Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm
Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the a...
Saved in:
| Published in | Plants (Basel) Vol. 12; no. 17; p. 3078 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
28.08.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2223-7747 2223-7747 |
| DOI | 10.3390/plants12173078 |
Cover
| Abstract | Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes. |
|---|---|
| AbstractList | Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes. Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes.Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes. |
| Audience | Academic |
| Author | Cho, Areum Mansoor, Sheikh Jang, Naeun Islam, Mohammad Shafiqul Kim, Seong-Hoon Ghimire, Amit Kim, Yoonha Chung, Yong Suk Ahn, Seonhwa |
| AuthorAffiliation | 4 Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea; mansoorshafi@jejunu.ac.kr 5 Upland Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea 2 National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea; shkim0819@korea.kr 3 School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; nina0821@naver.com (A.C.); nangni99@naver.com (N.J.); ash8235@naver.com (S.A.) 1 Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; ghimireamit2009@gmail.com (A.G.); shafik.hort@gmail.com (M.S.I.) |
| AuthorAffiliation_xml | – name: 2 National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea; shkim0819@korea.kr – name: 3 School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; nina0821@naver.com (A.C.); nangni99@naver.com (N.J.); ash8235@naver.com (S.A.) – name: 4 Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea; mansoorshafi@jejunu.ac.kr – name: 1 Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; ghimireamit2009@gmail.com (A.G.); shafik.hort@gmail.com (M.S.I.) – name: 5 Upland Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea |
| Author_xml | – sequence: 1 givenname: Amit orcidid: 0000-0002-8855-1792 surname: Ghimire fullname: Ghimire, Amit – sequence: 2 givenname: Seong-Hoon orcidid: 0000-0003-3244-4266 surname: Kim fullname: Kim, Seong-Hoon – sequence: 3 givenname: Areum surname: Cho fullname: Cho, Areum – sequence: 4 givenname: Naeun surname: Jang fullname: Jang, Naeun – sequence: 5 givenname: Seonhwa surname: Ahn fullname: Ahn, Seonhwa – sequence: 6 givenname: Mohammad Shafiqul surname: Islam fullname: Islam, Mohammad Shafiqul – sequence: 7 givenname: Sheikh surname: Mansoor fullname: Mansoor, Sheikh – sequence: 8 givenname: Yong Suk orcidid: 0000-0003-3121-7600 surname: Chung fullname: Chung, Yong Suk – sequence: 9 givenname: Yoonha orcidid: 0000-0003-0058-9161 surname: Kim fullname: Kim, Yoonha |
| BookMark | eNqFks1v0zAYxiM0xMbYlbMlLnBoZ8dfyQmVMUalSaB1E0frje1knhK7xM6g_z3uOiE6Cc2xFOv173lsP_br4sAHb4viLcFzSmt8uu7Bp0hKIimW1YviqCxLOpOSyYN_xofFSYx3OLcqdyJeFYdUikrSkh8VPxZTCgMkp9H5PfRTHgWPQotWYdNY8GhlrUHXI7gU0U10vkNXF5_QcoDOos-QAIE3CND3TbrNwkXfhdGl2-FN8bKFPtqTx_9xcfPl_Prs6-zy28XybHE501xUaSZkw7QRHCQ2psJc4xpDDSUlLYGGt9hYMFi3Ihct05hy3rRgSiJaUrdVQ4-L5c7XBLhT69ENMG5UAKceCmHsFIz5dL1VAkQtObG4rjVj0Fa8EsCanJ0hphEke53uvCa_hs0v6Pu_hgSrbeJqP_Gs-LhTrKdmsEZbn0bo97axP-PdrerCffZjNcaSZ4f3jw5j-DnZmNTgorZ9XseGKSqKGWaUECGfRctKUIo5rlhG3z1B78I0-nwRW6oUlHFZZ2q-ozrI8TjfhrxHnT9jB6fzU2tdri-kYKWosNwG9GFPkJlkf6cOphjVcnW1z7Idq8cQ42hbpV16eF15Edf_P9H5E9kzV_AH-Qzxzw |
| CitedBy_id | crossref_primary_10_34133_plantphenomics_0260 crossref_primary_10_3390_plants13202877 crossref_primary_10_12719_KSIA_2023_35_4_311 crossref_primary_10_3389_fpls_2024_1341335 crossref_primary_10_1016_j_atech_2024_100599 crossref_primary_10_1016_j_jia_2023_10_019 crossref_primary_10_1038_s41598_025_91993_y crossref_primary_10_3390_plants14060907 |
| Cites_doi | 10.1002/csc2.21032 10.1111/jvs.12375 10.1016/j.tplants.2017.05.002 10.3923/ijpbg.2012.245.251 10.1111/j.1757-837X.2011.00119.x 10.1016/j.compag.2022.107583 10.1007/BF00044887 10.1104/pp.112.205120 10.1186/s13007-021-00749-y 10.3390/plants12112190 10.1016/j.compag.2021.106230 10.1016/j.jspr.2014.10.001 10.1186/1746-4811-7-44 10.3389/fpls.2020.520161 10.1016/j.compag.2015.08.010 10.2135/cropsci2013.08.0540 10.1186/1746-4811-10-23 10.1109/ACCESS.2019.2916931 10.3390/agronomy12051004 10.3390/s20010248 10.3390/plants12040901 10.1016/j.engappai.2023.106434 10.1016/j.eaef.2015.06.001 10.1111/pbi.13682 10.1111/j.1399-3054.2012.01664.x 10.3390/agronomy8090178 10.3390/s19020271 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION ISR 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/plants12173078 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database ProQuest Central Biological Science Database (via ProQuest) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Agricultural Science Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 2223-7747 |
| ExternalDocumentID | oai_doaj_org_article_6a69751e099c44af8586a4b730d1db61 10.3390/plants12173078 PMC10490075 A764268071 10_3390_plants12173078 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: 2021R1I1A3040280 |
| GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M48 M7P MODMG M~E OK1 OZF PATMY PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PYCSY RPM 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c568t-67b4cd65a70dd805c090a9a231f1ab5f0dead0cf6a9ae4c0355bfad216f19f8b3 |
| IEDL.DBID | BENPR |
| ISSN | 2223-7747 |
| IngestDate | Fri Oct 03 12:24:39 EDT 2025 Sun Oct 26 03:11:59 EDT 2025 Tue Sep 30 17:25:36 EDT 2025 Thu Oct 02 03:30:56 EDT 2025 Fri Sep 05 13:01:53 EDT 2025 Fri Jul 25 11:58:31 EDT 2025 Mon Oct 20 17:03:32 EDT 2025 Thu Oct 16 16:07:40 EDT 2025 Thu Oct 16 04:36:31 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c568t-67b4cd65a70dd805c090a9a231f1ab5f0dead0cf6a9ae4c0355bfad216f19f8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0003-3121-7600 0000-0002-8855-1792 0000-0003-3244-4266 0000-0003-0058-9161 |
| OpenAccessLink | https://www.proquest.com/docview/2862634579?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 37687325 |
| PQID | 2862634579 |
| PQPubID | 2032347 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6a69751e099c44af8586a4b730d1db61 unpaywall_primary_10_3390_plants12173078 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490075 proquest_miscellaneous_3040431167 proquest_miscellaneous_2863305084 proquest_journals_2862634579 gale_infotracacademiconefile_A764268071 gale_incontextgauss_ISR_A764268071 crossref_citationtrail_10_3390_plants12173078 crossref_primary_10_3390_plants12173078 |
| PublicationCentury | 2000 |
| PublicationDate | 20230828 |
| PublicationDateYYYYMMDD | 2023-08-28 |
| PublicationDate_xml | – month: 8 year: 2023 text: 20230828 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Plants (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zhang (ref_2) 2022; 20 Houx (ref_10) 2014; 54 ref_14 ref_13 Song (ref_21) 2022; 38 ref_11 Lin (ref_22) 2023; 123 ref_30 Tanabata (ref_16) 2012; 160 Seiwa (ref_6) 1996; 123 ref_19 ref_17 Chung (ref_12) 2020; 11 Whan (ref_15) 2014; 10 Liu (ref_3) 2015; 60 Zhao (ref_18) 2021; 187 Zhao (ref_26) 2023; 205 Shahin (ref_24) 2012; 4 Sankaran (ref_25) 2016; 9 Yang (ref_31) 2021; 17 ref_23 Kesavan (ref_5) 2013; 147 ref_20 Duan (ref_27) 2011; 7 ref_1 Silveira (ref_7) 2016; 27 Daniel (ref_4) 2012; 6 Mussadiq (ref_28) 2015; 117 ref_9 Lobet (ref_29) 2017; 22 Li (ref_8) 2019; 7 |
| References_xml | – ident: ref_20 doi: 10.1002/csc2.21032 – volume: 27 start-page: 637 year: 2016 ident: ref_7 article-title: Seed germination traits can contribute better to plant community ecology publication-title: J. Veg. Sci. doi: 10.1111/jvs.12375 – ident: ref_30 – volume: 22 start-page: 559 year: 2017 ident: ref_29 article-title: Image analysis in plant sciences: Publish then perish publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.05.002 – volume: 6 start-page: 245 year: 2012 ident: ref_4 article-title: Digital Seed Morpho-metric Characterization of Tropical Maize publication-title: Int. J. Plant Breed. Genet. doi: 10.3923/ijpbg.2012.245.251 – volume: 4 start-page: 9 year: 2012 ident: ref_24 article-title: Predicting dehulling efficiency of lentils based on seed size and shape characteristics measured with image analysis publication-title: Qual. Assur. Saf. Crops Foods doi: 10.1111/j.1757-837X.2011.00119.x – volume: 205 start-page: 107583 year: 2023 ident: ref_26 article-title: Rice seed size measurement using a rotational perception deep learning model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107583 – volume: 123 start-page: 51 year: 1996 ident: ref_6 article-title: Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species publication-title: Vegetatio doi: 10.1007/BF00044887 – volume: 160 start-page: 1871 year: 2012 ident: ref_16 article-title: SmartGrain: High-throughput phenotyping software for measuring seed shape through image analysis publication-title: Plant Physiol. doi: 10.1104/pp.112.205120 – ident: ref_23 – volume: 17 start-page: 50 year: 2021 ident: ref_31 article-title: High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning publication-title: Plant Methods doi: 10.1186/s13007-021-00749-y – ident: ref_9 doi: 10.3390/plants12112190 – volume: 38 start-page: 156 year: 2022 ident: ref_21 article-title: Algorith for acquiring multi-phenotype parameters of soybean seed based on OpenCV publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 187 start-page: 106230 year: 2021 ident: ref_18 article-title: Real-time recognition system of soybean seed full-surface defects based on deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106230 – volume: 60 start-page: 67 year: 2015 ident: ref_3 article-title: Discriminating and elimination of damaged soybean seeds based on image characteristics publication-title: J. Stored Prod. Res. doi: 10.1016/j.jspr.2014.10.001 – volume: 7 start-page: 44 year: 2011 ident: ref_27 article-title: A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice publication-title: Plant Methods doi: 10.1186/1746-4811-7-44 – volume: 11 start-page: 520161 year: 2020 ident: ref_12 article-title: Image-based machine learning characterizes root nodule in soybean exposed to silicon publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.520161 – volume: 117 start-page: 194 year: 2015 ident: ref_28 article-title: Evaluation and comparison of open source program solutions for automatic seed counting on digital images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.08.010 – volume: 54 start-page: 1756 year: 2014 ident: ref_10 article-title: Ground-based digital imaging as a tool to assess soybean growth and yield publication-title: Crop Sci. doi: 10.2135/cropsci2013.08.0540 – volume: 10 start-page: 23 year: 2014 ident: ref_15 article-title: GrainScan: A low cost, fast method for grain size and colour measurements publication-title: Plant Methods doi: 10.1186/1746-4811-10-23 – volume: 7 start-page: 64177 year: 2019 ident: ref_8 article-title: Soybean seed counting based on pod image using two-column convolution neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916931 – ident: ref_1 doi: 10.3390/agronomy12051004 – ident: ref_13 doi: 10.3390/s20010248 – ident: ref_11 doi: 10.3390/plants12040901 – ident: ref_17 – volume: 123 start-page: 106434 year: 2023 ident: ref_22 article-title: Online classification of soybean seeds based on deep learning publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106434 – volume: 9 start-page: 50 year: 2016 ident: ref_25 article-title: Image-based rapid phenotyping of chickpeas seed size publication-title: Eng. Agric. Environ. Food doi: 10.1016/j.eaef.2015.06.001 – volume: 20 start-page: 256 year: 2022 ident: ref_2 article-title: Progress in soybean functional genomics over the past decade publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13682 – volume: 147 start-page: 113 year: 2013 ident: ref_5 article-title: Seed size: A priority trait in cereal crops publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2012.01664.x – ident: ref_19 doi: 10.3390/agronomy8090178 – ident: ref_14 doi: 10.3390/s19020271 |
| SSID | ssj0000800816 |
| Score | 2.3034155 |
| Snippet | Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3078 |
| SubjectTerms | Algorithms Applications programs Area Aspect ratio Botanical research color Communication computer software Confidence intervals Conformity Evaluation Genotypes Glycine max Image acquisition image analysis Images, Optical Legumes Machine learning Measurement methods Methods Morphology Nutritive value oils Physiological aspects Plant breeding plant proteins Python algorithm seed morphology seed number seed size Seeds Software Soybean Soybean industry Soybeans Standard error |
| SummonAdditionalLinks | – databaseName: Openly Available Collection - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQhQQXxKcItMggJLhEdRLbcY670NIigVCXit6isR23i9Jk1U1U7b9nnKTRRlXVC9dkDtbz8_hNPHkm5KMxgkGcQWhdkoY8tTrMlOGhSWJmZZpKLvwPzj9-yqNT_v1MnG1d9eV7wnp74B64fQkyS0VUoJIxnINTQkngGolpI6v7woepbKuY-jvoIBXJ3qUxwbp-f1X6vpIIFTiyWk12oc6s_3ZKvt0m-aitVrC5hrLc2oMOn5Ing3iks37Qz8iDonpOHs5rFHibF-TPrG3qzoGVHowe3rR2dFFvdAEVXeBORXFzWjZr2rUK0JNvc3p8iSmFfoUGKFSWAv218X4CdFae11fL5uLyJTk9PPj95Sgc7k0IjZCqCWWqubFSQMqsVUwYljHIAJWci0ALxyzShxknvTM3Nwwlh3Zg40i6KHNKJ6_ITlVXxWtCHWY_kxltQVpu0xhFbsIKxznmJYfiJyDhDY65GUzF_d0WZY7Fhcc9n-IekE9j_Kq307gzcu6nZYzyNtjdAyRHPpAjv48cAfngJzX3RheV76Q5h3a9zo8XJ_kMaRhLhQoLxzQEuRrHbmD4MQER8N5Yk8jdG3Lkw1Jf57GvCRMu0iwg78fXuEj9yQtURd12MQkmVqb43TEJ64yOIomgqgnxJhhM31TLi84SPPIHuKj-AvJ55Og9AL_5HwC_JY9jVH3-I3usdslOc9UWe6jSGv2uW5D_AOX7Ozk priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb5RAEN7UaqIvxp8RrWY1Rn1B-bEsy4Mxd9ramtSYnhf7RoZd9lpD4XoHUf57ZzjuImmrrzAh8DE78w07fMPYS60jD4IEXGPD2BWxydxEaeHqMPCMjGMpIvrB-fCr3J-KL8fR8RZbt_L2AC4vLe1ontR0Ubz9fd5-wAX_nipOLNnfzQtqGfGRXKPDqlfzc5eGStHmaz9h4xq7jokrockOhz37_9mTJeXLlZTjJVcapKpO0f9i3L7YS3mzKefQ_oKi-CtR7d1ht3uGyUcrl7jLtvLyHrsxrpAFtvfZj1FTV51MK9_dCH3zyvJJ1WY5lHyC6YxjBjutl7zrJ-BHn8f84AzjDv8ENXAoDQf-rSXRAT4qZohCfXL2gE33dr9_3Hf74QqujqSqXRlnQhsZQewZo7xIIz6QANI960MWWc-gj3naSpLvFtpDXpJZMIEvrZ9YlYUP2XZZlfkjxi2GSJ3ozIA0wsQBMuHQy60QGLwsMiSHuWscU90rj9MAjCLFCoRwT4e4O-z1xn6-0ty40nJMr2VjRVrZ3YFqMUv7pZdKkEkc-TlyYS0EWBUpCSLDCxjfZNJ32At6qSmpYZTUbjODZrlMDyZH6Qh9NZAKaRjeU29kK7x3Df3fC4gACWgNLHfWzpGu3TkNqHAMRRQnDnu-OY0rmbZnoMyrprMJMfp6SlxtE3qdGpIvEVQ1cLwBBsMz5elJpxvu0y4vUkSHvdn46H8Afvzvh3nCbgVI-ugbe6B22Ha9aPKnSNLq7Fm31P4AuUc-ag priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQhwQv3BGBgQxCgpesduJL8oRa2NiQmKaVivEU-RJ3FV1StQmo_HqO07RamCaQeI1PLF-Oz_mOffwZodfGcKKiVIXWxTJk0uowTQwLTRwRK6QUjPsLzp-PxeGYfTrjZ5du8fu0SgjFp42R9r4L4B-TfRr1qeyDPib9uXXvfrR7SZ5JJPJHeRC07wgOaLyHdsbHJ4Nv_k25zd9rrsYYovv-fOazSyjgcF9Xxxc1lP1XDfPVZMlbdTFXq59qNrvkiQ7uIrXpwzoB5fteXek98-sPesf_6eQ9dKeFqXiw1qv76EZePEA3hyVAydVD9HVQV2XD9Yr3t2zhuHR4VK50rgo8Ap-IwQ1OqyVukhLw6cchProA44U_qEphVVis8MnKMxfgwWxSLqbV-cUjND7Y__L-MGxfaAgNF0kVCqmZsYIrSaxNCDckJSpVgBkdVZo7YkFRiXHCc4AzQwDcaKdsRIWjqUt0_Bj1irLInyDswM6a1GirhGVWRgCnY5I7xsACOoBZAQo3c5WZlr7cv6IxyyCM8XObdec2QG-28vM1cce1kkM_9VspT7jdfCgXk6xdv5lQIpWc5gCoDWPKJTwRimmowFKrBQ3QK684mafUKHzOzkTVy2V2NDrNBqDwkUgAy0GbWiFXQtuNaq9AwAh4Fq6O5O5GAbPWqCyzyEefMeMyDdDLbTGYA3_Go4q8rBuZGEw4Sdj1MjFpKJWogEFNOsrdGYNuSTE9b8jHqT8qBpwZoLfbdfCXAX7676LP0O0IUKTftI-SXdSrFnX-HFBfpV-0C_s3sgFTDw priority: 102 providerName: Unpaywall |
| Title | Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm |
| URI | https://www.proquest.com/docview/2862634579 https://www.proquest.com/docview/2863305084 https://www.proquest.com/docview/3040431167 https://pubmed.ncbi.nlm.nih.gov/PMC10490075 https://www.mdpi.com/2223-7747/12/17/3078/pdf?version=1693209350 https://doaj.org/article/6a69751e099c44af8586a4b730d1db61 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2223-7747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2223-7747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2223-7747 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000800816 issn: 2223-7747 databaseCode: M48 dateStart: 20120801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGhwQviJ9aYUwGIcFLNCdxHOcBoRY6NqRVVcvEeIoudtxN6pKypkL977lL07BqGrzkwTlFzvl8_nw-f8fYO2MiAUECnnVh7MnYZl6ijfRMGAir4ljJiC44nw7V8Zn8dh6d77Dh5i4MpVVufGLtqG1pKEZ-GBD0DmUUJ5_mvzyqGkWnq5sSGtCUVrAfa4qxe2w3IGasDtvtD4ajcRt1IXykfbVmbwxxv384n1G-CQqjqVOttRurU03if9tV306ffLAs5rD6DbPZjbXp6DF71IBK3ltbwRO2kxdP2f1-icBv9Yz96C2rsmZm5YOW25uXjk_KVZZDwSe4gnFctC6rBa9TCPj4a5-fXKGr4V-gAg6F5cBHK-IZ4L3ZFPVSXVw9Z2dHg--fj72mnoJnIqUrT8WZNFZFEAtrtYiMSAQkgAjP-ZBFTlg0K2GcIsZuaQRCkcyBDXzl_MTpLHzBOkVZ5HuMO_SKJjGZBWWljQMEv6HInZTorxyCoi7zNnpMTUM2TjUvZiluOkjv6bbeu-x9Kz9f02zcKdmnYWmliB67biivp2kz21IFKokjP0f4a6QEpyOtQGb4AevbTPld9pYGNSUCjIIybKawXCzSk8k47aF5Bkoj8sI-NUKuxL4baC4soAaIM2tLcn9jHGnjAhbpX4Ptsjfta5y8dCIDRV4ua5kQHa7Q8m6ZUNQESL5Cpeotw9vSwfab4vKipgr36WAXUWGXfWht9D8Kfvnvn3nFHgaI8yisHuh91qmul_lrxGVVdtBMtoM6roHPU6mx7Ww46v38Ax1ePWU |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGhjReED9FYYBBIHiJ5iSO4zxMqGUdLduqqd20vYWLHXeTuqSsqab-c_xtnNM0EE2Dp702pyj97Lv7bJ-_I-SDUgEDLwJHGz90eKgTJ5KKO8r3mBZhKHhgLzgfDkTvhH8_C87WyK_VXRhbVrmKiWWg1rmye-TbnqXePg_C6Mv0p2O7RtnT1VULDahaK-idUmKsutixny6ucQk32-nv4nh_9Ly97vHXnlN1GXBUIGThiDDhSosAQqa1ZIFiEYMIkPcYF5LAMI1gM2WE1bHmimGCTgxozxXGjYxMfHzvPbLBfR7h4m-j0x0cDetdHsvHpCuWapG-H7Ht6cTWt7i4EkDvko1sWDYNuJkabpZrbs6zKSyuYTL5KxfuPSIPKxJL28tZ95ispdkTcr-TI9FcPCWn7XmRl0qwtFtridPc0FG-SFLI6AgzJsUkeVHMaFmyQIffOrR_iaGN7kIBFDJNgR4trK4BbU_GOA7F-eUzcnInyD4n61mepS8INRiFVaQSDUJzHXpItn2WGs4xPhokYS3irHCMVSVubntsTGJc5Fjc4ybuLfKptp8uZT1utezYYamtrBx3-UN-NY4r744FiCgM3BTptuIcjAykAJ7gC7SrE-G2yHs7qLEV3MhsRc8Y5rNZ3B8N4za6gyckMj38psrI5PjtCqoLEoiA1ehqWG6tJkdchZxZ_MdBWuRd_RiDhT0BgizN56WNjwGeSX67jc9KwSVXIKiyMfEaGDSfZBfnpTS5aw-SkYW2yOd6jv4H4Jf__jNvyWbv-PAgPugP9l-RBx5yTLul78ktsl5czdPXyAmL5E3leJT8uGtf_w3xXXi- |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGhoAXxFUUBhgEgpeoTuI4zsOEWtqyMqiqjom9GceOu0ldUtZUU_8iv4rj1A1E0-Bpr8mRlRyfy2f7-DsIvVEqIjJIpKdNGHs01qmXcEU9FQZEszhmNLIXnL-O2P4R_XwcHW-hX5u7MLaschMTq0CtC2X3yNuBhd4hjeKkbVxZxLg3-DD_6dkOUvakddNOQ7o2C3qvohtzlzwOstUFLOcWe8MezP3bIBj0v33c91zHAU9FjJcei1OqNItkTLTmJFIkITKRgIGML9PIEA2KJ8owy2lNFYFknRqpA58ZPzE8DWHcG2jHHn5BkNjp9kfjSb3jY7EZ99maOTIME9Kez2ytiw-rAvA03siMVQOBy2nicunm7WU-l6sLOZv9lRcH99BdB2hxZ22B99FWlj9AN7sFgM7VQ_S9syyLihUW92tecVwYfFis0kzm-BCyJ4aEeVoucFW-gCefunh4BmEO92Qpscw1lni8shwHuDObwjyUJ2eP0NG1aPYx2s6LPHuCsIGIrBKVask01XEAwDskmaEUYqUBQNZC3kaPQjmic9tvYyZgwWP1Lpp6b6F3tfx8TfFxpWTXTkstZam5qwfF-VQ4TxdMsiSO_Aygt6JUGh5xJmkKA2hfp8xvodd2UoUl38itGU_lcrEQw8OJ6IBrBIwD6oNvckKmgG9X0l2WAA1Yvq6G5O7GOIQLPwvxx1la6FX9GgKHPQ2SeVYsK5kQgj3h9GqZkFTkSz4DpfKG4TV00HyTn55UNOW-PVQGRNpC72sb_Y-Cn_77Z16iW-Dz4stwdPAM3QkAbtrd_YDvou3yfJk9B3hYpi-c32H047pd_TdE-Hzt |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQhwQv3BGBgQxCgpesduJL8oRa2NiQmKaVivEU-RJ3FV1StQmo_HqO07RamCaQeI1PLF-Oz_mOffwZodfGcKKiVIXWxTJk0uowTQwLTRwRK6QUjPsLzp-PxeGYfTrjZ5du8fu0SgjFp42R9r4L4B-TfRr1qeyDPib9uXXvfrR7SZ5JJPJHeRC07wgOaLyHdsbHJ4Nv_k25zd9rrsYYovv-fOazSyjgcF9Xxxc1lP1XDfPVZMlbdTFXq59qNrvkiQ7uIrXpwzoB5fteXek98-sPesf_6eQ9dKeFqXiw1qv76EZePEA3hyVAydVD9HVQV2XD9Yr3t2zhuHR4VK50rgo8Ap-IwQ1OqyVukhLw6cchProA44U_qEphVVis8MnKMxfgwWxSLqbV-cUjND7Y__L-MGxfaAgNF0kVCqmZsYIrSaxNCDckJSpVgBkdVZo7YkFRiXHCc4AzQwDcaKdsRIWjqUt0_Bj1irLInyDswM6a1GirhGVWRgCnY5I7xsACOoBZAQo3c5WZlr7cv6IxyyCM8XObdec2QG-28vM1cce1kkM_9VspT7jdfCgXk6xdv5lQIpWc5gCoDWPKJTwRimmowFKrBQ3QK684mafUKHzOzkTVy2V2NDrNBqDwkUgAy0GbWiFXQtuNaq9AwAh4Fq6O5O5GAbPWqCyzyEefMeMyDdDLbTGYA3_Go4q8rBuZGEw4Sdj1MjFpKJWogEFNOsrdGYNuSTE9b8jHqT8qBpwZoLfbdfCXAX7676LP0O0IUKTftI-SXdSrFnX-HFBfpV-0C_s3sgFTDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Evaluation+of+Soybean+Seed+Traits+Using+RGB+Image+Data+and+a+Python+Algorithm&rft.jtitle=Plants+%28Basel%29&rft.au=Ghimire%2C+Amit&rft.au=Kim%2C+Seong-Hoon&rft.au=Cho%2C+Areum&rft.au=Jang%2C+Naeun&rft.date=2023-08-28&rft.pub=MDPI+AG&rft.eissn=2223-7747&rft.volume=12&rft.issue=17&rft.spage=3078&rft_id=info:doi/10.3390%2Fplants12173078&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |