Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility
Summary Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). I...
Saved in:
Published in | Molecular microbiology Vol. 52; no. 2; pp. 357 - 369 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.04.2004
Blackwell Science Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0950-382X 1365-2958 1365-2958 |
DOI | 10.1111/j.1365-2958.2004.03996.x |
Cover
Abstract | Summary
Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini‐Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped‐strand mispairing during DNA replication and that swarming motility is subject to phase variation. |
---|---|
AbstractList | Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini-Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped-strand mispairing during DNA replication and that swarming motility is subject to phase variation.Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini-Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped-strand mispairing during DNA replication and that swarming motility is subject to phase variation. Summary Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini‐Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped‐strand mispairing during DNA replication and that swarming motility is subject to phase variation. Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini-Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped-strand mispairing during DNA replication and that swarming motility is subject to phase variation. Undomesticated strains of Bacillus subtilis , but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene ( sfp ) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini‐Tn 10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which ( swrA , swrB , and efp ) had not been previously characterized and one of which ( swrC ) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp , laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped‐strand mispairing during DNA replication and that swarming motility is subject to phase variation. |
Author | Kearns, Daniel B. Losick, Richard Rudner, Rivka Chu, Frances |
Author_xml | – sequence: 1 givenname: Daniel B. surname: Kearns fullname: Kearns, Daniel B. – sequence: 2 givenname: Frances surname: Chu fullname: Chu, Frances – sequence: 3 givenname: Rivka surname: Rudner fullname: Rudner, Rivka – sequence: 4 givenname: Richard surname: Losick fullname: Losick, Richard |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15660227$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15066026$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkUFv1DAQhS1URLeFv4AsJLgl2PHaiQ8gQQWlUisuIHGzHHvSeuXYi53sdv89ye4KUC8UXzySv_fG8-YMnYQYACFMSUmn83ZVUiZ4UUnelBUhy5IwKUV5_wQtfj-coAWRnBSsqX6corOcV4RQRgR7hk4pJ0KQSizQ9hICZHwbN5CCC7c4b3Xq58IF_FEb5_2YcR7bwXmXsQ4Ww8ZZCAZwFxPWeH2nM-CNTk4PLgbcg7nTweUemxiGFL3f246p05Omj7PRsHuOnnbaZ3hxvM_R98-fvl18Ka6_Xl5dfLguDBdSFN00WG1bRhsmTLO0jVlaa6hpW14bqMEaYpqu5RoqyiypaCOAWgJcUr2UbcvOkTz4jmGtd1vtvVon1-u0U5SoOUy1UnNmas5MzWGqfZjqftK-OWjXKf4cIQ-qd9mA9zpAHLOqaUNYTfk_QVpLzupKTOCrB-AqjilMASgqBaeU83qCXh6hse3B_vnvcWkT8PoI6Gy075IOxuW_uBmrZqPmwJkUc07Q_c_o7x9IjRv2-x2Sdv4xBu8OBlvnYffoxurm5mqu2C9tRuCy |
CitedBy_id | crossref_primary_10_1128_JB_187_19_6659_6667_2005 crossref_primary_10_1016_j_mib_2006_02_001 crossref_primary_10_1099_mic_0_000413 crossref_primary_10_1128_msystems_00057_21 crossref_primary_10_1128_JB_00213_16 crossref_primary_10_1007_s10482_008_9267_6 crossref_primary_10_1371_journal_pcbi_1005987 crossref_primary_10_1371_journal_pgen_1000760 crossref_primary_10_1099_mic_0_000658 crossref_primary_10_1111_mmi_13612 crossref_primary_10_1093_femsml_uqae029 crossref_primary_10_1186_1471_2164_11_243 crossref_primary_10_1099_mic_0_2007_007310_0 crossref_primary_10_1073_pnas_1811722116 crossref_primary_10_1016_j_cub_2020_01_087 crossref_primary_10_1038_s41598_020_76017_1 crossref_primary_10_1074_jbc_M115_712091 crossref_primary_10_1111_j_1365_2958_2005_05019_x crossref_primary_10_1128_AEM_01981_20 crossref_primary_10_1128_JB_00340_17 crossref_primary_10_3389_fmicb_2016_01868 crossref_primary_10_1128_JB_188_8_3099_3109_2006 crossref_primary_10_1111_j_1365_2958_2008_06501_x crossref_primary_10_1016_j_jbc_2022_102045 crossref_primary_10_3923_ajppaj_2020_27_35 crossref_primary_10_1103_PhysRevE_98_012408 crossref_primary_10_3390_biom11101468 crossref_primary_10_1128_JB_00157_07 crossref_primary_10_1128_AEM_00512_19 crossref_primary_10_1016_j_jmb_2023_168419 crossref_primary_10_1039_b812146j crossref_primary_10_1111_j_1365_2958_2007_05923_x crossref_primary_10_1128_mBio_00723_17 crossref_primary_10_1371_journal_pone_0079488 crossref_primary_10_15252_msb_202110302 crossref_primary_10_1016_j_bbrc_2015_03_152 crossref_primary_10_1111_j_1574_6976_2008_00150_x crossref_primary_10_3390_microorganisms9030633 crossref_primary_10_1111_j_1365_2958_2011_07732_x crossref_primary_10_1073_pnas_1205586109 crossref_primary_10_1099_mic_0_021477_0 crossref_primary_10_1128_AEM_00327_19 crossref_primary_10_1016_j_fm_2019_02_015 crossref_primary_10_1101_gad_1373905 crossref_primary_10_1128_AEM_00690_07 crossref_primary_10_7554_eLife_46735 crossref_primary_10_3389_fmicb_2016_00315 crossref_primary_10_1016_j_resmic_2021_103877 crossref_primary_10_1007_s00253_014_6316_0 crossref_primary_10_1080_15476286_2020_1795408 crossref_primary_10_1126_scisignal_aaw8905 crossref_primary_10_1111_1462_2920_14997 crossref_primary_10_1186_1471_2180_11_111 crossref_primary_10_3389_fmicb_2016_01025 crossref_primary_10_1128_JB_00014_18 crossref_primary_10_1371_journal_pone_0085065 crossref_primary_10_3389_fmicb_2019_02594 crossref_primary_10_1111_j_1574_6968_2005_00038_x crossref_primary_10_1111_j_1365_2958_2008_06201_x crossref_primary_10_1128_genomeA_00364_17 crossref_primary_10_1128_AEM_00585_17 crossref_primary_10_3389_fmicb_2016_01811 crossref_primary_10_1016_j_biocontrol_2016_03_011 crossref_primary_10_7554_eLife_90726 crossref_primary_10_1016_j_cropro_2014_02_013 crossref_primary_10_1371_journal_pone_0098267 crossref_primary_10_1103_PhysRevE_86_011920 crossref_primary_10_1111_1462_2920_12271 crossref_primary_10_3390_cimb44020034 crossref_primary_10_1128_JB_00747_19 crossref_primary_10_1371_journal_pgen_1005443 crossref_primary_10_1111_mmi_13760 crossref_primary_10_1128_JB_00660_09 crossref_primary_10_1128_JB_00905_09 crossref_primary_10_1093_femsec_fiaa142 crossref_primary_10_1016_j_resmic_2008_11_002 crossref_primary_10_1128_mBio_02102_16 crossref_primary_10_1111_1574_6976_12083 crossref_primary_10_1093_nar_gkr1078 crossref_primary_10_1002_mbo3_398 crossref_primary_10_1128_mBio_00306_18 crossref_primary_10_1111_j_1365_2958_2005_04587_x crossref_primary_10_1128_JB_00455_08 crossref_primary_10_1186_1471_2180_6_31 crossref_primary_10_1186_1471_2148_8_233 crossref_primary_10_1126_sciadv_adq0791 crossref_primary_10_1128_mSphere_00376_21 crossref_primary_10_3389_fmicb_2021_625705 crossref_primary_10_1128_JB_00521_09 crossref_primary_10_1111_1462_2920_15087 crossref_primary_10_1146_annurev_genet_120213_092406 crossref_primary_10_1146_annurev_genet_40_110405_090442 crossref_primary_10_1371_journal_pone_0104651 crossref_primary_10_1007_s10295_014_1527_z crossref_primary_10_1038_npjbiofilms_2015_27 crossref_primary_10_1016_j_jbiosc_2015_06_011 crossref_primary_10_1111_j_1365_2958_2006_05059_x crossref_primary_10_1016_j_fmrre_2004_12_008 crossref_primary_10_1111_j_1462_2920_2012_02860_x crossref_primary_10_1264_jsme2_20_120 crossref_primary_10_1073_pnas_2314437121 crossref_primary_10_1126_sciadv_abn8152 crossref_primary_10_1038_s41564_023_01518_4 crossref_primary_10_1128_JB_01170_10 crossref_primary_10_3389_fmicb_2015_01017 crossref_primary_10_1128_AEM_00561_17 crossref_primary_10_1128_JB_00227_21 crossref_primary_10_1074_jbc_X114_634808 crossref_primary_10_1111_j_1365_2958_2004_04381_x crossref_primary_10_1128_JB_01542_10 crossref_primary_10_1128_JB_187_4_1357_1368_2005 crossref_primary_10_1093_ismejo_wrae199 crossref_primary_10_1016_j_biortech_2025_132433 crossref_primary_10_1128_jb_00089_22 crossref_primary_10_1016_j_isci_2023_106043 crossref_primary_10_1111_j_1365_2958_2005_04746_x crossref_primary_10_1128_JB_187_15_5356_5366_2005 crossref_primary_10_1128_jb_00370_22 crossref_primary_10_1128_JB_01531_08 crossref_primary_10_1146_annurev_micro_091213_112852 crossref_primary_10_1074_jbc_M111_309633 crossref_primary_10_1111_j_1365_2958_2011_07917_x crossref_primary_10_1093_nar_gkaa266 crossref_primary_10_1099_mic_0_047159_0 crossref_primary_10_1007_s11274_008_9723_5 crossref_primary_10_3390_biology11010137 crossref_primary_10_1093_jb_mvj023 crossref_primary_10_1103_PhysRevE_92_012721 crossref_primary_10_1128_JB_00267_18 crossref_primary_10_1371_journal_pone_0141546 crossref_primary_10_1128_JB_05567_11 crossref_primary_10_1111_j_1752_4571_2008_00039_x crossref_primary_10_1038_ismej_2013_218 crossref_primary_10_1111_mmi_12103 crossref_primary_10_1094_MPMI_02_15_0023_R crossref_primary_10_1111_mmi_12342 crossref_primary_10_1128_JB_00904_07 crossref_primary_10_1128_JB_02501_14 crossref_primary_10_1038_s42003_018_0136_1 crossref_primary_10_1016_j_dib_2019_104270 crossref_primary_10_1111_j_1574_6968_2006_00151_x crossref_primary_10_1128_AEM_01341_12 crossref_primary_10_1128_JB_00037_21 crossref_primary_10_1128_JB_187_24_8462_8469_2005 crossref_primary_10_1099_mic_0_021741_0 crossref_primary_10_1111_j_1365_2958_2008_06469_x crossref_primary_10_1128_aem_00240_22 crossref_primary_10_1128_AEM_02448_14 crossref_primary_10_1371_journal_pbio_1002386 crossref_primary_10_1099_mic_0_069674_0 crossref_primary_10_30956_MAS_50 crossref_primary_10_1128_JB_00165_06 crossref_primary_10_1128_JB_00275_16 crossref_primary_10_4161_rna_28827 crossref_primary_10_1128_AEM_02752_15 crossref_primary_10_1007_s00203_006_0163_z crossref_primary_10_1016_j_bbamem_2013_06_032 crossref_primary_10_1093_femsre_fuaa003 crossref_primary_10_1038_s41396_021_01124_4 crossref_primary_10_1099_mic_0_2007_011783_0 crossref_primary_10_1128_JB_00722_08 crossref_primary_10_1111_j_1574_6968_2011_02225_x crossref_primary_10_1371_journal_pgen_1006701 crossref_primary_10_1099_mic_0_023903_0 crossref_primary_10_1126_science_1114383 crossref_primary_10_1534_genetics_105_040733 crossref_primary_10_1128_JB_187_4_1207_1209_2005 crossref_primary_10_1128_JB_00696_13 crossref_primary_10_1007_s10295_015_1612_y crossref_primary_10_1134_S0026893319040034 crossref_primary_10_1111_j_1574_6976_2009_00169_x crossref_primary_10_1099_mic_0_000609 crossref_primary_10_1111_j_1365_2958_2007_06098_x crossref_primary_10_1128_AEM_00335_14 crossref_primary_10_1128_JB_05990_11 crossref_primary_10_1128_microbiolspec_TBS_0019_2013 crossref_primary_10_1128_JB_00529_17 crossref_primary_10_1128_JB_01993_14 crossref_primary_10_1016_j_femsle_2004_12_029 crossref_primary_10_1111_j_1365_2958_2006_05249_x crossref_primary_10_1371_journal_pone_0048716 crossref_primary_10_1111_1462_2920_12676 crossref_primary_10_1128_AEM_02708_10 crossref_primary_10_1371_journal_pgen_1001119 crossref_primary_10_1111_j_1365_2958_2012_08109_x crossref_primary_10_1038_nrmicro2405 crossref_primary_10_1099_mic_0_026435_0 crossref_primary_10_1111_j_1365_2958_2004_04440_x crossref_primary_10_1073_pnas_1417419112 crossref_primary_10_1111_j_1574_6976_2010_00221_x crossref_primary_10_1128_microbiolspec_MB_0002_2014 crossref_primary_10_1093_jb_mvs036 crossref_primary_10_1073_pnas_1520615113 crossref_primary_10_1111_mmi_13233 crossref_primary_10_1038_s41598_022_22380_0 crossref_primary_10_1128_spectrum_03233_22 crossref_primary_10_1103_PhysRevE_92_062706 crossref_primary_10_1099_mic_0_2008_020891_0 crossref_primary_10_1038_srep01641 crossref_primary_10_1128_mBio_01899_19 crossref_primary_10_1111_1751_7915_12693 crossref_primary_10_1128_JB_01022_13 crossref_primary_10_1111_1574_6976_12018 crossref_primary_10_1111_j_1365_2958_2005_04749_x crossref_primary_10_1039_D3NP00065F crossref_primary_10_1371_journal_pone_0229064 crossref_primary_10_1016_j_jbiotec_2018_04_014 crossref_primary_10_1002_qub2_80 crossref_primary_10_1128_JB_05405_11 |
Cites_doi | 10.1016/S0378-1119(96)00404-0 10.1073/pnas.95.1.224 10.1128/jb.173.17.5487-5493.1991 10.1128/JB.184.2.596-599.2002 10.1016/0378-1119(95)00652-4 10.1046/j.1365-2958.1997.5021862.x 10.1016/0092-8674(88)90197-3 10.1111/j.1365-2958.1995.mmi_17061167.x 10.1038/211255a0 10.1128/jb.172.12.6736-6740.1990 10.1016/S0021-9258(17)41723-6 10.1046/j.1365-2958.2003.03584.x 10.1128/jvi.14.6.1343-1348.1974 10.1128/MMBR.36.4.478-503.1972 10.1016/0076-6879(94)35140-6 10.1093/genetics/120.3.625 10.1073/pnas.72.11.4257 10.1128/jb.173.5.1770-1778.1991 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C 10.1146/annurev.ge.10.120176.001031 10.1128/AAC.45.12.3566-3573.2001 10.1073/pnas.191384198 10.1128/jb.174.6.1769-1776.1992 10.1111/j.1365-2958.1994.tb00433.x 10.1128/jb.178.22.6525-6538.1996 10.1128/jb.176.6.1761-1763.1994 10.1111/j.1432-1033.1981.tb05600.x 10.1074/jbc.272.51.32254 10.1111/j.1432-1033.1979.tb13081.x 10.1016/0092-8674(94)90313-1 10.1016/0378-1119(85)90281-1 10.1101/gad.4.5.860 10.1046/j.1365-2958.1999.01555.x 10.1128/JB.182.22.6308-6321.2000 10.1016/0300-9084(92)90141-Z 10.1016/S1369-5274(98)80083-0 10.1073/pnas.79.4.1008 10.1007/BF00280011 10.1016/S0378-1119(97)00317-X 10.1128/jb.176.5.1451-1459.1994 10.1073/pnas.75.3.1423 |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS Copyright Blackwell Scientific Publications Ltd. Apr 2004 |
Copyright_xml | – notice: 2004 INIST-CNRS – notice: Copyright Blackwell Scientific Publications Ltd. Apr 2004 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 ADTOC UNPAY |
DOI | 10.1111/j.1365-2958.2004.03996.x |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 369 |
ExternalDocumentID | 10.1111/j.1365-2958.2004.03996.x 622090921 15066026 15660227 10_1111_j_1365_2958_2004_03996_x MMI3996 |
Genre | article Research Support, U.S. Gov't, P.H.S Journal Article Comparative Study |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM60654-03 – fundername: NIGMS NIH HHS grantid: GM18568 – fundername: NIGMS NIH HHS grantid: GM66612 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c5696-f0397db31836c84d8c4ddc1cbb57ce7edc0c8fb5ae213d02186e1d0e591a49bb3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X 1365-2958 |
IngestDate | Tue Aug 19 19:56:13 EDT 2025 Thu Jul 10 18:24:25 EDT 2025 Thu Jul 10 22:08:29 EDT 2025 Fri Jul 25 10:44:25 EDT 2025 Wed Feb 19 01:37:43 EST 2025 Mon Jul 21 09:15:30 EDT 2025 Thu Apr 24 22:55:06 EDT 2025 Wed Oct 01 01:21:00 EDT 2025 Wed Jan 22 16:39:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Motility Bacillales Gene Microbiology Bacillus subtilis Bacteria Bacillaceae |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5696-f0397db31836c84d8c4ddc1cbb57ce7edc0c8fb5ae213d02186e1d0e591a49bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2004.03996.x |
PMID | 15066026 |
PQID | 196511557 |
PQPubID | 35968 |
PageCount | 13 |
ParticipantIDs | unpaywall_primary_10_1111_j_1365_2958_2004_03996_x proquest_miscellaneous_71803715 proquest_miscellaneous_17953726 proquest_journals_196511557 pubmed_primary_15066026 pascalfrancis_primary_15660227 crossref_primary_10_1111_j_1365_2958_2004_03996_x crossref_citationtrail_10_1111_j_1365_2958_2004_03996_x wiley_primary_10_1111_j_1365_2958_2004_03996_x_MMI3996 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2004 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: April 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2004 |
Publisher | Blackwell Science Ltd Blackwell Science Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science Ltd – name: Blackwell Science – name: Blackwell Publishing Ltd |
References | 1982; 79 1994; 176 1974; 14 1966; 211 1994; 235 1995; 17 1978; 75 1987; 4 1997; 25 1997; 198 1991b; 173 1988; 54 1988; 120 1997; 0 1979; 97 2001; 45 1975; 72 1996; 12 1992; 74 1976; 10 1994; 269 1992; 174 2002; 184 1992; 232 1996; 180 2000; 182 1994; 77 1999; 33 1994; 13 2003; 49 1991a; 173 1998; 1 1981; 119 1995; 167 1972; 36 1998; 95 1996; 178 1985; 37 1990; 172 2001; 98 1990; 4 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 Nakano M.M. (e_1_2_7_30_1) 1992; 232 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 Levinson G. (e_1_2_7_23_1) 1987; 4 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 173 start-page: 5487 year: 1991b end-page: 5493 article-title: Transcription initiation region of the operon, which is controlled by the signal transduction system in publication-title: J Bacteriol – volume: 174 start-page: 1769 year: 1992 end-page: 1776 article-title: A novel extracellular cyclic lipopeptide which promotes flagellum‐dependent and – independent spreading growth of publication-title: J Bacteriol – volume: 172 start-page: 6736 year: 1990 end-page: 6740 article-title: Tn ‐derived transposons active in publication-title: J Bacteriol – volume: 97 start-page: 23 year: 1979 end-page: 28 article-title: Peptide bond formation stimulated by protein synthesis factor EF‐P depends on the aminoacyl moiety of the acceptor publication-title: Eur J Biochem – volume: 74 start-page: 689 year: 1992 end-page: 694 article-title: The mutation affects the FtsA protein of publication-title: Biochimie – volume: 235 start-page: 184 year: 1994 end-page: 196 article-title: Determinations of restriction fragment length polymorphism in bacteria using ribosomal RNA genes publication-title: Methods Enzymol – volume: 13 start-page: 389 year: 1994 end-page: 394 article-title: Bees aren’t the only ones: swarming in Gram‐negative bacteria publication-title: Mol Microbiol – volume: 36 start-page: 478 year: 1972 end-page: 503 article-title: Bacterial surface translocation: a survey and a classification publication-title: Bacteriol Rev – volume: 1 start-page: 516 year: 1998 end-page: 523 article-title: Multiple antibiotic resistance and efflux publication-title: Curr Opin Microbiol – volume: 167 start-page: 335 year: 1995 end-page: 336 article-title: Antibiotic‐resistance cassettes for publication-title: Gene – volume: 37 start-page: 261 year: 1985 end-page: 266 article-title: Nucleotide sequence of the ribosomal RNA operon publication-title: rrnB. Gene – volume: 49 start-page: 581 year: 2003 end-page: 590 article-title: Swarming motility in undomesticated publication-title: Mol Microbiol – volume: 269 start-page: 3934 year: 1994 end-page: 3940 article-title: Effect of initiation factor eIF‐5A depletion on protein synthesis and proliferation of publication-title: J Biol Chem – volume: 77 start-page: 207 year: 1994 end-page: 216 article-title: Biochemical and genetic characterization of a competence pheromone from publication-title: Cell – volume: 232 start-page: 313 year: 1992 end-page: 321 article-title: Isolation and characterization of : a gene that functions in the production of the lipopeptide biosurfactant, surfactin publication-title: Mol Gen Genet – volume: 33 start-page: 919 year: 1999 end-page: 932 article-title: Molecular switches – the ON and OFF of bacterial phase variation publication-title: Mol Microbiol – volume: 4 start-page: 203 year: 1987 end-page: 221 article-title: Slipped‐strand mispairing: a major mechanism for DNA sequence evolution publication-title: Mol Biol Evol – volume: 176 start-page: 1761 year: 1994 end-page: 1763 article-title: Easy cloning of mini‐Tn10 insertions from the chromosome publication-title: J Bacteriol – volume: 72 start-page: 4257 year: 1975 end-page: 4260 article-title: Identification of a soluble protein that stimulates peptide bond formation publication-title: Proc Natl Acad Sci USA – volume: 180 start-page: 57 year: 1996 end-page: 61 article-title: Plasmids for ectopic integration in publication-title: Gene – volume: 10 start-page: 135 year: 1976 end-page: 156 article-title: Bacterial mutator genes and the control of spontaneous mutation publication-title: Ann Rev Genet – volume: 184 start-page: 596 year: 2002 end-page: 599 article-title: epr Bacillus subtilis publication-title: J Bacteriol – volume: 12 start-page: 259 year: 1996 end-page: 265 article-title: PCR‐synthesis of marker cassettes with long flanking homology regions for gene disruptions in publication-title: Yeast – volume: 98 start-page: 11621 year: 2001 end-page: 11626 article-title: Fruiting body formation by publication-title: Proc Natl Acad Sci USA – volume: 198 start-page: 217 year: 1997 end-page: 222 article-title: Cloning, sequencing, and expression of the gene encoding elongation factor P in the amino‐acid producer ( ATCC 13869) publication-title: Gene – volume: 119 start-page: 245 year: 1981 end-page: 249 article-title: Fragments of ribosomal protein S1 and its mutant form m1–S1, localization of nucleic‐acid‐binding domain in the middle region of S1 publication-title: Eur J Biochem – volume: 120 start-page: 625 year: 1988 end-page: 635 article-title: Chromosomal organization of rRNA operons in publication-title: Genetics – volume: 75 start-page: 1423 year: 1978 end-page: 1427 article-title: Molecular cloning of genetically active fragments of DNA in and properties of the vector plasmid pUB110 publication-title: Proc Natl Acad Sci USA – volume: 211 start-page: 255 year: 1966 end-page: 257 article-title: Swarming of – a solution to an old problem publication-title: Nature – volume: 173 start-page: 1770 year: 1991a end-page: 1778 article-title: srfA Bacillus subtilis publication-title: J Bacteriol – volume: 25 start-page: 597 year: 1997 end-page: 604 article-title: A motile but non‐swarming mutant of lacks FlgN, a facilitator of flagellar filament assembly publication-title: Mol Microbiol – volume: 54 start-page: 345 year: 1988 end-page: 351 article-title: Flagellar dynamometer controls swarmer cell differentiation of publication-title: Cell – volume: 4 start-page: 860 year: 1990 end-page: 872 article-title: A regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two‐component signal‐transduction systems publication-title: Genes Dev – volume: 14 start-page: 1343 year: 1974 end-page: 1348 article-title: Transduction in by bacteriophage SPP1 publication-title: J Virol – volume: 79 start-page: 1008 year: 1982 end-page: 1011 article-title: Primary structure of ribosome protein S1 and of its gene publication-title: rpsA. Proc Natl Acad Sci USA – volume: 45 start-page: 3566 year: 2001 end-page: 3573 article-title: Gene , involved in surfactin self‐resistance in publication-title: Antimicrob Agents Chemother – volume: 178 start-page: 6525 year: 1996 end-page: 6538 article-title: Periodic phenomena in swarm colony development publication-title: J Bacteriol – volume: 0 start-page: 32254 year: 1997 end-page: 32259 article-title: The gene encoding elongation factor P protein is essential for viability and is required for protein synthesis publication-title: J Biol Chem – volume: 17 start-page: 1167 year: 1995 end-page: 1175 article-title: A cell‐surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of publication-title: Mol Microbiol – volume: 176 start-page: 1451 year: 1994 end-page: 1459 article-title: Characterization of a cell division gene from that is required for vegetative and sporulation septum formation publication-title: J Bacteriol – volume: 95 start-page: 224 year: 1998 end-page: 228 article-title: Universally conserved translation initiation factors publication-title: Proc Natl Acad Sci USA – volume: 182 start-page: 6308 year: 2000 end-page: 6321 article-title: Genetics of swarming motility in serovar : critical role for lipopolysaccharide publication-title: J Bacteriol – ident: e_1_2_7_10_1 doi: 10.1016/S0378-1119(96)00404-0 – ident: e_1_2_7_21_1 doi: 10.1073/pnas.95.1.224 – ident: e_1_2_7_29_1 doi: 10.1128/jb.173.17.5487-5493.1991 – ident: e_1_2_7_5_1 doi: 10.1128/JB.184.2.596-599.2002 – ident: e_1_2_7_9_1 doi: 10.1016/0378-1119(95)00652-4 – ident: e_1_2_7_12_1 doi: 10.1046/j.1365-2958.1997.5021862.x – ident: e_1_2_7_24_1 doi: 10.1016/0092-8674(88)90197-3 – ident: e_1_2_7_11_1 doi: 10.1111/j.1365-2958.1995.mmi_17061167.x – ident: e_1_2_7_27_1 doi: 10.1038/211255a0 – ident: e_1_2_7_32_1 doi: 10.1128/jb.172.12.6736-6740.1990 – ident: e_1_2_7_17_1 doi: 10.1016/S0021-9258(17)41723-6 – ident: e_1_2_7_19_1 doi: 10.1046/j.1365-2958.2003.03584.x – ident: e_1_2_7_43_1 doi: 10.1128/jvi.14.6.1343-1348.1974 – ident: e_1_2_7_15_1 doi: 10.1128/MMBR.36.4.478-503.1972 – ident: e_1_2_7_35_1 doi: 10.1016/0076-6879(94)35140-6 – ident: e_1_2_7_16_1 doi: 10.1093/genetics/120.3.625 – volume: 4 start-page: 203 year: 1987 ident: e_1_2_7_23_1 article-title: Slipped‐strand mispairing: a major mechanism for DNA sequence evolution publication-title: Mol Biol Evol – ident: e_1_2_7_6_1 doi: 10.1073/pnas.72.11.4257 – ident: e_1_2_7_28_1 doi: 10.1128/jb.173.5.1770-1778.1991 – ident: e_1_2_7_41_1 doi: 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C – ident: e_1_2_7_4_1 doi: 10.1146/annurev.ge.10.120176.001031 – ident: e_1_2_7_40_1 doi: 10.1128/AAC.45.12.3566-3573.2001 – ident: e_1_2_7_3_1 doi: 10.1073/pnas.191384198 – ident: e_1_2_7_26_1 doi: 10.1128/jb.174.6.1769-1776.1992 – ident: e_1_2_7_13_1 doi: 10.1111/j.1365-2958.1994.tb00433.x – ident: e_1_2_7_34_1 doi: 10.1128/jb.178.22.6525-6538.1996 – ident: e_1_2_7_37_1 doi: 10.1128/jb.176.6.1761-1763.1994 – ident: e_1_2_7_38_1 doi: 10.1111/j.1432-1033.1981.tb05600.x – ident: e_1_2_7_2_1 doi: 10.1074/jbc.272.51.32254 – ident: e_1_2_7_7_1 doi: 10.1111/j.1432-1033.1979.tb13081.x – ident: e_1_2_7_25_1 doi: 10.1016/0092-8674(94)90313-1 – ident: e_1_2_7_8_1 doi: 10.1016/0378-1119(85)90281-1 – ident: e_1_2_7_42_1 doi: 10.1101/gad.4.5.860 – ident: e_1_2_7_14_1 doi: 10.1046/j.1365-2958.1999.01555.x – ident: e_1_2_7_39_1 doi: 10.1128/JB.182.22.6308-6321.2000 – ident: e_1_2_7_18_1 doi: 10.1016/0300-9084(92)90141-Z – ident: e_1_2_7_31_1 doi: 10.1016/S1369-5274(98)80083-0 – ident: e_1_2_7_36_1 doi: 10.1073/pnas.79.4.1008 – volume: 232 start-page: 313 year: 1992 ident: e_1_2_7_30_1 article-title: Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin Bacillus subtilis publication-title: Mol Gen Genet doi: 10.1007/BF00280011 – ident: e_1_2_7_33_1 doi: 10.1016/S0378-1119(97)00317-X – ident: e_1_2_7_22_1 doi: 10.1128/jb.176.5.1451-1459.1994 – ident: e_1_2_7_20_1 doi: 10.1073/pnas.75.3.1423 |
SSID | ssj0013063 |
Score | 2.2674615 |
Snippet | Summary
Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory... Undomesticated strains of Bacillus subtilis , but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains... Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains... |
SourceID | unpaywall proquest pubmed pascalfrancis crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 357 |
SubjectTerms | Amino Acid Sequence Anti-Bacterial Agents - pharmacology Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - physiology Bacillus subtilis - ultrastructure Base Sequence Biological and medical sciences DNA Transposable Elements Flagella - physiology Frameshift Mutation Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial Genes, Bacterial Genetic Variation Lipopeptides Microbiology Molecular Sequence Data Movement Mutagenesis, Insertional Open Reading Frames Peptides, Cyclic - pharmacology |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqrRAgxPuxFIoPXLPkYTvJsSCqgrQrDqy0nCK_UiLSbNRsWMqvZ8bJpruoSAVxi5JMHE_GM5_j8TeEvE7S2Ne-ibxYS-ExqaWXspx5kkG00dLmMsH9ztOZOJmzjwu-2COzzV6Yjh9i-OGGI8P5axzgtck7P_9mKx_HZWmlPHFTvYkP8VZMAFPuC1xwGpH9-ezT0ZeOcA-JZMPFsBELhHZTe6581E68ulPLBlSXdzUvrgKlt8nNtqrlxVqW5S7edQHr-B5Zbrra5al8m7QrNdE_f2OB_H-6uE_u9tiWHnXG-IDs2eohudFVu7x4RNZIcd3QU1fdFyImbdYSM3FOaVHRt1IXZdk2tGnVqiiLhsrKUNvXPKUAramk9VeIufQ7TO-dPdEzi_uWi-aM9hn3pXtse55LkME0Q5xkPCbz4_ef3514fd0HT3ORCi-HN4-NQm8jdMJMopkxOtBK8Vjb2Brt6yRXXNowiIyrqmUD41ueBpKlSkVPyKhaVvYZoUqZ3PqWJQEzDKwxESoKpS-0zH04ocYk3nzdTPek6Fibo8y2Jkeg1gzViiU7WebUmv0Yk2CQrDtikGvIHO4Y0KUggGrkchyTg41FZb0vaTLkfATczuHqq-EqOAFc2ZGVXbZwS5zyKA7Fn-8ACILkjHxMnnaGutW2j42DbDhY7l_0SDi7vLZANp1-wKPn_9LaAbl1mTj1goxW5619CZhwpQ77gf4LPD1WTg priority: 102 providerName: Unpaywall |
Title | Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2004.03996.x https://www.ncbi.nlm.nih.gov/pubmed/15066026 https://www.proquest.com/docview/196511557 https://www.proquest.com/docview/17953726 https://www.proquest.com/docview/71803715 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2004.03996.x |
UnpaywallVersion | publishedVersion |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1365-2958 dateEnd: 20100430 omitProxy: true ssIdentifier: ssj0013063 issn: 1365-2958 databaseCode: HH5 dateStart: 19970101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1365-2958 dateEnd: 20240403 omitProxy: true ssIdentifier: ssj0013063 issn: 1365-2958 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1365-2958 dateEnd: 20240403 omitProxy: true ssIdentifier: ssj0013063 issn: 1365-2958 databaseCode: GX1 dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals customDbUrl: eissn: 1365-2958 dateEnd: 20140630 omitProxy: true ssIdentifier: ssj0013063 issn: 1365-2958 databaseCode: FIJ dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 providerName: Ingenta – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1365-2958 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2958 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013063 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF6hIgQIcUNDIewDr4587Pp4LIiqBaVCiEjhyZo93Fp13aiOG8qvZ2btJA0qUkG8RbHHx2Rm59vs7Pcx9i7NEl_7JvISDbEnQIOXiUJ4ILDaaLAFpLTfeXwY70_Ep6mc9v1PtBem44dY_eFGmeHGa0pwUM1mkrsOrUymbpo38rHWxiPCk0Ek3Yrt13C9oNCLqmWS6GTD6WZTz7UX2qhUD2bQoNOKTu3iOjh6n91t6xlcLqCqNpGuK1V7j9jJ8iW7DpWTUTtXI_3zN_7H_-OFx-xhj2j5bheCT9gtWz9ldzqNy8tnbEHE1g0_cpq-WCd5swDqvzniZc3fgy6rqm1406p5WZUNh9pw2yudcgTUHPjsGCstv8BJvYsifmppt3LZnPK-z75yl23PC0Abai6kqcVzNtn7-O3DvterPXhaxlnsFfjkiVE0xsQ6FSbVwhgdaKVkom1ijfZ1WigJNgwi47S0bGB8K7MARKZU9IJt1We13WZcKVNY34o0EEZgDKaxikLwYw2Fj1-oAUuWv2yueyp0UuSo8itTInRrTm4loU6RO7fmPwYsWFnOOjqQG9gMN4JnbYhQmhgcB2xnGU15P4I0OTE9IlqXePTt6iimPq3nQG3PWjwlyWSUhPGfz0DgQZSMcsBedkF65d4-3Rxtw1XU_sUbxS4mb2yQj8cH9OnVvxrusHvrlqnXbGt-3to3iAbnaoh5fvB56LJ9yG5PDr_sfv8FiZZUVg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5VoIpWVd-lKS3soVdHfuyu7WNfKLSEQwVSbta-DFaNiXBMgF_PzNpJcEUlWvUWxR47nszsfOud_T5CPiZp7GvfRF6spfCY1NJLWc48yaDaaGlzmeB-5_GBGB2x7xM-6eSAcC9Myw-xfOGGmeHGa0xwfCHdz3LXopXyxM3zhj4UWzEEQLmOy3WYpV9_hqslhU5WLeVIKBtO-m09d16pV6ueTGUNbstbvYu7AOljstFUU3k1l2XZx7quWO0-I-XiMdselV_DZqaG-vo3Bsj_5Ifn5GkHaumnNgpfkAe2ekketjKXV6_IHLmta3rsZH2hVNJ6LrEF55gWFf0sdVGWTU3rRs2KsqiprAy1ndgpBUxNJZ2eQLGlFzCvd4FETy1uWC7qU9q12pfuss15LsEG-wtxdvGaHO1-O_wy8jrBB09zkQovh18eG4XDjNAJM4lmxuhAK8VjbWNrtK-TXHFpwyAyTk7LBsa3PA0kS5WK3pC16qyybwlVyuTWtywJmGEQholQUSh9oWXuwxdqQOLFX5vpjg0dRTnK7NasCNyaoVtRq5Nlzq3Z5YAES8tpywhyD5vtXvSsDAFNI4njgGwtwinrBpE6Q7JHAOwcju4sj0L245KOrOxZA6fEKY_iUPz5DMAeyMrIB2SzjdJb9_bx5mAbLsP2L55IuKC8t0E2Hu_hp3f_arhDNkaH4_1sf-_gxxZ5tOqgek_WZueN_QDgcKa2XdLfAAefVck |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb5RAEN-YGh-N8VWtZ7XdD37lwmN3gY--Lq16jTE2uW9kX1RSSkk5POtf78zC3RVTk2r8RoABdpjZ-Q3M_oaQV0ka-9o3kRdrKTwmtfRSljNPMog2WtpcJrjeeXoo9o_Yhxmf9fVPuBam44dYfXBDz3DzNTp4bfKhk7sKrZQnLs0b-xBrxRjw5E0mINlCgPQlXP9R6LuqpRz5ZMPZsKrnyisNQtW9Wjagtbxrd3EVHt0kd9qqlhcLWZZDqOti1eQBOVmOsitRORm3czXWP38jgPw_anhI7veQlr7ubPARuWGrx-RW1-TyYosskNm6oceuqS8EStosJBbgHNOiom-kLsqybWjTqnlRFg2VlaG2b3VKAVFTSetvEGrpd8jqnRnRU4vLlYvmlPaF9qW7bHueS5DB6kLMLZ6Qo8n7r2_3vb7dg6e5SIWXw5PHRuEkI3TCTKKZMTrQSvFY29ga7eskV1zaMIiMa6ZlA-NbngaSpUpFT8lGdVbZZ4QqZXLrW5YEzDAwwkSoKJS-0DL3YYcakXj5ZjPdc6FjS44yu5QTgVozVCt26mSZU2v2Y0SClWTd8YFcQ2Z3YDxrQcDSSOE4IjtLa8r6KaTJkOoR4DqHo3uro-D7-ENHVvashVPilEdxKP58BiAP5GTkI7LdGemle_t4c5ANV1b7FyMSziavLZBNpwe49fxfBffI7c_vJtmng8OPO-TuunzqBdmYn7f2JSDDudp1Lv8LsjRUeA |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqrRAgxPuxFIoPXLPkYTvJsSCqgrQrDqy0nCK_UiLSbNRsWMqvZ8bJpruoSAVxi5JMHE_GM5_j8TeEvE7S2Ne-ibxYS-ExqaWXspx5kkG00dLmMsH9ztOZOJmzjwu-2COzzV6Yjh9i-OGGI8P5axzgtck7P_9mKx_HZWmlPHFTvYkP8VZMAFPuC1xwGpH9-ezT0ZeOcA-JZMPFsBELhHZTe6581E68ulPLBlSXdzUvrgKlt8nNtqrlxVqW5S7edQHr-B5Zbrra5al8m7QrNdE_f2OB_H-6uE_u9tiWHnXG-IDs2eohudFVu7x4RNZIcd3QU1fdFyImbdYSM3FOaVHRt1IXZdk2tGnVqiiLhsrKUNvXPKUAramk9VeIufQ7TO-dPdEzi_uWi-aM9hn3pXtse55LkME0Q5xkPCbz4_ef3514fd0HT3ORCi-HN4-NQm8jdMJMopkxOtBK8Vjb2Brt6yRXXNowiIyrqmUD41ueBpKlSkVPyKhaVvYZoUqZ3PqWJQEzDKwxESoKpS-0zH04ocYk3nzdTPek6Fibo8y2Jkeg1gzViiU7WebUmv0Yk2CQrDtikGvIHO4Y0KUggGrkchyTg41FZb0vaTLkfATczuHqq-EqOAFc2ZGVXbZwS5zyKA7Fn-8ACILkjHxMnnaGutW2j42DbDhY7l_0SDi7vLZANp1-wKPn_9LaAbl1mTj1goxW5619CZhwpQ77gf4LPD1WTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genes+governing+swarming+in+Bacillus+subtilis+and+evidence+for+a+phase+variation+mechanism+controlling+surface+motility&rft.jtitle=Molecular+microbiology&rft.au=Kearns%2C+Daniel+B.&rft.au=Chu%2C+Frances&rft.au=Rudner%2C+Rivka&rft.au=Losick%2C+Richard&rft.date=2004-04-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=52&rft.issue=2&rft.spage=357&rft.epage=369&rft_id=info:doi/10.1111%2Fj.1365-2958.2004.03996.x&rft.externalDBID=10.1111%252Fj.1365-2958.2004.03996.x&rft.externalDocID=MMI3996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |