Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm

Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the a...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 12; no. 17; p. 3078
Main Authors Ghimire, Amit, Kim, Seong-Hoon, Cho, Areum, Jang, Naeun, Ahn, Seonhwa, Islam, Mohammad Shafiqul, Mansoor, Sheikh, Chung, Yong Suk, Kim, Yoonha
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.08.2023
MDPI
Subjects
Online AccessGet full text
ISSN2223-7747
2223-7747
DOI10.3390/plants12173078

Cover

Abstract Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes.
AbstractList Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes.
Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes.Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming, it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the appropriate size, shape, color, and absence of any damage. By studying the relationship between seed shape and other traits, we can effectively identify different genotypes and improve breeding strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured, and the total number of seeds was calculated. The OpenCV library along with the contour detection function were used to measure the seed traits. The seed traits obtained through the algorithm were compared with the values obtained manually and from two software applications (SmartGrain and WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area showed a strong correlation with the measurements obtained using various methods, with R-square values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard error, root mean square error, and mean absolute error, were all below 0.5% when comparing the seed length, width, and aspect ratio across different measurement methods. For the projected area, the error was less than 4% when compared with different measurement methods. Furthermore, the algorithm used to count the number of seeds present in the acquired images was highly accurate, and only a few errors were observed. This was a preliminary study that investigated only some morphological traits, and further research is needed to explore more seed attributes.
Audience Academic
Author Cho, Areum
Mansoor, Sheikh
Jang, Naeun
Islam, Mohammad Shafiqul
Kim, Seong-Hoon
Ghimire, Amit
Kim, Yoonha
Chung, Yong Suk
Ahn, Seonhwa
AuthorAffiliation 4 Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea; mansoorshafi@jejunu.ac.kr
5 Upland Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
2 National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea; shkim0819@korea.kr
3 School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; nina0821@naver.com (A.C.); nangni99@naver.com (N.J.); ash8235@naver.com (S.A.)
1 Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; ghimireamit2009@gmail.com (A.G.); shafik.hort@gmail.com (M.S.I.)
AuthorAffiliation_xml – name: 2 National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea; shkim0819@korea.kr
– name: 3 School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; nina0821@naver.com (A.C.); nangni99@naver.com (N.J.); ash8235@naver.com (S.A.)
– name: 4 Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea; mansoorshafi@jejunu.ac.kr
– name: 1 Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; ghimireamit2009@gmail.com (A.G.); shafik.hort@gmail.com (M.S.I.)
– name: 5 Upland Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
Author_xml – sequence: 1
  givenname: Amit
  orcidid: 0000-0002-8855-1792
  surname: Ghimire
  fullname: Ghimire, Amit
– sequence: 2
  givenname: Seong-Hoon
  orcidid: 0000-0003-3244-4266
  surname: Kim
  fullname: Kim, Seong-Hoon
– sequence: 3
  givenname: Areum
  surname: Cho
  fullname: Cho, Areum
– sequence: 4
  givenname: Naeun
  surname: Jang
  fullname: Jang, Naeun
– sequence: 5
  givenname: Seonhwa
  surname: Ahn
  fullname: Ahn, Seonhwa
– sequence: 6
  givenname: Mohammad Shafiqul
  surname: Islam
  fullname: Islam, Mohammad Shafiqul
– sequence: 7
  givenname: Sheikh
  surname: Mansoor
  fullname: Mansoor, Sheikh
– sequence: 8
  givenname: Yong Suk
  orcidid: 0000-0003-3121-7600
  surname: Chung
  fullname: Chung, Yong Suk
– sequence: 9
  givenname: Yoonha
  orcidid: 0000-0003-0058-9161
  surname: Kim
  fullname: Kim, Yoonha
BookMark eNqFks1v0zAYxiM0xMbYlbMlLnBoZ8dfyQmVMUalSaB1E0frje1knhK7xM6g_z3uOiE6Cc2xFOv173lsP_br4sAHb4viLcFzSmt8uu7Bp0hKIimW1YviqCxLOpOSyYN_xofFSYx3OLcqdyJeFYdUikrSkh8VPxZTCgMkp9H5PfRTHgWPQotWYdNY8GhlrUHXI7gU0U10vkNXF5_QcoDOos-QAIE3CND3TbrNwkXfhdGl2-FN8bKFPtqTx_9xcfPl_Prs6-zy28XybHE501xUaSZkw7QRHCQ2psJc4xpDDSUlLYGGt9hYMFi3Ihct05hy3rRgSiJaUrdVQ4-L5c7XBLhT69ENMG5UAKceCmHsFIz5dL1VAkQtObG4rjVj0Fa8EsCanJ0hphEke53uvCa_hs0v6Pu_hgSrbeJqP_Gs-LhTrKdmsEZbn0bo97axP-PdrerCffZjNcaSZ4f3jw5j-DnZmNTgorZ9XseGKSqKGWaUECGfRctKUIo5rlhG3z1B78I0-nwRW6oUlHFZZ2q-ozrI8TjfhrxHnT9jB6fzU2tdri-kYKWosNwG9GFPkJlkf6cOphjVcnW1z7Idq8cQ42hbpV16eF15Edf_P9H5E9kzV_AH-Qzxzw
CitedBy_id crossref_primary_10_34133_plantphenomics_0260
crossref_primary_10_3390_plants13202877
crossref_primary_10_12719_KSIA_2023_35_4_311
crossref_primary_10_3389_fpls_2024_1341335
crossref_primary_10_1016_j_atech_2024_100599
crossref_primary_10_1016_j_jia_2023_10_019
crossref_primary_10_1038_s41598_025_91993_y
crossref_primary_10_3390_plants14060907
Cites_doi 10.1002/csc2.21032
10.1111/jvs.12375
10.1016/j.tplants.2017.05.002
10.3923/ijpbg.2012.245.251
10.1111/j.1757-837X.2011.00119.x
10.1016/j.compag.2022.107583
10.1007/BF00044887
10.1104/pp.112.205120
10.1186/s13007-021-00749-y
10.3390/plants12112190
10.1016/j.compag.2021.106230
10.1016/j.jspr.2014.10.001
10.1186/1746-4811-7-44
10.3389/fpls.2020.520161
10.1016/j.compag.2015.08.010
10.2135/cropsci2013.08.0540
10.1186/1746-4811-10-23
10.1109/ACCESS.2019.2916931
10.3390/agronomy12051004
10.3390/s20010248
10.3390/plants12040901
10.1016/j.engappai.2023.106434
10.1016/j.eaef.2015.06.001
10.1111/pbi.13682
10.1111/j.1399-3054.2012.01664.x
10.3390/agronomy8090178
10.3390/s19020271
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
ISR
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/plants12173078
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
ProQuest Central Biological Science Database (via ProQuest)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Agricultural Science Database
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_6a69751e099c44af8586a4b730d1db61
10.3390/plants12173078
PMC10490075
A764268071
10_3390_plants12173078
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: 2021R1I1A3040280
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
OZF
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PYCSY
RPM
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c568t-67b4cd65a70dd805c090a9a231f1ab5f0dead0cf6a9ae4c0355bfad216f19f8b3
IEDL.DBID BENPR
ISSN 2223-7747
IngestDate Fri Oct 03 12:24:39 EDT 2025
Sun Oct 26 03:11:59 EDT 2025
Tue Sep 30 17:25:36 EDT 2025
Thu Oct 02 03:30:56 EDT 2025
Fri Sep 05 13:01:53 EDT 2025
Fri Jul 25 11:58:31 EDT 2025
Mon Oct 20 17:03:32 EDT 2025
Thu Oct 16 16:07:40 EDT 2025
Thu Oct 16 04:36:31 EDT 2025
Thu Apr 24 22:55:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-67b4cd65a70dd805c090a9a231f1ab5f0dead0cf6a9ae4c0355bfad216f19f8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-3121-7600
0000-0002-8855-1792
0000-0003-3244-4266
0000-0003-0058-9161
OpenAccessLink https://www.proquest.com/docview/2862634579?pq-origsite=%requestingapplication%&accountid=15518
PMID 37687325
PQID 2862634579
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_6a69751e099c44af8586a4b730d1db61
unpaywall_primary_10_3390_plants12173078
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490075
proquest_miscellaneous_3040431167
proquest_miscellaneous_2863305084
proquest_journals_2862634579
gale_infotracacademiconefile_A764268071
gale_incontextgauss_ISR_A764268071
crossref_citationtrail_10_3390_plants12173078
crossref_primary_10_3390_plants12173078
PublicationCentury 2000
PublicationDate 20230828
PublicationDateYYYYMMDD 2023-08-28
PublicationDate_xml – month: 8
  year: 2023
  text: 20230828
  day: 28
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Plants (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_2) 2022; 20
Houx (ref_10) 2014; 54
ref_14
ref_13
Song (ref_21) 2022; 38
ref_11
Lin (ref_22) 2023; 123
ref_30
Tanabata (ref_16) 2012; 160
Seiwa (ref_6) 1996; 123
ref_19
ref_17
Chung (ref_12) 2020; 11
Whan (ref_15) 2014; 10
Liu (ref_3) 2015; 60
Zhao (ref_18) 2021; 187
Zhao (ref_26) 2023; 205
Shahin (ref_24) 2012; 4
Sankaran (ref_25) 2016; 9
Yang (ref_31) 2021; 17
ref_23
Kesavan (ref_5) 2013; 147
ref_20
Duan (ref_27) 2011; 7
ref_1
Silveira (ref_7) 2016; 27
Daniel (ref_4) 2012; 6
Mussadiq (ref_28) 2015; 117
ref_9
Lobet (ref_29) 2017; 22
Li (ref_8) 2019; 7
References_xml – ident: ref_20
  doi: 10.1002/csc2.21032
– volume: 27
  start-page: 637
  year: 2016
  ident: ref_7
  article-title: Seed germination traits can contribute better to plant community ecology
  publication-title: J. Veg. Sci.
  doi: 10.1111/jvs.12375
– ident: ref_30
– volume: 22
  start-page: 559
  year: 2017
  ident: ref_29
  article-title: Image analysis in plant sciences: Publish then perish
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.05.002
– volume: 6
  start-page: 245
  year: 2012
  ident: ref_4
  article-title: Digital Seed Morpho-metric Characterization of Tropical Maize
  publication-title: Int. J. Plant Breed. Genet.
  doi: 10.3923/ijpbg.2012.245.251
– volume: 4
  start-page: 9
  year: 2012
  ident: ref_24
  article-title: Predicting dehulling efficiency of lentils based on seed size and shape characteristics measured with image analysis
  publication-title: Qual. Assur. Saf. Crops Foods
  doi: 10.1111/j.1757-837X.2011.00119.x
– volume: 205
  start-page: 107583
  year: 2023
  ident: ref_26
  article-title: Rice seed size measurement using a rotational perception deep learning model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107583
– volume: 123
  start-page: 51
  year: 1996
  ident: ref_6
  article-title: Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species
  publication-title: Vegetatio
  doi: 10.1007/BF00044887
– volume: 160
  start-page: 1871
  year: 2012
  ident: ref_16
  article-title: SmartGrain: High-throughput phenotyping software for measuring seed shape through image analysis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.205120
– ident: ref_23
– volume: 17
  start-page: 50
  year: 2021
  ident: ref_31
  article-title: High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00749-y
– ident: ref_9
  doi: 10.3390/plants12112190
– volume: 38
  start-page: 156
  year: 2022
  ident: ref_21
  article-title: Algorith for acquiring multi-phenotype parameters of soybean seed based on OpenCV
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 187
  start-page: 106230
  year: 2021
  ident: ref_18
  article-title: Real-time recognition system of soybean seed full-surface defects based on deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106230
– volume: 60
  start-page: 67
  year: 2015
  ident: ref_3
  article-title: Discriminating and elimination of damaged soybean seeds based on image characteristics
  publication-title: J. Stored Prod. Res.
  doi: 10.1016/j.jspr.2014.10.001
– volume: 7
  start-page: 44
  year: 2011
  ident: ref_27
  article-title: A novel machine-vision-based facility for the automatic evaluation of yield-related traits in rice
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-7-44
– volume: 11
  start-page: 520161
  year: 2020
  ident: ref_12
  article-title: Image-based machine learning characterizes root nodule in soybean exposed to silicon
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.520161
– volume: 117
  start-page: 194
  year: 2015
  ident: ref_28
  article-title: Evaluation and comparison of open source program solutions for automatic seed counting on digital images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.08.010
– volume: 54
  start-page: 1756
  year: 2014
  ident: ref_10
  article-title: Ground-based digital imaging as a tool to assess soybean growth and yield
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2013.08.0540
– volume: 10
  start-page: 23
  year: 2014
  ident: ref_15
  article-title: GrainScan: A low cost, fast method for grain size and colour measurements
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-10-23
– volume: 7
  start-page: 64177
  year: 2019
  ident: ref_8
  article-title: Soybean seed counting based on pod image using two-column convolution neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916931
– ident: ref_1
  doi: 10.3390/agronomy12051004
– ident: ref_13
  doi: 10.3390/s20010248
– ident: ref_11
  doi: 10.3390/plants12040901
– ident: ref_17
– volume: 123
  start-page: 106434
  year: 2023
  ident: ref_22
  article-title: Online classification of soybean seeds based on deep learning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106434
– volume: 9
  start-page: 50
  year: 2016
  ident: ref_25
  article-title: Image-based rapid phenotyping of chickpeas seed size
  publication-title: Eng. Agric. Environ. Food
  doi: 10.1016/j.eaef.2015.06.001
– volume: 20
  start-page: 256
  year: 2022
  ident: ref_2
  article-title: Progress in soybean functional genomics over the past decade
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13682
– volume: 147
  start-page: 113
  year: 2013
  ident: ref_5
  article-title: Seed size: A priority trait in cereal crops
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2012.01664.x
– ident: ref_19
  doi: 10.3390/agronomy8090178
– ident: ref_14
  doi: 10.3390/s19020271
SSID ssj0000800816
Score 2.3034155
Snippet Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds provide large amounts of plant protein and oil. To ensure maximum...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3078
SubjectTerms Algorithms
Applications programs
Area
Aspect ratio
Botanical research
color
Communication
computer software
Confidence intervals
Conformity
Evaluation
Genotypes
Glycine max
Image acquisition
image analysis
Images, Optical
Legumes
Machine learning
Measurement methods
Methods
Morphology
Nutritive value
oils
Physiological aspects
Plant breeding
plant proteins
Python algorithm
seed morphology
seed number
seed size
Seeds
Software
Soybean
Soybean industry
Soybeans
Standard error
SummonAdditionalLinks – databaseName: Openly Available Collection - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQhQQXxKcItMggJLhEdRLbcY670NIigVCXit6isR23i9Jk1U1U7b9nnKTRRlXVC9dkDtbz8_hNPHkm5KMxgkGcQWhdkoY8tTrMlOGhSWJmZZpKLvwPzj9-yqNT_v1MnG1d9eV7wnp74B64fQkyS0VUoJIxnINTQkngGolpI6v7woepbKuY-jvoIBXJ3qUxwbp-f1X6vpIIFTiyWk12oc6s_3ZKvt0m-aitVrC5hrLc2oMOn5Ing3iks37Qz8iDonpOHs5rFHibF-TPrG3qzoGVHowe3rR2dFFvdAEVXeBORXFzWjZr2rUK0JNvc3p8iSmFfoUGKFSWAv218X4CdFae11fL5uLyJTk9PPj95Sgc7k0IjZCqCWWqubFSQMqsVUwYljHIAJWci0ALxyzShxknvTM3Nwwlh3Zg40i6KHNKJ6_ITlVXxWtCHWY_kxltQVpu0xhFbsIKxznmJYfiJyDhDY65GUzF_d0WZY7Fhcc9n-IekE9j_Kq307gzcu6nZYzyNtjdAyRHPpAjv48cAfngJzX3RheV76Q5h3a9zo8XJ_kMaRhLhQoLxzQEuRrHbmD4MQER8N5Yk8jdG3Lkw1Jf57GvCRMu0iwg78fXuEj9yQtURd12MQkmVqb43TEJ64yOIomgqgnxJhhM31TLi84SPPIHuKj-AvJ55Og9AL_5HwC_JY9jVH3-I3usdslOc9UWe6jSGv2uW5D_AOX7Ozk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb5RAEN7UaqIvxp8RrWY1Rn1B-bEsy4Mxd9ramtSYnhf7RoZd9lpD4XoHUf57ZzjuImmrrzAh8DE78w07fMPYS60jD4IEXGPD2BWxydxEaeHqMPCMjGMpIvrB-fCr3J-KL8fR8RZbt_L2AC4vLe1ontR0Ubz9fd5-wAX_nipOLNnfzQtqGfGRXKPDqlfzc5eGStHmaz9h4xq7jokrockOhz37_9mTJeXLlZTjJVcapKpO0f9i3L7YS3mzKefQ_oKi-CtR7d1ht3uGyUcrl7jLtvLyHrsxrpAFtvfZj1FTV51MK9_dCH3zyvJJ1WY5lHyC6YxjBjutl7zrJ-BHn8f84AzjDv8ENXAoDQf-rSXRAT4qZohCfXL2gE33dr9_3Hf74QqujqSqXRlnQhsZQewZo7xIIz6QANI960MWWc-gj3naSpLvFtpDXpJZMIEvrZ9YlYUP2XZZlfkjxi2GSJ3ozIA0wsQBMuHQy60QGLwsMiSHuWscU90rj9MAjCLFCoRwT4e4O-z1xn6-0ty40nJMr2VjRVrZ3YFqMUv7pZdKkEkc-TlyYS0EWBUpCSLDCxjfZNJ32At6qSmpYZTUbjODZrlMDyZH6Qh9NZAKaRjeU29kK7x3Df3fC4gACWgNLHfWzpGu3TkNqHAMRRQnDnu-OY0rmbZnoMyrprMJMfp6SlxtE3qdGpIvEVQ1cLwBBsMz5elJpxvu0y4vUkSHvdn46H8Afvzvh3nCbgVI-ugbe6B22Ha9aPKnSNLq7Fm31P4AuUc-ag
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQhwQv3BGBgQxCgpesduJL8oRa2NiQmKaVivEU-RJ3FV1StQmo_HqO07RamCaQeI1PLF-Oz_mOffwZodfGcKKiVIXWxTJk0uowTQwLTRwRK6QUjPsLzp-PxeGYfTrjZ5du8fu0SgjFp42R9r4L4B-TfRr1qeyDPib9uXXvfrR7SZ5JJPJHeRC07wgOaLyHdsbHJ4Nv_k25zd9rrsYYovv-fOazSyjgcF9Xxxc1lP1XDfPVZMlbdTFXq59qNrvkiQ7uIrXpwzoB5fteXek98-sPesf_6eQ9dKeFqXiw1qv76EZePEA3hyVAydVD9HVQV2XD9Yr3t2zhuHR4VK50rgo8Ap-IwQ1OqyVukhLw6cchProA44U_qEphVVis8MnKMxfgwWxSLqbV-cUjND7Y__L-MGxfaAgNF0kVCqmZsYIrSaxNCDckJSpVgBkdVZo7YkFRiXHCc4AzQwDcaKdsRIWjqUt0_Bj1irLInyDswM6a1GirhGVWRgCnY5I7xsACOoBZAQo3c5WZlr7cv6IxyyCM8XObdec2QG-28vM1cce1kkM_9VspT7jdfCgXk6xdv5lQIpWc5gCoDWPKJTwRimmowFKrBQ3QK684mafUKHzOzkTVy2V2NDrNBqDwkUgAy0GbWiFXQtuNaq9AwAh4Fq6O5O5GAbPWqCyzyEefMeMyDdDLbTGYA3_Go4q8rBuZGEw4Sdj1MjFpKJWogEFNOsrdGYNuSTE9b8jHqT8qBpwZoLfbdfCXAX7676LP0O0IUKTftI-SXdSrFnX-HFBfpV-0C_s3sgFTDw
  priority: 102
  providerName: Unpaywall
Title Automatic Evaluation of Soybean Seed Traits Using RGB Image Data and a Python Algorithm
URI https://www.proquest.com/docview/2862634579
https://www.proquest.com/docview/2863305084
https://www.proquest.com/docview/3040431167
https://pubmed.ncbi.nlm.nih.gov/PMC10490075
https://www.mdpi.com/2223-7747/12/17/3078/pdf?version=1693209350
https://doaj.org/article/6a69751e099c44af8586a4b730d1db61
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: M48
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGhwQviJ9aYUwGIcFLNCdxHOcBoRY6NqRVVcvEeIoudtxN6pKypkL977lL07BqGrzkwTlFzvl8_nw-f8fYO2MiAUECnnVh7MnYZl6ijfRMGAir4ljJiC44nw7V8Zn8dh6d77Dh5i4MpVVufGLtqG1pKEZ-GBD0DmUUJ5_mvzyqGkWnq5sSGtCUVrAfa4qxe2w3IGasDtvtD4ajcRt1IXykfbVmbwxxv384n1G-CQqjqVOttRurU03if9tV306ffLAs5rD6DbPZjbXp6DF71IBK3ltbwRO2kxdP2f1-icBv9Yz96C2rsmZm5YOW25uXjk_KVZZDwSe4gnFctC6rBa9TCPj4a5-fXKGr4V-gAg6F5cBHK-IZ4L3ZFPVSXVw9Z2dHg--fj72mnoJnIqUrT8WZNFZFEAtrtYiMSAQkgAjP-ZBFTlg0K2GcIsZuaQRCkcyBDXzl_MTpLHzBOkVZ5HuMO_SKJjGZBWWljQMEv6HInZTorxyCoi7zNnpMTUM2TjUvZiluOkjv6bbeu-x9Kz9f02zcKdmnYWmliB67biivp2kz21IFKokjP0f4a6QEpyOtQGb4AevbTPld9pYGNSUCjIIybKawXCzSk8k47aF5Bkoj8sI-NUKuxL4baC4soAaIM2tLcn9jHGnjAhbpX4Ptsjfta5y8dCIDRV4ua5kQHa7Q8m6ZUNQESL5Cpeotw9vSwfab4vKipgr36WAXUWGXfWht9D8Kfvnvn3nFHgaI8yisHuh91qmul_lrxGVVdtBMtoM6roHPU6mx7Ww46v38Ax1ePWU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGhjReED9FYYBBIHiJ5iSO4zxMqGUdLduqqd20vYWLHXeTuqSsqab-c_xtnNM0EE2Dp702pyj97Lv7bJ-_I-SDUgEDLwJHGz90eKgTJ5KKO8r3mBZhKHhgLzgfDkTvhH8_C87WyK_VXRhbVrmKiWWg1rmye-TbnqXePg_C6Mv0p2O7RtnT1VULDahaK-idUmKsutixny6ucQk32-nv4nh_9Ly97vHXnlN1GXBUIGThiDDhSosAQqa1ZIFiEYMIkPcYF5LAMI1gM2WE1bHmimGCTgxozxXGjYxMfHzvPbLBfR7h4m-j0x0cDetdHsvHpCuWapG-H7Ht6cTWt7i4EkDvko1sWDYNuJkabpZrbs6zKSyuYTL5KxfuPSIPKxJL28tZ95ispdkTcr-TI9FcPCWn7XmRl0qwtFtridPc0FG-SFLI6AgzJsUkeVHMaFmyQIffOrR_iaGN7kIBFDJNgR4trK4BbU_GOA7F-eUzcnInyD4n61mepS8INRiFVaQSDUJzHXpItn2WGs4xPhokYS3irHCMVSVubntsTGJc5Fjc4ybuLfKptp8uZT1utezYYamtrBx3-UN-NY4r744FiCgM3BTptuIcjAykAJ7gC7SrE-G2yHs7qLEV3MhsRc8Y5rNZ3B8N4za6gyckMj38psrI5PjtCqoLEoiA1ehqWG6tJkdchZxZ_MdBWuRd_RiDhT0BgizN56WNjwGeSX67jc9KwSVXIKiyMfEaGDSfZBfnpTS5aw-SkYW2yOd6jv4H4Jf__jNvyWbv-PAgPugP9l-RBx5yTLul78ktsl5czdPXyAmL5E3leJT8uGtf_w3xXXi-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGhoAXxFUUBhgEgpeoTuI4zsOEWtqyMqiqjom9GceOu0ldUtZUU_8iv4rj1A1E0-Bpr8mRlRyfy2f7-DsIvVEqIjJIpKdNGHs01qmXcEU9FQZEszhmNLIXnL-O2P4R_XwcHW-hX5u7MLaschMTq0CtC2X3yNuBhd4hjeKkbVxZxLg3-DD_6dkOUvakddNOQ7o2C3qvohtzlzwOstUFLOcWe8MezP3bIBj0v33c91zHAU9FjJcei1OqNItkTLTmJFIkITKRgIGML9PIEA2KJ8owy2lNFYFknRqpA58ZPzE8DWHcG2jHHn5BkNjp9kfjSb3jY7EZ99maOTIME9Kez2ytiw-rAvA03siMVQOBy2nicunm7WU-l6sLOZv9lRcH99BdB2hxZ22B99FWlj9AN7sFgM7VQ_S9syyLihUW92tecVwYfFis0kzm-BCyJ4aEeVoucFW-gCefunh4BmEO92Qpscw1lni8shwHuDObwjyUJ2eP0NG1aPYx2s6LPHuCsIGIrBKVask01XEAwDskmaEUYqUBQNZC3kaPQjmic9tvYyZgwWP1Lpp6b6F3tfx8TfFxpWTXTkstZam5qwfF-VQ4TxdMsiSO_Aygt6JUGh5xJmkKA2hfp8xvodd2UoUl38itGU_lcrEQw8OJ6IBrBIwD6oNvckKmgG9X0l2WAA1Yvq6G5O7GOIQLPwvxx1la6FX9GgKHPQ2SeVYsK5kQgj3h9GqZkFTkSz4DpfKG4TV00HyTn55UNOW-PVQGRNpC72sb_Y-Cn_77Z16iW-Dz4stwdPAM3QkAbtrd_YDvou3yfJk9B3hYpi-c32H047pd_TdE-Hzt
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQhwQv3BGBgQxCgpesduJL8oRa2NiQmKaVivEU-RJ3FV1StQmo_HqO07RamCaQeI1PLF-Oz_mOffwZodfGcKKiVIXWxTJk0uowTQwLTRwRK6QUjPsLzp-PxeGYfTrjZ5du8fu0SgjFp42R9r4L4B-TfRr1qeyDPib9uXXvfrR7SZ5JJPJHeRC07wgOaLyHdsbHJ4Nv_k25zd9rrsYYovv-fOazSyjgcF9Xxxc1lP1XDfPVZMlbdTFXq59qNrvkiQ7uIrXpwzoB5fteXek98-sPesf_6eQ9dKeFqXiw1qv76EZePEA3hyVAydVD9HVQV2XD9Yr3t2zhuHR4VK50rgo8Ap-IwQ1OqyVukhLw6cchProA44U_qEphVVis8MnKMxfgwWxSLqbV-cUjND7Y__L-MGxfaAgNF0kVCqmZsYIrSaxNCDckJSpVgBkdVZo7YkFRiXHCc4AzQwDcaKdsRIWjqUt0_Bj1irLInyDswM6a1GirhGVWRgCnY5I7xsACOoBZAQo3c5WZlr7cv6IxyyCM8XObdec2QG-28vM1cce1kkM_9VspT7jdfCgXk6xdv5lQIpWc5gCoDWPKJTwRimmowFKrBQ3QK684mafUKHzOzkTVy2V2NDrNBqDwkUgAy0GbWiFXQtuNaq9AwAh4Fq6O5O5GAbPWqCyzyEefMeMyDdDLbTGYA3_Go4q8rBuZGEw4Sdj1MjFpKJWogEFNOsrdGYNuSTE9b8jHqT8qBpwZoLfbdfCXAX7676LP0O0IUKTftI-SXdSrFnX-HFBfpV-0C_s3sgFTDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Evaluation+of+Soybean+Seed+Traits+Using+RGB+Image+Data+and+a+Python+Algorithm&rft.jtitle=Plants+%28Basel%29&rft.au=Ghimire%2C+Amit&rft.au=Kim%2C+Seong-Hoon&rft.au=Cho%2C+Areum&rft.au=Jang%2C+Naeun&rft.date=2023-08-28&rft.pub=MDPI+AG&rft.eissn=2223-7747&rft.volume=12&rft.issue=17&rft.spage=3078&rft_id=info:doi/10.3390%2Fplants12173078&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon