Schrödinger's Red Beyond 65,000 Pixel‐Per‐Inch by Multipolar Interaction in Freeform Meta‐Atom through Efficient Neural Optimizer

Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design ap...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 13; pp. e2303929 - n/a
Main Authors Lin, Ronghui, Valuckas, Vytautas, Do, Thi Thu Ha, Nemati, Arash, Kuznetsov, Arseniy I., Teng, Jinghua, Ha, Son Tung
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.04.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.202303929

Cover

Abstract Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data‐efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly‐saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen‐dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free‐form optical design toolbox for high‐performance flat‐optical components and metadevices. Using an efficient neural optimizer, the generalized multipolar interference is uncovered in complex photonic structures and realize red structural color with higher color saturation and spatial resolution than any previous reports. The design also exceeds the cadmium red pigments in turns of color saturation.
AbstractList Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.
Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data‐efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly‐saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen‐dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free‐form optical design toolbox for high‐performance flat‐optical components and metadevices. Using an efficient neural optimizer, the generalized multipolar interference is uncovered in complex photonic structures and realize red structural color with higher color saturation and spatial resolution than any previous reports. The design also exceeds the cadmium red pigments in turns of color saturation.
Abstract Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data‐efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly‐saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen‐dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free‐form optical design toolbox for high‐performance flat‐optical components and metadevices.
Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.
Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.
Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current “black box” design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data‐efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly‐saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram – close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen‐dimensional (13D) design space – an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free‐form optical design toolbox for high‐performance flat‐optical components and metadevices. Using an efficient neural optimizer, the generalized multipolar interference is uncovered in complex photonic structures and realize red structural color with higher color saturation and spatial resolution than any previous reports. The design also exceeds the cadmium red pigments in turns of color saturation.
Author Do, Thi Thu Ha
Ha, Son Tung
Lin, Ronghui
Teng, Jinghua
Valuckas, Vytautas
Nemati, Arash
Kuznetsov, Arseniy I.
AuthorAffiliation 1 Agency for Science, Technology and Research (ASTAR) Institute of Materials Research and Engineering (IMRE) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Republic of Singapore
AuthorAffiliation_xml – name: 1 Agency for Science, Technology and Research (ASTAR) Institute of Materials Research and Engineering (IMRE) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Republic of Singapore
Author_xml – sequence: 1
  givenname: Ronghui
  surname: Lin
  fullname: Lin, Ronghui
  organization: Institute of Materials Research and Engineering (IMRE)
– sequence: 2
  givenname: Vytautas
  surname: Valuckas
  fullname: Valuckas, Vytautas
  organization: Institute of Materials Research and Engineering (IMRE)
– sequence: 3
  givenname: Thi Thu Ha
  surname: Do
  fullname: Do, Thi Thu Ha
  organization: Institute of Materials Research and Engineering (IMRE)
– sequence: 4
  givenname: Arash
  surname: Nemati
  fullname: Nemati, Arash
  organization: Institute of Materials Research and Engineering (IMRE)
– sequence: 5
  givenname: Arseniy I.
  surname: Kuznetsov
  fullname: Kuznetsov, Arseniy I.
  organization: Institute of Materials Research and Engineering (IMRE)
– sequence: 6
  givenname: Jinghua
  surname: Teng
  fullname: Teng, Jinghua
  email: jh-teng@imre.a-star.edu.sg
  organization: Institute of Materials Research and Engineering (IMRE)
– sequence: 7
  givenname: Son Tung
  orcidid: 0000-0002-5475-8365
  surname: Ha
  fullname: Ha, Son Tung
  email: ha_son_tung@imre.a-star.edu.sg
  organization: Institute of Materials Research and Engineering (IMRE)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38093513$$D View this record in MEDLINE/PubMed
BookMark eNqFUkFuEzEUHaEiWkq3LJElFrAgqccz9oxXVSgtRGppRYGt5bH_JI48dvDMtIQVW3YcgVNwALgJJ8EhJWq7yca27Pfef_8_P0y2nHeQJI9TPEwxJvtSX7ZDgkmGM074vWSHpLwcZGWeb904byd7bTvDGKc0K_K0fJBsZyXmGU2zneTbhZqG3z-1cRMIz1r0DjR6CQvvNGL0RST9-nFuPoP98_X7OYS4jp2aomqBTnvbmbm3MqCx6yBI1RnvkHHoOADUPjToFDoZGaPON6ibBt9Ppuioro0y4Dr0FvogLTqbd6YxXyA8Su7X0rawd73vJh-Oj94fvhmcnL0eH45OBooyng-0UlQpYIzltSylogWhCmrNU1qnrKIFznKq80pjVhAAwjDnSpOioEzxDFi2m4xXutrLmZgH08iwEF4a8e_Ch4mQoTPKgmC0SKmuJC3TIteqrDhRdS4JUFJXFdFRa3-l1bu5XFxJa9eCKRbLjMQyI7HOKDIOVox5XzWgVZxEnMItG7dfnJmKib-MYrws0iyPCs-vFYL_1EPbica0CqyVDnwfa3Ec69CSkQh9egc6831wcboi2sFlGfPFEfXkpqW1l_-fJAKGK4AKvm0D1JubzO8QlOnk8n_ElozdSLsyFhYbiojRq48XrMR59hdXiPVP
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c00052
Cites_doi 10.1186/s43593-022-00013-3
10.1515/nanoph-2021-0823
10.3390/photonics9110884
10.1063/1.5016990
10.1103/PhysRevLett.122.193905
10.1002/adom.202001433
10.1038/s41377-022-00885-7
10.1103/PhysRevE.90.062302
10.1103/PhysRevLett.120.117402
10.1116/1.2801881
10.1073/pnas.2010486117
10.1016/j.optcom.2017.08.064
10.1038/s41377-022-00806-8
10.1039/C9NA00656G
10.1016/0893-6080(91)90009-T
10.1364/PRJ.416294
10.1093/comjnl/7.2.155
10.1021/acs.nanolett.7b03613
10.1038/s41467-020-17808-y
10.1021/acs.chemrev.1c00294
10.1021/acsphotonics.8b01522
10.1364/PRJ.415960
10.1109/MWC.001.1900308
10.1126/sciadv.abm4512
10.1364/OSAC.425189
10.1364/PRJ.415655
10.1038/s41467-017-00164-9
10.1103/PhysRevB.80.153103
10.1038/s41467-020-15972-9
10.1002/adma.202110022
10.1515/nanoph-2021-0713
10.1021/acs.nanolett.7b01082
10.1002/adom.202201217
10.1088/1367-2630/14/9/093033
10.1038/s41566-018-0246-9
10.1038/s41467-020-15773-0
10.1002/adom.201700645
10.1016/0893-6080(89)90003-8
10.1038/s41566-020-0685-y
10.1002/col.5080030309
10.1038/lsa.2014.99
10.1109/MSP.2017.2743240
10.1038/s41928-021-00554-4
10.1103/RevModPhys.82.2257
10.1021/acsphotonics.6b00066
10.1021/acsphotonics.1c01850
10.1126/sciadv.aba3367
10.1038/nature16961
10.1038/s41565-018-0245-5
10.1515/nanoph-2021-0660
10.1186/s43074-020-00007-9
10.1021/acsphotonics.8b00183
10.1021/acsnano.8b04361
10.1038/s41467-019-12689-2
10.1364/OE.26.013085
10.1364/PRJ.415141
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1002/advs.202303929
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_65715dba58174dc8b92cf4a2e52fbb2d
10.1002/advs.202303929
PMC10987134
38093513
10_1002_advs_202303929
ADVS6804
Genre article
Journal Article
GrantInformation_xml – fundername: AME Young Individual Research Grant
  funderid: A2084c0177
– fundername: A*STAR MTC‐Programmatic Fund
  funderid: M21J9b0085
– fundername: Agency for Science, Technology and Research
  funderid: A20E5c0084; A2083c0058
– fundername: National Research Foundation Singapore
  funderid: NRF‐CRP26‐2021‐0004
– fundername: National Research Foundation Singapore
  grantid: NRF-CRP26-2021-0004
– fundername: A*STAR MTC-Programmatic Fund
  grantid: M21J9b0085
– fundername: AME Young Individual Research Grant
  grantid: A2084c0177
– fundername: Agency for Science, Technology and Research
  grantid: A20E5c0084
– fundername: Agency for Science, Technology and Research
  grantid: A2083c0058
– fundername: A*STAR MTC‐Programmatic Fund
  grantid: M21J9b0085
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5694-dcc5cce6664fa8ac5725cefd915f16b570345d4bd0672ee26099cd27756c93e63
IEDL.DBID UNPAY
ISSN 2198-3844
IngestDate Fri Oct 03 12:50:56 EDT 2025
Sun Oct 26 04:15:06 EDT 2025
Tue Sep 30 17:09:32 EDT 2025
Thu Oct 02 07:42:45 EDT 2025
Tue Aug 12 11:10:48 EDT 2025
Mon Jul 21 06:02:44 EDT 2025
Thu Oct 09 00:42:20 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Jan 22 16:12:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords structural colors
multipole interference
machine learning
metasurfaces
monte Carlo tree search
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5694-dcc5cce6664fa8ac5725cefd915f16b570345d4bd0672ee26099cd27756c93e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5475-8365
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202303929
PMID 38093513
PQID 3030880000
PQPubID 4365299
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_65715dba58174dc8b92cf4a2e52fbb2d
unpaywall_primary_10_1002_advs_202303929
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10987134
proquest_miscellaneous_2902935862
proquest_journals_3030880000
pubmed_primary_38093513
crossref_primary_10_1002_advs_202303929
crossref_citationtrail_10_1002_advs_202303929
wiley_primary_10_1002_advs_202303929_ADVS6804
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 5
2018; 120
2017; 8
2009; 80
2019; 10
1964; 7
2018; 80
1978; 3
2018; 407
2020; 11
2021; 121
2012; 14
2019; 122
2020; 6
2018; 8
2014; 3
2018; 5
2020; 2
2020; 1
2001
2017; 34
2020; 9
2022; 34
2007; 25
2021; 9
1991; 4
1989; 2
2021; 4
2014; 90
2016; 529
1951
2020; 33
1957
2018; 26
2010; 82
2021; 15
2016; 3
2017; 17
2021
2022; 8
2022; 9
2020; 27
2019
2020; 117
2018
2022; 10
2014
2022; 2
2022; 11
2018; 12
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Wang L. (e_1_2_8_51_1) 2020; 33
So S. (e_1_2_8_35_1) 2020; 9
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Frazier P. I. (e_1_2_8_55_1) 2018
e_1_2_8_15_1
e_1_2_8_38_1
Aggarwal C. C. (e_1_2_8_20_1) 2001
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
Bellman R. (e_1_2_8_21_1) 1957
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Terekhov P. D. (e_1_2_8_57_1) 2019
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Radaideh M. I. (e_1_2_8_53_1) 2021
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 9
  start-page: B236
  year: 2021
  publication-title: Photonics Res.
– volume: 13
  start-page: 1042
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 80
  start-page: 5824
  year: 2018
– volume: 4
  start-page: 251
  year: 1991
  publication-title: Neural Netw.
– volume: 11
  start-page: 1864
  year: 2020
  publication-title: Nat. Commun.
– start-page: 99
  year: 2019
  publication-title: Phys. Rev. B
– volume: 34
  start-page: 26
  year: 2017
  publication-title: IEEE Signal Process. Mag.
– start-page: 420
  year: 2001
– volume: 26
  year: 2018
  publication-title: Opt. Express
– volume: 3
  start-page: 886
  year: 2016
  publication-title: ACS Photonics
– volume: 5
  start-page: 2402
  year: 2018
  publication-title: ACS Photonics
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 3
  start-page: 125
  year: 1978
  publication-title: Color Res. Appl.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  start-page: 1083
  year: 2022
  publication-title: Nanophotonics
– year: 2018
  publication-title: ArXiv Prepr. ArXiv180702811
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 12
  start-page: 8616
  year: 2018
  publication-title: ACS Nano
– volume: 11
  start-page: 195
  year: 2022
  publication-title: Light Sci. Appl.
– year: 2014
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 1809
  year: 2022
  publication-title: Nanophotonics
– volume: 5
  start-page: 4781
  year: 2018
  publication-title: ACS Photonics
– volume: 10
  start-page: 884
  year: 2022
  publication-title: ACS Photonics
– volume: 9
  start-page: B182
  year: 2021
  publication-title: Photonics Res.
– volume: 9
  start-page: 1041
  year: 2020
  publication-title: J. Rho.
– volume: 17
  start-page: 3752
  year: 2017
  publication-title: Nano Lett.
– volume: 10
  start-page: 4782
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1640
  year: 2021
  publication-title: OSA Contin.
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 407
  start-page: 17
  year: 2018
  publication-title: Opt. Commun.
– volume: 11
  start-page: 2483
  year: 2022
  publication-title: Nanophotonics
– year: 1951
– volume: 1
  start-page: 2
  year: 2020
  publication-title: PhotoniX
– volume: 90
  year: 2014
  publication-title: Phys. Rev. E
– volume: 11
  start-page: 3926
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 659
  year: 2018
  publication-title: Nat. Photonics
– volume: 80
  year: 2009
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 7620
  year: 2017
  publication-title: Nano Lett.
– volume: 2
  start-page: 183
  year: 1989
  publication-title: Neural Netw.
– volume: 27
  start-page: 180
  year: 2020
  publication-title: IEEE Wirel. Commun.
– volume: 529
  start-page: 484
  year: 2016
  publication-title: Nature
– volume: 3
  year: 2014
  publication-title: Light Sci. Appl.
– volume: 25
  start-page: 2025
  year: 2007
  publication-title: J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 9
  start-page: B247
  year: 2021
  publication-title: Photonics Res.
– volume: 8
  start-page: 197
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: AIP Adv.
– volume: 33
  year: 2020
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 1991
  year: 2020
  publication-title: Nat. Commun.
– year: 1957
– volume: 2
  start-page: 7
  year: 2022
  publication-title: eLight
– volume: 14
  year: 2012
  publication-title: New J. Phys.
– volume: 82
  start-page: 2257
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 4
  start-page: 218
  year: 2021
  publication-title: Nat. Electron.
– volume: 9
  start-page: 2178
  year: 2022
  publication-title: ACS Photonics
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– year: 2021
  publication-title: ArXiv Prepr. ArXiv211207057
– volume: 11
  start-page: 118
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 15
  start-page: 77
  year: 2021
  publication-title: Nat. Photonics
– volume: 9
  start-page: B96
  year: 2021
  publication-title: Photonics Res.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 155
  year: 1964
  publication-title: Comput. J.
– volume: 2
  start-page: 1007
  year: 2020
  publication-title: Nanoscale Adv.
– ident: e_1_2_8_1_1
  doi: 10.1186/s43593-022-00013-3
– ident: e_1_2_8_4_1
  doi: 10.1515/nanoph-2021-0823
– year: 2021
  ident: e_1_2_8_53_1
  publication-title: ArXiv Prepr. ArXiv211207057
– ident: e_1_2_8_29_1
  doi: 10.3390/photonics9110884
– ident: e_1_2_8_40_1
  doi: 10.1063/1.5016990
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevLett.122.193905
– ident: e_1_2_8_15_1
  doi: 10.1002/adom.202001433
– ident: e_1_2_8_54_1
– ident: e_1_2_8_7_1
  doi: 10.1038/s41377-022-00885-7
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevE.90.062302
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevLett.120.117402
– ident: e_1_2_8_66_1
  doi: 10.1116/1.2801881
– ident: e_1_2_8_38_1
  doi: 10.1073/pnas.2010486117
– ident: e_1_2_8_58_1
  doi: 10.1016/j.optcom.2017.08.064
– ident: e_1_2_8_45_1
  doi: 10.1038/s41377-022-00806-8
– ident: e_1_2_8_22_1
  doi: 10.1039/C9NA00656G
– volume: 9
  start-page: 1041
  year: 2020
  ident: e_1_2_8_35_1
  publication-title: J. Rho.
– ident: e_1_2_8_26_1
  doi: 10.1016/0893-6080(91)90009-T
– ident: e_1_2_8_30_1
  doi: 10.1364/PRJ.416294
– ident: e_1_2_8_52_1
  doi: 10.1093/comjnl/7.2.155
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.nanolett.7b03613
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-020-17808-y
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.chemrev.1c00294
– ident: e_1_2_8_24_1
  doi: 10.1021/acsphotonics.8b01522
– ident: e_1_2_8_27_1
  doi: 10.1364/PRJ.415960
– ident: e_1_2_8_9_1
  doi: 10.1109/MWC.001.1900308
– ident: e_1_2_8_41_1
  doi: 10.1126/sciadv.abm4512
– ident: e_1_2_8_56_1
  doi: 10.1364/OSAC.425189
– ident: e_1_2_8_34_1
– ident: e_1_2_8_46_1
  doi: 10.1364/PRJ.415655
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-017-00164-9
– volume: 33
  year: 2020
  ident: e_1_2_8_51_1
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevB.80.153103
– ident: e_1_2_8_6_1
  doi: 10.1038/s41467-020-15972-9
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.202110022
– ident: e_1_2_8_12_1
  doi: 10.1515/nanoph-2021-0713
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.nanolett.7b01082
– ident: e_1_2_8_5_1
  doi: 10.1002/adom.202201217
– ident: e_1_2_8_61_1
  doi: 10.1088/1367-2630/14/9/093033
– ident: e_1_2_8_36_1
  doi: 10.1038/s41566-018-0246-9
– start-page: 420
  volume-title: Database Theory — ICDT
  year: 2001
  ident: e_1_2_8_20_1
– ident: e_1_2_8_39_1
  doi: 10.1038/s41467-020-15773-0
– ident: e_1_2_8_17_1
  doi: 10.1002/adom.201700645
– ident: e_1_2_8_47_1
– ident: e_1_2_8_25_1
  doi: 10.1016/0893-6080(89)90003-8
– ident: e_1_2_8_33_1
  doi: 10.1038/s41566-020-0685-y
– ident: e_1_2_8_48_1
  doi: 10.1002/col.5080030309
– ident: e_1_2_8_2_1
  doi: 10.1038/lsa.2014.99
– ident: e_1_2_8_32_1
  doi: 10.1109/MSP.2017.2743240
– ident: e_1_2_8_10_1
  doi: 10.1038/s41928-021-00554-4
– ident: e_1_2_8_59_1
  doi: 10.1103/RevModPhys.82.2257
– ident: e_1_2_8_16_1
  doi: 10.1021/acsphotonics.6b00066
– ident: e_1_2_8_13_1
  doi: 10.1021/acsphotonics.1c01850
– ident: e_1_2_8_19_1
  doi: 10.1126/sciadv.aba3367
– ident: e_1_2_8_50_1
  doi: 10.1038/nature16961
– ident: e_1_2_8_67_1
  doi: 10.1038/s41565-018-0245-5
– ident: e_1_2_8_23_1
  doi: 10.1515/nanoph-2021-0660
– ident: e_1_2_8_49_1
– ident: e_1_2_8_8_1
  doi: 10.1186/s43074-020-00007-9
– ident: e_1_2_8_18_1
  doi: 10.1021/acsphotonics.8b00183
– start-page: 99
  year: 2019
  ident: e_1_2_8_57_1
  publication-title: Phys. Rev. B
– ident: e_1_2_8_65_1
  doi: 10.1021/acsnano.8b04361
– year: 2018
  ident: e_1_2_8_55_1
  publication-title: ArXiv Prepr. ArXiv180702811
– ident: e_1_2_8_43_1
  doi: 10.1038/s41467-019-12689-2
– volume-title: Dynamic Programming
  year: 1957
  ident: e_1_2_8_21_1
– ident: e_1_2_8_64_1
  doi: 10.1364/OE.26.013085
– ident: e_1_2_8_28_1
  doi: 10.1364/PRJ.415141
SSID ssj0001537418
Score 2.2986364
Snippet Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses....
Abstract Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2303929
SubjectTerms Data compression
Design
Machine learning
metasurfaces
monte Carlo tree search
multipole interference
Optimization algorithms
Optimization techniques
Photonics
Simulation
structural colors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3BBlN-UgoyE1CIRNfFf7GNBXVVIhYpSqbfIPxPtStt0tT9AOXHlxiPwFDwAvAlPgifJRl0B2guH5JA40dgzY3_2eD4T8tSxnOfehNQW0d1EZVTqZM5TbSqujFMWJCY4H71Wh6fi1Zk8u3LUF-4Ja-mB24bbU7LIZXBW6oidg9fOMF8Jy0CyyjkWsPfNtLkymWrzgznSsixZGjO2Z8N7ZOeOiBsRwcoo1JD1_w1h_rlR8vqintjLD3Y8XgWzzWg0uEVudjCS7rfib5JrUN8mm52jzuhuxyb97A75cuKH05_fQ7N8tzOjbyHQNm2FKvk8VuLHt-PRRxj_-vz1GKbxHnuMIXWXtEnNneDMlzbLhm0GBB3VdDAFQKxLj2Bu4xf784tz2h34Qw8aTopYE4q8H1HGN7FTOh99guldcjo4ePfyMO3OX0i9VEakwXvpPcQJjqistl4WTHqogslllSuH3F1CBuEChnMB4szIGB9YUUjlDQfF75GN-qKGB4T6TIdMcAGicHHYrFy8hAanwYKuOCQkXeqj9B05OZ6RMS5bWmVWov7KXn8J2enLT1pajn-WfIHq7UshnXbzIBpZ2RlZuc7IErK9NI6y8_FZyZHqR-OAn5An_evonRhysTVcLKIYJmMYaVYsIfdbW-ol4RqD0DlPiF6xshVRV9_Uo2HDAJ5nRmMScEJ2e4Nc2w5pY69ripURDZ0onYmt_9FuD8mN-Odup9M22ZhPF_Aogri5e9z462-uK0iO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbK9gAXRHkGCjISUouE1cSxHfuAUIt2VSF1qVoq9Rb5le5K2-yS3QXKkR_FH-CP4UmyqVY8esgldqRxPDOeh-cbhF4ZmqSJVY7oLIgbK5QghicpkapIhTJCew4FzkdDcXjGPpzz8w00XNXCwLXKlU6sFbWbWoiR76UArCJBvb6bfSbQNQqyq6sWGrptreDe1hBjt9AmBWSsHto86A-PT66jLjwFuJYVemNM97T7AqjdwRIHS2HtdKpB_P9mef55gfL2spzpq696Mlk3cutTanAP3W3NS7zf8MMW2vDlfbTVCvAc77Yo068foB-ndlT9-unqsN7OHJ94h5tyFiz4m7AIfDz-5ifk2FckKJERNle4rtadgTOM60hiUxSBxyUeVN6D-YuP_EKT_cX0ErcdgHC_BqkIS8AABBKI-xi01OX4u68eorNB_9P7Q9I2ZCCWC8WIs5Zb64PHwwotteUZ5dYXTiW8SIQBMC_GHTMO8rveB1dJKetolnFhVepF-gj1ymnpnyBsY-liljLPMhPO0cKEh0lvpNdeFqmPEFltRG5btHJomjHJG5xlmsPG5d3GRWinmz9rcDr-OfMA9rWbBfja9YtpdZG34poLniXcGc1l8NiclUZRWzBNPaeFMdRFaHvFFXkr9PP8mkUj9LIbDuIKORhd-ukykKFiCqlnQSP0uGGijpJUQlY6SSMk19hrjdT1kXI8qiHBk1hJqAqO0G7HiTf-B1Iz6g3T8mAenQoZs6f_X_IzdCd8015q2ka9RbX0z4O9tjAvWiH8DShbPvs
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHOCCKL-BgoyE1CIRNfFf7GNBXVVIhRWlUm-R_9JdaZtdZXdpy4krNx6Bp-AB4E14EjxJNiUCVHFIDvEkGscz9je25zNCzwxJaWqVi3UW3I0VSsSGpzSWqqBCGaE9hwTn_Tdi75C9PuJHv2XxN_wQ3YQbeEbdX4ODazPfviAN1e4D0G0HCA1D_FV0LQ1gBmycsOHFLAunQM8CJ8yF6DqmkrEVc2NCtvuf6I1MNYH_31Dnn5snry_LmT4_1ZNJH-DWI9TgFrrZQku809jCOrriy9tovXXeOd5qGaaf30GfD-yo-vHN1VN6m3P8zjvcpLJgwV-ECn3_Ohyf-cnPT1-Gvgr30IuMsDnHdbruDKJhXE8lNlkReFziQeU94F-87xc6vLGzmJ7g9hAgvFvzVISaYOACCTq-DR3Vyfijr-6iw8Hu-1d7cXsmQ2y5UCx21nJrfQh6WKGltjwj3PrCqZQXqTDA58W4Y8bBEq_3IVpSyjqSZVxYRb2g99BaOS39A4RtIl3CKPMsM2EoLUy4mPRGeu1lQX2E4lV75LYlLIdzMyZ5Q7VMcmi_vGu_CG128rOGquOfki-heTspoNiuH0yr47z12FzwLOXOaC5D0OasNIrYgmniOSmMIS5CGyvjyFu_n-cU6H8kgIAIPe2Kg8fCMowu_XQZ1FAJgdVnQSJ0v7GlThMqYWE6pRGSPSvrqdovKcejmhU8TZSExOAIbXUGeel_iGt7vUQsDwjpQMiEPfxP-UfoRnjYbnTaQGuLaukfBwy3ME9qN_0F-0NDww
  priority: 102
  providerName: Wiley-Blackwell
Title Schrödinger's Red Beyond 65,000 Pixel‐Per‐Inch by Multipolar Interaction in Freeform Meta‐Atom through Efficient Neural Optimizer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202303929
https://www.ncbi.nlm.nih.gov/pubmed/38093513
https://www.proquest.com/docview/3030880000
https://www.proquest.com/docview/2902935862
https://pubmed.ncbi.nlm.nih.gov/PMC10987134
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202303929
https://doaj.org/article/65715dba58174dc8b92cf4a2e52fbb2d
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: KQ8
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: ABDBF
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: ADMLS
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: AVUZU
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD7a2gu4AcZvYFRGQtqQyGgc23EuO9ZqQrRUK5PGVeS_0IourfoDbFfccscj8BQ8ALwJT4KdpJHKQEPiomnVOJHjHH_-jo_PZ4DHEgdhoGLti8h2N5LGzJc0CH0epyGLJROGugTnbo8dHpMXJ_RkAw5WuTCFPkQ14eZ6Ro7XroNPdVrgfBndx8-Efu8kty2NdsP8JtQZtYy8BvXjXr_1xu0rZ31qP-SErPQaL1y0Nh7lsv1_4poXl0xeWWZTcfZBjMfrtDYflzrXwayeqFiO8m5vuZB76vw3scf_feQbcK0krqhVWNoWbJjsJmyV0DBHu6V-9ZNb8HmghrMf33Q-YbgzR0dGoyJRBjH61ILj96_90Ucz_vnpS9_M7NFi1BDJM5QnA0-dr43yicoi5wKNMtSZGePYNeqahbBXtBaTU1RuMYTauQqGbTHklEZsHV9ZGDwdnZvZbTjutF8_P_TLHR98RVlMfK0UVcpYl4qkggtFI0yVSXUc0DRg0qmFEaqJ1C6AbIz1xeJYaRxFlKk4NCy8A7Vskpl7gFST6yYJiSGRtAN1Ku2HcCO5EYanofHAX733RJVy6G5XjnFSCDnjxLV0UrW0BztV-WkhBPLXkvvOjKpSTsA7_2Mye5uUeJAwGgVUS0G5dQm14jLGKiUCG4pTKbH2YHtlhEmJKvMkdOJC3FEMDx5Vpy0euCCPyMxkaasRN7GLbTPswd3CZquahNyFvYPQA75mzWtVXT-TjYa55njQjLlLO_ZgtzL8S9vBz435kmKJ5V8Dxpvk_r_f-gFctb_LFVTbUFvMluahJYcL2YBNTPoNqLcOui8H9nu_3esfNfKplkaJC78AXttr4w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbGdhgXxPgMDDASaEMiWuLEjn2Y0AatOraWah_SbsFfoZW6tKQdoxz5URy58MewEydTxcdOO_TSuJWd9_Xjx379Pi8ALwQKo1Ay5fPETLc4Y8QXOIx8yrKIMEG4xjbBudsjnZP4_Sk-XQI_61wYe62yxsQSqNVY2jPyrcgKq1ALr28mn31bNcpGV-sSGtyVVlDbpcSYS-zY1_MLs4Wbbu-9M_Z-iVC7dfy247sqA77EhMW-khJLqQ2NjzNOucQJwlJnioU4C4mwClUxVrFQNmipteH_jEmFkgQTySJNIvO_N8BKHMXMbP5Wdlu9_uHlKQ-OrDxMrRYZoC2uvliVcMP8LTNZWA3LogF_Y7p_XthcPc8nfH7BR6NFUl2uiu3b4Jajs3Cn8r81sKTzO2DNAcYUbjpV61d3wfcjOSh-_VDlMeLGFB5qBav0GUjwazMI2B9-1SO_rwvfgNYAijkss4MndvMNy5PLKgkDDnPYLrS2dBt29Yz7O7PxGXQVh2CrFMUwQ4BWeMR07oNBxbPhN13cAyfXYpr7YDkf5_ohgDKgKjA20nEizLqdCfOJqRZUc02zSHvArw2RSqeObot0jNJK1xml1nBpYzgPbDTtJ5UuyD9b7lq7Nq2snnf5xbj4lDp4SAlOQqwEx9TsEJWkgiGZxRxpjDIhkPLAeu0VqQOZaXo5JTzwvHls4MHGfHiux-emGyxANtRNkAceVE7U9CSiNgoeRh6gC-610NXFJ_lwUEqQhwGjNgvZA5uNJ175HvzSUa9olho6dkRoED_6_5CfgdXOcfcgPdjr7T8GN83v3YWqdbA8K871E8MVZ-Kpm5AQfLxuDPgNugl71Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXRHkGChgJ1CIRbeLEjn2oUEt31VK6rPqQegt-hV1pm12yu5TlyI_iD3DjV2EnTqoVj556yCVxIjsz_jzj8XwDwAuBwiiUTPk8MdMtzhjxBQ4jn7IsIkwQrrFNcD7okt2T-N0pPl0Cv-pcGHusssbEEqjVSNo98lZkiVWohddW5o5F9HY6b8affVtBykZa63Ia3JVZUJsl3ZhL8tjX83Pjzk0293aM7F8i1Gkfv931XcUBX2LCYl9JiaXUxqSPM065xAnCUmeKhTgLibBsVTFWsVA2gKm18QUYkwolCSaSRZpE5rvXwIoNfhmQWNlud3uHFzs-OLJUMTVzZIBaXH2xjOHGC7BWysLKWBYQ-JvV--fhzRuzfMzn53w4XDSwyxWycxvccqYt3Kp0cRUs6fwOWHXgMYEbjuH61V3w_Uj2i58_VLmluD6Bh1rBKpUGEvzaDAL2Bl_10O_pwjcA1odiDstM4bF1xGG5i1klZMBBDjuF1tb0hgd6yv2t6egMuupDsF0SZJghQEtCYjr3wSDk2eCbLu6BkysRzX2wnI9y_RBAGVAVxFGs40SYNTwT5oqpFlRzTbNIe8CvBZFKx5RuC3YM04rjGaVWcGkjOA-sN-3HFUfIP1tuW7k2rSy3d3ljVHxKHVSkBCchVoJjarxFJalgSGYxRxqjTAikPLBWa0XqAGeSXkwPDzxvHhuosPEfnuvRzHSDBciGvQnywINKiZqeRNRGxMPIA3RBvRa6uvgkH_RLOvIwYNRmJHtgo9HES_-DXyrqJc1SY5odERrEj_4_5GfgusGC9P1ed_8xuGled2er1sDytJjpJ8ZsnIqnbj5C8PGqIeA3ctaABA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLZGdwE3wPgNDGQkpA2JjMSxHfuywKoJaaNiVBpXkX9OaEWXVmkLbFfccscj8BQ8ALwJT4KdpJHKQEPiIlHUOJXjHH_-jo_PZ4QeahInsZE2VKnrbjSXPNQsTkIh84RLzRUwn-C8f8D3BvTFETtaQ8-XuTC1PkQ74eZ7RoXXvoNPbV7jfBPdJ0-Ufe8ltx2N9sP8BbTOmWPkHbQ-OOh33_h95ZxPHSaC0qVe45mHVsajSrb_T1zz7JLJi4tiqk4-qPF4ldZW41LvCoLlG9XLUd7tLOZ6x5z-Jvb4v698FV1uiCvu1pa2gdaguIY2GmiY4e1Gv_rRdfT50AzLH99sNWG4NcOvwOI6UQZz9tiB4_ev_dFHGP_89KUPpTs7jBpifYKrZOCp97VxNVFZ51zgUYF7JYBn13gf5so90Z1PjnGzxRDerVQwXIthrzTi6vjSweDx6BTKG2jQ2339bC9sdnwIDeOShtYYZgw4l4rmSijDUsIM5FbGLI-59mphlFmqrQ8gAzhfTEpjSZoybmQCPLmJOsWkgNsIm0jYiCYUaKrdQJ1rd1ABWoACkScQoHD53TPTyKH7XTnGWS3kTDLf0lnb0gHaastPayGQv5Z86s2oLeUFvKsfJuXbrMGDjLM0ZlYrJpxLaI3QkpicKgKM5FoTG6DNpRFmDarMssSLCwlPMQL0oL3t8MAHeVQBk4WrhoyIj21zEqBbtc22NUmED3vHSYDEijWvVHX1TjEaVprjcSSFTzsO0HZr-Oe2Q1gZ8znFMse_DrmI6J1__-u76JK7blZQbaLOvFzAPUcO5_p-0_d_AeL3Zuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schr%C3%B6dinger%27s+Red+Beyond+65%2C000+Pixel-Per-Inch+by+Multipolar+Interaction+in+Freeform+Meta-Atom+through+Efficient+Neural+Optimizer&rft.jtitle=Advanced+science&rft.au=Lin%2C+Ronghui&rft.au=Valuckas%2C+Vytautas&rft.au=Do%2C+Thi+Thu+Ha&rft.au=Nemati%2C+Arash&rft.date=2024-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=13&rft.spage=e2303929&rft_id=info:doi/10.1002%2Fadvs.202303929&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon