MRI-derived brain iron, grey matter volume, and risk of dementia and Parkinson's disease: Observational and genetic analysis in the UK Biobank cohort

Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or sec...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of disease Vol. 197; p. 106539
Main Authors Casanova, Francesco, Tian, Qu, Williamson, Daniel S., Qian, Yong, Zweibaum, David, Ding, Jun, Atkins, Janice L., Melzer, David, Ferrucci, Luigi, Pilling, Luke C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0969-9961
1095-953X
1095-953X
DOI10.1016/j.nbd.2024.106539

Cover

Abstract Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: −0.37, p = 2*10–46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10–4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM ∼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia. •Genetic evidence supports a causal relationship between higher brain iron with lower grey matter volumes in specific areas.•Higher genetically predicted thalamus R2* increased risk of non-Alzheimer's dementia only.•Higher genetically predicted iron in the caudate, putamen, and substantia nigra increased risk of Parkinson's disease.•Higher iron deposition in specific subcortical brain regions caused non-Alzheimer's dementia and Parkinson's disease.
AbstractList Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: −0.37, p = 2*10–46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10–4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM ∼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia. •Genetic evidence supports a causal relationship between higher brain iron with lower grey matter volumes in specific areas.•Higher genetically predicted thalamus R2* increased risk of non-Alzheimer's dementia only.•Higher genetically predicted iron in the caudate, putamen, and substantia nigra increased risk of Parkinson's disease.•Higher iron deposition in specific subcortical brain regions caused non-Alzheimer's dementia and Parkinson's disease.
Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear.BACKGROUNDIron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear.We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM).METHODSWe analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM).In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: -0.37, p = 2*10-46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10-4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM ∼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions.FINDINGSIn GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: -0.37, p = 2*10-46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10-4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM ∼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions.Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.INTERPRETATIONOur genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.
Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: -0.37, p = 2*10-46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10-4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM ∼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.
Background: Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. Methods: We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). Findings: In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: −0.37, p = 2*10–46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10–4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM ∼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. Interpretation: Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.
ArticleNumber 106539
Author Zweibaum, David
Tian, Qu
Ding, Jun
Melzer, David
Atkins, Janice L.
Qian, Yong
Williamson, Daniel S.
Casanova, Francesco
Ferrucci, Luigi
Pilling, Luke C.
AuthorAffiliation a Department of Clinical and Biomedical Sciences, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
b Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
c Department of Medical Imaging, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
AuthorAffiliation_xml – name: b Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
– name: a Department of Clinical and Biomedical Sciences, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
– name: c Department of Medical Imaging, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
Author_xml – sequence: 1
  givenname: Francesco
  surname: Casanova
  fullname: Casanova, Francesco
  organization: Department of Clinical and Biomedical Sciences, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
– sequence: 2
  givenname: Qu
  surname: Tian
  fullname: Tian, Qu
  organization: Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
– sequence: 3
  givenname: Daniel S.
  surname: Williamson
  fullname: Williamson, Daniel S.
  organization: Department of Clinical and Biomedical Sciences, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
– sequence: 4
  givenname: Yong
  surname: Qian
  fullname: Qian, Yong
  organization: Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
– sequence: 5
  givenname: David
  surname: Zweibaum
  fullname: Zweibaum, David
  organization: Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
– sequence: 6
  givenname: Jun
  surname: Ding
  fullname: Ding, Jun
  organization: Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
– sequence: 7
  givenname: Janice L.
  surname: Atkins
  fullname: Atkins, Janice L.
  organization: Department of Clinical and Biomedical Sciences, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
– sequence: 8
  givenname: David
  surname: Melzer
  fullname: Melzer, David
  organization: Department of Clinical and Biomedical Sciences, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
– sequence: 9
  givenname: Luigi
  surname: Ferrucci
  fullname: Ferrucci, Luigi
  email: ferruccilu@mail.nih.gov
  organization: Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
– sequence: 10
  givenname: Luke C.
  surname: Pilling
  fullname: Pilling, Luke C.
  email: L.Pilling@exeter.ac.uk
  organization: Department of Clinical and Biomedical Sciences, University of Exeter, Magdalen Road, Exeter, Devon EX1 2LU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38789058$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUjVARfcAHsEHewaIZ7CSOY7pAUPEYUVSEqMTOurFvZjyT2MXOjDQfwv_imWkR7aKs_DoP69xznB047zDLnjM6YZTVrxcT15pJQYsqnWteykfZEaOS55KXPw-yIyprmUtZs8PsOMYFpYxxKZ5kh2UjGkl5c5T9_vp9mhsMdo2GtAGsIzZ4d0pmATdkgHHEQNa-Xw14SsAZEmxcEt8RgwO60cLu8huEpXXRu5eRGBsRIr4hl23EsIbRegf9DjZDh6PVaQ_9JtpIkts4R3L1hby3vgW3JNrPfRifZo876CM-u1lPsquPH36cf84vLj9Nz99d5JrXzZgLACg5NLSTbY2NaVF0ZcWx0imAomVtVVVNI2sKHTcd5yVjgoJuO1FApwUrT7LpXtd4WKjrYAcIG-XBqt2FDzMFIf24R0VLyhAEMN5BxYxMCRpZMCpMU3PErdbbvdb1qh3Q6JROgP6O6N0XZ-dq5teKFbRqKKNJ4dWNQvC_VhhHNdiose_BoV9FVdKaloI1skjQF_-a_XW5HWwCiD1ABx9jwE5pO-5mkbxtrxhV2wqphUoVUtsKqX2FEpPdY96KP8Q523MwDWttMaioLTqNxgbUY0rTPsiW99i6t85q6Je4-Q_3Dy_I8uE
CitedBy_id crossref_primary_10_3390_hemato5040035
crossref_primary_10_1080_01913123_2024_2428703
crossref_primary_10_1111_jnc_16309
crossref_primary_10_1111_1753_0407_70052
crossref_primary_10_3390_ijms25158544
crossref_primary_10_1038_s41398_025_03231_8
Cites_doi 10.1093/brain/114.4.1953
10.3389/fnagi.2021.743754
10.1056/NEJMe2213120
10.1002/gepi.22522
10.1038/s41593-022-01074-w
10.1016/j.ejmp.2023.102590
10.1016/j.acra.2013.09.018
10.3390/ijms23137267
10.3233/JAD-201080
10.1038/ng.3190
10.1016/j.neuroimage.2015.12.045
10.1093/aje/kwx246
10.1016/j.bbagen.2008.08.005
10.1016/j.nbd.2015.08.007
10.1038/s41588-018-0184-y
10.3389/fnins.2021.618435
10.1002/jmri.21563
10.1016/j.neuroimage.2012.05.049
10.1038/s41586-018-0579-z
10.1155/2014/581256
10.1038/ng.3211
10.1016/S0140-6736(23)00287-8
10.1016/S1474-4422(14)70117-6
10.1038/s41380-019-0375-7
10.1038/s41588-019-0358-2
10.1016/S1474-4422(19)30320-5
10.1148/radiol.2021210116
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nbd.2024.106539
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1095-953X
EndPage 106539
ExternalDocumentID oai_doaj_org_article_0301ea7a15fa41d9878d92107d865ee1
PMC12048010
38789058
10_1016_j_nbd_2024_106539
S0969996124001384
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Observational Study
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 AG999999
– fundername: Intramural NIH HHS
  grantid: ZIA AG000470
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
0SF
6I.
AACTN
AAFTH
AAIAV
AFCTW
AFKWA
AJOXV
AMFUW
FYGXN
NCXOZ
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c568t-7aaa35a80f9b6e8dbe7f345e4c9532b1b44488960af5df5531170acbf72afc713
IEDL.DBID AIKHN
ISSN 0969-9961
1095-953X
IngestDate Wed Aug 27 01:30:49 EDT 2025
Thu Aug 21 18:33:41 EDT 2025
Sun Sep 28 12:04:46 EDT 2025
Thu Aug 28 04:41:28 EDT 2025
Tue Jul 01 03:07:40 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Tue Jun 18 08:51:43 EDT 2024
Tue Aug 26 16:34:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Parkinson's
Genetics
Iron
Grey matter
Dementia
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-7aaa35a80f9b6e8dbe7f345e4c9532b1b44488960af5df5531170acbf72afc713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
joint last
joint first
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0969996124001384
PMID 38789058
PQID 3060371892
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_0301ea7a15fa41d9878d92107d865ee1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12048010
proquest_miscellaneous_3060371892
pubmed_primary_38789058
crossref_citationtrail_10_1016_j_nbd_2024_106539
crossref_primary_10_1016_j_nbd_2024_106539
elsevier_sciencedirect_doi_10_1016_j_nbd_2024_106539
elsevier_clinicalkey_doi_10_1016_j_nbd_2024_106539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of disease
PublicationTitleAlternate Neurobiol Dis
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Peters, Connor, Meadowcroft (bb0100) 2015; 81
Langkammer, Schweser, Krebs (bb0075) 2012; 62
Adams, Jeffrey, Ryan (bb0005) 2023; 401
Daugherty, Raz (bb0040) 2016; 128
Zhou, Nielsen, Fritsche (bb0145) 2018; 50
Gustavo Cuna, Schulz, Tuzzi (bb0060) 2023; 110
Bycroft, Freeman, Petkova (bb0030) 2018; 562
Ayton, Lei (bb0015) 2014; 2014
Fry, Littlejohns, Sudlow (bb0050) 2017; 186
Casanova, Tian, Atkins (bb0035) 2024; 61
Han, Fan, Wu (bb0065) 2021; 13
Ward, Dexter, Crichton (bb0140) 2022; 23
Ayton, Wang, Diouf (bb0020) 2020; 25
Lee, Cho, Lee, Kim, Roh, Lee (bb0080) 2021; 301
Nalls, Blauwendraat, Vallerga (bb0095) 2019; 18
Loh, Tucker, Bulik-Sullivan (bb0085) 2015; 47
Snyder, Connor (bb0120) 2009; 1790
Ravanfar, Loi, Syeda (bb0105) 2021; 15
Wallis, Paley, Graham (bb0125) 2008; 28
Rossi, Ruottinen, Saunamaki, Elovaara, Dastidar (bb0110) 2014; 21
Bulik-Sullivan, Loh, Finucane (bb0025) 2015; 47
Ward, Zucca, Duyn, Crichton, Zecca (bb0135) 2014; 13
Kunkle, Grenier-Boley, Sims (bb0070) 2019; 51
Wang, Martins-Bach, Alfaro-Almagro (bb0130) 2022; 25
Atkins, Pilling, Heales (bb0010) 2021; 79
Dexter, Carayon, Javoy-Agid (bb0045) 1991; 114
Mounier, Kutalik (bb0090) 2023; 47
Sanderson, Glymour, Holmes (bb0115) 2022
Galasko, Simuni (bb0055) 2022; 387
Fry (10.1016/j.nbd.2024.106539_bb0050) 2017; 186
Sanderson (10.1016/j.nbd.2024.106539_bb0115) 2022
Wallis (10.1016/j.nbd.2024.106539_bb0125) 2008; 28
Han (10.1016/j.nbd.2024.106539_bb0065) 2021; 13
Bycroft (10.1016/j.nbd.2024.106539_bb0030) 2018; 562
Atkins (10.1016/j.nbd.2024.106539_bb0010) 2021; 79
Ravanfar (10.1016/j.nbd.2024.106539_bb0105) 2021; 15
Ward (10.1016/j.nbd.2024.106539_bb0135) 2014; 13
Kunkle (10.1016/j.nbd.2024.106539_bb0070) 2019; 51
Bulik-Sullivan (10.1016/j.nbd.2024.106539_bb0025) 2015; 47
Ayton (10.1016/j.nbd.2024.106539_bb0020) 2020; 25
Nalls (10.1016/j.nbd.2024.106539_bb0095) 2019; 18
Lee (10.1016/j.nbd.2024.106539_bb0080) 2021; 301
Daugherty (10.1016/j.nbd.2024.106539_bb0040) 2016; 128
Mounier (10.1016/j.nbd.2024.106539_bb0090) 2023; 47
Ayton (10.1016/j.nbd.2024.106539_bb0015) 2014; 2014
Loh (10.1016/j.nbd.2024.106539_bb0085) 2015; 47
Peters (10.1016/j.nbd.2024.106539_bb0100) 2015; 81
Adams (10.1016/j.nbd.2024.106539_bb0005) 2023; 401
Zhou (10.1016/j.nbd.2024.106539_bb0145) 2018; 50
Dexter (10.1016/j.nbd.2024.106539_bb0045) 1991; 114
Rossi (10.1016/j.nbd.2024.106539_bb0110) 2014; 21
Ward (10.1016/j.nbd.2024.106539_bb0140) 2022; 23
Casanova (10.1016/j.nbd.2024.106539_bb0035) 2024; 61
Gustavo Cuna (10.1016/j.nbd.2024.106539_bb0060) 2023; 110
Snyder (10.1016/j.nbd.2024.106539_bb0120) 2009; 1790
Wang (10.1016/j.nbd.2024.106539_bb0130) 2022; 25
Galasko (10.1016/j.nbd.2024.106539_bb0055) 2022; 387
Langkammer (10.1016/j.nbd.2024.106539_bb0075) 2012; 62
References_xml – volume: 21
  start-page: 64
  year: 2014
  end-page: 71
  ident: bb0110
  article-title: Imaging brain iron and diffusion patterns: a follow-up study of Parkinson’s disease in the initial stages
  publication-title: Acad. Radiol.
– volume: 47
  start-page: 284
  year: 2015
  end-page: 290
  ident: bb0085
  article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts
  publication-title: Nat. Genet.
– volume: 79
  start-page: 1203
  year: 2021
  end-page: 1211
  ident: bb0010
  article-title: Hemochromatosis mutations, brain Iron imaging, and dementia in the UK biobank cohort
  publication-title: J. Alzheimers Dis.
– volume: 62
  start-page: 1593
  year: 2012
  end-page: 1599
  ident: bb0075
  article-title: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study
  publication-title: Neuroimage
– volume: 25
  start-page: 818
  year: 2022
  end-page: 831
  ident: bb0130
  article-title: Phenotypic and genetic associations of quantitative magnetic susceptibility in UK biobank brain imaging
  publication-title: Nat. Neurosci.
– start-page: 2
  year: 2022
  ident: bb0115
  article-title: Mendelian randomization
  publication-title: Nat. Rev. Meth. Prim.
– volume: 15
  year: 2021
  ident: bb0105
  article-title: Systematic review: quantitative susceptibility mapping (QSM) of brain Iron profile in neurodegenerative diseases
  publication-title: Front. Neurosci.
– volume: 13
  year: 2021
  ident: bb0065
  article-title: Parkinson’s disease dementia: synergistic effects of alpha-Synuclein, tau, Beta-amyloid, and Iron
  publication-title: Front. Aging Neurosci.
– volume: 186
  start-page: 1026
  year: 2017
  end-page: 1034
  ident: bb0050
  article-title: Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population
  publication-title: Am. J. Epidemiol.
– volume: 301
  start-page: 682
  year: 2021
  end-page: 691
  ident: bb0080
  article-title: Differential effect of Iron and myelin on susceptibility MRI in the substantia Nigra
  publication-title: Radiology
– volume: 81
  start-page: 49
  year: 2015
  end-page: 65
  ident: bb0100
  article-title: The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin
  publication-title: Neurobiol. Dis.
– volume: 128
  start-page: 11
  year: 2016
  end-page: 20
  ident: bb0040
  article-title: Accumulation of iron in the putamen predicts its shrinkage in healthy older adults: a multi-occasion longitudinal study
  publication-title: Neuroimage
– volume: 61
  start-page: 435
  year: 2024
  end-page: 442
  ident: bb0035
  article-title: Serum iron and risk of dementia: Mendelian randomization analysis in UK biobank
  publication-title: J. Med. Genet.
– volume: 110
  year: 2023
  ident: bb0060
  article-title: Simulated and experimental phantom data for multi-center quality assurance of quantitative susceptibility maps at 3 T, 7 T and 9.4 T
  publication-title: Phys. Med.
– volume: 47
  start-page: 314
  year: 2023
  end-page: 331
  ident: bb0090
  article-title: Bias correction for inverse variance weighting Mendelian randomization
  publication-title: Genet. Epidemiol.
– volume: 401
  start-page: 1811
  year: 2023
  end-page: 1821
  ident: bb0005
  article-title: Haemochromatosis
  publication-title: Lancet
– volume: 2014
  year: 2014
  ident: bb0015
  article-title: Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration
  publication-title: Biomed. Res. Int.
– volume: 51
  start-page: 414
  year: 2019
  end-page: 430
  ident: bb0070
  article-title: Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing
  publication-title: Nat. Genet.
– volume: 387
  start-page: 2087
  year: 2022
  end-page: 2088
  ident: bb0055
  article-title: Lack of benefit of Iron chelation in early Parkinson’s disease
  publication-title: N. Engl. J. Med.
– volume: 25
  start-page: 2932
  year: 2020
  end-page: 2941
  ident: bb0020
  article-title: Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology
  publication-title: Mol. Psychiatry
– volume: 23
  year: 2022
  ident: bb0140
  article-title: Iron, Neuroinflammation and Neurodegeneration
  publication-title: Int. J. Mol. Sci.
– volume: 28
  start-page: 1061
  year: 2008
  end-page: 1067
  ident: bb0125
  article-title: MRI assessment of basal ganglia iron deposition in Parkinson’s disease
  publication-title: J. Magn. Reson. Imaging
– volume: 562
  start-page: 203
  year: 2018
  end-page: 209
  ident: bb0030
  article-title: The UK biobank resource with deep phenotyping and genomic data
  publication-title: Nature
– volume: 18
  start-page: 1091
  year: 2019
  end-page: 1102
  ident: bb0095
  article-title: Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies
  publication-title: Lancet Neurol.
– volume: 50
  start-page: 1335
  year: 2018
  end-page: 1341
  ident: bb0145
  article-title: Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies
  publication-title: Nat. Genet.
– volume: 114
  start-page: 1953
  year: 1991
  end-page: 1975
  ident: bb0045
  article-title: Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia
  publication-title: Brain
– volume: 1790
  start-page: 606
  year: 2009
  end-page: 614
  ident: bb0120
  article-title: Iron, the substantia nigra and related neurological disorders
  publication-title: Biochim. Biophys. Acta
– volume: 47
  start-page: 291
  year: 2015
  end-page: 295
  ident: bb0025
  article-title: LD score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
– volume: 13
  start-page: 1045
  year: 2014
  end-page: 1060
  ident: bb0135
  article-title: The role of iron in brain ageing and neurodegenerative disorders
  publication-title: Lancet Neurol.
– volume: 114
  start-page: 1953
  issue: Pt 4
  year: 1991
  ident: 10.1016/j.nbd.2024.106539_bb0045
  article-title: Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia
  publication-title: Brain
  doi: 10.1093/brain/114.4.1953
– volume: 13
  year: 2021
  ident: 10.1016/j.nbd.2024.106539_bb0065
  article-title: Parkinson’s disease dementia: synergistic effects of alpha-Synuclein, tau, Beta-amyloid, and Iron
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2021.743754
– volume: 387
  start-page: 2087
  issue: 22
  year: 2022
  ident: 10.1016/j.nbd.2024.106539_bb0055
  article-title: Lack of benefit of Iron chelation in early Parkinson’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe2213120
– volume: 47
  start-page: 314
  issue: 4
  year: 2023
  ident: 10.1016/j.nbd.2024.106539_bb0090
  article-title: Bias correction for inverse variance weighting Mendelian randomization
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22522
– volume: 61
  start-page: 435
  year: 2024
  ident: 10.1016/j.nbd.2024.106539_bb0035
  article-title: Serum iron and risk of dementia: Mendelian randomization analysis in UK biobank
  publication-title: J. Med. Genet.
– volume: 25
  start-page: 818
  issue: 6
  year: 2022
  ident: 10.1016/j.nbd.2024.106539_bb0130
  article-title: Phenotypic and genetic associations of quantitative magnetic susceptibility in UK biobank brain imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01074-w
– volume: 110
  year: 2023
  ident: 10.1016/j.nbd.2024.106539_bb0060
  article-title: Simulated and experimental phantom data for multi-center quality assurance of quantitative susceptibility maps at 3 T, 7 T and 9.4 T
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2023.102590
– volume: 21
  start-page: 64
  issue: 1
  year: 2014
  ident: 10.1016/j.nbd.2024.106539_bb0110
  article-title: Imaging brain iron and diffusion patterns: a follow-up study of Parkinson’s disease in the initial stages
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2013.09.018
– volume: 23
  issue: 13
  year: 2022
  ident: 10.1016/j.nbd.2024.106539_bb0140
  article-title: Iron, Neuroinflammation and Neurodegeneration
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23137267
– volume: 79
  start-page: 1203
  issue: 3
  year: 2021
  ident: 10.1016/j.nbd.2024.106539_bb0010
  article-title: Hemochromatosis mutations, brain Iron imaging, and dementia in the UK biobank cohort
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-201080
– volume: 47
  start-page: 284
  issue: 3
  year: 2015
  ident: 10.1016/j.nbd.2024.106539_bb0085
  article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3190
– volume: 128
  start-page: 11
  year: 2016
  ident: 10.1016/j.nbd.2024.106539_bb0040
  article-title: Accumulation of iron in the putamen predicts its shrinkage in healthy older adults: a multi-occasion longitudinal study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.12.045
– volume: 186
  start-page: 1026
  issue: 9
  year: 2017
  ident: 10.1016/j.nbd.2024.106539_bb0050
  article-title: Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwx246
– volume: 1790
  start-page: 606
  issue: 7
  year: 2009
  ident: 10.1016/j.nbd.2024.106539_bb0120
  article-title: Iron, the substantia nigra and related neurological disorders
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2008.08.005
– volume: 81
  start-page: 49
  year: 2015
  ident: 10.1016/j.nbd.2024.106539_bb0100
  article-title: The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2015.08.007
– volume: 50
  start-page: 1335
  issue: 9
  year: 2018
  ident: 10.1016/j.nbd.2024.106539_bb0145
  article-title: Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0184-y
– volume: 15
  year: 2021
  ident: 10.1016/j.nbd.2024.106539_bb0105
  article-title: Systematic review: quantitative susceptibility mapping (QSM) of brain Iron profile in neurodegenerative diseases
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.618435
– start-page: 2
  year: 2022
  ident: 10.1016/j.nbd.2024.106539_bb0115
  article-title: Mendelian randomization
  publication-title: Nat. Rev. Meth. Prim.
– volume: 28
  start-page: 1061
  issue: 5
  year: 2008
  ident: 10.1016/j.nbd.2024.106539_bb0125
  article-title: MRI assessment of basal ganglia iron deposition in Parkinson’s disease
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21563
– volume: 62
  start-page: 1593
  issue: 3
  year: 2012
  ident: 10.1016/j.nbd.2024.106539_bb0075
  article-title: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.049
– volume: 562
  start-page: 203
  issue: 7726
  year: 2018
  ident: 10.1016/j.nbd.2024.106539_bb0030
  article-title: The UK biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 2014
  year: 2014
  ident: 10.1016/j.nbd.2024.106539_bb0015
  article-title: Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2014/581256
– volume: 47
  start-page: 291
  issue: 3
  year: 2015
  ident: 10.1016/j.nbd.2024.106539_bb0025
  article-title: LD score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– volume: 401
  start-page: 1811
  issue: 10390
  year: 2023
  ident: 10.1016/j.nbd.2024.106539_bb0005
  article-title: Haemochromatosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(23)00287-8
– volume: 13
  start-page: 1045
  issue: 10
  year: 2014
  ident: 10.1016/j.nbd.2024.106539_bb0135
  article-title: The role of iron in brain ageing and neurodegenerative disorders
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(14)70117-6
– volume: 25
  start-page: 2932
  issue: 11
  year: 2020
  ident: 10.1016/j.nbd.2024.106539_bb0020
  article-title: Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-019-0375-7
– volume: 51
  start-page: 414
  issue: 3
  year: 2019
  ident: 10.1016/j.nbd.2024.106539_bb0070
  article-title: Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0358-2
– volume: 18
  start-page: 1091
  issue: 12
  year: 2019
  ident: 10.1016/j.nbd.2024.106539_bb0095
  article-title: Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(19)30320-5
– volume: 301
  start-page: 682
  issue: 3
  year: 2021
  ident: 10.1016/j.nbd.2024.106539_bb0080
  article-title: Differential effect of Iron and myelin on susceptibility MRI in the substantia Nigra
  publication-title: Radiology
  doi: 10.1148/radiol.2021210116
SSID ssj0011597
Score 2.485614
Snippet Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload...
Background: Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106539
SubjectTerms Aged
Brain - diagnostic imaging
Brain - metabolism
Brain - pathology
Cohort Studies
Dementia
Dementia - diagnostic imaging
Dementia - genetics
Dementia - pathology
Female
Genetics
Genome-Wide Association Study
Gray Matter - diagnostic imaging
Gray Matter - metabolism
Gray Matter - pathology
Grey matter
Humans
Iron
Iron - metabolism
Magnetic Resonance Imaging
Male
Middle Aged
Parkinson Disease - diagnostic imaging
Parkinson Disease - genetics
Parkinson Disease - pathology
Parkinson's
UK Biobank
United Kingdom - epidemiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gLgpaPAK2mEgIJNSLJ2onTW4uoCqggIVbqzbJjWyxQL2q3SP0h_b_M2EnUUKm9cNtN7CSOJ555npk3jL0sUQealttccFfn3PMiJxbyXHd1XSHGpVLlFG3xuT6c84_H4vhKqS-KCUv0wOnFvSWT3elGl8JrXlrsLm2LOKWxshbOReBTtMUApnr_ASrpZvBhxmiuYIgWtOL4n8hYJ1ookvVPlNF1Y_PfmMkrSujgAbvfW4-wl576Ibvjwjrb2AuInE8u4BXEeM64Ub7O7h71bvMNdnn09UNuUdb-OAuGikIAZbftAILtCziJFJuQ1qkd0MECBZzD0oONm4cLHQ9SgnTMFXt9Br1fZxe-mHFbFx-MmqFEUmIk_k50J4B3QysT5p9gf4GrR_gJVJX3dPWIzQ_ef3t3mPf1GPJO1HKVN1rrmdCy8K2pnbTGNX7GheNdK2aVKQ1HrCcREmkvrBf4dZdNoTvjm0r7DtHwY7YWlsE9ZVB3jdG-baoOTQjuhBG2tq3Dy3aVQyMkY8UwP6rrycqpZsYvNUSl_VA4pYqmVKUpzdibscvvxNRxU-N9mvSxIZFsxwMoeqoXPXWb6GWsGkRGDXmsuPLihRY33ZmPnXojJxkvt3XbHmRS4QJAXh0d3PL8TCHmI9pF2VYZe5JkdBzWTFKes5AZkxPpnYx7eiYsvkeS8bKKzELFs__xpp6zezSWFOb8gq2tTs_dJhpzK7MVv9u_dLxG6g
  priority: 102
  providerName: Directory of Open Access Journals
Title MRI-derived brain iron, grey matter volume, and risk of dementia and Parkinson's disease: Observational and genetic analysis in the UK Biobank cohort
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0969996124001384
https://dx.doi.org/10.1016/j.nbd.2024.106539
https://www.ncbi.nlm.nih.gov/pubmed/38789058
https://www.proquest.com/docview/3060371892
https://pubmed.ncbi.nlm.nih.gov/PMC12048010
https://doaj.org/article/0301ea7a15fa41d9878d92107d865ee1
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TkK8INj4KB-VkRBIaKGJYycOb93E1DFtSEClvVl27ECApVPXIe2F_4L_lzvHiQhIQ-KtcezE6Z3vw777HSHPEtCBpuA2EtxlEa94HCEKeaTLLGPg42Kpcoy2OMnmC_72VJxukP0uFwbDKoPsb2W6l9ahZRr-zel5XU8_gPGN1nqCUZBJKvkm2WKg7eWIbM0Oj-Yn_WECaGyfNQ39IxzQHW76MK_GIF4o43CNKK0D9eRR_Ada6m8r9M9gyt-008FtciuYlXTWzvwO2XDNNtmZNeBSn13R59QHevod9G1y4zicp--Qn8fvDyMLTPjdWWqwWgTFtLddCl74FT3z2Ju0FWC7VDeWYiQ6XVbU-l3FWvtGzJz2SWQvLmg48HlN35l-vxcmht2AVTFjEn63OCgU3gbmJ10c0b0axErzlWK53tX6LlkcvPm4P49CoYaoFJlcR7nWOhVaxlVhMietcXmVcuF4WYiUmcRwcAIl-Eq6ErYSsOyTPNalqXKmqxLc5Htk1Cwb94DQrMyNroqclWBbcCeMsJktHDy2ZA6skzGJO_qoMqCYYzGNb6oLV_uigKQKSapako7Jy37IeQvhcV3nPSR63xHRt33DcvVJBfZT6EY6netEVJonFlha2gJ859zKTDgHk2Qdy6guwRVEMjyovu7NvB80WAH_Gva040kFkgGPe3TjlpcXCpxBxGOUBRuT-y2P9p-VSkyAFnJM5IB7B989vNPUnz36eMI85FD88P_m-4jcxKs24vkxGa1Xl-4J2HVrMyGbr34kk7B6J3535Bf9mUyZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdGJwFfEGwwytNICCS0qHnYicO3bmJq6VokWKV9s-zYhgBLp65D2h_C_8ud8xABaUh8ax07ceLzPXx3vyPkZQQyUOfMBJzZNGCOhQGikAeqSNMYbFwsVY7RFot0smTvT_npFjlsc2EwrLLh_TVP99y6aRk1X3N0XpajT6B8o7YeYRRklAh2g2wzLGo9INvj6Wyy6JwJILF91jT0D3BA69z0YV6VRrzQmMF_RGntiSeP4t-TUn9roX8GU_4mnY7ukjuNWknH9czvkS1b7ZDdcQUm9dkVfUV9oKc_Qd8hN-eNP32X_Jx_nAYGiPCHNVRjtQiKaW_7FKzwK3rmsTdpzcD2qaoMxUh0unLU-FPFUvlGzJz2SWSvL2jj8HlLP-juvBcmht2AVDFjEn7XOCgUngbqJ13O6EEJbKX6RrFc73pznyyP3p0cToKmUENQ8FRsgkwplXAlQpfr1AqjbeYSxi0rcp7EOtIMjEABtpJy3DgO2z7KQlVol8XKFWAmPyCDalXZh4SmRaaVy7O4AN2CWa65SU1u4bZFbEE7GZKwXR9ZNCjmWEzju2zD1b5KWFKJSyrrJR2SN92Q8xrC47rOB7joXUdE3_YNq_Vn2ZCfRDPSqkxF3CkWGSBpYXKwnTMjUm4tTDJuSUa2Ca7AkuFG5XVPZt2g3g7417AXLU1K4Azo7lGVXV1eSDAGEY9R5PGQ7NU02r1WIjABmoshET3q7b13_0pVfvHo41HsIYfCR_833-fk1uRkfiyPp4vZY3Ibr9TRz0_IYLO-tE9Bx9voZ80e_gX9Nk2K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI-derived+brain+iron%2C+grey+matter+volume%2C+and+risk+of+dementia+and+Parkinson%27s+disease%3A+Observational+and+genetic+analysis+in+the+UK+Biobank+cohort&rft.jtitle=Neurobiology+of+disease&rft.au=Casanova%2C+Francesco&rft.au=Tian%2C+Qu&rft.au=Williamson%2C+Daniel+S&rft.au=Qian%2C+Yong&rft.date=2024-07-01&rft.issn=1095-953X&rft.eissn=1095-953X&rft.volume=197&rft.spage=106539&rft_id=info:doi/10.1016%2Fj.nbd.2024.106539&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-9961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-9961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-9961&client=summon