Co‐infections and transmission dynamics in a tick‐borne bacterium community exposed to songbirds

We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve birds were infested with three successive batches (spaced 5 days apart) of field‐collected Ixodes ricinus nymphs, carrying the following tick‐borne bacte...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 18; no. 3; pp. 988 - 996
Main Authors Heylen, Dieter, Fonville, Manoj, Leeuwen, Arieke Docters, Sprong, Hein
Format Journal Article
LanguageEnglish
Published England Blackwell Science 01.03.2016
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1462-2912
1462-2920
DOI10.1111/1462-2920.13164

Cover

Abstract We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve birds were infested with three successive batches (spaced 5 days apart) of field‐collected Ixodes ricinus nymphs, carrying the following tick‐borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co‐infections in ticks.
AbstractList We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks.
We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common E uropean songbird ( P arus major ). Tick‐naïve birds were infested with three successive batches (spaced 5 days apart) of field‐collected I xodes ricinus nymphs, carrying the following tick‐borne bacteria: R ickettsia helvetica (16.9%), B orrelia garinii (1.9%), B orrelia miyamotoi (1.6%), A naplasma phagocytophilum (1.2%) and C andidatus   N eoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R . helvetica and B . garinii , and to a lesser extent of A . phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R . helvetica remained constant over the three infestations. In contrast, the infection rate of B . garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co‐infections in ticks.
Summary We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve birds were infested with three successive batches (spaced 5 days apart) of field‐collected Ixodes ricinus nymphs, carrying the following tick‐borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co‐infections in ticks.
Summary We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and CandidatusNeoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R.helvetica and B.garinii, and to a lesser extent of A.phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R.helvetica remained constant over the three infestations. In contrast, the infection rate of B.garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks.
We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naive birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and CandidatusNeoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R.helvetica and B.garinii, and to a lesser extent of A.phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R.helvetica remained constant over the three infestations. In contrast, the infection rate of B.garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks.
Author Leeuwen, Arieke Docters
Fonville, Manoj
Heylen, Dieter
Sprong, Hein
Author_xml – sequence: 1
  fullname: Heylen, Dieter
– sequence: 2
  fullname: Fonville, Manoj
– sequence: 3
  fullname: Leeuwen, Arieke Docters
– sequence: 4
  fullname: Sprong, Hein
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26627444$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuFDEQRS0URB6wZgeWssmmid92L9EoTCKFEClELC232x056bYHu1tkdvkEvpEvwcM8FpFQvLFdOrdKVbcOwV6IwQHwHqNPuJxTzASpSE3Kl2LBXoGDXWRv98ZkHxzmfI8QllSiN2CfCEEkY-wAtLP45-m3D52zo48hQxNaOCYT8uBzLhHYLoMZvM3QB2jg6O1DETQxBQcbY0eX_DRAG4dhCn5cQve4iNmVHBHmGO4an9r8FrzuTJ_du819BG6_nH2fnVeX3-YXs8-XleWiZhV1EjNFlJNSEOQIFZhSrKiSpLZN3VDU1p1BSDhpbUc5t8i2nKmatqJhnaVH4GSdd5Hiz8nlUZcmrOt7E1ycssYKUYyEYOplVCrEEceMFPT4GXofpxRKI4WSjNaEEFaoDxtqagbX6kXyg0lLvR11AfgasCnmnFynrR_Nauhl3L7XGOmVpXplml4ZqP9ZWnSnz3Tb1P9XbCr98r1bvoTrs68XW1211vk8usedzqQHLcricP3jaq7JFbo-v5lfa1r4j2u-M1Gbu-Szvr0hCIuyaITXRNG_dSjJZw
CitedBy_id crossref_primary_10_1186_s13071_024_06427_x
crossref_primary_10_1371_journal_pntd_0009090
crossref_primary_10_1016_j_nmni_2017_12_011
crossref_primary_10_1016_j_ttbdis_2018_02_009
crossref_primary_10_1038_s41598_019_41686_0
crossref_primary_10_1371_journal_pone_0230579
crossref_primary_10_1038_srep39596
crossref_primary_10_1186_s13071_019_3806_z
crossref_primary_10_1016_j_ttbdis_2023_102146
crossref_primary_10_1016_j_ttbdis_2023_102185
crossref_primary_10_1016_j_ttbdis_2016_12_012
crossref_primary_10_3390_microorganisms10112222
crossref_primary_10_1016_j_onehlt_2024_100764
crossref_primary_10_1016_j_scitotenv_2024_170749
crossref_primary_10_1016_j_heliyon_2024_e37931
crossref_primary_10_1111_1462_2920_13685
crossref_primary_10_1186_s13071_017_2065_0
crossref_primary_10_1186_s13071_018_2856_y
crossref_primary_10_1007_s10344_017_1104_7
crossref_primary_10_1016_j_scitotenv_2019_03_235
crossref_primary_10_1016_j_ttbdis_2020_101607
crossref_primary_10_1007_s00248_019_01442_3
crossref_primary_10_1371_journal_ppat_1009801
crossref_primary_10_1016_j_ttbdis_2018_07_015
crossref_primary_10_1186_s13071_020_3902_0
crossref_primary_10_1186_s13071_021_05139_w
crossref_primary_10_1007_s10493_020_00573_4
crossref_primary_10_3390_pathogens9020150
crossref_primary_10_1186_s13071_018_3126_8
crossref_primary_10_1186_s13071_021_04946_5
crossref_primary_10_1016_j_ttbdis_2017_10_014
crossref_primary_10_1016_j_ttbdis_2020_101489
crossref_primary_10_3389_fimmu_2017_00012
Cites_doi 10.1186/1756-3305-7-318
10.1016/S0140-6736(99)04093-3
10.2307/3284432
10.1186/1756-3305-6-347
10.1186/1756-3305-2-41
10.1007/s10493-006-9008-3
10.1128/AEM.02158-13
10.1111/j.1365-2435.2008.01463.x
10.1186/1756-3305-5-74
10.1016/j.ttbdis.2014.10.004
10.1093/jmedent/33.1.189
10.1007/s10493-008-9175-5
10.3201/eid0602.000205
10.1016/j.ijpara.2009.07.011
10.3201/eid1603.090184
10.1186/1756-3305-7-365
10.3201/eid1207.060127
10.1016/S0169-4758(96)10072-7
10.1128/IAI.69.5.3359-3371.2001
10.1128/AEM.02278-10
10.1078/1438-4221-00285
10.1016/S1438-4221(02)80015-7
10.1111/1462-2920.12059
10.1128/JCM.01955-12
10.1560/IJEE.56.3-4.417
10.1111/zph.12154
10.1016/j.ijpara.2013.02.007
10.1086/341452
10.1128/IAI.68.4.2183-2186.2000
10.1017/S0031182014001486
10.1111/1462‐2920.13065
10.1186/1756-3305-7-128
10.1128/IAI.73.6.3440-3444.2005
10.1016/S0304-4017(03)00018-9
10.3201/eid0802.010198
10.1128/AEM.64.4.1169-1174.1998
10.1001/jama.292.6.716
10.1111/1462-2920.12304
10.1111/j.1600-0706.2009.17606.x
10.1128/AEM.03469-13
10.1371/journal.pone.0008572
10.3201/eid0812.010519
10.1021/bk-1977-0042.ch001
10.1016/j.ijpara.2012.05.010
10.1038/ncomms6975
10.1016/j.ttbdis.2013.11.007
10.1016/j.ttbdis.2014.07.001
10.1111/1365-2656.12302
10.1089/vbz.2004.4.310
10.1128/AEM.01674-08
10.1016/j.ttbdis.2015.02.007
10.1007/s10493-010-9375-7
10.1128/JCM.37.7.2215-2222.1999
10.1128/AEM.69.5.2825-2830.2003
10.1016/S1286-4579(00)00393-2
10.3201/eid1112.050898
10.1093/jmedent/47.2.258
10.4269/ajtmh.2005.73.1083
10.1089/153036601750137624
10.1128/IAI.68.3.1514-1518.2000
ContentType Journal Article
Copyright 2015 Society for Applied Microbiology and John Wiley & Sons Ltd
2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
2016 Society for Applied Microbiology and John Wiley & Sons Ltd
Copyright_xml – notice: 2015 Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7S9
L.6
DOI 10.1111/1462-2920.13164
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 996
ExternalDocumentID 3990920441
26627444
10_1111_1462_2920_13164
EMI13164
ark_67375_WNG_2N0PHSGP_3
US201600125928
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: FWO
  funderid: G0.049.10
– fundername: University of Antwerp
  funderid: KP BOF UA 2015
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c5694-3e714828e77620e2361331838729cb9b30d9fa006e7ccf355c0cd54893d6b4fc3
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Fri Jul 11 18:32:29 EDT 2025
Fri Jul 11 16:30:57 EDT 2025
Fri Jul 25 10:47:23 EDT 2025
Mon Jul 21 06:01:03 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Tue Jul 01 04:00:36 EDT 2025
Wed Jan 22 17:09:41 EST 2025
Tue Sep 09 05:32:21 EDT 2025
Wed Dec 27 19:14:39 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5694-3e714828e77620e2361331838729cb9b30d9fa006e7ccf355c0cd54893d6b4fc3
Notes http://dx.doi.org/10.1111/1462-2920.13164
FWO - No. G0.049.10
ArticleID:EMI13164
University of Antwerp - No. KP BOF UA 2015
istex:EFCF4F0BD3EADE59D2D2EC9635FEBF1476C53DFD
ark:/67375/WNG-2N0PHSGP-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26627444
PQID 1774392224
PQPubID 1066360
PageCount 9
ParticipantIDs proquest_miscellaneous_1803106648
proquest_miscellaneous_1780505142
proquest_journals_1774392224
pubmed_primary_26627444
crossref_citationtrail_10_1111_1462_2920_13164
crossref_primary_10_1111_1462_2920_13164
wiley_primary_10_1111_1462_2920_13164_EMI13164
istex_primary_ark_67375_WNG_2N0PHSGP_3
fao_agris_US201600125928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2016
Publisher Blackwell Science
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Dumler, J.S., Choi, K.S., Garcia-Garcia, J.C., Barat, N.S., Scorpio, D.G., Garyu, J.W., et al. (2005) Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 11: 1828-1834.
Levin, M.L., and Fish, D. (2000a) Immunity reduces reservoir host competence of Peromyscus leucopus for Ehrlichia phagocytophila. Infect Immun 68: 1514-1518.
Gern, L., and Rais, O. (1996) Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol 33: 189-192.
Humair, P.F., Postic, D., Wallich, R., and Gern, L. (1998) An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes. J Med Microbiol Virol Parasitol Infect Dis 287: 521-538.
Voordouw, M.J. (2015) Co-feeding transmission in Lyme disease pathogens. Parasitology 142: 290-302.
Hu, C.M., Cheminade, Y., Perret, J.L., Weynants, V., Lobet, Y., and Gern, L. (2003) Early detection of Borrelia burgdorferi sensu lato infection in Balb/c mice by co-feeding Ixodes ricinus ticks. Int J Med Microbiol 293: 421-426.
Tijsse-Klasen, E., Sprong, H., and Pandak, N. (2013) Co-infection of Borrelia burgdorferi sensu lato and Rickettsia species in ticks and in an erythema migrans patient. Parasit Vectors 6: 347.
Heylen, D., Matthysen, E., Fonville, M., and Sprong, H. (2014) Songbirds as general transmittors but selective amplifiers of Borrelia burgdorferi sensu lato genotypes. Environ Microbiol 16: 2859-2868.
Stenos, J., Graves, S.R., and Unsworth, N.B. (2005) A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. Am J Trop Med Hyg 73: 1083-1085.
Humair, P.F. (2002) Birds and Borrelia. Int J Med Microbiol 291: 70-74.
Nilsson, K., Lindquist, O., and Pahlson, C. (1999) Association of Rickettsia helvetica with chronic perimyocarditis in sudden cardiac death. Lancet 354: 1169-1173.
Zemtsova, G., Killmaster, L.F., Mumcuoglu, K.Y., and Levin, M.L. (2010) Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp Appl Acarol 52: 383-392.
Beati, L., Kelly, P.J., Mason, P.R., and Raoult, D. (1999) Experimental infections of vervet monkeys (Cercopithecus pygerythrus) with three spotted fever group rickettsiae. S Afr J Sci 95: 448-449.
Scoles, G.A., Papero, M., Beati, L., and Fish, D. (2001) A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis 1: 21-34.
Szekeres, S., Coipan, E.C., Rigo, K., Majoros, G., Jahfari, S., Sprong, H., and Foldvari, G. (2015) Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks Tick Borne Dis 6: 111-116.
Elfving, K., Olsen, B., Bergstrom, S., Waldenstrom, J., Lundkvist, A., Sjostedt, A., et al. (2010) Dissemination of spotted fever Rickettsia agents in Europe by migrating birds. PLoS ONE 5: e8572.
Heylen, D.J.A., and Matthysen, E. (2008) Effect of tick parasitism on the health status of a passerine bird. Funct Ecol 22: 1099-1107.
Nilsson, K., Elfving, K., and Pahlson, C. (2010) Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg Infect Dis 16: 490-492.
Verbeke, G., and Molenberghs, G. (2001) Linear Mixed Models for Longitudinal Data. Berlin, Germany: Springer-Verlag.
Schouls, L.M., Van de Pol, I., Rijpkema, S.G.T., and Schot, C.S. (1999) Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 37: 2215-2222.
Wallmenius, K., Barboutis, C., Fransson, T., Jaenson, T.G.T., Lindgren, P.-E., Nystrom, F., et al. (2014) Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area. Parasit Vectors 7: 318.
Hagemeijer, E.J.M., and Blair, M.J. (1997) The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. London, UK: T & A D Poyser.
Burri, C., Schumann, O., Schumann, C., and Gern, L. (2014) Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick Borne Dis 5: 245-251.
Heylen, D., Tijsse, E., Fonville, M., Matthysen, E., and Sprong, H. (2013a) Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol 15: 663-673.
Massung, R.F., Priestley, R.A., and Levin, M.L. (2004) Transmission route efficacy and kinetics of Anaplasma phagocytophilum infection in the white-footed mouse, Peromyscus leucopus. Vector Borne Zoonotic Dis 4: 310-318.
Randolph, S.E., Gern, L., and Nuttall, P.A. (1996) Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12: 472-479.
Andersson, M., Scherman, K., and Raberg, L. (2014) Infection dynamics of the tick-borne pathogen "Candidatus Neoehrlichia mikurensis" and coinfections with Borrelia afzelii in bank voles in Southern Sweden. Appl Environ Microbiol 80: 1645-1649.
Kocan, K.A., and de la Fuente, J. (2003) Co-feeding studies of ticks infected with Anaplasma marginale. Vet Parasitol 112: 295-305.
Molenberghs, G., and Verbeke, G. (2005) Models for Discrete Longitudinal Data. Berlin, Germany: Springer-Verlag.
Jahfari, S., Coipan, E.C., Fonville, M., Van Leeuwen, A.D., Hengeveld, P., Heylen, D., et al. (2014) Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors 7: 365.
Heylen, D., Adriaensen, F., Dauwe, T., Eens, M., and Matthysen, E. (2009) Offspring quality and tick infestation load in brood rearing great tits Parus major. Oikos 118: 1499-1506.
Lommano, E., Dvorak, C., Vallotton, L., Jenni, L., and Gern, L. (2014) Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick Borne Dis 5: 871-882.
Marsot, M., Henry, P.-Y., Vourc'h, G., Gasqui, P., Ferquel, E., Laignel, J., et al. (2012) Which forest bird species are the main hosts of the tick, Ixodes ricinus, the vector of Borrelia burgdorferi sensu lato, during the breeding season? Int J Parasitol 42: 781-788.
Richter, D., Allgower, R., and Matuschka, F.R. (2002) Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochaete Borrelia afzelii. Emerg Infect Dis 8: 1421-1425.
Thomas, V., Anguita, J., Barthold, S.W., and Fikrig, E. (2001) Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect Immun 69: 3359-3371.
Dubska, L., Literak, I., Kocianova, E., Taragelova, V., and Sychra, O. (2009) Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe. Appl Environ Microbiol 75: 596-602.
Jahfari, S., Fonville, M., Hengeveld, P., Reusken, C., Scholte, E.J., Takken, W., et al. (2012) Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 5: 74.
Regev-Yochay, G., Dagan, R., Raz, M., Carmeli, Y., Shainberg, B., Derazne, E., et al. (2004) Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. J Am Med Assoc 292: 716-720.
Civitello, D.J., Rynkiewicz, E., and Clay, K. (2010) Meta-analysis of co-infections in ticks. Isr J Ecol Evol 56: 417-431.
Kurtenbach, K., Peacey, M., Rijpkema, S.G.T., Hoodless, A.N., Nuttall, P.A., and Randolph, S.E. (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64: 1169-1174.
Ginsberg, H.S. (2008) Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records. Exp Appl Acarol 46: 29-41.
Santos-Silva, M.M., Sousa, R., Santos, A.S., Melo, P., Encarnacao, V., and Bacellar, F. (2006) Ticks parasitizing wild birds in Portugal: detection of Rickettsia aeschlimannii, R. helvetica and R. massiliae. Exp Appl Acarol 39: 331-338.
Moro, M.H., Zegarra-Moro, O.L., Bjornsson, J., Hofmeister, E.K., Bruinsma, E., Germer, J.J., and Persing, D.H. (2002) Increased arthritis severity in mice coinfected with Borrelia burgdorferi and Babesia microti. J Infect Dis 186: 428-431.
Elliott, M. (1977) Synthetic pyrethroids. Am Chem Soc Symp Ser 42: 1-28.
Richter, D., Spielman, A., Komar, N., and Matuschka, F.R. (2000) Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg Infect Dis 6: 133-138.
Hanincova, K., Taragelova, V., Koci, J., Schafer, S.M., Hails, R., Ullmann, A.J., et al. (2003) Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol 69: 2825-2830.
Humair, P.F., and Gern, L. (2000) The wild hidden face of Lyme borreliosis in Europe. Microbes Infect 2: 915-922.
Heylen, D., Adriaensen, F., Van Dongen, S., Sprong, H., and Matthysen, E. (2013b) Ecological factors that determine Ixodes ricinus tick burdens in the great tit (Parus major), an important avian reservoir of Borrelia burgdorferi s.l. Int J Parasitol 43: 603-611.
Hornok, S., Kovats, D., Csorgo, T., Meli, M.L., Gonczi, E., Hadnagy, Z., et al. (2014) Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit Vectors 7: 128.
Tonetti, N., Voordouw, M.J., Durand, J., Monnier, S., and Gern, L. (2015) Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis 6: 334-343.
Dubska, L., Literak, I., Kocianova, E., Taragelova, V., Sverakova, V., Sychra, O., and Hromadko, M. (2011) Synanthropic birds influence the distribution of Borrelia species: analysis of Ixodes ricinus ticks feeding on passerine birds. Appl Environ Microbiol 77: 1115-1117.
Cochez, C., Heyman, P., Heylen, D., Fonville, M., Hengeveld, P., Takken, W., et al. (2014) The presence of Borrelia miyamotoi, a relapsing fever spirochaete, in questing Ixodes ricinus in Belgium and
2010; 56
2000b; 68
2010; 16
1997; 83
2000; 6
2013a; 15
2006; 39
2015; 142
2004; 4
2000; 2
2009; 118
2014; 62
2003; 112
2013; 6
1996; 33
2014; 5
2013b; 43
2002; 186
2001
2015; 84
2013; 51
2004; 292
2014; 16
2005; 73
2008; 22
1999; 95
2000a; 68
1998; 287
2010; 5
2014; 7
2015; 6
2002; 291
2006; 12
1991; 79
2002; 8
1997
2003; 293
2011; 77
1977; 42
2005
1998; 64
2001; 69
2010; 40
1996; 12
2014; 80
2010; 47
2009; 75
2013; 79
1999; 37
2003; 69
2008; 46
2015
2001; 1
1999; 354
2009; 2
2012; 5
2005; 11
2010; 52
2012; 42
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_30_1
Verbeke G. (e_1_2_6_64_1) 2001
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_55_1
Humair P.F. (e_1_2_6_32_1) 1998; 287
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
Molenberghs G. (e_1_2_6_44_1) 2005
e_1_2_6_43_1
Heise S.R. (e_1_2_6_19_1) 2010; 47
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
Beati L. (e_1_2_6_3_1) 1999; 95
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Hagemeijer E.J.M. (e_1_2_6_17_1) 1997
e_1_2_6_14_1
Gray J.S. (e_1_2_6_16_1) 1991; 79
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Moro, M.H., Zegarra-Moro, O.L., Bjornsson, J., Hofmeister, E.K., Bruinsma, E., Germer, J.J., and Persing, D.H. (2002) Increased arthritis severity in mice coinfected with Borrelia burgdorferi and Babesia microti. J Infect Dis 186: 428-431.
– reference: Richter, D., Allgower, R., and Matuschka, F.R. (2002) Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochaete Borrelia afzelii. Emerg Infect Dis 8: 1421-1425.
– reference: Tijsse-Klasen, E., Sprong, H., and Pandak, N. (2013) Co-infection of Borrelia burgdorferi sensu lato and Rickettsia species in ticks and in an erythema migrans patient. Parasit Vectors 6: 347.
– reference: Nilsson, K., Lindquist, O., and Pahlson, C. (1999) Association of Rickettsia helvetica with chronic perimyocarditis in sudden cardiac death. Lancet 354: 1169-1173.
– reference: Dubska, L., Literak, I., Kocianova, E., Taragelova, V., Sverakova, V., Sychra, O., and Hromadko, M. (2011) Synanthropic birds influence the distribution of Borrelia species: analysis of Ixodes ricinus ticks feeding on passerine birds. Appl Environ Microbiol 77: 1115-1117.
– reference: Heylen, D., Matthysen, E., Fonville, M., and Sprong, H. (2014) Songbirds as general transmittors but selective amplifiers of Borrelia burgdorferi sensu lato genotypes. Environ Microbiol 16: 2859-2868.
– reference: Scoles, G.A., Papero, M., Beati, L., and Fish, D. (2001) A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis 1: 21-34.
– reference: Burri, C., Schumann, O., Schumann, C., and Gern, L. (2014) Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick Borne Dis 5: 245-251.
– reference: Dumler, J.S., Choi, K.S., Garcia-Garcia, J.C., Barat, N.S., Scorpio, D.G., Garyu, J.W., et al. (2005) Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 11: 1828-1834.
– reference: Humair, P.F. (2002) Birds and Borrelia. Int J Med Microbiol 291: 70-74.
– reference: Voordouw, M.J. (2015) Co-feeding transmission in Lyme disease pathogens. Parasitology 142: 290-302.
– reference: Schwan, T.G., and Piesman, J. (2002) Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Infect Dis 8: 115-121.
– reference: Stenos, J., Graves, S.R., and Unsworth, N.B. (2005) A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. Am J Trop Med Hyg 73: 1083-1085.
– reference: Heise, S.R., Elshahed, M.S., and Little, S.E. (2010) Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia. J Med Entomol 47: 258-268.
– reference: Humair, P.F., and Gern, L. (2000) The wild hidden face of Lyme borreliosis in Europe. Microbes Infect 2: 915-922.
– reference: Herrmann, C., Gern, L., and Voordouw, M. (2013) Species co-occurrence patterns among Lyme borreliosis pathogens in the tick vector Ixodes ricinus. Appl Environ Microbiol 79: 7273-7280.
– reference: Jacquet, M., Durand, J., Rais, O., and Voordouw, M.J. (2015) Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen, Borrelia afzelii. Environ Microbiol (in press). doi: 10.1111/1462-2920.13065.
– reference: Heylen, D.J.A., and Matthysen, E. (2008) Effect of tick parasitism on the health status of a passerine bird. Funct Ecol 22: 1099-1107.
– reference: Levin, M.L., and Fish, D. (2000b) Acquisition of coinfection and simultaneous transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis ticks. Infect Immun 68: 2183-2186.
– reference: Beati, L., Kelly, P.J., Mason, P.R., and Raoult, D. (1999) Experimental infections of vervet monkeys (Cercopithecus pygerythrus) with three spotted fever group rickettsiae. S Afr J Sci 95: 448-449.
– reference: Ginsberg, H.S. (2008) Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records. Exp Appl Acarol 46: 29-41.
– reference: Heylen, D., Adriaensen, F., Dauwe, T., Eens, M., and Matthysen, E. (2009) Offspring quality and tick infestation load in brood rearing great tits Parus major. Oikos 118: 1499-1506.
– reference: Humair, P.F., Postic, D., Wallich, R., and Gern, L. (1998) An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes. J Med Microbiol Virol Parasitol Infect Dis 287: 521-538.
– reference: Hornok, S., Kovats, D., Csorgo, T., Meli, M.L., Gonczi, E., Hadnagy, Z., et al. (2014) Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit Vectors 7: 128.
– reference: Molenberghs, G., and Verbeke, G. (2005) Models for Discrete Longitudinal Data. Berlin, Germany: Springer-Verlag.
– reference: Gray, J.S. (1991) The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol 79: 323-333.
– reference: Regev-Yochay, G., Dagan, R., Raz, M., Carmeli, Y., Shainberg, B., Derazne, E., et al. (2004) Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. J Am Med Assoc 292: 716-720.
– reference: Duncan, A.B., Agnew, P., Noel, V., and Michalakis, Y. (2015) The consequences of co-infections for parasite transmission in the mosquito Aedes aegypti. J Anim Ecol 84: 498-508.
– reference: Verbeke, G., and Molenberghs, G. (2001) Linear Mixed Models for Longitudinal Data. Berlin, Germany: Springer-Verlag.
– reference: Heylen, D.J.A., Madder, M., and Matthysen, E. (2010) Lack of resistance against the tick Ixodes ricinus in two related passerine bird species. Int J Parasitol 40: 183-191.
– reference: Elliott, M. (1977) Synthetic pyrethroids. Am Chem Soc Symp Ser 42: 1-28.
– reference: Holden, K., Hodzic, E., Feng, S., Freet, K.J., Lefebvre, R.B., and Barthold, S.W. (2005) Coinfection with Anaplasma phagocytophilum alters Borrelia burgdorferi population distribution in C3H/HeN mice. Infect Immun 73: 3440-3444.
– reference: Zemtsova, G., Killmaster, L.F., Mumcuoglu, K.Y., and Levin, M.L. (2010) Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp Appl Acarol 52: 383-392.
– reference: Andersson, M., Scherman, K., and Raberg, L. (2014) Infection dynamics of the tick-borne pathogen "Candidatus Neoehrlichia mikurensis" and coinfections with Borrelia afzelii in bank voles in Southern Sweden. Appl Environ Microbiol 80: 1645-1649.
– reference: Dubska, L., Literak, I., Kocianova, E., Taragelova, V., and Sychra, O. (2009) Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe. Appl Environ Microbiol 75: 596-602.
– reference: Marsot, M., Henry, P.-Y., Vourc'h, G., Gasqui, P., Ferquel, E., Laignel, J., et al. (2012) Which forest bird species are the main hosts of the tick, Ixodes ricinus, the vector of Borrelia burgdorferi sensu lato, during the breeding season? Int J Parasitol 42: 781-788.
– reference: Heylen, D., Tijsse, E., Fonville, M., Matthysen, E., and Sprong, H. (2013a) Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol 15: 663-673.
– reference: Jahfari, S., Fonville, M., Hengeveld, P., Reusken, C., Scholte, E.J., Takken, W., et al. (2012) Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 5: 74.
– reference: Hu, C.M., Cheminade, Y., Perret, J.L., Weynants, V., Lobet, Y., and Gern, L. (2003) Early detection of Borrelia burgdorferi sensu lato infection in Balb/c mice by co-feeding Ixodes ricinus ticks. Int J Med Microbiol 293: 421-426.
– reference: Richter, D., Spielman, A., Komar, N., and Matuschka, F.R. (2000) Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg Infect Dis 6: 133-138.
– reference: Nilsson, K., Elfving, K., and Pahlson, C. (2010) Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg Infect Dis 16: 490-492.
– reference: Levin, M.L., and Fish, D. (2000a) Immunity reduces reservoir host competence of Peromyscus leucopus for Ehrlichia phagocytophila. Infect Immun 68: 1514-1518.
– reference: Lommano, E., Dvorak, C., Vallotton, L., Jenni, L., and Gern, L. (2014) Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick Borne Dis 5: 871-882.
– reference: Civitello, D.J., Rynkiewicz, E., and Clay, K. (2010) Meta-analysis of co-infections in ticks. Isr J Ecol Evol 56: 417-431.
– reference: Hagemeijer, E.J.M., and Blair, M.J. (1997) The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. London, UK: T & A D Poyser.
– reference: Randolph, S.E., Gern, L., and Nuttall, P.A. (1996) Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12: 472-479.
– reference: Maurer, F.P., Keller, P.M., Beuret, C., Joha, C., Achermann, Y., Gubler, J., et al. (2013) Close geographic association of human Neoehrlichiosis and tick populations carrying 'Candidatus Neoehrlichia mikurensis' in Eastern Switzerland. J Clin Microbiol 51: 169-176.
– reference: Sprong, H., Wielinga, P.R., Fonville, M., Reusken, C., Brandenburg, A.H., Borgsteede, F., et al. (2009) Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasit Vectors 2: 41.
– reference: Santos-Silva, M.M., Sousa, R., Santos, A.S., Melo, P., Encarnacao, V., and Bacellar, F. (2006) Ticks parasitizing wild birds in Portugal: detection of Rickettsia aeschlimannii, R. helvetica and R. massiliae. Exp Appl Acarol 39: 331-338.
– reference: Kocan, K.A., and de la Fuente, J. (2003) Co-feeding studies of ticks infected with Anaplasma marginale. Vet Parasitol 112: 295-305.
– reference: Schouls, L.M., Van de Pol, I., Rijpkema, S.G.T., and Schot, C.S. (1999) Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 37: 2215-2222.
– reference: Gern, L., and Rais, O. (1996) Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol 33: 189-192.
– reference: Sato, Y., and Nakao, M. (1997) Transmission of the Lyme disease spirochete, Borrelia garinii, between infected and uninfected immature Ixodes persulcatus during cofeeding on mice. J Parasitol 83: 547-550.
– reference: Cochez, C., Heyman, P., Heylen, D., Fonville, M., Hengeveld, P., Takken, W., et al. (2014) The presence of Borrelia miyamotoi, a relapsing fever spirochaete, in questing Ixodes ricinus in Belgium and in The Netherlands. Zoonoses Public Health 62: 331-333.
– reference: Wallmenius, K., Barboutis, C., Fransson, T., Jaenson, T.G.T., Lindgren, P.-E., Nystrom, F., et al. (2014) Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area. Parasit Vectors 7: 318.
– reference: Elfving, K., Olsen, B., Bergstrom, S., Waldenstrom, J., Lundkvist, A., Sjostedt, A., et al. (2010) Dissemination of spotted fever Rickettsia agents in Europe by migrating birds. PLoS ONE 5: e8572.
– reference: Massung, R.F., Priestley, R.A., and Levin, M.L. (2004) Transmission route efficacy and kinetics of Anaplasma phagocytophilum infection in the white-footed mouse, Peromyscus leucopus. Vector Borne Zoonotic Dis 4: 310-318.
– reference: Comstedt, P., Bergstrom, S., Olsen, B., Garpmo, U., Marjavaara, L., Mejlon, H., et al. (2006) Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerg Infect Dis 12: 1087-1095.
– reference: Tonetti, N., Voordouw, M.J., Durand, J., Monnier, S., and Gern, L. (2015) Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis 6: 334-343.
– reference: Heylen, D., Adriaensen, F., Van Dongen, S., Sprong, H., and Matthysen, E. (2013b) Ecological factors that determine Ixodes ricinus tick burdens in the great tit (Parus major), an important avian reservoir of Borrelia burgdorferi s.l. Int J Parasitol 43: 603-611.
– reference: Jahfari, S., Coipan, E.C., Fonville, M., Van Leeuwen, A.D., Hengeveld, P., Heylen, D., et al. (2014) Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors 7: 365.
– reference: Hanincova, K., Taragelova, V., Koci, J., Schafer, S.M., Hails, R., Ullmann, A.J., et al. (2003) Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol 69: 2825-2830.
– reference: Szekeres, S., Coipan, E.C., Rigo, K., Majoros, G., Jahfari, S., Sprong, H., and Foldvari, G. (2015) Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks Tick Borne Dis 6: 111-116.
– reference: Kurtenbach, K., Peacey, M., Rijpkema, S.G.T., Hoodless, A.N., Nuttall, P.A., and Randolph, S.E. (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64: 1169-1174.
– reference: Thomas, V., Anguita, J., Barthold, S.W., and Fikrig, E. (2001) Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect Immun 69: 3359-3371.
– reference: Susi, H., Barres, B., Vale, P.F., and Laine, A.L. (2015) Co-infection alters population dynamics of infectious disease. Nat Commun 6: 5975.
– year: 2015
  article-title: Strain‐specific antibodies reduce co‐feeding transmission of the Lyme disease pathogen,
  publication-title: Environ Microbiol
– volume: 5
  start-page: 871
  year: 2014
  end-page: 882
  article-title: Tick‐borne pathogens in ticks collected from breeding and migratory birds in Switzerland
  publication-title: Ticks Tick Borne Dis
– volume: 51
  start-page: 169
  year: 2013
  end-page: 176
  article-title: Close geographic association of human Neoehrlichiosis and tick populations carrying ‘ Neoehrlichia mikurensis’ in Eastern Switzerland
  publication-title: J Clin Microbiol
– volume: 8
  start-page: 115
  year: 2002
  end-page: 121
  article-title: Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks
  publication-title: Emerg Infect Dis
– year: 2005
– volume: 46
  start-page: 29
  year: 2008
  end-page: 41
  article-title: Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records
  publication-title: Exp Appl Acarol
– year: 2001
– volume: 40
  start-page: 183
  year: 2010
  end-page: 191
  article-title: Lack of resistance against the tick in two related passerine bird species
  publication-title: Int J Parasitol
– volume: 7
  start-page: 128
  year: 2014
  article-title: Birds as potential reservoirs of tick‐borne pathogens: first evidence of bacteraemia with
  publication-title: Parasit Vectors
– volume: 22
  start-page: 1099
  year: 2008
  end-page: 1107
  article-title: Effect of tick parasitism on the health status of a passerine bird
  publication-title: Funct Ecol
– volume: 12
  start-page: 472
  year: 1996
  end-page: 479
  article-title: Co‐feeding ticks: epidemiological significance for tick‐borne pathogen transmission
  publication-title: Parasitol Today
– volume: 5
  start-page: e8572
  year: 2010
  article-title: Dissemination of spotted fever Rickettsia agents in Europe by migrating birds
  publication-title: PLoS ONE
– volume: 6
  start-page: 5975
  year: 2015
  article-title: Co‐infection alters population dynamics of infectious disease
  publication-title: Nat Commun
– volume: 112
  start-page: 295
  year: 2003
  end-page: 305
  article-title: Co‐feeding studies of ticks infected with
  publication-title: Vet Parasitol
– volume: 6
  start-page: 347
  year: 2013
  article-title: Co‐infection of sensu lato and species in ticks and in an erythema migrans patient
  publication-title: Parasit Vectors
– volume: 6
  start-page: 334
  year: 2015
  end-page: 343
  article-title: Genetic variation in transmission success of the Lyme borreliosis pathogen
  publication-title: Ticks Tick Borne Dis
– volume: 11
  start-page: 1828
  year: 2005
  end-page: 1834
  article-title: Human granulocytic anaplasmosis and
  publication-title: Emerg Infect Dis
– volume: 68
  start-page: 1514
  year: 2000a
  end-page: 1518
  article-title: Immunity reduces reservoir host competence of for
  publication-title: Infect Immun
– volume: 16
  start-page: 2859
  year: 2014
  end-page: 2868
  article-title: Songbirds as general transmittors but selective amplifiers of sensu lato genotypes
  publication-title: Environ Microbiol
– volume: 42
  start-page: 781
  year: 2012
  end-page: 788
  article-title: Which forest bird species are the main hosts of the tick, , the vector of sensu lato, during the breeding season?
  publication-title: Int J Parasitol
– volume: 293
  start-page: 421
  year: 2003
  end-page: 426
  article-title: Early detection of sensu lato infection in Balb/c mice by co‐feeding ticks
  publication-title: Int J Med Microbiol
– volume: 73
  start-page: 3440
  year: 2005
  end-page: 3444
  article-title: Coinfection with alters population distribution in C3H/HeN mice
  publication-title: Infect Immun
– volume: 75
  start-page: 596
  year: 2009
  end-page: 602
  article-title: Differential role of passerine birds in distribution of spirochetes, based on data from ticks collected from birds during the postbreeding migration period in Central Europe
  publication-title: Appl Environ Microbiol
– volume: 33
  start-page: 189
  year: 1996
  end-page: 192
  article-title: Efficient transmission of between cofeeding ticks (Acari: Ixodidae)
  publication-title: J Med Entomol
– volume: 287
  start-page: 521
  year: 1998
  end-page: 538
  article-title: An avian reservoir ( ) of the Lyme borreliosis spirochetes
  publication-title: J Med Microbiol Virol Parasitol Infect Dis
– volume: 62
  start-page: 331
  year: 2014
  end-page: 333
  article-title: The presence of , a relapsing fever spirochaete, in questing in Belgium and in The Netherlands
  publication-title: Zoonoses Public Health
– volume: 7
  start-page: 365
  year: 2014
  article-title: Circulation of four ecotypes in Europe
  publication-title: Parasit Vectors
– volume: 5
  start-page: 245
  year: 2014
  end-page: 251
  article-title: Are spp. mice and reservoirs for Neoehrlichia mikurensis, and ?
  publication-title: Ticks Tick Borne Dis
– volume: 6
  start-page: 111
  year: 2015
  end-page: 116
  article-title: Neoehrlichia mikurensis and in natural rodent and tick communities in Southern Hungary
  publication-title: Ticks Tick Borne Dis
– volume: 7
  start-page: 318
  year: 2014
  article-title: Spotted fever species in and ticks infesting migratory birds in the European Mediterranean area
  publication-title: Parasit Vectors
– volume: 52
  start-page: 383
  year: 2010
  end-page: 392
  article-title: Co‐feeding as a route for transmission of between ticks
  publication-title: Exp Appl Acarol
– volume: 118
  start-page: 1499
  year: 2009
  end-page: 1506
  article-title: Offspring quality and tick infestation load in brood rearing great tits
  publication-title: Oikos
– volume: 43
  start-page: 603
  year: 2013b
  end-page: 611
  article-title: Ecological factors that determine tick burdens in the great tit ( ), an important avian reservoir of s.l
  publication-title: Int J Parasitol
– volume: 42
  start-page: 1
  year: 1977
  end-page: 28
  article-title: Synthetic pyrethroids
  publication-title: Am Chem Soc Symp Ser
– volume: 68
  start-page: 2183
  year: 2000b
  end-page: 2186
  article-title: Acquisition of coinfection and simultaneous transmission of and by ticks
  publication-title: Infect Immun
– year: 1997
– volume: 39
  start-page: 331
  year: 2006
  end-page: 338
  article-title: Ticks parasitizing wild birds in Portugal: detection of , and
  publication-title: Exp Appl Acarol
– volume: 73
  start-page: 1083
  year: 2005
  end-page: 1085
  article-title: A highly sensitive and specific real‐time PCR assay for the detection of spotted fever and typhus group Rickettsiae
  publication-title: Am J Trop Med Hyg
– volume: 47
  start-page: 258
  year: 2010
  end-page: 268
  article-title: Bacterial diversity in (Acari: Ixodidae) with a focus on members of the genus Rickettsia
  publication-title: J Med Entomol
– volume: 64
  start-page: 1169
  year: 1998
  end-page: 1174
  article-title: Differential transmission of the genospecies of sensu lato by game birds and small rodents in England
  publication-title: Appl Environ Microbiol
– volume: 142
  start-page: 290
  year: 2015
  end-page: 302
  article-title: Co‐feeding transmission in Lyme disease pathogens
  publication-title: Parasitology
– volume: 95
  start-page: 448
  year: 1999
  end-page: 449
  article-title: Experimental infections of vervet monkeys ( ) with three spotted fever group rickettsiae
  publication-title: S Afr J Sci
– volume: 4
  start-page: 310
  year: 2004
  end-page: 318
  article-title: Transmission route efficacy and kinetics of infection in the white‐footed mouse,
  publication-title: Vector Borne Zoonotic Dis
– volume: 6
  start-page: 133
  year: 2000
  end-page: 138
  article-title: Competence of American robins as reservoir hosts for Lyme disease spirochetes
  publication-title: Emerg Infect Dis
– volume: 2
  start-page: 41
  year: 2009
  article-title: ticks are reservoir hosts for and potentially carry flea‐borne species
  publication-title: Parasit Vectors
– volume: 15
  start-page: 663
  year: 2013a
  end-page: 673
  article-title: Transmission dynamics of s.l. in a bird tick community
  publication-title: Environ Microbiol
– volume: 16
  start-page: 490
  year: 2010
  end-page: 492
  article-title: in patient with meningitis, Sweden, 2006
  publication-title: Emerg Infect Dis
– volume: 292
  start-page: 716
  year: 2004
  end-page: 720
  article-title: Association between carriage of and in children
  publication-title: J Am Med Assoc
– volume: 37
  start-page: 2215
  year: 1999
  end-page: 2222
  article-title: Detection and identification of , sensu lato, and species in Dutch ticks
  publication-title: J Clin Microbiol
– volume: 84
  start-page: 498
  year: 2015
  end-page: 508
  article-title: The consequences of co‐infections for parasite transmission in the mosquito
  publication-title: J Anim Ecol
– volume: 79
  start-page: 323
  year: 1991
  end-page: 333
  article-title: The development and seasonal activity of the tick : a vector of Lyme borreliosis
  publication-title: Rev Med Vet Entomol
– volume: 69
  start-page: 3359
  year: 2001
  end-page: 3371
  article-title: Coinfection with and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis
  publication-title: Infect Immun
– volume: 79
  start-page: 7273
  year: 2013
  end-page: 7280
  article-title: Species co‐occurrence patterns among Lyme borreliosis pathogens in the tick vector
  publication-title: Appl Environ Microbiol
– volume: 80
  start-page: 1645
  year: 2014
  end-page: 1649
  article-title: Infection dynamics of the tick‐borne pathogen “ Neoehrlichia mikurensis” and coinfections with in bank voles in Southern Sweden
  publication-title: Appl Environ Microbiol
– volume: 69
  start-page: 2825
  year: 2003
  end-page: 2830
  article-title: Association of and with songbirds in Slovakia
  publication-title: Appl Environ Microbiol
– volume: 56
  start-page: 417
  year: 2010
  end-page: 431
  article-title: Meta‐analysis of co‐infections in ticks
  publication-title: Isr J Ecol Evol
– volume: 291
  start-page: 70
  year: 2002
  end-page: 74
  article-title: Birds and
  publication-title: Int J Med Microbiol
– volume: 5
  start-page: 74
  year: 2012
  article-title: Prevalence of in ticks and rodents from North‐west Europe
  publication-title: Parasit Vectors
– volume: 8
  start-page: 1421
  year: 2002
  end-page: 1425
  article-title: Co‐feeding transmission and its contribution to the perpetuation of the Lyme disease spirochaete
  publication-title: Emerg Infect Dis
– volume: 2
  start-page: 915
  year: 2000
  end-page: 922
  article-title: The wild hidden face of Lyme borreliosis in Europe
  publication-title: Microbes Infect
– volume: 186
  start-page: 428
  year: 2002
  end-page: 431
  article-title: Increased arthritis severity in mice coinfected with and
  publication-title: J Infect Dis
– volume: 83
  start-page: 547
  year: 1997
  end-page: 550
  article-title: Transmission of the Lyme disease spirochete, , between infected and uninfected immature during cofeeding on mice
  publication-title: J Parasitol
– volume: 77
  start-page: 1115
  year: 2011
  end-page: 1117
  article-title: Synanthropic birds influence the distribution of species: analysis of ticks feeding on passerine birds
  publication-title: Appl Environ Microbiol
– volume: 1
  start-page: 21
  year: 2001
  end-page: 34
  article-title: A relapsing fever group spirochete transmitted by ticks
  publication-title: Vector Borne Zoonotic Dis
– volume: 12
  start-page: 1087
  year: 2006
  end-page: 1095
  article-title: Migratory passerine birds as reservoirs of Lyme borreliosis in Europe
  publication-title: Emerg Infect Dis
– volume: 354
  start-page: 1169
  year: 1999
  end-page: 1173
  article-title: Association of with chronic perimyocarditis in sudden cardiac death
  publication-title: Lancet
– ident: e_1_2_6_66_1
  doi: 10.1186/1756-3305-7-318
– volume-title: The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance
  year: 1997
  ident: e_1_2_6_17_1
– ident: e_1_2_6_46_1
  doi: 10.1016/S0140-6736(99)04093-3
– ident: e_1_2_6_53_1
  doi: 10.2307/3284432
– ident: e_1_2_6_62_1
  doi: 10.1186/1756-3305-6-347
– ident: e_1_2_6_57_1
  doi: 10.1186/1756-3305-2-41
– ident: e_1_2_6_52_1
  doi: 10.1007/s10493-006-9008-3
– ident: e_1_2_6_20_1
  doi: 10.1128/AEM.02158-13
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2435.2008.01463.x
– ident: e_1_2_6_34_1
  doi: 10.1186/1756-3305-5-74
– volume: 95
  start-page: 448
  year: 1999
  ident: e_1_2_6_3_1
  article-title: Experimental infections of vervet monkeys (Cercopithecus pygerythrus) with three spotted fever group rickettsiae
  publication-title: S Afr J Sci
– ident: e_1_2_6_60_1
  doi: 10.1016/j.ttbdis.2014.10.004
– ident: e_1_2_6_14_1
  doi: 10.1093/jmedent/33.1.189
– ident: e_1_2_6_15_1
  doi: 10.1007/s10493-008-9175-5
– ident: e_1_2_6_50_1
  doi: 10.3201/eid0602.000205
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ijpara.2009.07.011
– ident: e_1_2_6_47_1
  doi: 10.3201/eid1603.090184
– ident: e_1_2_6_35_1
  doi: 10.1186/1756-3305-7-365
– ident: e_1_2_6_7_1
  doi: 10.3201/eid1207.060127
– ident: e_1_2_6_48_1
  doi: 10.1016/S0169-4758(96)10072-7
– ident: e_1_2_6_61_1
  doi: 10.1128/IAI.69.5.3359-3371.2001
– ident: e_1_2_6_9_1
  doi: 10.1128/AEM.02278-10
– ident: e_1_2_6_29_1
  doi: 10.1078/1438-4221-00285
– ident: e_1_2_6_30_1
  doi: 10.1016/S1438-4221(02)80015-7
– ident: e_1_2_6_22_1
  doi: 10.1111/1462-2920.12059
– ident: e_1_2_6_43_1
  doi: 10.1128/JCM.01955-12
– ident: e_1_2_6_5_1
  doi: 10.1560/IJEE.56.3-4.417
– ident: e_1_2_6_6_1
  doi: 10.1111/zph.12154
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ijpara.2013.02.007
– ident: e_1_2_6_45_1
  doi: 10.1086/341452
– ident: e_1_2_6_39_1
  doi: 10.1128/IAI.68.4.2183-2186.2000
– volume-title: Models for Discrete Longitudinal Data
  year: 2005
  ident: e_1_2_6_44_1
– ident: e_1_2_6_65_1
  doi: 10.1017/S0031182014001486
– ident: e_1_2_6_33_1
  doi: 10.1111/1462‐2920.13065
– ident: e_1_2_6_28_1
  doi: 10.1186/1756-3305-7-128
– ident: e_1_2_6_27_1
  doi: 10.1128/IAI.73.6.3440-3444.2005
– ident: e_1_2_6_36_1
  doi: 10.1016/S0304-4017(03)00018-9
– ident: e_1_2_6_55_1
  doi: 10.3201/eid0802.010198
– ident: e_1_2_6_37_1
  doi: 10.1128/AEM.64.4.1169-1174.1998
– ident: e_1_2_6_49_1
  doi: 10.1001/jama.292.6.716
– ident: e_1_2_6_24_1
  doi: 10.1111/1462-2920.12304
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1600-0706.2009.17606.x
– ident: e_1_2_6_2_1
  doi: 10.1128/AEM.03469-13
– ident: e_1_2_6_12_1
  doi: 10.1371/journal.pone.0008572
– ident: e_1_2_6_51_1
  doi: 10.3201/eid0812.010519
– volume-title: Linear Mixed Models for Longitudinal Data
  year: 2001
  ident: e_1_2_6_64_1
– ident: e_1_2_6_13_1
  doi: 10.1021/bk-1977-0042.ch001
– ident: e_1_2_6_41_1
  doi: 10.1016/j.ijpara.2012.05.010
– ident: e_1_2_6_59_1
  doi: 10.1038/ncomms6975
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ttbdis.2013.11.007
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ttbdis.2014.07.001
– ident: e_1_2_6_11_1
  doi: 10.1111/1365-2656.12302
– ident: e_1_2_6_42_1
  doi: 10.1089/vbz.2004.4.310
– ident: e_1_2_6_8_1
  doi: 10.1128/AEM.01674-08
– ident: e_1_2_6_63_1
  doi: 10.1016/j.ttbdis.2015.02.007
– ident: e_1_2_6_67_1
  doi: 10.1007/s10493-010-9375-7
– ident: e_1_2_6_54_1
  doi: 10.1128/JCM.37.7.2215-2222.1999
– ident: e_1_2_6_18_1
  doi: 10.1128/AEM.69.5.2825-2830.2003
– volume: 79
  start-page: 323
  year: 1991
  ident: e_1_2_6_16_1
  article-title: The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis
  publication-title: Rev Med Vet Entomol
– ident: e_1_2_6_31_1
  doi: 10.1016/S1286-4579(00)00393-2
– ident: e_1_2_6_10_1
  doi: 10.3201/eid1112.050898
– volume: 47
  start-page: 258
  year: 2010
  ident: e_1_2_6_19_1
  article-title: Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/47.2.258
– volume: 287
  start-page: 521
  year: 1998
  ident: e_1_2_6_32_1
  article-title: An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes
  publication-title: J Med Microbiol Virol Parasitol Infect Dis
– ident: e_1_2_6_58_1
  doi: 10.4269/ajtmh.2005.73.1083
– ident: e_1_2_6_56_1
  doi: 10.1089/153036601750137624
– ident: e_1_2_6_38_1
  doi: 10.1128/IAI.68.3.1514-1518.2000
SSID ssj0017370
Score 2.3621712
Snippet We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve birds were...
Summary We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common European songbird (Parus major). Tick‐naïve...
We investigated the transmission dynamics of a community of tick‐borne pathogenic bacteria in a common E uropean songbird ( P arus major ). Tick‐naïve birds...
We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were...
Summary We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve...
We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naive birds were...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 988
SubjectTerms Anaplasma - growth & development
Anaplasma phagocytophilum
Animals
Bacteria
Bird Diseases - microbiology
Bird Diseases - transmission
Borrelia burgdorferi Group - growth & development
Borrelia garinii
Borrelia miyamotoi
Coinfection
Ixodes - microbiology
Ixodes ricinus
Ixodidae
mixed infection
molting
nymphs
Parus major
pathogens
Rickettsia - growth & development
Rickettsia helvetica
Songbirds
Songbirds - microbiology
Tick-Borne Diseases - microbiology
Tick-Borne Diseases - transmission
ticks
Title Co‐infections and transmission dynamics in a tick‐borne bacterium community exposed to songbirds
URI https://api.istex.fr/ark:/67375/WNG-2N0PHSGP-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13164
https://www.ncbi.nlm.nih.gov/pubmed/26627444
https://www.proquest.com/docview/1774392224
https://www.proquest.com/docview/1780505142
https://www.proquest.com/docview/1803106648
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB60IPii1ltXWxlBxJcsyVySzKP0tgguxbro2zAzmZSympRNFto-9Sf4G_0lnpNJgi1eEN8CmZlkTs7lO8nJdwh55TPlhcSidiZZJIznEQTBNPJeSeNVKYsCv-i-n6ezhXj3WQ7VhPgvTOCHGF-4oWV0_hoN3NjmJyMHE2cR9lqaJhwwP3jhhKfInr_3YSSQSjLetYvrxyasJ_fBWp4b86_FpdulqQGtoqDPfwU9ryPZLhQd3Cd22ESoQFlO162dussb_I7_tcsH5F4PVOnboFmb5JavHpI7oXXlxSNS7Nbfr74NpVxVQ01V0BYDHygOvoGjReh139DTihoKqyxhAmhc5akNFNHrr9SF_1PaC-rPz-rGwxo1hRTgxJ6uiuYxWRzsf9ydRX3HhsjJVImI-wx5RXOfgY-NPRK7cHQaOUB4Z5XlcaFKA4buM-dKgDoudoVE_psitaJ0_AnZqOrKbxEqIc-RHnZuDGSIkOYlRmUuLrHbknHKTch0eF7a9XTm2FXjix7SGhSdRtHpTnQT8maccBaYPH4_dAsUQJsT8LN6ccyQhQ8CuVQsn5DXnVaMS5jVEmvjMqk_zQ81m8dHs-PDI80nZHtQG927hUYnGeZ_AMngEi_H0_Bc8CuNqXy9xjE5dhdMBPvDmBwZXdNUwP08DSo53hBDSn8h4ApBsf62WQ323h08-9cJz8ldFE2oyNsmG-1q7XcAorX2RWeFPwDkzCuy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoEYIL_6ULBYyEEJesEsdO4iOqaBdoVxXtit4sx3aqatuk2mSllhOPwDPyJMzESdRW_AhxixTbiScz42_syTeEvHapdFxgUjsTLODaxQEsgkngnBTayUJYiye6u9NkMuMfD8XhpX9hPD_EsOGGltH6azRw3JC-ZOVg4yzAYkvjKAbQv0Jutqd0CIw-DxRSURq3BeO6xhHr6H0wm-faAFdWppVCV4BXUdTnvwKfV7Fsuxht3SOmn4bPQZmPl00-Nl-vMTz-3zzvk7sdVqXvvHI9IDdc-ZDc8tUrLx4Ru1n9-Pa9z-Yqa6pLSxtc-0B3cBOOWl_uvqbHJdUURplDB1C60tHcs0QvT6nxv6g0F9Sdn1W1gzEqClHAUX68sPVjMtt6f7A5CbqiDYERieRB7FKkFs1cCm42dMjtEqPfyADFm1zmcWhlocHWXWpMAWjHhMYKpMCxSc4LE6-R1bIq3TqhAkId4WDmWkOQCJFepGVqwgILLmkjzYiM-w-mTMdojoU1TlQf2aDoFIpOtaIbkbdDhzNP5vH7puugAUofgatVs32GRHywlgvJshF506rFMIRezDE9LhXqy3RbsWm4N9nf3lPxiGz0eqM6z1CrKMUQEFAZPOLVcBu-Cx7U6NJVS2yTYYHBiLM_tMmQ1DVJOLzPE6-TwwsxZPXnHJ7gNetvk1Vg8u3F03_t8JLcnhzs7qidD9NPz8gdFJNP0Nsgq81i6Z4DYmvyF61J_gStBy_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYgL79KFAkZCiEtWiWMn8REVtstrtaKs4GY5tlNVC8lqk5VaTvwEfiO_hJk4iWjFQ4hbpNhOPJnHN8nkG0Ieu1Q6LrConQkWcO3iAIJgEjgnhXayENbiF923s2S64K8-ir6aEP-F8fwQwws3tIzWX6OBr2zxk5GDibMAey2Noxgw_xa5yBMIloiL3g0MUlEat_3iusER69h9sJjn3AJnAtNWoSuAqyjpk19hz7NQto1Fk2sk73fhS1CW402Tj82XcwSP_7XN6-Rqh1TpM69aN8gFV94kl3zvytNbxO5X379-62u5yprq0tIGIx9oDr6Co9Y3u6_pcUk1hVWWMAFUrnQ09xzRm8_U-B9UmlPqTlZV7WCNikIOcJQfr219mywmL97vT4OuZUNgRCJ5ELsUiUUzl4KTDR0yu8ToNTLA8CaXeRxaWWiwdJcaUwDWMaGxAglwbJLzwsQ7ZLusSrdLqIBERzjYudaQIkKeF2mZmrDAdkvaSDMi4_55KdPxmWNbjU-qz2tQdApFp1rRjcjTYcLKU3n8fuguKIDSR-Bo1eKQIQ0fRHIhWTYiT1qtGJbQ6yUWx6VCfZgdKDYL59PDg7mKR2SvVxvV-YVaRSkmgIDJ4BKPhtPwXPAzjS5dtcExGbYXjDj7w5gMKV2ThMP93PEqOdwQQ05_zuEKXrH-tlkFBt8e3P3XCQ_J5fnziXrzcvb6HrmCUvLVeXtku1lv3H2Aa03-oDXIH-CiLn8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-infections+and+transmission+dynamics+in+a+tick-borne+bacterium+community+exposed+to+songbirds&rft.jtitle=Environmental+microbiology&rft.au=Heylen%2C+Dieter&rft.au=Fonville%2C+Manoj&rft.au=Leeuwen%2C+Arieke+Docters&rft.au=Sprong%2C+Hein&rft.date=2016-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=18&rft.issue=3&rft.spage=988&rft_id=info:doi/10.1111%2F1462-2920.13164&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3990920441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon