Co‐infections and transmission dynamics in a tick‐borne bacterium community exposed to songbirds
We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve birds were infested with three successive batches (spaced 5 days apart) of field‐collected Ixodes ricinus nymphs, carrying the following tick‐borne bacte...
Saved in:
Published in | Environmental microbiology Vol. 18; no. 3; pp. 988 - 996 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Science
01.03.2016
Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1462-2912 1462-2920 |
DOI | 10.1111/1462-2920.13164 |
Cover
Abstract | We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve birds were infested with three successive batches (spaced 5 days apart) of field‐collected Ixodes ricinus nymphs, carrying the following tick‐borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co‐infections in ticks. |
---|---|
AbstractList | We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks. We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common E uropean songbird ( P arus major ). Tick‐naïve birds were infested with three successive batches (spaced 5 days apart) of field‐collected I xodes ricinus nymphs, carrying the following tick‐borne bacteria: R ickettsia helvetica (16.9%), B orrelia garinii (1.9%), B orrelia miyamotoi (1.6%), A naplasma phagocytophilum (1.2%) and C andidatus N eoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R . helvetica and B . garinii , and to a lesser extent of A . phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R . helvetica remained constant over the three infestations. In contrast, the infection rate of B . garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co‐infections in ticks. Summary We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve birds were infested with three successive batches (spaced 5 days apart) of field‐collected Ixodes ricinus nymphs, carrying the following tick‐borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co‐infections in ticks. Summary We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and CandidatusNeoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R.helvetica and B.garinii, and to a lesser extent of A.phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R.helvetica remained constant over the three infestations. In contrast, the infection rate of B.garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks. We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naive birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and CandidatusNeoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R.helvetica and B.garinii, and to a lesser extent of A.phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R.helvetica remained constant over the three infestations. In contrast, the infection rate of B.garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks. |
Author | Leeuwen, Arieke Docters Fonville, Manoj Heylen, Dieter Sprong, Hein |
Author_xml | – sequence: 1 fullname: Heylen, Dieter – sequence: 2 fullname: Fonville, Manoj – sequence: 3 fullname: Leeuwen, Arieke Docters – sequence: 4 fullname: Sprong, Hein |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26627444$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuFDEQRS0URB6wZgeWssmmid92L9EoTCKFEClELC232x056bYHu1tkdvkEvpEvwcM8FpFQvLFdOrdKVbcOwV6IwQHwHqNPuJxTzASpSE3Kl2LBXoGDXWRv98ZkHxzmfI8QllSiN2CfCEEkY-wAtLP45-m3D52zo48hQxNaOCYT8uBzLhHYLoMZvM3QB2jg6O1DETQxBQcbY0eX_DRAG4dhCn5cQve4iNmVHBHmGO4an9r8FrzuTJ_du819BG6_nH2fnVeX3-YXs8-XleWiZhV1EjNFlJNSEOQIFZhSrKiSpLZN3VDU1p1BSDhpbUc5t8i2nKmatqJhnaVH4GSdd5Hiz8nlUZcmrOt7E1ycssYKUYyEYOplVCrEEceMFPT4GXofpxRKI4WSjNaEEFaoDxtqagbX6kXyg0lLvR11AfgasCnmnFynrR_Nauhl3L7XGOmVpXplml4ZqP9ZWnSnz3Tb1P9XbCr98r1bvoTrs68XW1211vk8usedzqQHLcricP3jaq7JFbo-v5lfa1r4j2u-M1Gbu-Szvr0hCIuyaITXRNG_dSjJZw |
CitedBy_id | crossref_primary_10_1186_s13071_024_06427_x crossref_primary_10_1371_journal_pntd_0009090 crossref_primary_10_1016_j_nmni_2017_12_011 crossref_primary_10_1016_j_ttbdis_2018_02_009 crossref_primary_10_1038_s41598_019_41686_0 crossref_primary_10_1371_journal_pone_0230579 crossref_primary_10_1038_srep39596 crossref_primary_10_1186_s13071_019_3806_z crossref_primary_10_1016_j_ttbdis_2023_102146 crossref_primary_10_1016_j_ttbdis_2023_102185 crossref_primary_10_1016_j_ttbdis_2016_12_012 crossref_primary_10_3390_microorganisms10112222 crossref_primary_10_1016_j_onehlt_2024_100764 crossref_primary_10_1016_j_scitotenv_2024_170749 crossref_primary_10_1016_j_heliyon_2024_e37931 crossref_primary_10_1111_1462_2920_13685 crossref_primary_10_1186_s13071_017_2065_0 crossref_primary_10_1186_s13071_018_2856_y crossref_primary_10_1007_s10344_017_1104_7 crossref_primary_10_1016_j_scitotenv_2019_03_235 crossref_primary_10_1016_j_ttbdis_2020_101607 crossref_primary_10_1007_s00248_019_01442_3 crossref_primary_10_1371_journal_ppat_1009801 crossref_primary_10_1016_j_ttbdis_2018_07_015 crossref_primary_10_1186_s13071_020_3902_0 crossref_primary_10_1186_s13071_021_05139_w crossref_primary_10_1007_s10493_020_00573_4 crossref_primary_10_3390_pathogens9020150 crossref_primary_10_1186_s13071_018_3126_8 crossref_primary_10_1186_s13071_021_04946_5 crossref_primary_10_1016_j_ttbdis_2017_10_014 crossref_primary_10_1016_j_ttbdis_2020_101489 crossref_primary_10_3389_fimmu_2017_00012 |
Cites_doi | 10.1186/1756-3305-7-318 10.1016/S0140-6736(99)04093-3 10.2307/3284432 10.1186/1756-3305-6-347 10.1186/1756-3305-2-41 10.1007/s10493-006-9008-3 10.1128/AEM.02158-13 10.1111/j.1365-2435.2008.01463.x 10.1186/1756-3305-5-74 10.1016/j.ttbdis.2014.10.004 10.1093/jmedent/33.1.189 10.1007/s10493-008-9175-5 10.3201/eid0602.000205 10.1016/j.ijpara.2009.07.011 10.3201/eid1603.090184 10.1186/1756-3305-7-365 10.3201/eid1207.060127 10.1016/S0169-4758(96)10072-7 10.1128/IAI.69.5.3359-3371.2001 10.1128/AEM.02278-10 10.1078/1438-4221-00285 10.1016/S1438-4221(02)80015-7 10.1111/1462-2920.12059 10.1128/JCM.01955-12 10.1560/IJEE.56.3-4.417 10.1111/zph.12154 10.1016/j.ijpara.2013.02.007 10.1086/341452 10.1128/IAI.68.4.2183-2186.2000 10.1017/S0031182014001486 10.1111/1462‐2920.13065 10.1186/1756-3305-7-128 10.1128/IAI.73.6.3440-3444.2005 10.1016/S0304-4017(03)00018-9 10.3201/eid0802.010198 10.1128/AEM.64.4.1169-1174.1998 10.1001/jama.292.6.716 10.1111/1462-2920.12304 10.1111/j.1600-0706.2009.17606.x 10.1128/AEM.03469-13 10.1371/journal.pone.0008572 10.3201/eid0812.010519 10.1021/bk-1977-0042.ch001 10.1016/j.ijpara.2012.05.010 10.1038/ncomms6975 10.1016/j.ttbdis.2013.11.007 10.1016/j.ttbdis.2014.07.001 10.1111/1365-2656.12302 10.1089/vbz.2004.4.310 10.1128/AEM.01674-08 10.1016/j.ttbdis.2015.02.007 10.1007/s10493-010-9375-7 10.1128/JCM.37.7.2215-2222.1999 10.1128/AEM.69.5.2825-2830.2003 10.1016/S1286-4579(00)00393-2 10.3201/eid1112.050898 10.1093/jmedent/47.2.258 10.4269/ajtmh.2005.73.1083 10.1089/153036601750137624 10.1128/IAI.68.3.1514-1518.2000 |
ContentType | Journal Article |
Copyright | 2015 Society for Applied Microbiology and John Wiley & Sons Ltd 2015 Society for Applied Microbiology and John Wiley & Sons Ltd. 2016 Society for Applied Microbiology and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2015 Society for Applied Microbiology and John Wiley & Sons Ltd – notice: 2015 Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7S9 L.6 |
DOI | 10.1111/1462-2920.13164 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 996 |
ExternalDocumentID | 3990920441 26627444 10_1111_1462_2920_13164 EMI13164 ark_67375_WNG_2N0PHSGP_3 US201600125928 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: FWO funderid: G0.049.10 – fundername: University of Antwerp funderid: KP BOF UA 2015 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XFK XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c5694-3e714828e77620e2361331838729cb9b30d9fa006e7ccf355c0cd54893d6b4fc3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 |
IngestDate | Fri Jul 11 18:32:29 EDT 2025 Fri Jul 11 16:30:57 EDT 2025 Fri Jul 25 10:47:23 EDT 2025 Mon Jul 21 06:01:03 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Tue Jul 01 04:00:36 EDT 2025 Wed Jan 22 17:09:41 EST 2025 Tue Sep 09 05:32:21 EDT 2025 Wed Dec 27 19:14:39 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2015 Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5694-3e714828e77620e2361331838729cb9b30d9fa006e7ccf355c0cd54893d6b4fc3 |
Notes | http://dx.doi.org/10.1111/1462-2920.13164 FWO - No. G0.049.10 ArticleID:EMI13164 University of Antwerp - No. KP BOF UA 2015 istex:EFCF4F0BD3EADE59D2D2EC9635FEBF1476C53DFD ark:/67375/WNG-2N0PHSGP-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26627444 |
PQID | 1774392224 |
PQPubID | 1066360 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1803106648 proquest_miscellaneous_1780505142 proquest_journals_1774392224 pubmed_primary_26627444 crossref_citationtrail_10_1111_1462_2920_13164 crossref_primary_10_1111_1462_2920_13164 wiley_primary_10_1111_1462_2920_13164_EMI13164 istex_primary_ark_67375_WNG_2N0PHSGP_3 fao_agris_US201600125928 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2016 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2016 |
Publisher | Blackwell Science Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Dumler, J.S., Choi, K.S., Garcia-Garcia, J.C., Barat, N.S., Scorpio, D.G., Garyu, J.W., et al. (2005) Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 11: 1828-1834. Levin, M.L., and Fish, D. (2000a) Immunity reduces reservoir host competence of Peromyscus leucopus for Ehrlichia phagocytophila. Infect Immun 68: 1514-1518. Gern, L., and Rais, O. (1996) Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol 33: 189-192. Humair, P.F., Postic, D., Wallich, R., and Gern, L. (1998) An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes. J Med Microbiol Virol Parasitol Infect Dis 287: 521-538. Voordouw, M.J. (2015) Co-feeding transmission in Lyme disease pathogens. Parasitology 142: 290-302. Hu, C.M., Cheminade, Y., Perret, J.L., Weynants, V., Lobet, Y., and Gern, L. (2003) Early detection of Borrelia burgdorferi sensu lato infection in Balb/c mice by co-feeding Ixodes ricinus ticks. Int J Med Microbiol 293: 421-426. Tijsse-Klasen, E., Sprong, H., and Pandak, N. (2013) Co-infection of Borrelia burgdorferi sensu lato and Rickettsia species in ticks and in an erythema migrans patient. Parasit Vectors 6: 347. Heylen, D., Matthysen, E., Fonville, M., and Sprong, H. (2014) Songbirds as general transmittors but selective amplifiers of Borrelia burgdorferi sensu lato genotypes. Environ Microbiol 16: 2859-2868. Stenos, J., Graves, S.R., and Unsworth, N.B. (2005) A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. Am J Trop Med Hyg 73: 1083-1085. Humair, P.F. (2002) Birds and Borrelia. Int J Med Microbiol 291: 70-74. Nilsson, K., Lindquist, O., and Pahlson, C. (1999) Association of Rickettsia helvetica with chronic perimyocarditis in sudden cardiac death. Lancet 354: 1169-1173. Zemtsova, G., Killmaster, L.F., Mumcuoglu, K.Y., and Levin, M.L. (2010) Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp Appl Acarol 52: 383-392. Beati, L., Kelly, P.J., Mason, P.R., and Raoult, D. (1999) Experimental infections of vervet monkeys (Cercopithecus pygerythrus) with three spotted fever group rickettsiae. S Afr J Sci 95: 448-449. Scoles, G.A., Papero, M., Beati, L., and Fish, D. (2001) A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis 1: 21-34. Szekeres, S., Coipan, E.C., Rigo, K., Majoros, G., Jahfari, S., Sprong, H., and Foldvari, G. (2015) Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks Tick Borne Dis 6: 111-116. Elfving, K., Olsen, B., Bergstrom, S., Waldenstrom, J., Lundkvist, A., Sjostedt, A., et al. (2010) Dissemination of spotted fever Rickettsia agents in Europe by migrating birds. PLoS ONE 5: e8572. Heylen, D.J.A., and Matthysen, E. (2008) Effect of tick parasitism on the health status of a passerine bird. Funct Ecol 22: 1099-1107. Nilsson, K., Elfving, K., and Pahlson, C. (2010) Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg Infect Dis 16: 490-492. Verbeke, G., and Molenberghs, G. (2001) Linear Mixed Models for Longitudinal Data. Berlin, Germany: Springer-Verlag. Schouls, L.M., Van de Pol, I., Rijpkema, S.G.T., and Schot, C.S. (1999) Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 37: 2215-2222. Wallmenius, K., Barboutis, C., Fransson, T., Jaenson, T.G.T., Lindgren, P.-E., Nystrom, F., et al. (2014) Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area. Parasit Vectors 7: 318. Hagemeijer, E.J.M., and Blair, M.J. (1997) The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. London, UK: T & A D Poyser. Burri, C., Schumann, O., Schumann, C., and Gern, L. (2014) Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick Borne Dis 5: 245-251. Heylen, D., Tijsse, E., Fonville, M., Matthysen, E., and Sprong, H. (2013a) Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol 15: 663-673. Massung, R.F., Priestley, R.A., and Levin, M.L. (2004) Transmission route efficacy and kinetics of Anaplasma phagocytophilum infection in the white-footed mouse, Peromyscus leucopus. Vector Borne Zoonotic Dis 4: 310-318. Randolph, S.E., Gern, L., and Nuttall, P.A. (1996) Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12: 472-479. Andersson, M., Scherman, K., and Raberg, L. (2014) Infection dynamics of the tick-borne pathogen "Candidatus Neoehrlichia mikurensis" and coinfections with Borrelia afzelii in bank voles in Southern Sweden. Appl Environ Microbiol 80: 1645-1649. Kocan, K.A., and de la Fuente, J. (2003) Co-feeding studies of ticks infected with Anaplasma marginale. Vet Parasitol 112: 295-305. Molenberghs, G., and Verbeke, G. (2005) Models for Discrete Longitudinal Data. Berlin, Germany: Springer-Verlag. Jahfari, S., Coipan, E.C., Fonville, M., Van Leeuwen, A.D., Hengeveld, P., Heylen, D., et al. (2014) Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors 7: 365. Heylen, D., Adriaensen, F., Dauwe, T., Eens, M., and Matthysen, E. (2009) Offspring quality and tick infestation load in brood rearing great tits Parus major. Oikos 118: 1499-1506. Lommano, E., Dvorak, C., Vallotton, L., Jenni, L., and Gern, L. (2014) Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick Borne Dis 5: 871-882. Marsot, M., Henry, P.-Y., Vourc'h, G., Gasqui, P., Ferquel, E., Laignel, J., et al. (2012) Which forest bird species are the main hosts of the tick, Ixodes ricinus, the vector of Borrelia burgdorferi sensu lato, during the breeding season? Int J Parasitol 42: 781-788. Richter, D., Allgower, R., and Matuschka, F.R. (2002) Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochaete Borrelia afzelii. Emerg Infect Dis 8: 1421-1425. Thomas, V., Anguita, J., Barthold, S.W., and Fikrig, E. (2001) Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect Immun 69: 3359-3371. Dubska, L., Literak, I., Kocianova, E., Taragelova, V., and Sychra, O. (2009) Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe. Appl Environ Microbiol 75: 596-602. Jahfari, S., Fonville, M., Hengeveld, P., Reusken, C., Scholte, E.J., Takken, W., et al. (2012) Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 5: 74. Regev-Yochay, G., Dagan, R., Raz, M., Carmeli, Y., Shainberg, B., Derazne, E., et al. (2004) Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. J Am Med Assoc 292: 716-720. Civitello, D.J., Rynkiewicz, E., and Clay, K. (2010) Meta-analysis of co-infections in ticks. Isr J Ecol Evol 56: 417-431. Kurtenbach, K., Peacey, M., Rijpkema, S.G.T., Hoodless, A.N., Nuttall, P.A., and Randolph, S.E. (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64: 1169-1174. Ginsberg, H.S. (2008) Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records. Exp Appl Acarol 46: 29-41. Santos-Silva, M.M., Sousa, R., Santos, A.S., Melo, P., Encarnacao, V., and Bacellar, F. (2006) Ticks parasitizing wild birds in Portugal: detection of Rickettsia aeschlimannii, R. helvetica and R. massiliae. Exp Appl Acarol 39: 331-338. Moro, M.H., Zegarra-Moro, O.L., Bjornsson, J., Hofmeister, E.K., Bruinsma, E., Germer, J.J., and Persing, D.H. (2002) Increased arthritis severity in mice coinfected with Borrelia burgdorferi and Babesia microti. J Infect Dis 186: 428-431. Elliott, M. (1977) Synthetic pyrethroids. Am Chem Soc Symp Ser 42: 1-28. Richter, D., Spielman, A., Komar, N., and Matuschka, F.R. (2000) Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg Infect Dis 6: 133-138. Hanincova, K., Taragelova, V., Koci, J., Schafer, S.M., Hails, R., Ullmann, A.J., et al. (2003) Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol 69: 2825-2830. Humair, P.F., and Gern, L. (2000) The wild hidden face of Lyme borreliosis in Europe. Microbes Infect 2: 915-922. Heylen, D., Adriaensen, F., Van Dongen, S., Sprong, H., and Matthysen, E. (2013b) Ecological factors that determine Ixodes ricinus tick burdens in the great tit (Parus major), an important avian reservoir of Borrelia burgdorferi s.l. Int J Parasitol 43: 603-611. Hornok, S., Kovats, D., Csorgo, T., Meli, M.L., Gonczi, E., Hadnagy, Z., et al. (2014) Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit Vectors 7: 128. Tonetti, N., Voordouw, M.J., Durand, J., Monnier, S., and Gern, L. (2015) Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis 6: 334-343. Dubska, L., Literak, I., Kocianova, E., Taragelova, V., Sverakova, V., Sychra, O., and Hromadko, M. (2011) Synanthropic birds influence the distribution of Borrelia species: analysis of Ixodes ricinus ticks feeding on passerine birds. Appl Environ Microbiol 77: 1115-1117. Cochez, C., Heyman, P., Heylen, D., Fonville, M., Hengeveld, P., Takken, W., et al. (2014) The presence of Borrelia miyamotoi, a relapsing fever spirochaete, in questing Ixodes ricinus in Belgium and 2010; 56 2000b; 68 2010; 16 1997; 83 2000; 6 2013a; 15 2006; 39 2015; 142 2004; 4 2000; 2 2009; 118 2014; 62 2003; 112 2013; 6 1996; 33 2014; 5 2013b; 43 2002; 186 2001 2015; 84 2013; 51 2004; 292 2014; 16 2005; 73 2008; 22 1999; 95 2000a; 68 1998; 287 2010; 5 2014; 7 2015; 6 2002; 291 2006; 12 1991; 79 2002; 8 1997 2003; 293 2011; 77 1977; 42 2005 1998; 64 2001; 69 2010; 40 1996; 12 2014; 80 2010; 47 2009; 75 2013; 79 1999; 37 2003; 69 2008; 46 2015 2001; 1 1999; 354 2009; 2 2012; 5 2005; 11 2010; 52 2012; 42 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_30_1 Verbeke G. (e_1_2_6_64_1) 2001 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_55_1 Humair P.F. (e_1_2_6_32_1) 1998; 287 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 Molenberghs G. (e_1_2_6_44_1) 2005 e_1_2_6_43_1 Heise S.R. (e_1_2_6_19_1) 2010; 47 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 Beati L. (e_1_2_6_3_1) 1999; 95 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Hagemeijer E.J.M. (e_1_2_6_17_1) 1997 e_1_2_6_14_1 Gray J.S. (e_1_2_6_16_1) 1991; 79 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Moro, M.H., Zegarra-Moro, O.L., Bjornsson, J., Hofmeister, E.K., Bruinsma, E., Germer, J.J., and Persing, D.H. (2002) Increased arthritis severity in mice coinfected with Borrelia burgdorferi and Babesia microti. J Infect Dis 186: 428-431. – reference: Richter, D., Allgower, R., and Matuschka, F.R. (2002) Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochaete Borrelia afzelii. Emerg Infect Dis 8: 1421-1425. – reference: Tijsse-Klasen, E., Sprong, H., and Pandak, N. (2013) Co-infection of Borrelia burgdorferi sensu lato and Rickettsia species in ticks and in an erythema migrans patient. Parasit Vectors 6: 347. – reference: Nilsson, K., Lindquist, O., and Pahlson, C. (1999) Association of Rickettsia helvetica with chronic perimyocarditis in sudden cardiac death. Lancet 354: 1169-1173. – reference: Dubska, L., Literak, I., Kocianova, E., Taragelova, V., Sverakova, V., Sychra, O., and Hromadko, M. (2011) Synanthropic birds influence the distribution of Borrelia species: analysis of Ixodes ricinus ticks feeding on passerine birds. Appl Environ Microbiol 77: 1115-1117. – reference: Heylen, D., Matthysen, E., Fonville, M., and Sprong, H. (2014) Songbirds as general transmittors but selective amplifiers of Borrelia burgdorferi sensu lato genotypes. Environ Microbiol 16: 2859-2868. – reference: Scoles, G.A., Papero, M., Beati, L., and Fish, D. (2001) A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis 1: 21-34. – reference: Burri, C., Schumann, O., Schumann, C., and Gern, L. (2014) Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick Borne Dis 5: 245-251. – reference: Dumler, J.S., Choi, K.S., Garcia-Garcia, J.C., Barat, N.S., Scorpio, D.G., Garyu, J.W., et al. (2005) Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 11: 1828-1834. – reference: Humair, P.F. (2002) Birds and Borrelia. Int J Med Microbiol 291: 70-74. – reference: Voordouw, M.J. (2015) Co-feeding transmission in Lyme disease pathogens. Parasitology 142: 290-302. – reference: Schwan, T.G., and Piesman, J. (2002) Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Infect Dis 8: 115-121. – reference: Stenos, J., Graves, S.R., and Unsworth, N.B. (2005) A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. Am J Trop Med Hyg 73: 1083-1085. – reference: Heise, S.R., Elshahed, M.S., and Little, S.E. (2010) Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia. J Med Entomol 47: 258-268. – reference: Humair, P.F., and Gern, L. (2000) The wild hidden face of Lyme borreliosis in Europe. Microbes Infect 2: 915-922. – reference: Herrmann, C., Gern, L., and Voordouw, M. (2013) Species co-occurrence patterns among Lyme borreliosis pathogens in the tick vector Ixodes ricinus. Appl Environ Microbiol 79: 7273-7280. – reference: Jacquet, M., Durand, J., Rais, O., and Voordouw, M.J. (2015) Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen, Borrelia afzelii. Environ Microbiol (in press). doi: 10.1111/1462-2920.13065. – reference: Heylen, D.J.A., and Matthysen, E. (2008) Effect of tick parasitism on the health status of a passerine bird. Funct Ecol 22: 1099-1107. – reference: Levin, M.L., and Fish, D. (2000b) Acquisition of coinfection and simultaneous transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis ticks. Infect Immun 68: 2183-2186. – reference: Beati, L., Kelly, P.J., Mason, P.R., and Raoult, D. (1999) Experimental infections of vervet monkeys (Cercopithecus pygerythrus) with three spotted fever group rickettsiae. S Afr J Sci 95: 448-449. – reference: Ginsberg, H.S. (2008) Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records. Exp Appl Acarol 46: 29-41. – reference: Heylen, D., Adriaensen, F., Dauwe, T., Eens, M., and Matthysen, E. (2009) Offspring quality and tick infestation load in brood rearing great tits Parus major. Oikos 118: 1499-1506. – reference: Humair, P.F., Postic, D., Wallich, R., and Gern, L. (1998) An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes. J Med Microbiol Virol Parasitol Infect Dis 287: 521-538. – reference: Hornok, S., Kovats, D., Csorgo, T., Meli, M.L., Gonczi, E., Hadnagy, Z., et al. (2014) Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit Vectors 7: 128. – reference: Molenberghs, G., and Verbeke, G. (2005) Models for Discrete Longitudinal Data. Berlin, Germany: Springer-Verlag. – reference: Gray, J.S. (1991) The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol 79: 323-333. – reference: Regev-Yochay, G., Dagan, R., Raz, M., Carmeli, Y., Shainberg, B., Derazne, E., et al. (2004) Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. J Am Med Assoc 292: 716-720. – reference: Duncan, A.B., Agnew, P., Noel, V., and Michalakis, Y. (2015) The consequences of co-infections for parasite transmission in the mosquito Aedes aegypti. J Anim Ecol 84: 498-508. – reference: Verbeke, G., and Molenberghs, G. (2001) Linear Mixed Models for Longitudinal Data. Berlin, Germany: Springer-Verlag. – reference: Heylen, D.J.A., Madder, M., and Matthysen, E. (2010) Lack of resistance against the tick Ixodes ricinus in two related passerine bird species. Int J Parasitol 40: 183-191. – reference: Elliott, M. (1977) Synthetic pyrethroids. Am Chem Soc Symp Ser 42: 1-28. – reference: Holden, K., Hodzic, E., Feng, S., Freet, K.J., Lefebvre, R.B., and Barthold, S.W. (2005) Coinfection with Anaplasma phagocytophilum alters Borrelia burgdorferi population distribution in C3H/HeN mice. Infect Immun 73: 3440-3444. – reference: Zemtsova, G., Killmaster, L.F., Mumcuoglu, K.Y., and Levin, M.L. (2010) Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp Appl Acarol 52: 383-392. – reference: Andersson, M., Scherman, K., and Raberg, L. (2014) Infection dynamics of the tick-borne pathogen "Candidatus Neoehrlichia mikurensis" and coinfections with Borrelia afzelii in bank voles in Southern Sweden. Appl Environ Microbiol 80: 1645-1649. – reference: Dubska, L., Literak, I., Kocianova, E., Taragelova, V., and Sychra, O. (2009) Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe. Appl Environ Microbiol 75: 596-602. – reference: Marsot, M., Henry, P.-Y., Vourc'h, G., Gasqui, P., Ferquel, E., Laignel, J., et al. (2012) Which forest bird species are the main hosts of the tick, Ixodes ricinus, the vector of Borrelia burgdorferi sensu lato, during the breeding season? Int J Parasitol 42: 781-788. – reference: Heylen, D., Tijsse, E., Fonville, M., Matthysen, E., and Sprong, H. (2013a) Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol 15: 663-673. – reference: Jahfari, S., Fonville, M., Hengeveld, P., Reusken, C., Scholte, E.J., Takken, W., et al. (2012) Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 5: 74. – reference: Hu, C.M., Cheminade, Y., Perret, J.L., Weynants, V., Lobet, Y., and Gern, L. (2003) Early detection of Borrelia burgdorferi sensu lato infection in Balb/c mice by co-feeding Ixodes ricinus ticks. Int J Med Microbiol 293: 421-426. – reference: Richter, D., Spielman, A., Komar, N., and Matuschka, F.R. (2000) Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg Infect Dis 6: 133-138. – reference: Nilsson, K., Elfving, K., and Pahlson, C. (2010) Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg Infect Dis 16: 490-492. – reference: Levin, M.L., and Fish, D. (2000a) Immunity reduces reservoir host competence of Peromyscus leucopus for Ehrlichia phagocytophila. Infect Immun 68: 1514-1518. – reference: Lommano, E., Dvorak, C., Vallotton, L., Jenni, L., and Gern, L. (2014) Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick Borne Dis 5: 871-882. – reference: Civitello, D.J., Rynkiewicz, E., and Clay, K. (2010) Meta-analysis of co-infections in ticks. Isr J Ecol Evol 56: 417-431. – reference: Hagemeijer, E.J.M., and Blair, M.J. (1997) The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. London, UK: T & A D Poyser. – reference: Randolph, S.E., Gern, L., and Nuttall, P.A. (1996) Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12: 472-479. – reference: Maurer, F.P., Keller, P.M., Beuret, C., Joha, C., Achermann, Y., Gubler, J., et al. (2013) Close geographic association of human Neoehrlichiosis and tick populations carrying 'Candidatus Neoehrlichia mikurensis' in Eastern Switzerland. J Clin Microbiol 51: 169-176. – reference: Sprong, H., Wielinga, P.R., Fonville, M., Reusken, C., Brandenburg, A.H., Borgsteede, F., et al. (2009) Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasit Vectors 2: 41. – reference: Santos-Silva, M.M., Sousa, R., Santos, A.S., Melo, P., Encarnacao, V., and Bacellar, F. (2006) Ticks parasitizing wild birds in Portugal: detection of Rickettsia aeschlimannii, R. helvetica and R. massiliae. Exp Appl Acarol 39: 331-338. – reference: Kocan, K.A., and de la Fuente, J. (2003) Co-feeding studies of ticks infected with Anaplasma marginale. Vet Parasitol 112: 295-305. – reference: Schouls, L.M., Van de Pol, I., Rijpkema, S.G.T., and Schot, C.S. (1999) Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 37: 2215-2222. – reference: Gern, L., and Rais, O. (1996) Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol 33: 189-192. – reference: Sato, Y., and Nakao, M. (1997) Transmission of the Lyme disease spirochete, Borrelia garinii, between infected and uninfected immature Ixodes persulcatus during cofeeding on mice. J Parasitol 83: 547-550. – reference: Cochez, C., Heyman, P., Heylen, D., Fonville, M., Hengeveld, P., Takken, W., et al. (2014) The presence of Borrelia miyamotoi, a relapsing fever spirochaete, in questing Ixodes ricinus in Belgium and in The Netherlands. Zoonoses Public Health 62: 331-333. – reference: Wallmenius, K., Barboutis, C., Fransson, T., Jaenson, T.G.T., Lindgren, P.-E., Nystrom, F., et al. (2014) Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area. Parasit Vectors 7: 318. – reference: Elfving, K., Olsen, B., Bergstrom, S., Waldenstrom, J., Lundkvist, A., Sjostedt, A., et al. (2010) Dissemination of spotted fever Rickettsia agents in Europe by migrating birds. PLoS ONE 5: e8572. – reference: Massung, R.F., Priestley, R.A., and Levin, M.L. (2004) Transmission route efficacy and kinetics of Anaplasma phagocytophilum infection in the white-footed mouse, Peromyscus leucopus. Vector Borne Zoonotic Dis 4: 310-318. – reference: Comstedt, P., Bergstrom, S., Olsen, B., Garpmo, U., Marjavaara, L., Mejlon, H., et al. (2006) Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerg Infect Dis 12: 1087-1095. – reference: Tonetti, N., Voordouw, M.J., Durand, J., Monnier, S., and Gern, L. (2015) Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis 6: 334-343. – reference: Heylen, D., Adriaensen, F., Van Dongen, S., Sprong, H., and Matthysen, E. (2013b) Ecological factors that determine Ixodes ricinus tick burdens in the great tit (Parus major), an important avian reservoir of Borrelia burgdorferi s.l. Int J Parasitol 43: 603-611. – reference: Jahfari, S., Coipan, E.C., Fonville, M., Van Leeuwen, A.D., Hengeveld, P., Heylen, D., et al. (2014) Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors 7: 365. – reference: Hanincova, K., Taragelova, V., Koci, J., Schafer, S.M., Hails, R., Ullmann, A.J., et al. (2003) Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol 69: 2825-2830. – reference: Szekeres, S., Coipan, E.C., Rigo, K., Majoros, G., Jahfari, S., Sprong, H., and Foldvari, G. (2015) Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks Tick Borne Dis 6: 111-116. – reference: Kurtenbach, K., Peacey, M., Rijpkema, S.G.T., Hoodless, A.N., Nuttall, P.A., and Randolph, S.E. (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64: 1169-1174. – reference: Thomas, V., Anguita, J., Barthold, S.W., and Fikrig, E. (2001) Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect Immun 69: 3359-3371. – reference: Susi, H., Barres, B., Vale, P.F., and Laine, A.L. (2015) Co-infection alters population dynamics of infectious disease. Nat Commun 6: 5975. – year: 2015 article-title: Strain‐specific antibodies reduce co‐feeding transmission of the Lyme disease pathogen, publication-title: Environ Microbiol – volume: 5 start-page: 871 year: 2014 end-page: 882 article-title: Tick‐borne pathogens in ticks collected from breeding and migratory birds in Switzerland publication-title: Ticks Tick Borne Dis – volume: 51 start-page: 169 year: 2013 end-page: 176 article-title: Close geographic association of human Neoehrlichiosis and tick populations carrying ‘ Neoehrlichia mikurensis’ in Eastern Switzerland publication-title: J Clin Microbiol – volume: 8 start-page: 115 year: 2002 end-page: 121 article-title: Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks publication-title: Emerg Infect Dis – year: 2005 – volume: 46 start-page: 29 year: 2008 end-page: 41 article-title: Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records publication-title: Exp Appl Acarol – year: 2001 – volume: 40 start-page: 183 year: 2010 end-page: 191 article-title: Lack of resistance against the tick in two related passerine bird species publication-title: Int J Parasitol – volume: 7 start-page: 128 year: 2014 article-title: Birds as potential reservoirs of tick‐borne pathogens: first evidence of bacteraemia with publication-title: Parasit Vectors – volume: 22 start-page: 1099 year: 2008 end-page: 1107 article-title: Effect of tick parasitism on the health status of a passerine bird publication-title: Funct Ecol – volume: 12 start-page: 472 year: 1996 end-page: 479 article-title: Co‐feeding ticks: epidemiological significance for tick‐borne pathogen transmission publication-title: Parasitol Today – volume: 5 start-page: e8572 year: 2010 article-title: Dissemination of spotted fever Rickettsia agents in Europe by migrating birds publication-title: PLoS ONE – volume: 6 start-page: 5975 year: 2015 article-title: Co‐infection alters population dynamics of infectious disease publication-title: Nat Commun – volume: 112 start-page: 295 year: 2003 end-page: 305 article-title: Co‐feeding studies of ticks infected with publication-title: Vet Parasitol – volume: 6 start-page: 347 year: 2013 article-title: Co‐infection of sensu lato and species in ticks and in an erythema migrans patient publication-title: Parasit Vectors – volume: 6 start-page: 334 year: 2015 end-page: 343 article-title: Genetic variation in transmission success of the Lyme borreliosis pathogen publication-title: Ticks Tick Borne Dis – volume: 11 start-page: 1828 year: 2005 end-page: 1834 article-title: Human granulocytic anaplasmosis and publication-title: Emerg Infect Dis – volume: 68 start-page: 1514 year: 2000a end-page: 1518 article-title: Immunity reduces reservoir host competence of for publication-title: Infect Immun – volume: 16 start-page: 2859 year: 2014 end-page: 2868 article-title: Songbirds as general transmittors but selective amplifiers of sensu lato genotypes publication-title: Environ Microbiol – volume: 42 start-page: 781 year: 2012 end-page: 788 article-title: Which forest bird species are the main hosts of the tick, , the vector of sensu lato, during the breeding season? publication-title: Int J Parasitol – volume: 293 start-page: 421 year: 2003 end-page: 426 article-title: Early detection of sensu lato infection in Balb/c mice by co‐feeding ticks publication-title: Int J Med Microbiol – volume: 73 start-page: 3440 year: 2005 end-page: 3444 article-title: Coinfection with alters population distribution in C3H/HeN mice publication-title: Infect Immun – volume: 75 start-page: 596 year: 2009 end-page: 602 article-title: Differential role of passerine birds in distribution of spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe publication-title: Appl Environ Microbiol – volume: 33 start-page: 189 year: 1996 end-page: 192 article-title: Efficient transmission of between cofeeding ticks (Acari: Ixodidae) publication-title: J Med Entomol – volume: 287 start-page: 521 year: 1998 end-page: 538 article-title: An avian reservoir ( ) of the Lyme borreliosis spirochetes publication-title: J Med Microbiol Virol Parasitol Infect Dis – volume: 62 start-page: 331 year: 2014 end-page: 333 article-title: The presence of , a relapsing fever spirochaete, in questing in Belgium and in The Netherlands publication-title: Zoonoses Public Health – volume: 7 start-page: 365 year: 2014 article-title: Circulation of four ecotypes in Europe publication-title: Parasit Vectors – volume: 5 start-page: 245 year: 2014 end-page: 251 article-title: Are spp. mice and reservoirs for Neoehrlichia mikurensis, and ? publication-title: Ticks Tick Borne Dis – volume: 6 start-page: 111 year: 2015 end-page: 116 article-title: Neoehrlichia mikurensis and in natural rodent and tick communities in Southern Hungary publication-title: Ticks Tick Borne Dis – volume: 7 start-page: 318 year: 2014 article-title: Spotted fever species in and ticks infesting migratory birds in the European Mediterranean area publication-title: Parasit Vectors – volume: 52 start-page: 383 year: 2010 end-page: 392 article-title: Co‐feeding as a route for transmission of between ticks publication-title: Exp Appl Acarol – volume: 118 start-page: 1499 year: 2009 end-page: 1506 article-title: Offspring quality and tick infestation load in brood rearing great tits publication-title: Oikos – volume: 43 start-page: 603 year: 2013b end-page: 611 article-title: Ecological factors that determine tick burdens in the great tit ( ), an important avian reservoir of s.l publication-title: Int J Parasitol – volume: 42 start-page: 1 year: 1977 end-page: 28 article-title: Synthetic pyrethroids publication-title: Am Chem Soc Symp Ser – volume: 68 start-page: 2183 year: 2000b end-page: 2186 article-title: Acquisition of coinfection and simultaneous transmission of and by ticks publication-title: Infect Immun – year: 1997 – volume: 39 start-page: 331 year: 2006 end-page: 338 article-title: Ticks parasitizing wild birds in Portugal: detection of , and publication-title: Exp Appl Acarol – volume: 73 start-page: 1083 year: 2005 end-page: 1085 article-title: A highly sensitive and specific real‐time PCR assay for the detection of spotted fever and typhus group Rickettsiae publication-title: Am J Trop Med Hyg – volume: 47 start-page: 258 year: 2010 end-page: 268 article-title: Bacterial diversity in (Acari: Ixodidae) with a focus on members of the genus Rickettsia publication-title: J Med Entomol – volume: 64 start-page: 1169 year: 1998 end-page: 1174 article-title: Differential transmission of the genospecies of sensu lato by game birds and small rodents in England publication-title: Appl Environ Microbiol – volume: 142 start-page: 290 year: 2015 end-page: 302 article-title: Co‐feeding transmission in Lyme disease pathogens publication-title: Parasitology – volume: 95 start-page: 448 year: 1999 end-page: 449 article-title: Experimental infections of vervet monkeys ( ) with three spotted fever group rickettsiae publication-title: S Afr J Sci – volume: 4 start-page: 310 year: 2004 end-page: 318 article-title: Transmission route efficacy and kinetics of infection in the white‐footed mouse, publication-title: Vector Borne Zoonotic Dis – volume: 6 start-page: 133 year: 2000 end-page: 138 article-title: Competence of American robins as reservoir hosts for Lyme disease spirochetes publication-title: Emerg Infect Dis – volume: 2 start-page: 41 year: 2009 article-title: ticks are reservoir hosts for and potentially carry flea‐borne species publication-title: Parasit Vectors – volume: 15 start-page: 663 year: 2013a end-page: 673 article-title: Transmission dynamics of s.l. in a bird tick community publication-title: Environ Microbiol – volume: 16 start-page: 490 year: 2010 end-page: 492 article-title: in patient with meningitis, Sweden, 2006 publication-title: Emerg Infect Dis – volume: 292 start-page: 716 year: 2004 end-page: 720 article-title: Association between carriage of and in children publication-title: J Am Med Assoc – volume: 37 start-page: 2215 year: 1999 end-page: 2222 article-title: Detection and identification of , sensu lato, and species in Dutch ticks publication-title: J Clin Microbiol – volume: 84 start-page: 498 year: 2015 end-page: 508 article-title: The consequences of co‐infections for parasite transmission in the mosquito publication-title: J Anim Ecol – volume: 79 start-page: 323 year: 1991 end-page: 333 article-title: The development and seasonal activity of the tick : a vector of Lyme borreliosis publication-title: Rev Med Vet Entomol – volume: 69 start-page: 3359 year: 2001 end-page: 3371 article-title: Coinfection with and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis publication-title: Infect Immun – volume: 79 start-page: 7273 year: 2013 end-page: 7280 article-title: Species co‐occurrence patterns among Lyme borreliosis pathogens in the tick vector publication-title: Appl Environ Microbiol – volume: 80 start-page: 1645 year: 2014 end-page: 1649 article-title: Infection dynamics of the tick‐borne pathogen “ Neoehrlichia mikurensis” and coinfections with in bank voles in Southern Sweden publication-title: Appl Environ Microbiol – volume: 69 start-page: 2825 year: 2003 end-page: 2830 article-title: Association of and with songbirds in Slovakia publication-title: Appl Environ Microbiol – volume: 56 start-page: 417 year: 2010 end-page: 431 article-title: Meta‐analysis of co‐infections in ticks publication-title: Isr J Ecol Evol – volume: 291 start-page: 70 year: 2002 end-page: 74 article-title: Birds and publication-title: Int J Med Microbiol – volume: 5 start-page: 74 year: 2012 article-title: Prevalence of in ticks and rodents from North‐west Europe publication-title: Parasit Vectors – volume: 8 start-page: 1421 year: 2002 end-page: 1425 article-title: Co‐feeding transmission and its contribution to the perpetuation of the Lyme disease spirochaete publication-title: Emerg Infect Dis – volume: 2 start-page: 915 year: 2000 end-page: 922 article-title: The wild hidden face of Lyme borreliosis in Europe publication-title: Microbes Infect – volume: 186 start-page: 428 year: 2002 end-page: 431 article-title: Increased arthritis severity in mice coinfected with and publication-title: J Infect Dis – volume: 83 start-page: 547 year: 1997 end-page: 550 article-title: Transmission of the Lyme disease spirochete, , between infected and uninfected immature during cofeeding on mice publication-title: J Parasitol – volume: 77 start-page: 1115 year: 2011 end-page: 1117 article-title: Synanthropic birds influence the distribution of species: analysis of ticks feeding on passerine birds publication-title: Appl Environ Microbiol – volume: 1 start-page: 21 year: 2001 end-page: 34 article-title: A relapsing fever group spirochete transmitted by ticks publication-title: Vector Borne Zoonotic Dis – volume: 12 start-page: 1087 year: 2006 end-page: 1095 article-title: Migratory passerine birds as reservoirs of Lyme borreliosis in Europe publication-title: Emerg Infect Dis – volume: 354 start-page: 1169 year: 1999 end-page: 1173 article-title: Association of with chronic perimyocarditis in sudden cardiac death publication-title: Lancet – ident: e_1_2_6_66_1 doi: 10.1186/1756-3305-7-318 – volume-title: The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance year: 1997 ident: e_1_2_6_17_1 – ident: e_1_2_6_46_1 doi: 10.1016/S0140-6736(99)04093-3 – ident: e_1_2_6_53_1 doi: 10.2307/3284432 – ident: e_1_2_6_62_1 doi: 10.1186/1756-3305-6-347 – ident: e_1_2_6_57_1 doi: 10.1186/1756-3305-2-41 – ident: e_1_2_6_52_1 doi: 10.1007/s10493-006-9008-3 – ident: e_1_2_6_20_1 doi: 10.1128/AEM.02158-13 – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-2435.2008.01463.x – ident: e_1_2_6_34_1 doi: 10.1186/1756-3305-5-74 – volume: 95 start-page: 448 year: 1999 ident: e_1_2_6_3_1 article-title: Experimental infections of vervet monkeys (Cercopithecus pygerythrus) with three spotted fever group rickettsiae publication-title: S Afr J Sci – ident: e_1_2_6_60_1 doi: 10.1016/j.ttbdis.2014.10.004 – ident: e_1_2_6_14_1 doi: 10.1093/jmedent/33.1.189 – ident: e_1_2_6_15_1 doi: 10.1007/s10493-008-9175-5 – ident: e_1_2_6_50_1 doi: 10.3201/eid0602.000205 – ident: e_1_2_6_26_1 doi: 10.1016/j.ijpara.2009.07.011 – ident: e_1_2_6_47_1 doi: 10.3201/eid1603.090184 – ident: e_1_2_6_35_1 doi: 10.1186/1756-3305-7-365 – ident: e_1_2_6_7_1 doi: 10.3201/eid1207.060127 – ident: e_1_2_6_48_1 doi: 10.1016/S0169-4758(96)10072-7 – ident: e_1_2_6_61_1 doi: 10.1128/IAI.69.5.3359-3371.2001 – ident: e_1_2_6_9_1 doi: 10.1128/AEM.02278-10 – ident: e_1_2_6_29_1 doi: 10.1078/1438-4221-00285 – ident: e_1_2_6_30_1 doi: 10.1016/S1438-4221(02)80015-7 – ident: e_1_2_6_22_1 doi: 10.1111/1462-2920.12059 – ident: e_1_2_6_43_1 doi: 10.1128/JCM.01955-12 – ident: e_1_2_6_5_1 doi: 10.1560/IJEE.56.3-4.417 – ident: e_1_2_6_6_1 doi: 10.1111/zph.12154 – ident: e_1_2_6_23_1 doi: 10.1016/j.ijpara.2013.02.007 – ident: e_1_2_6_45_1 doi: 10.1086/341452 – ident: e_1_2_6_39_1 doi: 10.1128/IAI.68.4.2183-2186.2000 – volume-title: Models for Discrete Longitudinal Data year: 2005 ident: e_1_2_6_44_1 – ident: e_1_2_6_65_1 doi: 10.1017/S0031182014001486 – ident: e_1_2_6_33_1 doi: 10.1111/1462‐2920.13065 – ident: e_1_2_6_28_1 doi: 10.1186/1756-3305-7-128 – ident: e_1_2_6_27_1 doi: 10.1128/IAI.73.6.3440-3444.2005 – ident: e_1_2_6_36_1 doi: 10.1016/S0304-4017(03)00018-9 – ident: e_1_2_6_55_1 doi: 10.3201/eid0802.010198 – ident: e_1_2_6_37_1 doi: 10.1128/AEM.64.4.1169-1174.1998 – ident: e_1_2_6_49_1 doi: 10.1001/jama.292.6.716 – ident: e_1_2_6_24_1 doi: 10.1111/1462-2920.12304 – ident: e_1_2_6_21_1 doi: 10.1111/j.1600-0706.2009.17606.x – ident: e_1_2_6_2_1 doi: 10.1128/AEM.03469-13 – ident: e_1_2_6_12_1 doi: 10.1371/journal.pone.0008572 – ident: e_1_2_6_51_1 doi: 10.3201/eid0812.010519 – volume-title: Linear Mixed Models for Longitudinal Data year: 2001 ident: e_1_2_6_64_1 – ident: e_1_2_6_13_1 doi: 10.1021/bk-1977-0042.ch001 – ident: e_1_2_6_41_1 doi: 10.1016/j.ijpara.2012.05.010 – ident: e_1_2_6_59_1 doi: 10.1038/ncomms6975 – ident: e_1_2_6_4_1 doi: 10.1016/j.ttbdis.2013.11.007 – ident: e_1_2_6_40_1 doi: 10.1016/j.ttbdis.2014.07.001 – ident: e_1_2_6_11_1 doi: 10.1111/1365-2656.12302 – ident: e_1_2_6_42_1 doi: 10.1089/vbz.2004.4.310 – ident: e_1_2_6_8_1 doi: 10.1128/AEM.01674-08 – ident: e_1_2_6_63_1 doi: 10.1016/j.ttbdis.2015.02.007 – ident: e_1_2_6_67_1 doi: 10.1007/s10493-010-9375-7 – ident: e_1_2_6_54_1 doi: 10.1128/JCM.37.7.2215-2222.1999 – ident: e_1_2_6_18_1 doi: 10.1128/AEM.69.5.2825-2830.2003 – volume: 79 start-page: 323 year: 1991 ident: e_1_2_6_16_1 article-title: The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis publication-title: Rev Med Vet Entomol – ident: e_1_2_6_31_1 doi: 10.1016/S1286-4579(00)00393-2 – ident: e_1_2_6_10_1 doi: 10.3201/eid1112.050898 – volume: 47 start-page: 258 year: 2010 ident: e_1_2_6_19_1 article-title: Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia publication-title: J Med Entomol doi: 10.1093/jmedent/47.2.258 – volume: 287 start-page: 521 year: 1998 ident: e_1_2_6_32_1 article-title: An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes publication-title: J Med Microbiol Virol Parasitol Infect Dis – ident: e_1_2_6_58_1 doi: 10.4269/ajtmh.2005.73.1083 – ident: e_1_2_6_56_1 doi: 10.1089/153036601750137624 – ident: e_1_2_6_38_1 doi: 10.1128/IAI.68.3.1514-1518.2000 |
SSID | ssj0017370 |
Score | 2.3621712 |
Snippet | We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve birds were... Summary We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve... We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common E uropean songbird ( P arus major ). Tick‐naïve birds... We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were... Summary We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve... We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naive birds were... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 988 |
SubjectTerms | Anaplasma - growth & development Anaplasma phagocytophilum Animals Bacteria Bird Diseases - microbiology Bird Diseases - transmission Borrelia burgdorferi Group - growth & development Borrelia garinii Borrelia miyamotoi Coinfection Ixodes - microbiology Ixodes ricinus Ixodidae mixed infection molting nymphs Parus major pathogens Rickettsia - growth & development Rickettsia helvetica Songbirds Songbirds - microbiology Tick-Borne Diseases - microbiology Tick-Borne Diseases - transmission ticks |
Title | Co‐infections and transmission dynamics in a tick‐borne bacterium community exposed to songbirds |
URI | https://api.istex.fr/ark:/67375/WNG-2N0PHSGP-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13164 https://www.ncbi.nlm.nih.gov/pubmed/26627444 https://www.proquest.com/docview/1774392224 https://www.proquest.com/docview/1780505142 https://www.proquest.com/docview/1803106648 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB60IPii1ltXWxlBxJcsyVySzKP0tgguxbro2zAzmZSympRNFto-9Sf4G_0lnpNJgi1eEN8CmZlkTs7lO8nJdwh55TPlhcSidiZZJIznEQTBNPJeSeNVKYsCv-i-n6ezhXj3WQ7VhPgvTOCHGF-4oWV0_hoN3NjmJyMHE2cR9lqaJhwwP3jhhKfInr_3YSSQSjLetYvrxyasJ_fBWp4b86_FpdulqQGtoqDPfwU9ryPZLhQd3Cd22ESoQFlO162dussb_I7_tcsH5F4PVOnboFmb5JavHpI7oXXlxSNS7Nbfr74NpVxVQ01V0BYDHygOvoGjReh139DTihoKqyxhAmhc5akNFNHrr9SF_1PaC-rPz-rGwxo1hRTgxJ6uiuYxWRzsf9ydRX3HhsjJVImI-wx5RXOfgY-NPRK7cHQaOUB4Z5XlcaFKA4buM-dKgDoudoVE_psitaJ0_AnZqOrKbxEqIc-RHnZuDGSIkOYlRmUuLrHbknHKTch0eF7a9XTm2FXjix7SGhSdRtHpTnQT8maccBaYPH4_dAsUQJsT8LN6ccyQhQ8CuVQsn5DXnVaMS5jVEmvjMqk_zQ81m8dHs-PDI80nZHtQG927hUYnGeZ_AMngEi_H0_Bc8CuNqXy9xjE5dhdMBPvDmBwZXdNUwP08DSo53hBDSn8h4ApBsf62WQ323h08-9cJz8ldFE2oyNsmG-1q7XcAorX2RWeFPwDkzCuy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoEYIL_6ULBYyEEJesEsdO4iOqaBdoVxXtit4sx3aqatuk2mSllhOPwDPyJMzESdRW_AhxixTbiScz42_syTeEvHapdFxgUjsTLODaxQEsgkngnBTayUJYiye6u9NkMuMfD8XhpX9hPD_EsOGGltH6azRw3JC-ZOVg4yzAYkvjKAbQv0Jutqd0CIw-DxRSURq3BeO6xhHr6H0wm-faAFdWppVCV4BXUdTnvwKfV7Fsuxht3SOmn4bPQZmPl00-Nl-vMTz-3zzvk7sdVqXvvHI9IDdc-ZDc8tUrLx4Ru1n9-Pa9z-Yqa6pLSxtc-0B3cBOOWl_uvqbHJdUURplDB1C60tHcs0QvT6nxv6g0F9Sdn1W1gzEqClHAUX68sPVjMtt6f7A5CbqiDYERieRB7FKkFs1cCm42dMjtEqPfyADFm1zmcWhlocHWXWpMAWjHhMYKpMCxSc4LE6-R1bIq3TqhAkId4WDmWkOQCJFepGVqwgILLmkjzYiM-w-mTMdojoU1TlQf2aDoFIpOtaIbkbdDhzNP5vH7puugAUofgatVs32GRHywlgvJshF506rFMIRezDE9LhXqy3RbsWm4N9nf3lPxiGz0eqM6z1CrKMUQEFAZPOLVcBu-Cx7U6NJVS2yTYYHBiLM_tMmQ1DVJOLzPE6-TwwsxZPXnHJ7gNetvk1Vg8u3F03_t8JLcnhzs7qidD9NPz8gdFJNP0Nsgq81i6Z4DYmvyF61J_gStBy_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL79KFAkZCiEtWiWMn8REVtstrtaKs4GY5tlNVC8lqk5VaTvwEfiO_hJk4iWjFQ4hbpNhOPJnHN8nkG0Ieu1Q6LrConQkWcO3iAIJgEjgnhXayENbiF923s2S64K8-ir6aEP-F8fwQwws3tIzWX6OBr2zxk5GDibMAey2Noxgw_xa5yBMIloiL3g0MUlEat_3iusER69h9sJjn3AJnAtNWoSuAqyjpk19hz7NQto1Fk2sk73fhS1CW402Tj82XcwSP_7XN6-Rqh1TpM69aN8gFV94kl3zvytNbxO5X379-62u5yprq0tIGIx9oDr6Co9Y3u6_pcUk1hVWWMAFUrnQ09xzRm8_U-B9UmlPqTlZV7WCNikIOcJQfr219mywmL97vT4OuZUNgRCJ5ELsUiUUzl4KTDR0yu8ToNTLA8CaXeRxaWWiwdJcaUwDWMaGxAglwbJLzwsQ7ZLusSrdLqIBERzjYudaQIkKeF2mZmrDAdkvaSDMi4_55KdPxmWNbjU-qz2tQdApFp1rRjcjTYcLKU3n8fuguKIDSR-Bo1eKQIQ0fRHIhWTYiT1qtGJbQ6yUWx6VCfZgdKDYL59PDg7mKR2SvVxvV-YVaRSkmgIDJ4BKPhtPwXPAzjS5dtcExGbYXjDj7w5gMKV2ThMP93PEqOdwQQ05_zuEKXrH-tlkFBt8e3P3XCQ_J5fnziXrzcvb6HrmCUvLVeXtku1lv3H2Aa03-oDXIH-CiLn8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-infections+and+transmission+dynamics+in+a+tick-borne+bacterium+community+exposed+to+songbirds&rft.jtitle=Environmental+microbiology&rft.au=Heylen%2C+Dieter&rft.au=Fonville%2C+Manoj&rft.au=Leeuwen%2C+Arieke+Docters&rft.au=Sprong%2C+Hein&rft.date=2016-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=18&rft.issue=3&rft.spage=988&rft_id=info:doi/10.1111%2F1462-2920.13164&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3990920441 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |