pubmedcentral.nih.gov:5220110
PMC5220110
3863653821
26472914
10_1126_science_aac4383
24749424
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM114576
– fundername: NIGMS NIH HHS
  grantid: GM114576
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
.GJ
.GO
.HR
0-V
186
3EH
4.4
41~
42X
4R4
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
ABDPE
ABJCF
ABUWG
ACQAM
ACTDY
ADBBV
ADTOC
ADZCM
AEUYN
AFCHL
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQEDU
PQGLB
PROAC
PSQYO
PTHSS
PV9
PYCSY
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UKHRP
UNPAY
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
ZCG
ZGI
ZVL
ZVM
ZXP
ZY4
~H1
ID FETCH-LOGICAL-c569t-c10ccf8b0eda69d85069286b67f08de516e1a6d1205ed427a183267e2adbb6d43
IEDL.DBID UNPAY
ISSN 0036-8075
1095-9203
IngestDate Wed Aug 20 00:14:43 EDT 2025
Tue Sep 30 16:50:50 EDT 2025
Fri Sep 05 03:18:24 EDT 2025
Wed Oct 01 14:40:57 EDT 2025
Fri Jul 25 09:43:40 EDT 2025
Mon Jul 21 05:55:08 EDT 2025
Wed Oct 01 01:06:10 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Thu Jul 03 22:32:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6258
Language English
License http://www.sciencemag.org/about/science-licenses-journal-article-reuse
Copyright © 2015, American Association for the Advancement of Science.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-c10ccf8b0eda69d85069286b67f08de516e1a6d1205ed427a183267e2adbb6d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5220110
PMID 26472914
PQID 1732610014
PQPubID 1256
PageCount 1
ParticipantIDs unpaywall_primary_10_1126_science_aac4383
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5220110
proquest_miscellaneous_1904236692
proquest_miscellaneous_1722924319
proquest_journals_1732610014
pubmed_primary_26472914
crossref_primary_10_1126_science_aac4383
crossref_citationtrail_10_1126_science_aac4383
jstor_primary_24749424
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-16
PublicationDateYYYYMMDD 2015-10-16
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2015
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
24096405 - Nat Struct Mol Biol. 2013 Oct;20(10):1147-55
14675547 - Curr Opin Struct Biol. 2003 Dec;13(6):699-705
20601953 - Nat Genet. 2010 Aug;42(8):722-6
21549310 - Mol Cell. 2011 May 6;42(3):330-41
22323599 - Proc Natl Acad Sci U S A. 2012 Feb 21;109 (8):2989-94
22053108 - Blood. 2012 Feb 2;119(5):1208-13
22237151 - Nat Med. 2012 Feb 06;18(2):298-301
15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
15040448 - Nat Rev Mol Cell Biol. 2004 Feb;5(2):158-63
21248841 - Nature. 2011 Jan 20;469(7330):343-9
19767730 - Nature. 2009 Oct 8;461(7265):762-7
15099518 - Mol Cell. 2004 Apr 23;14 (2):183-93
20974918 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19266-71
16224021 - Science. 2005 Oct 14;310(5746):306-10
19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
23539183 - Science. 2013 May 17;340(6134):857-61
21784248 - Cell. 2011 Jul 22;146(2):277-89
23043551 - J Am Chem Soc. 2012 Oct 31;134(43):18004-14
15196462 - Curr Opin Genet Dev. 2004 Apr;14 (2):155-64
18931660 - Nat Cell Biol. 2008 Nov;10 (11):1291-300
16431907 - J Biol Chem. 2006 Mar 31;281(13):8365-70
24217316 - Nat Rev Genet. 2013 Dec;14(12):853-64
18723033 - Mutat Res. 2008 Dec 1;647(1-2):21-9
24100017 - Mol Cell Biol. 2013 Dec;33(24):4844-56
26472895 - Science. 2015 Oct 16;350(6258):278-9
15299926 - Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55
23110252 - Elife. 2012 Oct 30;1:e00005
15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
17937919 - Structure. 2007 Oct;15(10 ):1306-15
22923582 - Science. 2012 Aug 24;337(6097):971-5
20451393 - Trends Biochem Sci. 2010 Oct;35(10):565-74
19738629 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708
27754618 - Methods Enzymol. 1997;276:307-26
21123648 - Genes Dev. 2010 Dec 1;24(23 ):2615-20
20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
22336329 - Curr Opin Cell Biol. 2012 Jun;24(3):405-14
21714648 - N Engl J Med. 2011 Jun 30;364(26):2496-506
24367637 - PLoS One. 2013 Dec 19;8(12 ):e84147
21460441 - Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42
20601954 - Nat Genet. 2010 Aug;42(8):665-7
28008037 - Science. 2016 Dec 23;354(6319):1543
24367611 - PLoS One. 2013 Dec 19;8(12 ):e83737
25620564 - Mol Cell. 2015 Mar 5;57(5):769-83
24289921 - Mol Cell. 2014 Jan 9;53(1):49-62
22177091 - Am J Hum Genet. 2012 Jan 13;90(1):110-8
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
References_xml – ident: e_1_3_2_22_2
  doi: 10.1016/j.ajhg.2011.11.018
– ident: e_1_3_2_11_2
  doi: 10.1038/nature08398
– ident: e_1_3_2_15_2
  doi: 10.1016/j.str.2007.08.007
– ident: e_1_3_2_47_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_2_43_2
– ident: e_1_3_2_39_2
  doi: 10.1107/S0907444910045749
– ident: e_1_3_2_9_2
  doi: 10.1016/j.molcel.2013.10.030
– ident: e_1_3_2_37_2
  doi: 10.1074/jbc.M513425200
– ident: e_1_3_2_30_2
  doi: 10.1128/MCB.00307-13
– ident: e_1_3_2_14_2
  doi: 10.7554/eLife.00005
– ident: e_1_3_2_20_2
  doi: 10.1038/ng.621
– ident: e_1_3_2_36_2
  doi: 10.1016/S1097-2765(04)00185-6
– ident: e_1_3_2_26_2
  doi: 10.1038/nrm1314
– ident: e_1_3_2_27_2
  doi: 10.1126/science.1118947
– ident: e_1_3_2_34_2
  doi: 10.1056/NEJMoa1013343
– ident: e_1_3_2_16_2
  doi: 10.1371/journal.pone.0083737
– ident: e_1_3_2_24_2
  doi: 10.1016/j.cell.2011.06.039
– ident: e_1_3_2_25_2
  doi: 10.1016/j.tibs.2010.04.003
– ident: e_1_3_2_46_2
  doi: 10.1093/nar/22.22.4673
– ident: e_1_3_2_28_2
  doi: 10.1038/nm.2651
– ident: e_1_3_2_32_2
  doi: 10.1016/j.sbi.2003.10.003
– ident: e_1_3_2_38_2
  doi: 10.1016/S0076-6879(97)76066-X
– ident: e_1_3_2_45_2
– ident: e_1_3_2_2_2
  doi: 10.1016/j.gde.2004.02.001
– ident: e_1_3_2_7_2
  doi: 10.1038/nrg3603
– ident: e_1_3_2_40_2
  doi: 10.1107/S0907444909052925
– ident: e_1_3_2_10_2
  doi: 10.1038/ncb1787
– ident: e_1_3_2_19_2
  doi: 10.1016/j.mrfmmm.2008.07.010
– ident: e_1_3_2_3_2
  doi: 10.1038/nrm2763
– ident: e_1_3_2_6_2
  doi: 10.1038/nsmb.2669
– ident: e_1_3_2_33_2
  doi: 10.1021/ja307060p
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.1008937107
– ident: e_1_3_2_13_2
  doi: 10.1016/j.molcel.2014.12.020
– ident: e_1_3_2_21_2
  doi: 10.1038/ng.620
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1225237
– ident: e_1_3_2_35_2
  doi: 10.1073/pnas.1116418109
– ident: e_1_3_2_42_2
  doi: 10.1107/S0907444996012255
– ident: e_1_3_2_31_2
  doi: 10.1101/gad.1983810
– ident: e_1_3_2_44_2
  doi: 10.1107/S0021889807021206
– ident: e_1_3_2_17_2
  doi: 10.1371/journal.pone.0084147
– ident: e_1_3_2_18_2
  doi: 10.1016/j.molcel.2011.03.025
– ident: e_1_3_2_29_2
  doi: 10.1182/blood-2011-07-367243
– ident: e_1_3_2_4_2
  doi: 10.1038/nature09784
– ident: e_1_3_2_41_2
  doi: 10.1107/S0907444904019158
– ident: e_1_3_2_5_2
  doi: 10.1016/j.ceb.2012.01.008
– ident: e_1_3_2_23_2
  doi: 10.1126/science.1232245
– reference: 25620564 - Mol Cell. 2015 Mar 5;57(5):769-83
– reference: 18931660 - Nat Cell Biol. 2008 Nov;10 (11):1291-300
– reference: 23110252 - Elife. 2012 Oct 30;1:e00005
– reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
– reference: 15299926 - Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55
– reference: 20451393 - Trends Biochem Sci. 2010 Oct;35(10):565-74
– reference: 20601954 - Nat Genet. 2010 Aug;42(8):665-7
– reference: 24289921 - Mol Cell. 2014 Jan 9;53(1):49-62
– reference: 24367611 - PLoS One. 2013 Dec 19;8(12 ):e83737
– reference: 22923582 - Science. 2012 Aug 24;337(6097):971-5
– reference: 16224021 - Science. 2005 Oct 14;310(5746):306-10
– reference: 22237151 - Nat Med. 2012 Feb 06;18(2):298-301
– reference: 22336329 - Curr Opin Cell Biol. 2012 Jun;24(3):405-14
– reference: 17937919 - Structure. 2007 Oct;15(10 ):1306-15
– reference: 21549310 - Mol Cell. 2011 May 6;42(3):330-41
– reference: 21248841 - Nature. 2011 Jan 20;469(7330):343-9
– reference: 15099518 - Mol Cell. 2004 Apr 23;14 (2):183-93
– reference: 15040448 - Nat Rev Mol Cell Biol. 2004 Feb;5(2):158-63
– reference: 21460441 - Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42
– reference: 24100017 - Mol Cell Biol. 2013 Dec;33(24):4844-56
– reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
– reference: 21784248 - Cell. 2011 Jul 22;146(2):277-89
– reference: 22177091 - Am J Hum Genet. 2012 Jan 13;90(1):110-8
– reference: 19738629 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708
– reference: 18723033 - Mutat Res. 2008 Dec 1;647(1-2):21-9
– reference: 26472895 - Science. 2015 Oct 16;350(6258):278-9
– reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
– reference: 23043551 - J Am Chem Soc. 2012 Oct 31;134(43):18004-14
– reference: 21123648 - Genes Dev. 2010 Dec 1;24(23 ):2615-20
– reference: 20601953 - Nat Genet. 2010 Aug;42(8):722-6
– reference: 14675547 - Curr Opin Struct Biol. 2003 Dec;13(6):699-705
– reference: 16431907 - J Biol Chem. 2006 Mar 31;281(13):8365-70
– reference: 24096405 - Nat Struct Mol Biol. 2013 Oct;20(10):1147-55
– reference: 23539183 - Science. 2013 May 17;340(6134):857-61
– reference: 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
– reference: 19461840 - J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
– reference: 24217316 - Nat Rev Genet. 2013 Dec;14(12):853-64
– reference: 24367637 - PLoS One. 2013 Dec 19;8(12 ):e84147
– reference: 19767730 - Nature. 2009 Oct 8;461(7265):762-7
– reference: 21714648 - N Engl J Med. 2011 Jun 30;364(26):2496-506
– reference: 20974918 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19266-71
– reference: 28008037 - Science. 2016 Dec 23;354(6319):1543
– reference: 22053108 - Blood. 2012 Feb 2;119(5):1208-13
– reference: 15196462 - Curr Opin Genet Dev. 2004 Apr;14 (2):155-64
– reference: 27754618 - Methods Enzymol. 1997;276:307-26
– reference: 22323599 - Proc Natl Acad Sci U S A. 2012 Feb 21;109 (8):2989-94
SSID ssj0009593
Score 2.6151028
Snippet The formation of specialized cell types during development involves the silencing of genes not required in those cell types. An important player in this...
Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of...
A tripartite gene silencing complexThe formation of specialized cell types during development involves the silencing of genes not required in those cell types....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 291
SubjectTerms Allosteric Regulation
Amino Acid Sequence
Cancer
Catalysis
Catalytic Domain
Chaetomium - genetics
Chaetomium - metabolism
Contact
Crystal structure
Crystallization
Crystallography, X-Ray
Enzymatic activity
Feedback (Response)
Fungal Proteins - antagonists & inhibitors
Fungal Proteins - chemistry
Fungal Proteins - metabolism
Gene Silencing
Genes
Histones
Histones - metabolism
Humans
Jumonji Domain-Containing Histone Demethylases - metabolism
Literary Devices
Lysine
Methylation
Molecular Sequence Data
Mutation
Neoplasms - genetics
Peptides
Polycomb Repressive Complex 2 - antagonists & inhibitors
Polycomb Repressive Complex 2 - chemistry
Polycomb Repressive Complex 2 - metabolism
Protein Structure, Tertiary
RESEARCH ARTICLE SUMMARY
S-Adenosylhomocysteine - chemistry
S-Adenosylhomocysteine - metabolism
Stimulation
Structural analysis
Structural Analysis (Linguistics)
Structural Analysis (Science)
Transcription, Genetic
Yeast
Yeasts
Title Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2
URI https://www.jstor.org/stable/24749424
https://www.ncbi.nlm.nih.gov/pubmed/26472914
https://www.proquest.com/docview/1732610014
https://www.proquest.com/docview/1722924319
https://www.proquest.com/docview/1904236692
https://pubmed.ncbi.nlm.nih.gov/PMC5220110
https://www.ncbi.nlm.nih.gov/pmc/articles/5220110
UnpaywallVersion submittedVersion
Volume 350
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1095-9203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009593
  issn: 1095-9203
  databaseCode: ABDBF
  dateStart: 19900105
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Pb9MwFMefRivELowNxsLGZCQO2yGZ4zhOcuwGVQViQkClIQ6R7ThaRZZWtBWUv36244R1_NKu9Wsa11_bz8o3nwfwMjZnDJxxX6QZ9qlkpS84VX7EScFLrZoG9vzunI3G9M1FfLEBYfsujDXtSzEJ6uoqqCeX1ls5u5InrU_sRCcMZs-6B31mnin1oD8-fz_4fAuuG2JTg5DgyOF8brwoE3AuDaBzbSdqzIh_SjN_d0s-WNYzvvrOq-rGVjTcgg9tJxoHytdguRCB_HmL73inXj6Chy4xRYOmaRs2VL0D95tSlasd2HaLwBwdOVL18WP48tHSZw25A-ntcDJH0xJZgnGt0Ch6SxK0MOUDtBgayx0SK8RrxO0ii2bTaqUFL9A3Z8fVn1mLu_qByBMYD19_Ohv5rlqDL2OWLXwZYinLVGBVcJYVhoSXkZQJlpQ4LVQcMhVyVoQEx6qgJOFmMWGJIrwQghU02oVerW9vDxBPdCIZYo4TVlJ9KcGUSouUyjJSURYpD4J25HLpUOamokaV2yMNYbkb6twNtQdH3RdmDcXj76G7VgpdHKEJzSihHhy02sjdPJ_nYaL7YDBWuvlF16xnqHnswms1XZoYQvQpV691_4jJjD-J6X_Mg6eN3H7dgCH8Z-YXkjUhdgGGEL7eoiVlSeFORR4cd5L9X_-f3SF2Hzb19S3JNmQH0NOaU891jrYQh9AfnL46HR662XkNOIFABg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Pb9MwFMefRicEF2CDQWAgI3HYDskcx3GS44SYKhATAioNcYhsx9EqsrSiraD89Tw7TljHL-1av6Zx_bX9rHzzeQAvUnvGoIUMVV7QkGtRh0pyEyaSVbJG1XSw57enYjzhr8_Ssy2I-3dhnGlfq2nUNhdROz133sr5hT7qfWJHmDDYPesGbAv7TGkE25PTd8efrsB1Y2prEDKaeJzPpRdlIim1BXRu7ESdGfFPaebvbslbq3Yu199k01zaik7uwvu-E50D5Uu0WqpI_7jCd7xWL-_BHZ-YkuOuaQe2TLsLN7tSletd2PGLwIIceFL14X34_MHRZy25g-B2OF2QWU0cwbg1ZJy8YRlZ2vIBKIbOckfUmsiWSLfIkvmsWaPgFfnq7bj4mbO4m--EPYDJyauPL8ehr9YQ6lQUy1DHVOs6V9RUUhSVJeEVLBdKZDXNK5PGwsRSVDGjqak4y6RdTERmmKyUEhVP9mDU4u09AiIzTCRjKmkmao6XUsKYvMq5rhOTFIkJIOpHrtQeZW4rajSlO9IwUfqhLv1QB3AwfGHeUTz-HrrnpDDEMZ7xgjMewH6vjdLP80UZZ9gHi7HC5udDM85Q-9hFtma2sjGM4SkX17p_xBTWnyTwHwvgYSe3XzdgCf-F_YVsQ4hDgCWEb7agpBwp3KsogMNBsv_r_-NrxD6B23h9R7KNxT6MUHPmKeZoS_XMz8qfQMI-lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+of+histone+H3K27+trimethylation+by+an+active+polycomb+repressive+complex+2&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Jiao%2C+Lianying&rft.au=Liu%2C+Xin&rft.date=2015-10-16&rft.eissn=1095-9203&rft.volume=350&rft.issue=6258&rft.spage=aac4383&rft_id=info:doi/10.1126%2Fscience.aac4383&rft_id=info%3Apmid%2F26472914&rft.externalDocID=26472914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon