Schrödinger's Red Beyond 65,000 Pixel‐Per‐Inch by Multipolar Interaction in Freeform Meta‐Atom through Efficient Neural Optimizer
Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design ap...
Saved in:
| Published in | Advanced science Vol. 11; no. 13; pp. e2303929 - n/a |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Germany
John Wiley & Sons, Inc
01.04.2024
John Wiley and Sons Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2198-3844 2198-3844 |
| DOI | 10.1002/advs.202303929 |
Cover
| Abstract | Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data‐efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly‐saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen‐dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free‐form optical design toolbox for high‐performance flat‐optical components and metadevices.
Using an efficient neural optimizer, the generalized multipolar interference is uncovered in complex photonic structures and realize red structural color with higher color saturation and spatial resolution than any previous reports. The design also exceeds the cadmium red pigments in turns of color saturation. |
|---|---|
| AbstractList | Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices. Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data‐efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly‐saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen‐dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free‐form optical design toolbox for high‐performance flat‐optical components and metadevices. Using an efficient neural optimizer, the generalized multipolar interference is uncovered in complex photonic structures and realize red structural color with higher color saturation and spatial resolution than any previous reports. The design also exceeds the cadmium red pigments in turns of color saturation. Abstract Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data‐efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly‐saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen‐dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free‐form optical design toolbox for high‐performance flat‐optical components and metadevices. Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices. Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices. Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data‐efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly‐saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen‐dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free‐form optical design toolbox for high‐performance flat‐optical components and metadevices. Using an efficient neural optimizer, the generalized multipolar interference is uncovered in complex photonic structures and realize red structural color with higher color saturation and spatial resolution than any previous reports. The design also exceeds the cadmium red pigments in turns of color saturation. |
| Author | Do, Thi Thu Ha Ha, Son Tung Lin, Ronghui Teng, Jinghua Valuckas, Vytautas Nemati, Arash Kuznetsov, Arseniy I. |
| AuthorAffiliation | 1 Agency for Science, Technology and Research (ASTAR) Institute of Materials Research and Engineering (IMRE) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Republic of Singapore |
| AuthorAffiliation_xml | – name: 1 Agency for Science, Technology and Research (ASTAR) Institute of Materials Research and Engineering (IMRE) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Republic of Singapore |
| Author_xml | – sequence: 1 givenname: Ronghui surname: Lin fullname: Lin, Ronghui organization: Institute of Materials Research and Engineering (IMRE) – sequence: 2 givenname: Vytautas surname: Valuckas fullname: Valuckas, Vytautas organization: Institute of Materials Research and Engineering (IMRE) – sequence: 3 givenname: Thi Thu Ha surname: Do fullname: Do, Thi Thu Ha organization: Institute of Materials Research and Engineering (IMRE) – sequence: 4 givenname: Arash surname: Nemati fullname: Nemati, Arash organization: Institute of Materials Research and Engineering (IMRE) – sequence: 5 givenname: Arseniy I. surname: Kuznetsov fullname: Kuznetsov, Arseniy I. organization: Institute of Materials Research and Engineering (IMRE) – sequence: 6 givenname: Jinghua surname: Teng fullname: Teng, Jinghua email: jh-teng@imre.a-star.edu.sg organization: Institute of Materials Research and Engineering (IMRE) – sequence: 7 givenname: Son Tung orcidid: 0000-0002-5475-8365 surname: Ha fullname: Ha, Son Tung email: ha_son_tung@imre.a-star.edu.sg organization: Institute of Materials Research and Engineering (IMRE) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38093513$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUkFuEzEUHaEiWkq3LJElFrAgqccz9oxXVSgtRGppRYGt5bH_JI48dvDMtIQVW3YcgVNwALgJJ8EhJWq7yca27Pfef_8_P0y2nHeQJI9TPEwxJvtSX7ZDgkmGM074vWSHpLwcZGWeb904byd7bTvDGKc0K_K0fJBsZyXmGU2zneTbhZqG3z-1cRMIz1r0DjR6CQvvNGL0RST9-nFuPoP98_X7OYS4jp2aomqBTnvbmbm3MqCx6yBI1RnvkHHoOADUPjToFDoZGaPON6ibBt9Ppuioro0y4Dr0FvogLTqbd6YxXyA8Su7X0rawd73vJh-Oj94fvhmcnL0eH45OBooyng-0UlQpYIzltSylogWhCmrNU1qnrKIFznKq80pjVhAAwjDnSpOioEzxDFi2m4xXutrLmZgH08iwEF4a8e_Ch4mQoTPKgmC0SKmuJC3TIteqrDhRdS4JUFJXFdFRa3-l1bu5XFxJa9eCKRbLjMQyI7HOKDIOVox5XzWgVZxEnMItG7dfnJmKib-MYrws0iyPCs-vFYL_1EPbica0CqyVDnwfa3Ec69CSkQh9egc6831wcboi2sFlGfPFEfXkpqW1l_-fJAKGK4AKvm0D1JubzO8QlOnk8n_ElozdSLsyFhYbiojRq48XrMR59hdXiPVP |
| CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c00052 |
| Cites_doi | 10.1186/s43593-022-00013-3 10.1515/nanoph-2021-0823 10.3390/photonics9110884 10.1063/1.5016990 10.1103/PhysRevLett.122.193905 10.1002/adom.202001433 10.1038/s41377-022-00885-7 10.1103/PhysRevE.90.062302 10.1103/PhysRevLett.120.117402 10.1116/1.2801881 10.1073/pnas.2010486117 10.1016/j.optcom.2017.08.064 10.1038/s41377-022-00806-8 10.1039/C9NA00656G 10.1016/0893-6080(91)90009-T 10.1364/PRJ.416294 10.1093/comjnl/7.2.155 10.1021/acs.nanolett.7b03613 10.1038/s41467-020-17808-y 10.1021/acs.chemrev.1c00294 10.1021/acsphotonics.8b01522 10.1364/PRJ.415960 10.1109/MWC.001.1900308 10.1126/sciadv.abm4512 10.1364/OSAC.425189 10.1364/PRJ.415655 10.1038/s41467-017-00164-9 10.1103/PhysRevB.80.153103 10.1038/s41467-020-15972-9 10.1002/adma.202110022 10.1515/nanoph-2021-0713 10.1021/acs.nanolett.7b01082 10.1002/adom.202201217 10.1088/1367-2630/14/9/093033 10.1038/s41566-018-0246-9 10.1038/s41467-020-15773-0 10.1002/adom.201700645 10.1016/0893-6080(89)90003-8 10.1038/s41566-020-0685-y 10.1002/col.5080030309 10.1038/lsa.2014.99 10.1109/MSP.2017.2743240 10.1038/s41928-021-00554-4 10.1103/RevModPhys.82.2257 10.1021/acsphotonics.6b00066 10.1021/acsphotonics.1c01850 10.1126/sciadv.aba3367 10.1038/nature16961 10.1038/s41565-018-0245-5 10.1515/nanoph-2021-0660 10.1186/s43074-020-00007-9 10.1021/acsphotonics.8b00183 10.1021/acsnano.8b04361 10.1038/s41467-019-12689-2 10.1364/OE.26.013085 10.1364/PRJ.415141 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1002/advs.202303929 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_65715dba58174dc8b92cf4a2e52fbb2d 10.1002/advs.202303929 PMC10987134 38093513 10_1002_advs_202303929 ADVS6804 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: AME Young Individual Research Grant funderid: A2084c0177 – fundername: A*STAR MTC‐Programmatic Fund funderid: M21J9b0085 – fundername: Agency for Science, Technology and Research funderid: A20E5c0084; A2083c0058 – fundername: National Research Foundation Singapore funderid: NRF‐CRP26‐2021‐0004 – fundername: National Research Foundation Singapore grantid: NRF-CRP26-2021-0004 – fundername: A*STAR MTC-Programmatic Fund grantid: M21J9b0085 – fundername: AME Young Individual Research Grant grantid: A2084c0177 – fundername: Agency for Science, Technology and Research grantid: A20E5c0084 – fundername: Agency for Science, Technology and Research grantid: A2083c0058 – fundername: A*STAR MTC‐Programmatic Fund grantid: M21J9b0085 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5694-dcc5cce6664fa8ac5725cefd915f16b570345d4bd0672ee26099cd27756c93e63 |
| IEDL.DBID | UNPAY |
| ISSN | 2198-3844 |
| IngestDate | Fri Oct 03 12:50:56 EDT 2025 Sun Oct 26 04:15:06 EDT 2025 Tue Sep 30 17:09:32 EDT 2025 Thu Oct 02 07:42:45 EDT 2025 Tue Aug 12 11:10:48 EDT 2025 Mon Jul 21 06:02:44 EDT 2025 Thu Oct 09 00:42:20 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Jan 22 16:12:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | structural colors multipole interference machine learning metasurfaces monte Carlo tree search |
| Language | English |
| License | Attribution 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5694-dcc5cce6664fa8ac5725cefd915f16b570345d4bd0672ee26099cd27756c93e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5475-8365 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202303929 |
| PMID | 38093513 |
| PQID | 3030880000 |
| PQPubID | 4365299 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_65715dba58174dc8b92cf4a2e52fbb2d unpaywall_primary_10_1002_advs_202303929 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10987134 proquest_miscellaneous_2902935862 proquest_journals_3030880000 pubmed_primary_38093513 crossref_primary_10_1002_advs_202303929 crossref_citationtrail_10_1002_advs_202303929 wiley_primary_10_1002_advs_202303929_ADVS6804 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2017; 5 2018; 120 2017; 8 2009; 80 2019; 10 1964; 7 2018; 80 1978; 3 2018; 407 2020; 11 2021; 121 2012; 14 2019; 122 2020; 6 2018; 8 2014; 3 2018; 5 2020; 2 2020; 1 2001 2017; 34 2020; 9 2022; 34 2007; 25 2021; 9 1991; 4 1989; 2 2021; 4 2014; 90 2016; 529 1951 2020; 33 1957 2018; 26 2010; 82 2021; 15 2016; 3 2017; 17 2021 2022; 8 2022; 9 2020; 27 2019 2020; 117 2018 2022; 10 2014 2022; 2 2022; 11 2018; 12 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Wang L. (e_1_2_8_51_1) 2020; 33 So S. (e_1_2_8_35_1) 2020; 9 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Frazier P. I. (e_1_2_8_55_1) 2018 e_1_2_8_15_1 e_1_2_8_38_1 Aggarwal C. C. (e_1_2_8_20_1) 2001 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 Bellman R. (e_1_2_8_21_1) 1957 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Terekhov P. D. (e_1_2_8_57_1) 2019 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Radaideh M. I. (e_1_2_8_53_1) 2021 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 9 start-page: B236 year: 2021 publication-title: Photonics Res. – volume: 13 start-page: 1042 year: 2018 publication-title: Nat. Nanotechnol. – volume: 80 start-page: 5824 year: 2018 – volume: 4 start-page: 251 year: 1991 publication-title: Neural Netw. – volume: 11 start-page: 1864 year: 2020 publication-title: Nat. Commun. – start-page: 99 year: 2019 publication-title: Phys. Rev. B – volume: 34 start-page: 26 year: 2017 publication-title: IEEE Signal Process. Mag. – start-page: 420 year: 2001 – volume: 26 year: 2018 publication-title: Opt. Express – volume: 3 start-page: 886 year: 2016 publication-title: ACS Photonics – volume: 5 start-page: 2402 year: 2018 publication-title: ACS Photonics – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 3 start-page: 125 year: 1978 publication-title: Color Res. Appl. – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 1083 year: 2022 publication-title: Nanophotonics – year: 2018 publication-title: ArXiv Prepr. ArXiv180702811 – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 12 start-page: 8616 year: 2018 publication-title: ACS Nano – volume: 11 start-page: 195 year: 2022 publication-title: Light Sci. Appl. – year: 2014 – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 1809 year: 2022 publication-title: Nanophotonics – volume: 5 start-page: 4781 year: 2018 publication-title: ACS Photonics – volume: 10 start-page: 884 year: 2022 publication-title: ACS Photonics – volume: 9 start-page: B182 year: 2021 publication-title: Photonics Res. – volume: 9 start-page: 1041 year: 2020 publication-title: J. Rho. – volume: 17 start-page: 3752 year: 2017 publication-title: Nano Lett. – volume: 10 start-page: 4782 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 1640 year: 2021 publication-title: OSA Contin. – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 407 start-page: 17 year: 2018 publication-title: Opt. Commun. – volume: 11 start-page: 2483 year: 2022 publication-title: Nanophotonics – year: 1951 – volume: 1 start-page: 2 year: 2020 publication-title: PhotoniX – volume: 90 year: 2014 publication-title: Phys. Rev. E – volume: 11 start-page: 3926 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 659 year: 2018 publication-title: Nat. Photonics – volume: 80 year: 2009 publication-title: Phys. Rev. B – volume: 17 start-page: 7620 year: 2017 publication-title: Nano Lett. – volume: 2 start-page: 183 year: 1989 publication-title: Neural Netw. – volume: 27 start-page: 180 year: 2020 publication-title: IEEE Wirel. Commun. – volume: 529 start-page: 484 year: 2016 publication-title: Nature – volume: 3 year: 2014 publication-title: Light Sci. Appl. – volume: 25 start-page: 2025 year: 2007 publication-title: J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 9 start-page: B247 year: 2021 publication-title: Photonics Res. – volume: 8 start-page: 197 year: 2017 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: AIP Adv. – volume: 33 year: 2020 publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 1991 year: 2020 publication-title: Nat. Commun. – year: 1957 – volume: 2 start-page: 7 year: 2022 publication-title: eLight – volume: 14 year: 2012 publication-title: New J. Phys. – volume: 82 start-page: 2257 year: 2010 publication-title: Rev. Mod. Phys. – volume: 4 start-page: 218 year: 2021 publication-title: Nat. Electron. – volume: 9 start-page: 2178 year: 2022 publication-title: ACS Photonics – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – year: 2021 publication-title: ArXiv Prepr. ArXiv211207057 – volume: 11 start-page: 118 year: 2022 publication-title: Light Sci. Appl. – volume: 15 start-page: 77 year: 2021 publication-title: Nat. Photonics – volume: 9 start-page: B96 year: 2021 publication-title: Photonics Res. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 155 year: 1964 publication-title: Comput. J. – volume: 2 start-page: 1007 year: 2020 publication-title: Nanoscale Adv. – ident: e_1_2_8_1_1 doi: 10.1186/s43593-022-00013-3 – ident: e_1_2_8_4_1 doi: 10.1515/nanoph-2021-0823 – year: 2021 ident: e_1_2_8_53_1 publication-title: ArXiv Prepr. ArXiv211207057 – ident: e_1_2_8_29_1 doi: 10.3390/photonics9110884 – ident: e_1_2_8_40_1 doi: 10.1063/1.5016990 – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevLett.122.193905 – ident: e_1_2_8_15_1 doi: 10.1002/adom.202001433 – ident: e_1_2_8_54_1 – ident: e_1_2_8_7_1 doi: 10.1038/s41377-022-00885-7 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevE.90.062302 – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevLett.120.117402 – ident: e_1_2_8_66_1 doi: 10.1116/1.2801881 – ident: e_1_2_8_38_1 doi: 10.1073/pnas.2010486117 – ident: e_1_2_8_58_1 doi: 10.1016/j.optcom.2017.08.064 – ident: e_1_2_8_45_1 doi: 10.1038/s41377-022-00806-8 – ident: e_1_2_8_22_1 doi: 10.1039/C9NA00656G – volume: 9 start-page: 1041 year: 2020 ident: e_1_2_8_35_1 publication-title: J. Rho. – ident: e_1_2_8_26_1 doi: 10.1016/0893-6080(91)90009-T – ident: e_1_2_8_30_1 doi: 10.1364/PRJ.416294 – ident: e_1_2_8_52_1 doi: 10.1093/comjnl/7.2.155 – ident: e_1_2_8_42_1 doi: 10.1021/acs.nanolett.7b03613 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-020-17808-y – ident: e_1_2_8_44_1 doi: 10.1021/acs.chemrev.1c00294 – ident: e_1_2_8_24_1 doi: 10.1021/acsphotonics.8b01522 – ident: e_1_2_8_27_1 doi: 10.1364/PRJ.415960 – ident: e_1_2_8_9_1 doi: 10.1109/MWC.001.1900308 – ident: e_1_2_8_41_1 doi: 10.1126/sciadv.abm4512 – ident: e_1_2_8_56_1 doi: 10.1364/OSAC.425189 – ident: e_1_2_8_34_1 – ident: e_1_2_8_46_1 doi: 10.1364/PRJ.415655 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-017-00164-9 – volume: 33 year: 2020 ident: e_1_2_8_51_1 publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevB.80.153103 – ident: e_1_2_8_6_1 doi: 10.1038/s41467-020-15972-9 – ident: e_1_2_8_31_1 doi: 10.1002/adma.202110022 – ident: e_1_2_8_12_1 doi: 10.1515/nanoph-2021-0713 – ident: e_1_2_8_14_1 doi: 10.1021/acs.nanolett.7b01082 – ident: e_1_2_8_5_1 doi: 10.1002/adom.202201217 – ident: e_1_2_8_61_1 doi: 10.1088/1367-2630/14/9/093033 – ident: e_1_2_8_36_1 doi: 10.1038/s41566-018-0246-9 – start-page: 420 volume-title: Database Theory — ICDT year: 2001 ident: e_1_2_8_20_1 – ident: e_1_2_8_39_1 doi: 10.1038/s41467-020-15773-0 – ident: e_1_2_8_17_1 doi: 10.1002/adom.201700645 – ident: e_1_2_8_47_1 – ident: e_1_2_8_25_1 doi: 10.1016/0893-6080(89)90003-8 – ident: e_1_2_8_33_1 doi: 10.1038/s41566-020-0685-y – ident: e_1_2_8_48_1 doi: 10.1002/col.5080030309 – ident: e_1_2_8_2_1 doi: 10.1038/lsa.2014.99 – ident: e_1_2_8_32_1 doi: 10.1109/MSP.2017.2743240 – ident: e_1_2_8_10_1 doi: 10.1038/s41928-021-00554-4 – ident: e_1_2_8_59_1 doi: 10.1103/RevModPhys.82.2257 – ident: e_1_2_8_16_1 doi: 10.1021/acsphotonics.6b00066 – ident: e_1_2_8_13_1 doi: 10.1021/acsphotonics.1c01850 – ident: e_1_2_8_19_1 doi: 10.1126/sciadv.aba3367 – ident: e_1_2_8_50_1 doi: 10.1038/nature16961 – ident: e_1_2_8_67_1 doi: 10.1038/s41565-018-0245-5 – ident: e_1_2_8_23_1 doi: 10.1515/nanoph-2021-0660 – ident: e_1_2_8_49_1 – ident: e_1_2_8_8_1 doi: 10.1186/s43074-020-00007-9 – ident: e_1_2_8_18_1 doi: 10.1021/acsphotonics.8b00183 – start-page: 99 year: 2019 ident: e_1_2_8_57_1 publication-title: Phys. Rev. B – ident: e_1_2_8_65_1 doi: 10.1021/acsnano.8b04361 – year: 2018 ident: e_1_2_8_55_1 publication-title: ArXiv Prepr. ArXiv180702811 – ident: e_1_2_8_43_1 doi: 10.1038/s41467-019-12689-2 – volume-title: Dynamic Programming year: 1957 ident: e_1_2_8_21_1 – ident: e_1_2_8_64_1 doi: 10.1364/OE.26.013085 – ident: e_1_2_8_28_1 doi: 10.1364/PRJ.415141 |
| SSID | ssj0001537418 |
| Score | 2.2986364 |
| Snippet | Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses.... Abstract Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2303929 |
| SubjectTerms | Data compression Design Machine learning metasurfaces monte Carlo tree search multipole interference Optimization algorithms Optimization techniques Photonics Simulation structural colors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3BBlN-UgoyE1CIRNfFf7GNBXVVIhYpSqbfIPxPtStt0tT9AOXHlxiPwFDwAvAlPgifJRl0B2guH5JA40dgzY3_2eD4T8tSxnOfehNQW0d1EZVTqZM5TbSqujFMWJCY4H71Wh6fi1Zk8u3LUF-4Ja-mB24bbU7LIZXBW6oidg9fOMF8Jy0CyyjkWsPfNtLkymWrzgznSsixZGjO2Z8N7ZOeOiBsRwcoo1JD1_w1h_rlR8vqintjLD3Y8XgWzzWg0uEVudjCS7rfib5JrUN8mm52jzuhuxyb97A75cuKH05_fQ7N8tzOjbyHQNm2FKvk8VuLHt-PRRxj_-vz1GKbxHnuMIXWXtEnNneDMlzbLhm0GBB3VdDAFQKxLj2Bu4xf784tz2h34Qw8aTopYE4q8H1HGN7FTOh99guldcjo4ePfyMO3OX0i9VEakwXvpPcQJjqistl4WTHqogslllSuH3F1CBuEChnMB4szIGB9YUUjlDQfF75GN-qKGB4T6TIdMcAGicHHYrFy8hAanwYKuOCQkXeqj9B05OZ6RMS5bWmVWov7KXn8J2enLT1pajn-WfIHq7UshnXbzIBpZ2RlZuc7IErK9NI6y8_FZyZHqR-OAn5An_evonRhysTVcLKIYJmMYaVYsIfdbW-ol4RqD0DlPiF6xshVRV9_Uo2HDAJ5nRmMScEJ2e4Nc2w5pY69ripURDZ0onYmt_9FuD8mN-Odup9M22ZhPF_Aogri5e9z462-uK0iO priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbK9gAXRHkGCjISUouE1cSxHfuAUIt2VSF1qVoq9Rb5le5K2-yS3QXKkR_FH-CP4UmyqVY8esgldqRxPDOeh-cbhF4ZmqSJVY7oLIgbK5QghicpkapIhTJCew4FzkdDcXjGPpzz8w00XNXCwLXKlU6sFbWbWoiR76UArCJBvb6bfSbQNQqyq6sWGrptreDe1hBjt9AmBWSsHto86A-PT66jLjwFuJYVemNM97T7AqjdwRIHS2HtdKpB_P9mef55gfL2spzpq696Mlk3cutTanAP3W3NS7zf8MMW2vDlfbTVCvAc77Yo068foB-ndlT9-unqsN7OHJ94h5tyFiz4m7AIfDz-5ifk2FckKJERNle4rtadgTOM60hiUxSBxyUeVN6D-YuP_EKT_cX0ErcdgHC_BqkIS8AABBKI-xi01OX4u68eorNB_9P7Q9I2ZCCWC8WIs5Zb64PHwwotteUZ5dYXTiW8SIQBMC_GHTMO8rveB1dJKetolnFhVepF-gj1ymnpnyBsY-liljLPMhPO0cKEh0lvpNdeFqmPEFltRG5btHJomjHJG5xlmsPG5d3GRWinmz9rcDr-OfMA9rWbBfja9YtpdZG34poLniXcGc1l8NiclUZRWzBNPaeFMdRFaHvFFXkr9PP8mkUj9LIbDuIKORhd-ukykKFiCqlnQSP0uGGijpJUQlY6SSMk19hrjdT1kXI8qiHBk1hJqAqO0G7HiTf-B1Iz6g3T8mAenQoZs6f_X_IzdCd8015q2ka9RbX0z4O9tjAvWiH8DShbPvs priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHOCCKL-BgoyE1CIRNfFf7GNBXVVIhRWlUm-R_9JdaZtdZXdpy4krNx6Bp-AB4E14EjxJNiUCVHFIDvEkGscz9je25zNCzwxJaWqVi3UW3I0VSsSGpzSWqqBCGaE9hwTn_Tdi75C9PuJHv2XxN_wQ3YQbeEbdX4ODazPfviAN1e4D0G0HCA1D_FV0LQ1gBmycsOHFLAunQM8CJ8yF6DqmkrEVc2NCtvuf6I1MNYH_31Dnn5snry_LmT4_1ZNJH-DWI9TgFrrZQku809jCOrriy9tovXXeOd5qGaaf30GfD-yo-vHN1VN6m3P8zjvcpLJgwV-ECn3_Ohyf-cnPT1-Gvgr30IuMsDnHdbruDKJhXE8lNlkReFziQeU94F-87xc6vLGzmJ7g9hAgvFvzVISaYOACCTq-DR3Vyfijr-6iw8Hu-1d7cXsmQ2y5UCx21nJrfQh6WKGltjwj3PrCqZQXqTDA58W4Y8bBEq_3IVpSyjqSZVxYRb2g99BaOS39A4RtIl3CKPMsM2EoLUy4mPRGeu1lQX2E4lV75LYlLIdzMyZ5Q7VMcmi_vGu_CG128rOGquOfki-heTspoNiuH0yr47z12FzwLOXOaC5D0OasNIrYgmniOSmMIS5CGyvjyFu_n-cU6H8kgIAIPe2Kg8fCMowu_XQZ1FAJgdVnQSJ0v7GlThMqYWE6pRGSPSvrqdovKcejmhU8TZSExOAIbXUGeel_iGt7vUQsDwjpQMiEPfxP-UfoRnjYbnTaQGuLaukfBwy3ME9qN_0F-0NDww priority: 102 providerName: Wiley-Blackwell |
| Title | Schrödinger's Red Beyond 65,000 Pixel‐Per‐Inch by Multipolar Interaction in Freeform Meta‐Atom through Efficient Neural Optimizer |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202303929 https://www.ncbi.nlm.nih.gov/pubmed/38093513 https://www.proquest.com/docview/3030880000 https://www.proquest.com/docview/2902935862 https://pubmed.ncbi.nlm.nih.gov/PMC10987134 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202303929 https://doaj.org/article/65715dba58174dc8b92cf4a2e52fbb2d |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: KQ8 dateStart: 20141201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2198-3844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: ABDBF dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: ADMLS dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2198-3844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: AVUZU dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD7a2gu4AcZvYFRGQtqQyGgc23EuO9ZqQrRUK5PGVeS_0IourfoDbFfccscj8BQ8ALwJT4KdpJHKQEPiomnVOJHjHH_-jo_PZ4DHEgdhoGLti8h2N5LGzJc0CH0epyGLJROGugTnbo8dHpMXJ_RkAw5WuTCFPkQ14eZ6Ro7XroNPdVrgfBndx8-Efu8kty2NdsP8JtQZtYy8BvXjXr_1xu0rZ31qP-SErPQaL1y0Nh7lsv1_4poXl0xeWWZTcfZBjMfrtDYflzrXwayeqFiO8m5vuZB76vw3scf_feQbcK0krqhVWNoWbJjsJmyV0DBHu6V-9ZNb8HmghrMf33Q-YbgzR0dGoyJRBjH61ILj96_90Ucz_vnpS9_M7NFi1BDJM5QnA0-dr43yicoi5wKNMtSZGePYNeqahbBXtBaTU1RuMYTauQqGbTHklEZsHV9ZGDwdnZvZbTjutF8_P_TLHR98RVlMfK0UVcpYl4qkggtFI0yVSXUc0DRg0qmFEaqJ1C6AbIz1xeJYaRxFlKk4NCy8A7Vskpl7gFST6yYJiSGRtAN1Ku2HcCO5EYanofHAX733RJVy6G5XjnFSCDnjxLV0UrW0BztV-WkhBPLXkvvOjKpSTsA7_2Mye5uUeJAwGgVUS0G5dQm14jLGKiUCG4pTKbH2YHtlhEmJKvMkdOJC3FEMDx5Vpy0euCCPyMxkaasRN7GLbTPswd3CZquahNyFvYPQA75mzWtVXT-TjYa55njQjLlLO_ZgtzL8S9vBz435kmKJ5V8Dxpvk_r_f-gFctb_LFVTbUFvMluahJYcL2YBNTPoNqLcOui8H9nu_3esfNfKplkaJC78AXttr4w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbGdhgXxPgMDDASaEMiWuLEjn2Y0AatOraWah_SbsFfoZW6tKQdoxz5URy58MewEydTxcdOO_TSuJWd9_Xjx379Pi8ALwQKo1Ay5fPETLc4Y8QXOIx8yrKIMEG4xjbBudsjnZP4_Sk-XQI_61wYe62yxsQSqNVY2jPyrcgKq1ALr28mn31bNcpGV-sSGtyVVlDbpcSYS-zY1_MLs4Wbbu-9M_Z-iVC7dfy247sqA77EhMW-khJLqQ2NjzNOucQJwlJnioU4C4mwClUxVrFQNmipteH_jEmFkgQTySJNIvO_N8BKHMXMbP5Wdlu9_uHlKQ-OrDxMrRYZoC2uvliVcMP8LTNZWA3LogF_Y7p_XthcPc8nfH7BR6NFUl2uiu3b4Jajs3Cn8r81sKTzO2DNAcYUbjpV61d3wfcjOSh-_VDlMeLGFB5qBav0GUjwazMI2B9-1SO_rwvfgNYAijkss4MndvMNy5PLKgkDDnPYLrS2dBt29Yz7O7PxGXQVh2CrFMUwQ4BWeMR07oNBxbPhN13cAyfXYpr7YDkf5_ohgDKgKjA20nEizLqdCfOJqRZUc02zSHvArw2RSqeObot0jNJK1xml1nBpYzgPbDTtJ5UuyD9b7lq7Nq2snnf5xbj4lDp4SAlOQqwEx9TsEJWkgiGZxRxpjDIhkPLAeu0VqQOZaXo5JTzwvHls4MHGfHiux-emGyxANtRNkAceVE7U9CSiNgoeRh6gC-610NXFJ_lwUEqQhwGjNgvZA5uNJ175HvzSUa9olho6dkRoED_6_5CfgdXOcfcgPdjr7T8GN83v3YWqdbA8K871E8MVZ-Kpm5AQfLxuDPgNugl71Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXRHkGChgJ1CIRbeLEjn2oUEt31VK6rPqQegt-hV1pm12yu5TlyI_iD3DjV2EnTqoVj556yCVxIjsz_jzj8XwDwAuBwiiUTPk8MdMtzhjxBQ4jn7IsIkwQrrFNcD7okt2T-N0pPl0Cv-pcGHusssbEEqjVSNo98lZkiVWohddW5o5F9HY6b8affVtBykZa63Ia3JVZUJsl3ZhL8tjX83Pjzk0293aM7F8i1Gkfv931XcUBX2LCYl9JiaXUxqSPM065xAnCUmeKhTgLibBsVTFWsVA2gKm18QUYkwolCSaSRZpE5rvXwIoNfhmQWNlud3uHFzs-OLJUMTVzZIBaXH2xjOHGC7BWysLKWBYQ-JvV--fhzRuzfMzn53w4XDSwyxWycxvccqYt3Kp0cRUs6fwOWHXgMYEbjuH61V3w_Uj2i58_VLmluD6Bh1rBKpUGEvzaDAL2Bl_10O_pwjcA1odiDstM4bF1xGG5i1klZMBBDjuF1tb0hgd6yv2t6egMuupDsF0SZJghQEtCYjr3wSDk2eCbLu6BkysRzX2wnI9y_RBAGVAVxFGs40SYNTwT5oqpFlRzTbNIe8CvBZFKx5RuC3YM04rjGaVWcGkjOA-sN-3HFUfIP1tuW7k2rSy3d3ljVHxKHVSkBCchVoJjarxFJalgSGYxRxqjTAikPLBWa0XqAGeSXkwPDzxvHhuosPEfnuvRzHSDBciGvQnywINKiZqeRNRGxMPIA3RBvRa6uvgkH_RLOvIwYNRmJHtgo9HES_-DXyrqJc1SY5odERrEj_4_5GfgusGC9P1ed_8xuGled2er1sDytJjpJ8ZsnIqnbj5C8PGqIeA3ctaABA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLZGdwE3wPgNDGQkpA2JjMSxHfuywKoJaaNiVBpXkX9OaEWXVmkLbFfccscj8BQ8ALwJT4KdpJHKQEPiIlHUOJXjHH_-jo_PZ4QeahInsZE2VKnrbjSXPNQsTkIh84RLzRUwn-C8f8D3BvTFETtaQ8-XuTC1PkQ74eZ7RoXXvoNPbV7jfBPdJ0-Ufe8ltx2N9sP8BbTOmWPkHbQ-OOh33_h95ZxPHSaC0qVe45mHVsajSrb_T1zz7JLJi4tiqk4-qPF4ldZW41LvCoLlG9XLUd7tLOZ6x5z-Jvb4v698FV1uiCvu1pa2gdaguIY2GmiY4e1Gv_rRdfT50AzLH99sNWG4NcOvwOI6UQZz9tiB4_ev_dFHGP_89KUPpTs7jBpifYKrZOCp97VxNVFZ51zgUYF7JYBn13gf5so90Z1PjnGzxRDerVQwXIthrzTi6vjSweDx6BTKG2jQ2339bC9sdnwIDeOShtYYZgw4l4rmSijDUsIM5FbGLI-59mphlFmqrQ8gAzhfTEpjSZoybmQCPLmJOsWkgNsIm0jYiCYUaKrdQJ1rd1ABWoACkScQoHD53TPTyKH7XTnGWS3kTDLf0lnb0gHaastPayGQv5Z86s2oLeUFvKsfJuXbrMGDjLM0ZlYrJpxLaI3QkpicKgKM5FoTG6DNpRFmDarMssSLCwlPMQL0oL3t8MAHeVQBk4WrhoyIj21zEqBbtc22NUmED3vHSYDEijWvVHX1TjEaVprjcSSFTzsO0HZr-Oe2Q1gZ8znFMse_DrmI6J1__-u76JK7blZQbaLOvFzAPUcO5_p-0_d_AeL3Zuk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schr%C3%B6dinger%27s+Red+Beyond+65%2C000+Pixel-Per-Inch+by+Multipolar+Interaction+in+Freeform+Meta-Atom+through+Efficient+Neural+Optimizer&rft.jtitle=Advanced+science&rft.au=Lin%2C+Ronghui&rft.au=Valuckas%2C+Vytautas&rft.au=Do%2C+Thi+Thu+Ha&rft.au=Nemati%2C+Arash&rft.date=2024-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=13&rft.spage=e2303929&rft_id=info:doi/10.1002%2Fadvs.202303929&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |