Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease
1 EA 3596, Laboratoire ACTES, Département de Physiologie, Université des Antilles et de la Guyane, Campus de Fouillole, Pointe-à-Pitre, Guadeloupe 2 UMR S 763 Inserm/Université des Antilles et de la Guyane, CHU Pointe-à-Pitre, Guadeloupe 3 Department of Physiology and Biophysics, University of South...
Saved in:
Published in | Haematologica (Roma) Vol. 94; no. 8; pp. 1060 - 1065 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Pavia
Ferrata Storti Foundation
01.08.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0390-6078 1592-8721 1592-8721 |
DOI | 10.3324/haematol.2008.005371 |
Cover
Abstract | 1 EA 3596, Laboratoire ACTES, Département de Physiologie, Université des Antilles et de la Guyane, Campus de Fouillole, Pointe-à-Pitre, Guadeloupe
2 UMR S 763 Inserm/Université des Antilles et de la Guyane, CHU Pointe-à-Pitre, Guadeloupe
3 Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
4 Caribbean Sickle Cell Center, Pointe-à-Pitre, Guadeloupe
5 Department of Hematology/Immunology, Academic Hospital of Pointe-à-Pitre, Guadeloupe
Correspondence: Philippe Connes, PhD, Laboratoire ACTES (EA 3596), Département de Physiologie, Université des Antilles et de la Guyane, Campus de Fouillole, 97159 Pointe-à-Pitre, Guadeloupe (French West Indies). E-mail: pconnes{at}yahoo.fr
Background: Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease.
Design and Methods: We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA).
Results: Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates.
Conclusions: The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates.
Key words: sickle cell disease, red blood cell aggregation, viscosity, red blood cell deformability. |
---|---|
AbstractList | Recent evidence suggests that red cell aggregation and the ratio of hematocrit to blood viscosity, an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. The findings of this study indicate that patients with sickle cell disease and those with sickle cell hemoglobin C disease have low ratios of hematocrit to blood viscosity as compared to normal controls. This may play a role in tissue hypoxia and clinical status of these patients. 1 EA 3596, Laboratoire ACTES, Département de Physiologie, Université des Antilles et de la Guyane, Campus de Fouillole, Pointe-à-Pitre, Guadeloupe 2 UMR S 763 Inserm/Université des Antilles et de la Guyane, CHU Pointe-à-Pitre, Guadeloupe 3 Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA 4 Caribbean Sickle Cell Center, Pointe-à-Pitre, Guadeloupe 5 Department of Hematology/Immunology, Academic Hospital of Pointe-à-Pitre, Guadeloupe Correspondence: Philippe Connes, PhD, Laboratoire ACTES (EA 3596), Département de Physiologie, Université des Antilles et de la Guyane, Campus de Fouillole, 97159 Pointe-à-Pitre, Guadeloupe (French West Indies). E-mail: pconnes{at}yahoo.fr Background: Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease. Design and Methods: We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA). Results: Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates. Conclusions: The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates. Key words: sickle cell disease, red blood cell aggregation, viscosity, red blood cell deformability. Background Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease.Design and Methods We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA).Results Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates.Conclusions The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates. Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease.BACKGROUNDRecent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease.We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA).DESIGN AND METHODSWe compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA).Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates.RESULTSBlood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates.The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates.CONCLUSIONSThe low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates. Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease. We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA). Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates. The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates. |
Author | Mougenel, Daniele Hue, Olivier Meiselman, Herbert J Hardy-Dessources, Marie-Dominique Etienne-Julan, Maryse Chout, Roger Tripette, Julien Connes, Philippe Beltan, Eric Alexy, Tamas Chalabi, Tawfik |
AuthorAffiliation | 3 Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA 5 Department of Hematology/Immunology, Academic Hospital of Pointe-à-Pitre, Guadeloupe 1 EA 3596, Laboratoire ACTES, Département de Physiologie, Université des Antilles et de la Guyane, Campus de Fouillole, Pointe-à-Pitre, Guadeloupe 2 UMR S 763 Inserm/Université des Antilles et de la Guyane, CHU Pointe-à-Pitre, Guadeloupe 4 Caribbean Sickle Cell Center, Pointe-à-Pitre, Guadeloupe |
AuthorAffiliation_xml | – name: 5 Department of Hematology/Immunology, Academic Hospital of Pointe-à-Pitre, Guadeloupe – name: 4 Caribbean Sickle Cell Center, Pointe-à-Pitre, Guadeloupe – name: 2 UMR S 763 Inserm/Université des Antilles et de la Guyane, CHU Pointe-à-Pitre, Guadeloupe – name: 1 EA 3596, Laboratoire ACTES, Département de Physiologie, Université des Antilles et de la Guyane, Campus de Fouillole, Pointe-à-Pitre, Guadeloupe – name: 3 Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA |
Author_xml | – sequence: 1 fullname: Tripette, Julien – sequence: 2 fullname: Alexy, Tamas – sequence: 3 fullname: Hardy-Dessources, Marie-Dominique – sequence: 4 fullname: Mougenel, Daniele – sequence: 5 fullname: Beltan, Eric – sequence: 6 fullname: Chalabi, Tawfik – sequence: 7 fullname: Chout, Roger – sequence: 8 fullname: Etienne-Julan, Maryse – sequence: 9 fullname: Hue, Olivier – sequence: 10 fullname: Meiselman, Herbert J – sequence: 11 fullname: Connes, Philippe |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21778263$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19644138$$D View this record in MEDLINE/PubMed https://hal.science/hal-04596392$$DView record in HAL |
BookMark | eNqNUk1v1DAUjFARbRf-AUK-AEJii78SJxyQqgpopUpICM6WY78kLk68tbNdln_Ev8TbhIX2AifL4zfz_GbecXYw-AGy7CnBJ4xR_qZT0KvRuxOKcXmCcc4EeZAdkbyiy1JQcpAdYVbhZYFFeZgdx3iFMcVVJR5lh6QqOCesPMp-fgaDaue9QRqcQ6ptA7RqtH54vb8AimOAoR07pAaD_PdtCwMagxriyocRrfwIw2iVQ76ZxVQApOrBhz6hdkC1T-TO9_7HtvXriKLV3xzMPQforbqVnuBlB71vna8T8QwZG0FFeJw9bJSL8GQ-F9nXD--_nJ0vLz99vDg7vVzqvCjHZcFFKUBjVlNOwRhdixzXgDGhgHXCK14aUpg8zwGTuqlJIlSYaihrpuuCLbKLSdd4dSVXwfYqbKVXVt4CPrRShdFqB5IXjAleNcKA4hxI1UADrEqSBqgwKmnlk9Z6WKntRjm3FyRY7mKUv2OUuxjlFGPivZt4q3Xdg9HJ3aDcnc_cfRlsJ1t_I6kgaZYyCbyaBLp7tPPTS7nDMM-rglX0Ztfs5dws-Os1xFH2Nu6CSbmkqKRgLE9T8p01z_7-1p9Z5nVKBc_nAhW1ck3aEG3jvo4SIUqaTFtkfKrTwccYoPlfW97eo2k73u5qMsG6f5FfzJbYttvYADKm3XRpFCo3m03FZZkECsx-AUKSElM |
CitedBy_id | crossref_primary_10_1111_bjh_14852 crossref_primary_10_1136_bjsports_2015_095317 crossref_primary_10_1111_bjh_13363 crossref_primary_10_3233_CH_189119 crossref_primary_10_1016_j_lpm_2023_104210 crossref_primary_10_1038_s41467_023_40522_4 crossref_primary_10_1111_j_1537_2995_2012_03779_x crossref_primary_10_4236_ojpm_2015_54019 crossref_primary_10_1590_1807_3107BOR_2016_vol30_0060 crossref_primary_10_3389_fphar_2021_636457 crossref_primary_10_1038_s41598_018_34600_7 crossref_primary_10_3389_fneur_2019_00871 crossref_primary_10_3390_cells10040811 crossref_primary_10_1182_bloodadvances_2019000387 crossref_primary_10_1111_bjh_12300 crossref_primary_10_3390_ijms25073732 crossref_primary_10_1111_bjh_12786 crossref_primary_10_3233_CH_162042 crossref_primary_10_3233_CH_201037 crossref_primary_10_3389_fgene_2020_00848 crossref_primary_10_3390_antiox10101608 crossref_primary_10_1016_j_blre_2015_08_005 crossref_primary_10_1016_j_pacs_2024_100599 crossref_primary_10_3389_fphys_2022_916197 crossref_primary_10_2174_1874070701812010086 crossref_primary_10_1016_j_jbiomech_2025_112603 crossref_primary_10_5301_ejo_5000598 crossref_primary_10_1371_journal_pone_0286543 crossref_primary_10_1002_ajh_25933 crossref_primary_10_1152_ajpheart_00298_2010 crossref_primary_10_1111_bjh_13185 crossref_primary_10_1371_journal_pone_0066004 crossref_primary_10_3233_CH_170280 crossref_primary_10_3390_jcm12206620 crossref_primary_10_1093_ajcp_aqab196 crossref_primary_10_1371_journal_pone_0079086 crossref_primary_10_1016_j_bcmd_2016_04_012 crossref_primary_10_1016_j_pdpdt_2021_102276 crossref_primary_10_1007_s11277_020_07633_3 crossref_primary_10_1182_blood_2014_10_605964 crossref_primary_10_1016_j_crvi_2012_09_003 crossref_primary_10_1371_journal_pone_0114412 crossref_primary_10_3389_fcvm_2018_00138 crossref_primary_10_1016_j_bcmd_2016_10_020 crossref_primary_10_1182_blood_2024024608 crossref_primary_10_1007_s10439_017_1863_z crossref_primary_10_1111_bjh_19832 crossref_primary_10_3233_CH_189201 crossref_primary_10_3233_CH_190671 crossref_primary_10_3389_fimmu_2020_00454 crossref_primary_10_1182_blood_2022018229 crossref_primary_10_3390_ijms24043621 crossref_primary_10_3233_CH_170310 crossref_primary_10_1371_journal_pone_0095563 crossref_primary_10_1371_journal_pone_0068929 crossref_primary_10_1007_s00421_021_04821_2 crossref_primary_10_1371_journal_pone_0052471 crossref_primary_10_1371_journal_pone_0077830 crossref_primary_10_1002_ajh_26440 crossref_primary_10_1016_j_febslet_2012_12_015 crossref_primary_10_3390_jcm9010133 crossref_primary_10_3233_CH_141891 crossref_primary_10_1093_bib_bbad232 crossref_primary_10_1136_bjsports_2012_091038 crossref_primary_10_3233_CH_160218 crossref_primary_10_3390_cells11030585 crossref_primary_10_1016_j_bpj_2018_12_008 crossref_primary_10_3390_jcm8122155 crossref_primary_10_1039_C3SM52860J crossref_primary_10_1016_j_smrv_2015_01_007 crossref_primary_10_1021_acsabm_4c00516 crossref_primary_10_3109_07420528_2013_804083 crossref_primary_10_1111_bjh_12912 crossref_primary_10_3389_fcvm_2022_883812 crossref_primary_10_3389_fphys_2023_1151268 crossref_primary_10_3389_fphys_2019_01329 crossref_primary_10_1089_ars_2011_4282 crossref_primary_10_3233_CH_238122 crossref_primary_10_3389_fphys_2019_01443 crossref_primary_10_1182_bloodadvances_2024014201 crossref_primary_10_1002_ajh_25345 crossref_primary_10_1002_pbc_29363 crossref_primary_10_1016_j_cis_2023_102870 crossref_primary_10_3390_fluids5030125 crossref_primary_10_1111_j_1537_2995_2012_03822_x crossref_primary_10_1089_bio_2018_0023 crossref_primary_10_1002_ajh_23312 crossref_primary_10_3109_03630269_2014_888353 crossref_primary_10_1371_journal_pone_0158182 crossref_primary_10_1111_ejh_13607 crossref_primary_10_1002_ajh_23318 crossref_primary_10_1111_micc_12317 crossref_primary_10_1016_j_bcmd_2017_02_001 crossref_primary_10_3233_CH_189005 crossref_primary_10_3233_CH_189006 crossref_primary_10_1098_rsfs_2015_0065 crossref_primary_10_1007_s00540_022_03109_9 crossref_primary_10_1016_j_lpm_2023_104202 crossref_primary_10_3174_ajnr_A4793 crossref_primary_10_1111_j_1537_2995_2012_03961_x crossref_primary_10_1007_s11239_024_03040_8 crossref_primary_10_3390_biology13110948 crossref_primary_10_3233_CH_151979 crossref_primary_10_3390_ma13184184 crossref_primary_10_1016_j_bpj_2023_03_030 crossref_primary_10_1111_j_1365_2141_2011_08728_x crossref_primary_10_3233_CH_168042 crossref_primary_10_1007_s10483_019_2473_6 crossref_primary_10_1039_C4IB00025K crossref_primary_10_1371_journal_pone_0229105 crossref_primary_10_3233_CH_151972 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License Copyright© Ferrata Storti Foundation |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright© Ferrata Storti Foundation |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM ADTOC UNPAY DOA |
DOI | 10.3324/haematol.2008.005371 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Open Access资源_DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1592-8721 |
EndPage | 1065 |
ExternalDocumentID | oai_doaj_org_article_4633749f7dea44e19fefe39b14de27da 10.3324/haematol.2008.005371 PMC2719028 oai_HAL_hal_04596392v1 19644138 21778263 10_3324_haematol_2008_005371 www94_8_1060 |
Genre | Journal Article |
GroupedDBID | - 29I 2WC 53G 5GY 5RE 5VS ABFLS ADACO ADBBV AENEX AGCAB ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV C1A CS3 DIK E3Z EBS EJD F5P FRP GROUPED_DOAJ H13 HYE KQ8 M~E O0- OK1 P2P RHF RHI RNS RPM SJN TFS WOQ WOW ZA5 --- AAFWJ AAYXX AFPKN AOIJS BTFSW CITATION OVT TR2 W8F IQODW UDS CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c568t-64787ec03b242eddcb750be0012e0cc03948d16d555e01bfb1478902ce8b3cb63 |
IEDL.DBID | DOA |
ISSN | 0390-6078 1592-8721 |
IngestDate | Wed Aug 27 01:31:21 EDT 2025 Wed Oct 01 16:07:15 EDT 2025 Thu Aug 21 18:42:24 EDT 2025 Fri Sep 12 12:42:39 EDT 2025 Fri Jul 11 04:42:30 EDT 2025 Mon Jul 21 05:54:36 EDT 2025 Mon Jul 21 09:14:40 EDT 2025 Tue Jul 01 04:21:39 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Tue Jan 05 20:16:40 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Viscosity Hemoglobinopathy Oxygen Sickle cell anemia Deformability Hemoglobin C Hematology Red blood cell red blood cell aggregation Hemopathy Homozygosity Blood Genetic disease sickle cell disease Aggregation Blood cell Hemolytic anemia Aggregate Transport red blood cell deformability Strength Red blood cell deformability Sickle cell disease Red blood cell aggregation |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-64787ec03b242eddcb750be0012e0cc03948d16d555e01bfb1478902ce8b3cb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5669-5337 0000-0002-9232-0268 0000-0002-2155-0816 |
OpenAccessLink | https://doaj.org/article/4633749f7dea44e19fefe39b14de27da |
PMID | 19644138 |
PQID | 733574946 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4633749f7dea44e19fefe39b14de27da unpaywall_primary_10_3324_haematol_2008_005371 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2719028 hal_primary_oai_HAL_hal_04596392v1 proquest_miscellaneous_733574946 pubmed_primary_19644138 pascalfrancis_primary_21778263 crossref_primary_10_3324_haematol_2008_005371 crossref_citationtrail_10_3324_haematol_2008_005371 highwire_smallpub2_www94_8_1060 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-01 |
PublicationDateYYYYMMDD | 2009-08-01 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia – name: Italy |
PublicationTitle | Haematologica (Roma) |
PublicationTitleAlternate | Haematologica |
PublicationYear | 2009 |
Publisher | Ferrata Storti Foundation |
Publisher_xml | – name: Ferrata Storti Foundation |
References | 18499764 - Br J Sports Med. 2010 Mar;44(4):232-7 6294138 - J Clin Invest. 1982 Dec;70(6):1253-9 2947642 - Blood. 1987 Jan;69(1):124-30 7174796 - J Clin Invest. 1982 Dec;70(6):1315-9 2348499 - J Trop Med Hyg. 1990 Jun;93(3):210-4 11299197 - Am J Physiol Heart Circ Physiol. 2001 May;280(5):H1982-8 9436619 - Free Radic Biol Med. 1998 Jan 1;24(1):102-10 15474138 - Lancet. 2004 Oct 9-15;364(9442):1343-60 18937523 - Sports Med. 2008;38(11):931-46 6690472 - J Clin Invest. 1984 Jan;73(1):116-23 3209393 - Hemoglobin. 1988;12(5-6):509-17 6712910 - Br J Ophthalmol. 1984 May;68(5):325-8 14194270 - Blood. 1964 Jul;24:25-48 17993789 - Clin J Sport Med. 2007 Nov;17(6):465-70 2424491 - Br J Ophthalmol. 1986 Jul;70(7):522-5 3401593 - Blood. 1988 Aug;72(2):539-45 16899945 - Clin Hemorheol Microcirc. 2006;35(1-2):291-5 3590284 - Transfusion. 1987 May-Jun;27(3):228-33 16269018 - Eur J Clin Invest. 2005 Nov;35(11):687-90 11790865 - Clin Hemorheol Microcirc. 2001;25(1):1-11 19065010 - Biorheology. 2008;45(6):629-38 61453 - Lancet. 1976 Oct 9;2(7989):784-6 16734807 - Transfusion. 2006 Jun;46(6):912-8 5443167 - J Clin Invest. 1970 Apr;49(4):623-34 16015123 - Med Sci Sports Exerc. 2005 Jul;37(7):1086-92 18608991 - Microcirculation. 2008 Oct;15(7):585-90 10607725 - Blood. 2000 Jan 1;95(1):360-2 |
References_xml | – reference: 16269018 - Eur J Clin Invest. 2005 Nov;35(11):687-90 – reference: 16734807 - Transfusion. 2006 Jun;46(6):912-8 – reference: 5443167 - J Clin Invest. 1970 Apr;49(4):623-34 – reference: 2348499 - J Trop Med Hyg. 1990 Jun;93(3):210-4 – reference: 10607725 - Blood. 2000 Jan 1;95(1):360-2 – reference: 18608991 - Microcirculation. 2008 Oct;15(7):585-90 – reference: 6712910 - Br J Ophthalmol. 1984 May;68(5):325-8 – reference: 11299197 - Am J Physiol Heart Circ Physiol. 2001 May;280(5):H1982-8 – reference: 14194270 - Blood. 1964 Jul;24:25-48 – reference: 61453 - Lancet. 1976 Oct 9;2(7989):784-6 – reference: 2424491 - Br J Ophthalmol. 1986 Jul;70(7):522-5 – reference: 11790865 - Clin Hemorheol Microcirc. 2001;25(1):1-11 – reference: 3209393 - Hemoglobin. 1988;12(5-6):509-17 – reference: 17993789 - Clin J Sport Med. 2007 Nov;17(6):465-70 – reference: 19065010 - Biorheology. 2008;45(6):629-38 – reference: 3590284 - Transfusion. 1987 May-Jun;27(3):228-33 – reference: 18499764 - Br J Sports Med. 2010 Mar;44(4):232-7 – reference: 18937523 - Sports Med. 2008;38(11):931-46 – reference: 6294138 - J Clin Invest. 1982 Dec;70(6):1253-9 – reference: 16015123 - Med Sci Sports Exerc. 2005 Jul;37(7):1086-92 – reference: 15474138 - Lancet. 2004 Oct 9-15;364(9442):1343-60 – reference: 7174796 - J Clin Invest. 1982 Dec;70(6):1315-9 – reference: 6690472 - J Clin Invest. 1984 Jan;73(1):116-23 – reference: 16899945 - Clin Hemorheol Microcirc. 2006;35(1-2):291-5 – reference: 2947642 - Blood. 1987 Jan;69(1):124-30 – reference: 9436619 - Free Radic Biol Med. 1998 Jan 1;24(1):102-10 – reference: 3401593 - Blood. 1988 Aug;72(2):539-45 |
SSID | ssj0020997 |
Score | 2.3420951 |
Snippet | 1 EA 3596, Laboratoire ACTES, Département de Physiologie, Université des Antilles et de la Guyane, Campus de Fouillole, Pointe-à-Pitre, Guadeloupe
2 UMR S 763... Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of... Recent evidence suggests that red cell aggregation and the ratio of hematocrit to blood viscosity, an index of the oxygen transport potential of blood, might... Background Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport... |
SourceID | doaj unpaywall pubmedcentral hal proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1060 |
SubjectTerms | Anemia, Sickle Cell - blood Anemia, Sickle Cell - genetics Anemias. Hemoglobinopathies Biological and medical sciences Biological Transport Blood Viscosity Diseases of red blood cells Erythrocyte Aggregation Erythrocyte Deformability Erythrocytes - metabolism Fibrinogen - metabolism Hematocrit Hematologic and hematopoietic diseases Hemoglobin C - metabolism Hemoglobin C Disease - blood Hemoglobin C Disease - genetics Hemoglobin, Sickle - metabolism Hemorheology Homozygote Humans Life Sciences Medical sciences Original Oxygen - metabolism |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwEvXDYu4TIshHgibRLn5scyMVWITQhRNJ4iO3aaamlSrSlV94_4l5zjXKCABHusax_fvmOfEx9_JuQVDzXXMtV25nmp7StH2jzTrh2hf505QivDrn96Fk6m_vvz4HyPBN1dmFwgVWmr9w1PcDOCI4Xk8ZVQI0BNMPLQD79B9kM8VxqQ_enZx_FXc2LAwR1yzAoMOzVqu-c2V-YY2A69_C6KMmCRu7MlGeZ-2GhyjIvsOYMxZFKsYNSy5rmLv9mjf4ZV3lqXS7HdiKL4Zc86uUu-dL1tQlUuhutaDtOr34ggrz0c98id1oql4ybXfbKnywNyOC5ByGJLX1MTV2o-2B-Qm6ft8f0h-f5JK2pC5SkeGFAxA29_ZrDxpv-hKd5fKWd1TkWpKDQdME7rjoSdLqsaI5yg-iprhYlLTYUs0fwu6LykEuBH82pRXW1n1XpFAYkXhW7rLPViLozoJtnO9aJCXhQoeEzbA6sHZHry7vPxxG7firDTIIxrG6_MRjp1mASbQyuVSjCFpEZrTjsppHM_Vm6ogiDQjisz6fp4BdhLdSxZKkP2kAzKqtSPCWUik0zFgOFA-FJx7kkweqMoyCKeMYdbhHVwSdKWSB3f8ygScKgQZEk3a-0bnwZkFrH7UsuGSOQf-d8iEvu8SANuEgAESQuCxA8Zi3yeRUoL39cuqFmmGYfOKe1FSljkJeB4R8Zk_CHBNDDlYe3l3jeo6UUH82QF81QAir1ks9lwP4mhjaFjkaMd9PcCwZ8FCzNkFqGdOiSwPOF0wmzCBCcRYwG00A8t8qjRjp-952iLs9gi0Y7e7DR3959ynhsGdC9ykXXIIsNew_5rUJ9ct8BTcrs5PsSIz2dkUF-u9XOwQmt51K45PwDzS4qY priority: 102 providerName: Unpaywall |
Title | Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease |
URI | http://www.haematologica.org/cgi/content/abstract/94/8/1060 https://www.ncbi.nlm.nih.gov/pubmed/19644138 https://www.proquest.com/docview/733574946 https://hal.science/hal-04596392 https://pubmed.ncbi.nlm.nih.gov/PMC2719028 https://haematologica.org/article/download/5315/23304 https://doaj.org/article/4633749f7dea44e19fefe39b14de27da |
UnpaywallVersion | publishedVersion |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1592-8721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020997 issn: 1592-8721 databaseCode: KQ8 dateStart: 19940101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1592-8721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020997 issn: 1592-8721 databaseCode: DOA dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1592-8721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020997 issn: 1592-8721 databaseCode: DIK dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1592-8721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020997 issn: 1592-8721 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQkYALghZo-FgshDgRmsRJHB-XimqFaIUQlcopsuPJZkU2WXWzLMs_4l8ydj5oBFI5cIyT2I7nxX5jj58JeSliEKAycPMgyNxQe8oVOfguN_517knQVl3_9CyenYfvL6KLK0d9mZiwVh64bbijMGaMhyLnGmQYgo855cCE8kMNAdeWGuEw1jtTnatl9oPa9QOBzhGOgu2mOYbs4aiQRgy1Lvs4yohxfzQoWe1-HGoKExk5qAaboEm5xnbL2wMv_sZI_wysvL2pVnK3lWV5ZdQ6uUfudnSTTtvPvE9uQLVPDqYVVm25o6-oDQC1M-v75NZpt85-QH5-Ak1tTDs1M_tUztEtn1sjvh4ugJqNJtW8KaisNK2_7xCMtOnV0umqbkwoEhZf511m8hKoVJXhySVdVFQhTmhRL-sfu3m9WVOEzNcSujIrWC6kzbpNdgtY1kbABF88pt3K0gNyfvLu8_HM7Q51cLMoThrX7G3lkHlMITkArTOFnEWBoV3gZZguwkT7sY6iCDxf5Whos1c3yCBRLFMxe0j2qrqCQ0KZzBXTCYItkqHSQgQK2SnnUc5FzjzhENZbNc06xXNz8EaZoudjsJD2WOgO47RYcIg7vLVqFT-uef6tAczwrNHrtgmI4rRDcXodih3yAuE2ymM2_ZCaNOTc2EmK4BuW9LxHY7pGO5UItiDdbrciTBOsY-w5ZDIC6ZAhOp5IBWPmENqjNsV-xJgTrYkGTjljEdYwjB3yqAXx768XhjSzxCF8BO9Rdcd3qkVhpcoD7ht5IIe8GX6Ef2rUx_-jUZ-QO-3anwnXfEr2mssNPEMK2aiJ7S0mdm5vQm6en32cfvkFXwV1QA |
linkProvider | Directory of Open Access Journals |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwEvXDYu4TIshHgibRLn5scyMVWITQhRNJ4iO3aaamlSrSlV94_4l5zjXKCABHusax_fvmOfEx9_JuQVDzXXMtV25nmp7StH2jzTrh2hf505QivDrn96Fk6m_vvz4HyPBN1dmFwgVWmr9w1PcDOCI4Xk8ZVQI0BNMPLQD79B9kM8VxqQ_enZx_FXc2LAwR1yzAoMOzVqu-c2V-YY2A69_C6KMmCRu7MlGeZ-2GhyjIvsOYMxZFKsYNSy5rmLv9mjf4ZV3lqXS7HdiKL4Zc86uUu-dL1tQlUuhutaDtOr34ggrz0c98id1oql4ybXfbKnywNyOC5ByGJLX1MTV2o-2B-Qm6ft8f0h-f5JK2pC5SkeGFAxA29_ZrDxpv-hKd5fKWd1TkWpKDQdME7rjoSdLqsaI5yg-iprhYlLTYUs0fwu6LykEuBH82pRXW1n1XpFAYkXhW7rLPViLozoJtnO9aJCXhQoeEzbA6sHZHry7vPxxG7firDTIIxrG6_MRjp1mASbQyuVSjCFpEZrTjsppHM_Vm6ogiDQjisz6fp4BdhLdSxZKkP2kAzKqtSPCWUik0zFgOFA-FJx7kkweqMoyCKeMYdbhHVwSdKWSB3f8ygScKgQZEk3a-0bnwZkFrH7UsuGSOQf-d8iEvu8SANuEgAESQuCxA8Zi3yeRUoL39cuqFmmGYfOKe1FSljkJeB4R8Zk_CHBNDDlYe3l3jeo6UUH82QF81QAir1ks9lwP4mhjaFjkaMd9PcCwZ8FCzNkFqGdOiSwPOF0wmzCBCcRYwG00A8t8qjRjp-952iLs9gi0Y7e7DR3959ynhsGdC9ykXXIIsNew_5rUJ9ct8BTcrs5PsSIz2dkUF-u9XOwQmt51K45PwDzS4qY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red+blood+cell+aggregation%2C+aggregate+strength+and+oxygen+transport+potential+of+blood+are+abnormal+in+both+homozygous+sickle+cell+anemia+and+sickle-hemoglobin+C+disease&rft.jtitle=Haematologica+%28Roma%29&rft.au=Tripette%2C+Julien&rft.au=Alexy%2C+Tamas&rft.au=Hardy-Dessources%2C+Marie-Dominique&rft.au=Mougenel%2C+Daniele&rft.date=2009-08-01&rft.eissn=1592-8721&rft.volume=94&rft.issue=8&rft.spage=1060&rft_id=info:doi/10.3324%2Fhaematol.2008.005371&rft_id=info%3Apmid%2F19644138&rft.externalDocID=19644138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0390-6078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0390-6078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0390-6078&client=summon |