基于超高斯激励的噪声顽健语音线性预测分析算法

TN912.3; 针对传统的语音信号线性预测分析算法在噪声环境下性能恶化的问题,提出了一种新的基于超高斯激励的噪声顽健线性预测算法.该算法采用具有超高斯特性的学生 t 分布对语音信号线性预测激励建模,并显式地考虑环境噪声的影响,从而构建语音信号线性预测分析的概率图模型.在此基础上,利用变分贝叶斯的方法求解模型参数的近似后验分布,进而实现对带噪语音线性预测系数的最优估计.实验结果表明,该算法能够有效提高噪声环境下语音信号线性预测分析的顽健性....

Full description

Saved in:
Bibliographic Details
Published in通信学报 no. 5; pp. 62 - 70
Main Authors 周彬, 邹霞, 张雄伟, 赵改华
Format Journal Article
LanguageChinese
Published 解放军理工大学 指挥信息系统学院,江苏 南京 210007 2013
Subjects
Online AccessGet full text
ISSN1000-436X
DOI10.3969/j.issn.1000-436x.2013.05.007

Cover

Abstract TN912.3; 针对传统的语音信号线性预测分析算法在噪声环境下性能恶化的问题,提出了一种新的基于超高斯激励的噪声顽健线性预测算法.该算法采用具有超高斯特性的学生 t 分布对语音信号线性预测激励建模,并显式地考虑环境噪声的影响,从而构建语音信号线性预测分析的概率图模型.在此基础上,利用变分贝叶斯的方法求解模型参数的近似后验分布,进而实现对带噪语音线性预测系数的最优估计.实验结果表明,该算法能够有效提高噪声环境下语音信号线性预测分析的顽健性.
AbstractList TN912.3; 针对传统的语音信号线性预测分析算法在噪声环境下性能恶化的问题,提出了一种新的基于超高斯激励的噪声顽健线性预测算法.该算法采用具有超高斯特性的学生 t 分布对语音信号线性预测激励建模,并显式地考虑环境噪声的影响,从而构建语音信号线性预测分析的概率图模型.在此基础上,利用变分贝叶斯的方法求解模型参数的近似后验分布,进而实现对带噪语音线性预测系数的最优估计.实验结果表明,该算法能够有效提高噪声环境下语音信号线性预测分析的顽健性.
Abstract_FL To overcome the problem that the performance of the traditional linear prediction (LP) analysis of speech dete-riorates significantly in the presence of background noise, a novel algorithm for robust LP analysis of speech based on super-Gaussian excitation was proposed. The excitation noise of LP was modeled as a Student-t distribution, which was shown to be super-Gaussian. Then a novel probabilistic graphical model for robust LP analysis of speech was built by in-corporating the effect of additive noise explicitly. Furthermore, variational Bayesian inference was adopted to approx-imate the intractable posterior distributions of the model parameters, based on which the LP coefficients of the noisy speech were estimated iteratively. The experimental results show that the developed algorithm performs well in terms of LP coefficients estimation of speech and is much more robust to ambient noise than several other algorithms.
Author 张雄伟
赵改华
周彬
邹霞
AuthorAffiliation 解放军理工大学 指挥信息系统学院,江苏 南京 210007
AuthorAffiliation_xml – name: 解放军理工大学 指挥信息系统学院,江苏 南京 210007
Author_xml – sequence: 1
  fullname: 周彬
– sequence: 2
  fullname: 邹霞
– sequence: 3
  fullname: 张雄伟
– sequence: 4
  fullname: 赵改华
BookMark eNo1j8tKw0AYhWdRwVr7FrpM_OeaZKnFGxTcdOGu5DIjLZKCUcyyQhVRKG68LiwqIihapegiIH0ZM2newoq6OnDgOx9nChXCVigRmsFgUkc4c02zEUWhiQHAYFTEJgFMTeAmgFVAxf9-fRKVo6jhAcfUEkBxES2kveQr6Y4-9vOnC33W18N2evSWXXXSy8f07jW_-Uz37kf957w3yJKhbj_ktx39fpweHujrk-zlXA9Op9GEcjcjWf7LEqotLdYqK0Z1bXm1Ml81fC4cw7KFR4jLsJI2BIwRn_s0kFQ6RErBlRC-8kEEjs1tQmxlMeExV6oxwZXPXFpCs7-zu26o3HCj3mztbIVjYX07jr2fw8ABHPoNLihnwA
ClassificationCodes TN912.3
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1000-436x.2013.05.007
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Noise-robust linear prediction analysis of speech based on super-Gaussian excitation
EndPage 70
ExternalDocumentID txxb201305009
GroupedDBID -0Y
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-c569-786b22a41fe80d442c5c3de3e92ee65f66cfc06d9858228f746b4aefa415fc4a3
ISSN 1000-436X
IngestDate Thu May 29 03:59:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 变分贝叶斯
语音线性预测
super-Gaussian excitation
噪声顽健
noise-robust
variational Bayes
linear prediction of speech
超高斯激励
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c569-786b22a41fe80d442c5c3de3e92ee65f66cfc06d9858228f746b4aefa415fc4a3
PageCount 9
ParticipantIDs wanfang_journals_txxb201305009
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 通信学报
PublicationTitle_FL Journal on Communications
PublicationYear 2013
Publisher 解放军理工大学 指挥信息系统学院,江苏 南京 210007
Publisher_xml – name: 解放军理工大学 指挥信息系统学院,江苏 南京 210007
SSID ssib051376031
ssj0002912165
ssib058759023
ssib001102965
ssib023646527
ssib023168036
ssib036439991
ssib050281523
ssib000968473
Score 1.9793978
Snippet TN912.3; 针对传统的语音信号线性预测分析算法在噪声环境下性能恶化的问题,提出了一种新的基于超高斯激励的噪声顽健线性预测算法.该算法采用具有超高斯特性的学生 t 分布...
SourceID wanfang
SourceType Aggregation Database
StartPage 62
Title 基于超高斯激励的噪声顽健语音线性预测分析算法
URI https://d.wanfangdata.com.cn/periodical/txxb201305009
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1000-436X
  databaseCode: M~E
  dateStart: 19800101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib058759023
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1gngRRcXP0kPntGxNJjOTmeNkN6EIeqrQW0myiZ5W0C2UHqRCFVEQL36CFhURFK1S9FCQ_jPutvtf-N7b7G4q4hcsw2x23m_ex2TnTTJvnuPMJBnMennm140uYIHCi7yeuLJVT3IMowyKxGiMRr5wUc1dEucX5MLEvueVXUtLnXQ2W_llXMn_WBWugV0xSvYfLDsChQtQB_tCCRaG8q9szCLJTMxCyyKBpY5YpFmomJYsMsyGzGgWKWYUszFWwhh3NgCVtiz0WBQwA1SCcKC9xYr1WegSucfCJjX2mJWIDCC2iT9hpz6SQ6chIQOsDYiKEyD0BYQhkWumFbERMeMilYVKQG18Nkh-OfSPEQH3XgwkipEHZKnJLCEA21YOxwhxDaxprACn41MkCYWz0BCvDei4ShM2mCUBTUisCrxi4nETjbzDB1kWhAJCNEG71Uckg9hWGs6kmgAVV1JERKGwA1SxS_IDZEB6BHkEKasUrEaSNZgOygo2GkmvSP0xKRssQ4hQggXGijFkPQ63CynVo181ql_HtZJ7VDgNEtuocXzdElTmIwz8Fz4lexzeirIy35Qz2cBzGWRg-XlO9I0yNCci4OwQcBl3Nfp0aG3Z395TxzvLyym2cCWFx-7nAThyuDP2RlRd_YJvUw3LdrkZvzTnmBMNHKTxdyWU5CNv10dn2IyPapLg6oI3OcKTHm7YGr-klrC0NmWKK3K0uPG4R8liR2o64MyUIp_7ncAUodcukvblijM5f9g5VK4Cp-3glj7iTKxcOeqE3fWt71v3d7_e6r9_0nu00dte7d79vPNsrfv0Xff1p_7Lb92bb3Y3PvTXN3e2tnurb_uv1npf7nXv3O69eLDz8XFv8-ExZz6O5htz9TLFST2TytQDrVLOE-EVuXZbQvBMZn4r93PD81zJQqmsyFzVMlqCI6-LQKhUJHkBFLLIROIfdybbV9v5CWc6d93cFF7a8rxEJEmm3VQl4LxAD2nh6-CkM1WKvFj-g11f3GPkU39qcNo5yCkXDD5_PONMdq4t5WfBI--kUzQufgD3FqdC
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%B6%85%E9%AB%98%E6%96%AF%E6%BF%80%E5%8A%B1%E7%9A%84%E5%99%AA%E5%A3%B0%E9%A1%BD%E5%81%A5%E8%AF%AD%E9%9F%B3%E7%BA%BF%E6%80%A7%E9%A2%84%E6%B5%8B%E5%88%86%E6%9E%90%E7%AE%97%E6%B3%95&rft.jtitle=%E9%80%9A%E4%BF%A1%E5%AD%A6%E6%8A%A5&rft.au=%E5%91%A8%E5%BD%AC&rft.au=%E9%82%B9%E9%9C%9E&rft.au=%E5%BC%A0%E9%9B%84%E4%BC%9F&rft.au=%E8%B5%B5%E6%94%B9%E5%8D%8E&rft.date=2013&rft.pub=%E8%A7%A3%E6%94%BE%E5%86%9B%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E6%8C%87%E6%8C%A5%E4%BF%A1%E6%81%AF%E7%B3%BB%E7%BB%9F%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F+%E5%8D%97%E4%BA%AC+210007&rft.issn=1000-436X&rft.issue=5&rft.spage=62&rft.epage=70&rft_id=info:doi/10.3969%2Fj.issn.1000-436x.2013.05.007&rft.externalDocID=txxb201305009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftxxb%2Ftxxb.jpg