Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility

Summary Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). I...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 52; no. 2; pp. 357 - 369
Main Authors Kearns, Daniel B., Chu, Frances, Rudner, Rivka, Losick, Richard
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.04.2004
Blackwell Science
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0950-382X
1365-2958
1365-2958
DOI10.1111/j.1365-2958.2004.03996.x

Cover

Abstract Summary Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini‐Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped‐strand mispairing during DNA replication and that swarming motility is subject to phase variation.
AbstractList Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini-Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped-strand mispairing during DNA replication and that swarming motility is subject to phase variation.Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini-Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped-strand mispairing during DNA replication and that swarming motility is subject to phase variation.
Summary Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini‐Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped‐strand mispairing during DNA replication and that swarming motility is subject to phase variation.
Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini-Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped-strand mispairing during DNA replication and that swarming motility is subject to phase variation.
Undomesticated strains of Bacillus subtilis , but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene ( sfp ) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini‐Tn 10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which ( swrA , swrB , and efp ) had not been previously characterized and one of which ( swrC ) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp , laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped‐strand mispairing during DNA replication and that swarming motility is subject to phase variation.
Author Kearns, Daniel B.
Losick, Richard
Rudner, Rivka
Chu, Frances
Author_xml – sequence: 1
  givenname: Daniel B.
  surname: Kearns
  fullname: Kearns, Daniel B.
– sequence: 2
  givenname: Frances
  surname: Chu
  fullname: Chu, Frances
– sequence: 3
  givenname: Rivka
  surname: Rudner
  fullname: Rudner, Rivka
– sequence: 4
  givenname: Richard
  surname: Losick
  fullname: Losick, Richard
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15660227$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15066026$$D View this record in MEDLINE/PubMed
BookMark eNqVkUFv1DAQhS1URLeFv4AsJLgl2PHaiQ8gQQWlUisuIHGzHHvSeuXYi53sdv89ye4KUC8UXzySv_fG8-YMnYQYACFMSUmn83ZVUiZ4UUnelBUhy5IwKUV5_wQtfj-coAWRnBSsqX6corOcV4RQRgR7hk4pJ0KQSizQ9hICZHwbN5CCC7c4b3Xq58IF_FEb5_2YcR7bwXmXsQ4Ww8ZZCAZwFxPWeH2nM-CNTk4PLgbcg7nTweUemxiGFL3f246p05Omj7PRsHuOnnbaZ3hxvM_R98-fvl18Ka6_Xl5dfLguDBdSFN00WG1bRhsmTLO0jVlaa6hpW14bqMEaYpqu5RoqyiypaCOAWgJcUr2UbcvOkTz4jmGtd1vtvVon1-u0U5SoOUy1UnNmas5MzWGqfZjqftK-OWjXKf4cIQ-qd9mA9zpAHLOqaUNYTfk_QVpLzupKTOCrB-AqjilMASgqBaeU83qCXh6hse3B_vnvcWkT8PoI6Gy075IOxuW_uBmrZqPmwJkUc07Q_c_o7x9IjRv2-x2Sdv4xBu8OBlvnYffoxurm5mqu2C9tRuCy
CitedBy_id crossref_primary_10_1128_JB_187_19_6659_6667_2005
crossref_primary_10_1016_j_mib_2006_02_001
crossref_primary_10_1099_mic_0_000413
crossref_primary_10_1128_msystems_00057_21
crossref_primary_10_1128_JB_00213_16
crossref_primary_10_1007_s10482_008_9267_6
crossref_primary_10_1371_journal_pcbi_1005987
crossref_primary_10_1371_journal_pgen_1000760
crossref_primary_10_1099_mic_0_000658
crossref_primary_10_1111_mmi_13612
crossref_primary_10_1093_femsml_uqae029
crossref_primary_10_1186_1471_2164_11_243
crossref_primary_10_1099_mic_0_2007_007310_0
crossref_primary_10_1073_pnas_1811722116
crossref_primary_10_1016_j_cub_2020_01_087
crossref_primary_10_1038_s41598_020_76017_1
crossref_primary_10_1074_jbc_M115_712091
crossref_primary_10_1111_j_1365_2958_2005_05019_x
crossref_primary_10_1128_AEM_01981_20
crossref_primary_10_1128_JB_00340_17
crossref_primary_10_3389_fmicb_2016_01868
crossref_primary_10_1128_JB_188_8_3099_3109_2006
crossref_primary_10_1111_j_1365_2958_2008_06501_x
crossref_primary_10_1016_j_jbc_2022_102045
crossref_primary_10_3923_ajppaj_2020_27_35
crossref_primary_10_1103_PhysRevE_98_012408
crossref_primary_10_3390_biom11101468
crossref_primary_10_1128_JB_00157_07
crossref_primary_10_1128_AEM_00512_19
crossref_primary_10_1016_j_jmb_2023_168419
crossref_primary_10_1039_b812146j
crossref_primary_10_1111_j_1365_2958_2007_05923_x
crossref_primary_10_1128_mBio_00723_17
crossref_primary_10_1371_journal_pone_0079488
crossref_primary_10_15252_msb_202110302
crossref_primary_10_1016_j_bbrc_2015_03_152
crossref_primary_10_1111_j_1574_6976_2008_00150_x
crossref_primary_10_3390_microorganisms9030633
crossref_primary_10_1111_j_1365_2958_2011_07732_x
crossref_primary_10_1073_pnas_1205586109
crossref_primary_10_1099_mic_0_021477_0
crossref_primary_10_1128_AEM_00327_19
crossref_primary_10_1016_j_fm_2019_02_015
crossref_primary_10_1101_gad_1373905
crossref_primary_10_1128_AEM_00690_07
crossref_primary_10_7554_eLife_46735
crossref_primary_10_3389_fmicb_2016_00315
crossref_primary_10_1016_j_resmic_2021_103877
crossref_primary_10_1007_s00253_014_6316_0
crossref_primary_10_1080_15476286_2020_1795408
crossref_primary_10_1126_scisignal_aaw8905
crossref_primary_10_1111_1462_2920_14997
crossref_primary_10_1186_1471_2180_11_111
crossref_primary_10_3389_fmicb_2016_01025
crossref_primary_10_1128_JB_00014_18
crossref_primary_10_1371_journal_pone_0085065
crossref_primary_10_3389_fmicb_2019_02594
crossref_primary_10_1111_j_1574_6968_2005_00038_x
crossref_primary_10_1111_j_1365_2958_2008_06201_x
crossref_primary_10_1128_genomeA_00364_17
crossref_primary_10_1128_AEM_00585_17
crossref_primary_10_3389_fmicb_2016_01811
crossref_primary_10_1016_j_biocontrol_2016_03_011
crossref_primary_10_7554_eLife_90726
crossref_primary_10_1016_j_cropro_2014_02_013
crossref_primary_10_1371_journal_pone_0098267
crossref_primary_10_1103_PhysRevE_86_011920
crossref_primary_10_1111_1462_2920_12271
crossref_primary_10_3390_cimb44020034
crossref_primary_10_1128_JB_00747_19
crossref_primary_10_1371_journal_pgen_1005443
crossref_primary_10_1111_mmi_13760
crossref_primary_10_1128_JB_00660_09
crossref_primary_10_1128_JB_00905_09
crossref_primary_10_1093_femsec_fiaa142
crossref_primary_10_1016_j_resmic_2008_11_002
crossref_primary_10_1128_mBio_02102_16
crossref_primary_10_1111_1574_6976_12083
crossref_primary_10_1093_nar_gkr1078
crossref_primary_10_1002_mbo3_398
crossref_primary_10_1128_mBio_00306_18
crossref_primary_10_1111_j_1365_2958_2005_04587_x
crossref_primary_10_1128_JB_00455_08
crossref_primary_10_1186_1471_2180_6_31
crossref_primary_10_1186_1471_2148_8_233
crossref_primary_10_1126_sciadv_adq0791
crossref_primary_10_1128_mSphere_00376_21
crossref_primary_10_3389_fmicb_2021_625705
crossref_primary_10_1128_JB_00521_09
crossref_primary_10_1111_1462_2920_15087
crossref_primary_10_1146_annurev_genet_120213_092406
crossref_primary_10_1146_annurev_genet_40_110405_090442
crossref_primary_10_1371_journal_pone_0104651
crossref_primary_10_1007_s10295_014_1527_z
crossref_primary_10_1038_npjbiofilms_2015_27
crossref_primary_10_1016_j_jbiosc_2015_06_011
crossref_primary_10_1111_j_1365_2958_2006_05059_x
crossref_primary_10_1016_j_fmrre_2004_12_008
crossref_primary_10_1111_j_1462_2920_2012_02860_x
crossref_primary_10_1264_jsme2_20_120
crossref_primary_10_1073_pnas_2314437121
crossref_primary_10_1126_sciadv_abn8152
crossref_primary_10_1038_s41564_023_01518_4
crossref_primary_10_1128_JB_01170_10
crossref_primary_10_3389_fmicb_2015_01017
crossref_primary_10_1128_AEM_00561_17
crossref_primary_10_1128_JB_00227_21
crossref_primary_10_1074_jbc_X114_634808
crossref_primary_10_1111_j_1365_2958_2004_04381_x
crossref_primary_10_1128_JB_01542_10
crossref_primary_10_1128_JB_187_4_1357_1368_2005
crossref_primary_10_1093_ismejo_wrae199
crossref_primary_10_1016_j_biortech_2025_132433
crossref_primary_10_1128_jb_00089_22
crossref_primary_10_1016_j_isci_2023_106043
crossref_primary_10_1111_j_1365_2958_2005_04746_x
crossref_primary_10_1128_JB_187_15_5356_5366_2005
crossref_primary_10_1128_jb_00370_22
crossref_primary_10_1128_JB_01531_08
crossref_primary_10_1146_annurev_micro_091213_112852
crossref_primary_10_1074_jbc_M111_309633
crossref_primary_10_1111_j_1365_2958_2011_07917_x
crossref_primary_10_1093_nar_gkaa266
crossref_primary_10_1099_mic_0_047159_0
crossref_primary_10_1007_s11274_008_9723_5
crossref_primary_10_3390_biology11010137
crossref_primary_10_1093_jb_mvj023
crossref_primary_10_1103_PhysRevE_92_012721
crossref_primary_10_1128_JB_00267_18
crossref_primary_10_1371_journal_pone_0141546
crossref_primary_10_1128_JB_05567_11
crossref_primary_10_1111_j_1752_4571_2008_00039_x
crossref_primary_10_1038_ismej_2013_218
crossref_primary_10_1111_mmi_12103
crossref_primary_10_1094_MPMI_02_15_0023_R
crossref_primary_10_1111_mmi_12342
crossref_primary_10_1128_JB_00904_07
crossref_primary_10_1128_JB_02501_14
crossref_primary_10_1038_s42003_018_0136_1
crossref_primary_10_1016_j_dib_2019_104270
crossref_primary_10_1111_j_1574_6968_2006_00151_x
crossref_primary_10_1128_AEM_01341_12
crossref_primary_10_1128_JB_00037_21
crossref_primary_10_1128_JB_187_24_8462_8469_2005
crossref_primary_10_1099_mic_0_021741_0
crossref_primary_10_1111_j_1365_2958_2008_06469_x
crossref_primary_10_1128_aem_00240_22
crossref_primary_10_1128_AEM_02448_14
crossref_primary_10_1371_journal_pbio_1002386
crossref_primary_10_1099_mic_0_069674_0
crossref_primary_10_30956_MAS_50
crossref_primary_10_1128_JB_00165_06
crossref_primary_10_1128_JB_00275_16
crossref_primary_10_4161_rna_28827
crossref_primary_10_1128_AEM_02752_15
crossref_primary_10_1007_s00203_006_0163_z
crossref_primary_10_1016_j_bbamem_2013_06_032
crossref_primary_10_1093_femsre_fuaa003
crossref_primary_10_1038_s41396_021_01124_4
crossref_primary_10_1099_mic_0_2007_011783_0
crossref_primary_10_1128_JB_00722_08
crossref_primary_10_1111_j_1574_6968_2011_02225_x
crossref_primary_10_1371_journal_pgen_1006701
crossref_primary_10_1099_mic_0_023903_0
crossref_primary_10_1126_science_1114383
crossref_primary_10_1534_genetics_105_040733
crossref_primary_10_1128_JB_187_4_1207_1209_2005
crossref_primary_10_1128_JB_00696_13
crossref_primary_10_1007_s10295_015_1612_y
crossref_primary_10_1134_S0026893319040034
crossref_primary_10_1111_j_1574_6976_2009_00169_x
crossref_primary_10_1099_mic_0_000609
crossref_primary_10_1111_j_1365_2958_2007_06098_x
crossref_primary_10_1128_AEM_00335_14
crossref_primary_10_1128_JB_05990_11
crossref_primary_10_1128_microbiolspec_TBS_0019_2013
crossref_primary_10_1128_JB_00529_17
crossref_primary_10_1128_JB_01993_14
crossref_primary_10_1016_j_femsle_2004_12_029
crossref_primary_10_1111_j_1365_2958_2006_05249_x
crossref_primary_10_1371_journal_pone_0048716
crossref_primary_10_1111_1462_2920_12676
crossref_primary_10_1128_AEM_02708_10
crossref_primary_10_1371_journal_pgen_1001119
crossref_primary_10_1111_j_1365_2958_2012_08109_x
crossref_primary_10_1038_nrmicro2405
crossref_primary_10_1099_mic_0_026435_0
crossref_primary_10_1111_j_1365_2958_2004_04440_x
crossref_primary_10_1073_pnas_1417419112
crossref_primary_10_1111_j_1574_6976_2010_00221_x
crossref_primary_10_1128_microbiolspec_MB_0002_2014
crossref_primary_10_1093_jb_mvs036
crossref_primary_10_1073_pnas_1520615113
crossref_primary_10_1111_mmi_13233
crossref_primary_10_1038_s41598_022_22380_0
crossref_primary_10_1128_spectrum_03233_22
crossref_primary_10_1103_PhysRevE_92_062706
crossref_primary_10_1099_mic_0_2008_020891_0
crossref_primary_10_1038_srep01641
crossref_primary_10_1128_mBio_01899_19
crossref_primary_10_1111_1751_7915_12693
crossref_primary_10_1128_JB_01022_13
crossref_primary_10_1111_1574_6976_12018
crossref_primary_10_1111_j_1365_2958_2005_04749_x
crossref_primary_10_1039_D3NP00065F
crossref_primary_10_1371_journal_pone_0229064
crossref_primary_10_1016_j_jbiotec_2018_04_014
crossref_primary_10_1002_qub2_80
crossref_primary_10_1128_JB_05405_11
Cites_doi 10.1016/S0378-1119(96)00404-0
10.1073/pnas.95.1.224
10.1128/jb.173.17.5487-5493.1991
10.1128/JB.184.2.596-599.2002
10.1016/0378-1119(95)00652-4
10.1046/j.1365-2958.1997.5021862.x
10.1016/0092-8674(88)90197-3
10.1111/j.1365-2958.1995.mmi_17061167.x
10.1038/211255a0
10.1128/jb.172.12.6736-6740.1990
10.1016/S0021-9258(17)41723-6
10.1046/j.1365-2958.2003.03584.x
10.1128/jvi.14.6.1343-1348.1974
10.1128/MMBR.36.4.478-503.1972
10.1016/0076-6879(94)35140-6
10.1093/genetics/120.3.625
10.1073/pnas.72.11.4257
10.1128/jb.173.5.1770-1778.1991
10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
10.1146/annurev.ge.10.120176.001031
10.1128/AAC.45.12.3566-3573.2001
10.1073/pnas.191384198
10.1128/jb.174.6.1769-1776.1992
10.1111/j.1365-2958.1994.tb00433.x
10.1128/jb.178.22.6525-6538.1996
10.1128/jb.176.6.1761-1763.1994
10.1111/j.1432-1033.1981.tb05600.x
10.1074/jbc.272.51.32254
10.1111/j.1432-1033.1979.tb13081.x
10.1016/0092-8674(94)90313-1
10.1016/0378-1119(85)90281-1
10.1101/gad.4.5.860
10.1046/j.1365-2958.1999.01555.x
10.1128/JB.182.22.6308-6321.2000
10.1016/0300-9084(92)90141-Z
10.1016/S1369-5274(98)80083-0
10.1073/pnas.79.4.1008
10.1007/BF00280011
10.1016/S0378-1119(97)00317-X
10.1128/jb.176.5.1451-1459.1994
10.1073/pnas.75.3.1423
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright Blackwell Scientific Publications Ltd. Apr 2004
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright Blackwell Scientific Publications Ltd. Apr 2004
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADTOC
UNPAY
DOI 10.1111/j.1365-2958.2004.03996.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 369
ExternalDocumentID 10.1111/j.1365-2958.2004.03996.x
622090921
15066026
15660227
10_1111_j_1365_2958_2004_03996_x
MMI3996
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
Comparative Study
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM60654-03
– fundername: NIGMS NIH HHS
  grantid: GM18568
– fundername: NIGMS NIH HHS
  grantid: GM66612
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c5696-f0397db31836c84d8c4ddc1cbb57ce7edc0c8fb5ae213d02186e1d0e591a49bb3
IEDL.DBID DR2
ISSN 0950-382X
1365-2958
IngestDate Tue Aug 19 19:56:13 EDT 2025
Thu Jul 10 18:24:25 EDT 2025
Thu Jul 10 22:08:29 EDT 2025
Fri Jul 25 10:44:25 EDT 2025
Wed Feb 19 01:37:43 EST 2025
Mon Jul 21 09:15:30 EDT 2025
Thu Apr 24 22:55:06 EDT 2025
Wed Oct 01 01:21:00 EDT 2025
Wed Jan 22 16:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Motility
Bacillales
Gene
Microbiology
Bacillus subtilis
Bacteria
Bacillaceae
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5696-f0397db31836c84d8c4ddc1cbb57ce7edc0c8fb5ae213d02186e1d0e591a49bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2004.03996.x
PMID 15066026
PQID 196511557
PQPubID 35968
PageCount 13
ParticipantIDs unpaywall_primary_10_1111_j_1365_2958_2004_03996_x
proquest_miscellaneous_71803715
proquest_miscellaneous_17953726
proquest_journals_196511557
pubmed_primary_15066026
pascalfrancis_primary_15660227
crossref_primary_10_1111_j_1365_2958_2004_03996_x
crossref_citationtrail_10_1111_j_1365_2958_2004_03996_x
wiley_primary_10_1111_j_1365_2958_2004_03996_x_MMI3996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2004
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: April 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2004
Publisher Blackwell Science Ltd
Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell Science
– name: Blackwell Publishing Ltd
References 1982; 79
1994; 176
1974; 14
1966; 211
1994; 235
1995; 17
1978; 75
1987; 4
1997; 25
1997; 198
1991b; 173
1988; 54
1988; 120
1997; 0
1979; 97
2001; 45
1975; 72
1996; 12
1992; 74
1976; 10
1994; 269
1992; 174
2002; 184
1992; 232
1996; 180
2000; 182
1994; 77
1999; 33
1994; 13
2003; 49
1991a; 173
1998; 1
1981; 119
1995; 167
1972; 36
1998; 95
1996; 178
1985; 37
1990; 172
2001; 98
1990; 4
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Nakano M.M. (e_1_2_7_30_1) 1992; 232
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
Levinson G. (e_1_2_7_23_1) 1987; 4
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 173
  start-page: 5487
  year: 1991b
  end-page: 5493
  article-title: Transcription initiation region of the operon, which is controlled by the signal transduction system in
  publication-title: J Bacteriol
– volume: 174
  start-page: 1769
  year: 1992
  end-page: 1776
  article-title: A novel extracellular cyclic lipopeptide which promotes flagellum‐dependent and – independent spreading growth of
  publication-title: J Bacteriol
– volume: 172
  start-page: 6736
  year: 1990
  end-page: 6740
  article-title: Tn ‐derived transposons active in
  publication-title: J Bacteriol
– volume: 97
  start-page: 23
  year: 1979
  end-page: 28
  article-title: Peptide bond formation stimulated by protein synthesis factor EF‐P depends on the aminoacyl moiety of the acceptor
  publication-title: Eur J Biochem
– volume: 74
  start-page: 689
  year: 1992
  end-page: 694
  article-title: The mutation affects the FtsA protein of
  publication-title: Biochimie
– volume: 235
  start-page: 184
  year: 1994
  end-page: 196
  article-title: Determinations of restriction fragment length polymorphism in bacteria using ribosomal RNA genes
  publication-title: Methods Enzymol
– volume: 13
  start-page: 389
  year: 1994
  end-page: 394
  article-title: Bees aren’t the only ones: swarming in Gram‐negative bacteria
  publication-title: Mol Microbiol
– volume: 36
  start-page: 478
  year: 1972
  end-page: 503
  article-title: Bacterial surface translocation: a survey and a classification
  publication-title: Bacteriol Rev
– volume: 1
  start-page: 516
  year: 1998
  end-page: 523
  article-title: Multiple antibiotic resistance and efflux
  publication-title: Curr Opin Microbiol
– volume: 167
  start-page: 335
  year: 1995
  end-page: 336
  article-title: Antibiotic‐resistance cassettes for
  publication-title: Gene
– volume: 37
  start-page: 261
  year: 1985
  end-page: 266
  article-title: Nucleotide sequence of the ribosomal RNA operon
  publication-title: rrnB. Gene
– volume: 49
  start-page: 581
  year: 2003
  end-page: 590
  article-title: Swarming motility in undomesticated
  publication-title: Mol Microbiol
– volume: 269
  start-page: 3934
  year: 1994
  end-page: 3940
  article-title: Effect of initiation factor eIF‐5A depletion on protein synthesis and proliferation of
  publication-title: J Biol Chem
– volume: 77
  start-page: 207
  year: 1994
  end-page: 216
  article-title: Biochemical and genetic characterization of a competence pheromone from
  publication-title: Cell
– volume: 232
  start-page: 313
  year: 1992
  end-page: 321
  article-title: Isolation and characterization of : a gene that functions in the production of the lipopeptide biosurfactant, surfactin
  publication-title: Mol Gen Genet
– volume: 33
  start-page: 919
  year: 1999
  end-page: 932
  article-title: Molecular switches – the ON and OFF of bacterial phase variation
  publication-title: Mol Microbiol
– volume: 4
  start-page: 203
  year: 1987
  end-page: 221
  article-title: Slipped‐strand mispairing: a major mechanism for DNA sequence evolution
  publication-title: Mol Biol Evol
– volume: 176
  start-page: 1761
  year: 1994
  end-page: 1763
  article-title: Easy cloning of mini‐Tn10 insertions from the chromosome
  publication-title: J Bacteriol
– volume: 72
  start-page: 4257
  year: 1975
  end-page: 4260
  article-title: Identification of a soluble protein that stimulates peptide bond formation
  publication-title: Proc Natl Acad Sci USA
– volume: 180
  start-page: 57
  year: 1996
  end-page: 61
  article-title: Plasmids for ectopic integration in
  publication-title: Gene
– volume: 10
  start-page: 135
  year: 1976
  end-page: 156
  article-title: Bacterial mutator genes and the control of spontaneous mutation
  publication-title: Ann Rev Genet
– volume: 184
  start-page: 596
  year: 2002
  end-page: 599
  article-title: epr Bacillus subtilis
  publication-title: J Bacteriol
– volume: 12
  start-page: 259
  year: 1996
  end-page: 265
  article-title: PCR‐synthesis of marker cassettes with long flanking homology regions for gene disruptions in
  publication-title: Yeast
– volume: 98
  start-page: 11621
  year: 2001
  end-page: 11626
  article-title: Fruiting body formation by
  publication-title: Proc Natl Acad Sci USA
– volume: 198
  start-page: 217
  year: 1997
  end-page: 222
  article-title: Cloning, sequencing, and expression of the gene encoding elongation factor P in the amino‐acid producer ( ATCC 13869)
  publication-title: Gene
– volume: 119
  start-page: 245
  year: 1981
  end-page: 249
  article-title: Fragments of ribosomal protein S1 and its mutant form m1–S1, localization of nucleic‐acid‐binding domain in the middle region of S1
  publication-title: Eur J Biochem
– volume: 120
  start-page: 625
  year: 1988
  end-page: 635
  article-title: Chromosomal organization of rRNA operons in
  publication-title: Genetics
– volume: 75
  start-page: 1423
  year: 1978
  end-page: 1427
  article-title: Molecular cloning of genetically active fragments of DNA in and properties of the vector plasmid pUB110
  publication-title: Proc Natl Acad Sci USA
– volume: 211
  start-page: 255
  year: 1966
  end-page: 257
  article-title: Swarming of – a solution to an old problem
  publication-title: Nature
– volume: 173
  start-page: 1770
  year: 1991a
  end-page: 1778
  article-title: srfA Bacillus subtilis
  publication-title: J Bacteriol
– volume: 25
  start-page: 597
  year: 1997
  end-page: 604
  article-title: A motile but non‐swarming mutant of lacks FlgN, a facilitator of flagellar filament assembly
  publication-title: Mol Microbiol
– volume: 54
  start-page: 345
  year: 1988
  end-page: 351
  article-title: Flagellar dynamometer controls swarmer cell differentiation of
  publication-title: Cell
– volume: 4
  start-page: 860
  year: 1990
  end-page: 872
  article-title: A regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two‐component signal‐transduction systems
  publication-title: Genes Dev
– volume: 14
  start-page: 1343
  year: 1974
  end-page: 1348
  article-title: Transduction in by bacteriophage SPP1
  publication-title: J Virol
– volume: 79
  start-page: 1008
  year: 1982
  end-page: 1011
  article-title: Primary structure of ribosome protein S1 and of its gene
  publication-title: rpsA. Proc Natl Acad Sci USA
– volume: 45
  start-page: 3566
  year: 2001
  end-page: 3573
  article-title: Gene , involved in surfactin self‐resistance in
  publication-title: Antimicrob Agents Chemother
– volume: 178
  start-page: 6525
  year: 1996
  end-page: 6538
  article-title: Periodic phenomena in swarm colony development
  publication-title: J Bacteriol
– volume: 0
  start-page: 32254
  year: 1997
  end-page: 32259
  article-title: The gene encoding elongation factor P protein is essential for viability and is required for protein synthesis
  publication-title: J Biol Chem
– volume: 17
  start-page: 1167
  year: 1995
  end-page: 1175
  article-title: A cell‐surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of
  publication-title: Mol Microbiol
– volume: 176
  start-page: 1451
  year: 1994
  end-page: 1459
  article-title: Characterization of a cell division gene from that is required for vegetative and sporulation septum formation
  publication-title: J Bacteriol
– volume: 95
  start-page: 224
  year: 1998
  end-page: 228
  article-title: Universally conserved translation initiation factors
  publication-title: Proc Natl Acad Sci USA
– volume: 182
  start-page: 6308
  year: 2000
  end-page: 6321
  article-title: Genetics of swarming motility in serovar : critical role for lipopolysaccharide
  publication-title: J Bacteriol
– ident: e_1_2_7_10_1
  doi: 10.1016/S0378-1119(96)00404-0
– ident: e_1_2_7_21_1
  doi: 10.1073/pnas.95.1.224
– ident: e_1_2_7_29_1
  doi: 10.1128/jb.173.17.5487-5493.1991
– ident: e_1_2_7_5_1
  doi: 10.1128/JB.184.2.596-599.2002
– ident: e_1_2_7_9_1
  doi: 10.1016/0378-1119(95)00652-4
– ident: e_1_2_7_12_1
  doi: 10.1046/j.1365-2958.1997.5021862.x
– ident: e_1_2_7_24_1
  doi: 10.1016/0092-8674(88)90197-3
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1365-2958.1995.mmi_17061167.x
– ident: e_1_2_7_27_1
  doi: 10.1038/211255a0
– ident: e_1_2_7_32_1
  doi: 10.1128/jb.172.12.6736-6740.1990
– ident: e_1_2_7_17_1
  doi: 10.1016/S0021-9258(17)41723-6
– ident: e_1_2_7_19_1
  doi: 10.1046/j.1365-2958.2003.03584.x
– ident: e_1_2_7_43_1
  doi: 10.1128/jvi.14.6.1343-1348.1974
– ident: e_1_2_7_15_1
  doi: 10.1128/MMBR.36.4.478-503.1972
– ident: e_1_2_7_35_1
  doi: 10.1016/0076-6879(94)35140-6
– ident: e_1_2_7_16_1
  doi: 10.1093/genetics/120.3.625
– volume: 4
  start-page: 203
  year: 1987
  ident: e_1_2_7_23_1
  article-title: Slipped‐strand mispairing: a major mechanism for DNA sequence evolution
  publication-title: Mol Biol Evol
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.72.11.4257
– ident: e_1_2_7_28_1
  doi: 10.1128/jb.173.5.1770-1778.1991
– ident: e_1_2_7_41_1
  doi: 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
– ident: e_1_2_7_4_1
  doi: 10.1146/annurev.ge.10.120176.001031
– ident: e_1_2_7_40_1
  doi: 10.1128/AAC.45.12.3566-3573.2001
– ident: e_1_2_7_3_1
  doi: 10.1073/pnas.191384198
– ident: e_1_2_7_26_1
  doi: 10.1128/jb.174.6.1769-1776.1992
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1365-2958.1994.tb00433.x
– ident: e_1_2_7_34_1
  doi: 10.1128/jb.178.22.6525-6538.1996
– ident: e_1_2_7_37_1
  doi: 10.1128/jb.176.6.1761-1763.1994
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1432-1033.1981.tb05600.x
– ident: e_1_2_7_2_1
  doi: 10.1074/jbc.272.51.32254
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1432-1033.1979.tb13081.x
– ident: e_1_2_7_25_1
  doi: 10.1016/0092-8674(94)90313-1
– ident: e_1_2_7_8_1
  doi: 10.1016/0378-1119(85)90281-1
– ident: e_1_2_7_42_1
  doi: 10.1101/gad.4.5.860
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1365-2958.1999.01555.x
– ident: e_1_2_7_39_1
  doi: 10.1128/JB.182.22.6308-6321.2000
– ident: e_1_2_7_18_1
  doi: 10.1016/0300-9084(92)90141-Z
– ident: e_1_2_7_31_1
  doi: 10.1016/S1369-5274(98)80083-0
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.79.4.1008
– volume: 232
  start-page: 313
  year: 1992
  ident: e_1_2_7_30_1
  article-title: Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin Bacillus subtilis
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00280011
– ident: e_1_2_7_33_1
  doi: 10.1016/S0378-1119(97)00317-X
– ident: e_1_2_7_22_1
  doi: 10.1128/jb.176.5.1451-1459.1994
– ident: e_1_2_7_20_1
  doi: 10.1073/pnas.75.3.1423
SSID ssj0013063
Score 2.2674615
Snippet Summary Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory...
Undomesticated strains of Bacillus subtilis , but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains...
Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 357
SubjectTerms Amino Acid Sequence
Anti-Bacterial Agents - pharmacology
Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - physiology
Bacillus subtilis - ultrastructure
Base Sequence
Biological and medical sciences
DNA Transposable Elements
Flagella - physiology
Frameshift Mutation
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Genes, Bacterial
Genetic Variation
Lipopeptides
Microbiology
Molecular Sequence Data
Movement
Mutagenesis, Insertional
Open Reading Frames
Peptides, Cyclic - pharmacology
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqrRAgxPuxFIoPXLPkYTvJsSCqgrQrDqy0nCK_UiLSbNRsWMqvZ8bJpruoSAVxi5JMHE_GM5_j8TeEvE7S2Ne-ibxYS-ExqaWXspx5kkG00dLmMsH9ztOZOJmzjwu-2COzzV6Yjh9i-OGGI8P5axzgtck7P_9mKx_HZWmlPHFTvYkP8VZMAFPuC1xwGpH9-ezT0ZeOcA-JZMPFsBELhHZTe6581E68ulPLBlSXdzUvrgKlt8nNtqrlxVqW5S7edQHr-B5Zbrra5al8m7QrNdE_f2OB_H-6uE_u9tiWHnXG-IDs2eohudFVu7x4RNZIcd3QU1fdFyImbdYSM3FOaVHRt1IXZdk2tGnVqiiLhsrKUNvXPKUAramk9VeIufQ7TO-dPdEzi_uWi-aM9hn3pXtse55LkME0Q5xkPCbz4_ef3514fd0HT3ORCi-HN4-NQm8jdMJMopkxOtBK8Vjb2Brt6yRXXNowiIyrqmUD41ueBpKlSkVPyKhaVvYZoUqZ3PqWJQEzDKwxESoKpS-0zH04ocYk3nzdTPek6Fibo8y2Jkeg1gzViiU7WebUmv0Yk2CQrDtikGvIHO4Y0KUggGrkchyTg41FZb0vaTLkfATczuHqq-EqOAFc2ZGVXbZwS5zyKA7Fn-8ACILkjHxMnnaGutW2j42DbDhY7l_0SDi7vLZANp1-wKPn_9LaAbl1mTj1goxW5619CZhwpQ77gf4LPD1WTg
  priority: 102
  providerName: Unpaywall
Title Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2004.03996.x
https://www.ncbi.nlm.nih.gov/pubmed/15066026
https://www.proquest.com/docview/196511557
https://www.proquest.com/docview/17953726
https://www.proquest.com/docview/71803715
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2004.03996.x
UnpaywallVersion publishedVersion
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1365-2958
  dateEnd: 20100430
  omitProxy: true
  ssIdentifier: ssj0013063
  issn: 1365-2958
  databaseCode: HH5
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1365-2958
  dateEnd: 20240403
  omitProxy: true
  ssIdentifier: ssj0013063
  issn: 1365-2958
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1365-2958
  dateEnd: 20240403
  omitProxy: true
  ssIdentifier: ssj0013063
  issn: 1365-2958
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  customDbUrl:
  eissn: 1365-2958
  dateEnd: 20140630
  omitProxy: true
  ssIdentifier: ssj0013063
  issn: 1365-2958
  databaseCode: FIJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  providerName: Ingenta
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1365-2958
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2958
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013063
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF6hIgQIcUNDIewDr4587Pp4LIiqBaVCiEjhyZo93Fp13aiOG8qvZ2btJA0qUkG8RbHHx2Rm59vs7Pcx9i7NEl_7JvISDbEnQIOXiUJ4ILDaaLAFpLTfeXwY70_Ep6mc9v1PtBem44dY_eFGmeHGa0pwUM1mkrsOrUymbpo38rHWxiPCk0Ek3Yrt13C9oNCLqmWS6GTD6WZTz7UX2qhUD2bQoNOKTu3iOjh6n91t6xlcLqCqNpGuK1V7j9jJ8iW7DpWTUTtXI_3zN_7H_-OFx-xhj2j5bheCT9gtWz9ldzqNy8tnbEHE1g0_cpq-WCd5swDqvzniZc3fgy6rqm1406p5WZUNh9pw2yudcgTUHPjsGCstv8BJvYsifmppt3LZnPK-z75yl23PC0Abai6kqcVzNtn7-O3DvterPXhaxlnsFfjkiVE0xsQ6FSbVwhgdaKVkom1ijfZ1WigJNgwi47S0bGB8K7MARKZU9IJt1We13WZcKVNY34o0EEZgDKaxikLwYw2Fj1-oAUuWv2yueyp0UuSo8itTInRrTm4loU6RO7fmPwYsWFnOOjqQG9gMN4JnbYhQmhgcB2xnGU15P4I0OTE9IlqXePTt6iimPq3nQG3PWjwlyWSUhPGfz0DgQZSMcsBedkF65d4-3Rxtw1XU_sUbxS4mb2yQj8cH9OnVvxrusHvrlqnXbGt-3to3iAbnaoh5fvB56LJ9yG5PDr_sfv8FiZZUVg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5VoIpWVd-lKS3soVdHfuyu7WNfKLSEQwVSbta-DFaNiXBMgF_PzNpJcEUlWvUWxR47nszsfOud_T5CPiZp7GvfRF6spfCY1NJLWc48yaDaaGlzmeB-5_GBGB2x7xM-6eSAcC9Myw-xfOGGmeHGa0xwfCHdz3LXopXyxM3zhj4UWzEEQLmOy3WYpV9_hqslhU5WLeVIKBtO-m09d16pV6ueTGUNbstbvYu7AOljstFUU3k1l2XZx7quWO0-I-XiMdselV_DZqaG-vo3Bsj_5Ifn5GkHaumnNgpfkAe2ekketjKXV6_IHLmta3rsZH2hVNJ6LrEF55gWFf0sdVGWTU3rRs2KsqiprAy1ndgpBUxNJZ2eQLGlFzCvd4FETy1uWC7qU9q12pfuss15LsEG-wtxdvGaHO1-O_wy8jrBB09zkQovh18eG4XDjNAJM4lmxuhAK8VjbWNrtK-TXHFpwyAyTk7LBsa3PA0kS5WK3pC16qyybwlVyuTWtywJmGEQholQUSh9oWXuwxdqQOLFX5vpjg0dRTnK7NasCNyaoVtRq5Nlzq3Z5YAES8tpywhyD5vtXvSsDAFNI4njgGwtwinrBpE6Q7JHAOwcju4sj0L245KOrOxZA6fEKY_iUPz5DMAeyMrIB2SzjdJb9_bx5mAbLsP2L55IuKC8t0E2Hu_hp3f_arhDNkaH4_1sf-_gxxZ5tOqgek_WZueN_QDgcKa2XdLfAAefVck
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb5RAEN-YGh-N8VWtZ7XdD37lwmN3gY--Lq16jTE2uW9kX1RSSkk5POtf78zC3RVTk2r8RoABdpjZ-Q3M_oaQV0ka-9o3kRdrKTwmtfRSljNPMog2WtpcJrjeeXoo9o_Yhxmf9fVPuBam44dYfXBDz3DzNTp4bfKhk7sKrZQnLs0b-xBrxRjw5E0mINlCgPQlXP9R6LuqpRz5ZMPZsKrnyisNQtW9Wjagtbxrd3EVHt0kd9qqlhcLWZZDqOti1eQBOVmOsitRORm3czXWP38jgPw_anhI7veQlr7ubPARuWGrx-RW1-TyYosskNm6oceuqS8EStosJBbgHNOiom-kLsqybWjTqnlRFg2VlaG2b3VKAVFTSetvEGrpd8jqnRnRU4vLlYvmlPaF9qW7bHueS5DB6kLMLZ6Qo8n7r2_3vb7dg6e5SIWXw5PHRuEkI3TCTKKZMTrQSvFY29ga7eskV1zaMIiMa6ZlA-NbngaSpUpFT8lGdVbZZ4QqZXLrW5YEzDAwwkSoKJS-0DL3YYcakXj5ZjPdc6FjS44yu5QTgVozVCt26mSZU2v2Y0SClWTd8YFcQ2Z3YDxrQcDSSOE4IjtLa8r6KaTJkOoR4DqHo3uro-D7-ENHVvashVPilEdxKP58BiAP5GTkI7LdGemle_t4c5ANV1b7FyMSziavLZBNpwe49fxfBffI7c_vJtmng8OPO-TuunzqBdmYn7f2JSDDudp1Lv8LsjRUeA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqrRAgxPuxFIoPXLPkYTvJsSCqgrQrDqy0nCK_UiLSbNRsWMqvZ8bJpruoSAVxi5JMHE_GM5_j8TeEvE7S2Ne-ibxYS-ExqaWXspx5kkG00dLmMsH9ztOZOJmzjwu-2COzzV6Yjh9i-OGGI8P5axzgtck7P_9mKx_HZWmlPHFTvYkP8VZMAFPuC1xwGpH9-ezT0ZeOcA-JZMPFsBELhHZTe6581E68ulPLBlSXdzUvrgKlt8nNtqrlxVqW5S7edQHr-B5Zbrra5al8m7QrNdE_f2OB_H-6uE_u9tiWHnXG-IDs2eohudFVu7x4RNZIcd3QU1fdFyImbdYSM3FOaVHRt1IXZdk2tGnVqiiLhsrKUNvXPKUAramk9VeIufQ7TO-dPdEzi_uWi-aM9hn3pXtse55LkME0Q5xkPCbz4_ef3514fd0HT3ORCi-HN4-NQm8jdMJMopkxOtBK8Vjb2Brt6yRXXNowiIyrqmUD41ueBpKlSkVPyKhaVvYZoUqZ3PqWJQEzDKwxESoKpS-0zH04ocYk3nzdTPek6Fibo8y2Jkeg1gzViiU7WebUmv0Yk2CQrDtikGvIHO4Y0KUggGrkchyTg41FZb0vaTLkfATczuHqq-EqOAFc2ZGVXbZwS5zyKA7Fn-8ACILkjHxMnnaGutW2j42DbDhY7l_0SDi7vLZANp1-wKPn_9LaAbl1mTj1goxW5619CZhwpQ77gf4LPD1WTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genes+governing+swarming+in+Bacillus+subtilis+and+evidence+for+a+phase+variation+mechanism+controlling+surface+motility&rft.jtitle=Molecular+microbiology&rft.au=Kearns%2C+Daniel+B.&rft.au=Chu%2C+Frances&rft.au=Rudner%2C+Rivka&rft.au=Losick%2C+Richard&rft.date=2004-04-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=52&rft.issue=2&rft.spage=357&rft.epage=369&rft_id=info:doi/10.1111%2Fj.1365-2958.2004.03996.x&rft.externalDBID=10.1111%252Fj.1365-2958.2004.03996.x&rft.externalDocID=MMI3996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon