Logical quantum processor based on reconfigurable atom arrays
Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2 – 6 for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redund...
        Saved in:
      
    
          | Published in | Nature (London) Vol. 626; no. 7997; pp. 58 - 65 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        01.02.2024
     Nature Publishing Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0028-0836 1476-4687 1476-4687  | 
| DOI | 10.1038/s41586-023-06927-3 | 
Cover
| Abstract | Suppressing errors is the central challenge for useful quantum computing
1
, requiring quantum error correction (QEC)
2
–
6
for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy
2
–
4
, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays
7
, our system combines high two-qubit gate fidelities
8
, arbitrary connectivity
7
,
9
, as well as fully programmable single-qubit rotations and mid-circuit readout
10
–
15
. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code
6
distance from
d
 = 3 to
d
 = 7, preparation of colour-code qubits with break-even fidelities
5
, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks
16
,
17
, we realize computationally complex sampling circuits
18
with up to 48 logical qubits entangled with hypercube connectivity
19
with 228 logical two-qubit gates and 48 logical CCZ gates
20
. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling
21
,
22
. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled. | 
    
|---|---|
| AbstractList | Suppressing errors is the central challenge for useful quantum computing
1
, requiring quantum error correction (QEC)
2
–
6
for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy
2
–
4
, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays
7
, our system combines high two-qubit gate fidelities
8
, arbitrary connectivity
7
,
9
, as well as fully programmable single-qubit rotations and mid-circuit readout
10
–
15
. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code
6
distance from
d
 = 3 to
d
 = 7, preparation of colour-code qubits with break-even fidelities
5
, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks
16
,
17
, we realize computationally complex sampling circuits
18
with up to 48 logical qubits entangled with hypercube connectivity
19
with 228 logical two-qubit gates and 48 logical CCZ gates
20
. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling
21
,
22
. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled. Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. Suppressing errors is the central challenge for useful quantum computing, requiring quantum error correction (QEC) for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays, our system combines high two-qubit gate fidelities, arbitrary connectivity, as well as fully programmable single-qubit rotations and mid-circuit readout. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks, we realize computationally complex sampling circuits with up to 48 logical qubits entangled with hypercube connectivity with 228 logical two-qubit gates and 48 logical CCZ gates. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. Suppressing errors is the central challenge for useful quantum computing , requiring quantum error correction (QEC) for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy , poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays , our system combines high two-qubit gate fidelities , arbitrary connectivity , as well as fully programmable single-qubit rotations and mid-circuit readout . Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities , fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks , we realize computationally complex sampling circuits with up to 48 logical qubits entangled with hypercube connectivity with 228 logical two-qubit gates and 48 logical CCZ gates . We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling . These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2 6 for large-scale processing. However, the overhead in the realization of error-corrected logical' qubits, in which information is encoded across many physical qubits for redundancy2 4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10 15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d=3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical GreenbergerHorne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks1617, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6 for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy2–4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10–15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled. Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2–6 for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy 2–4 , poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays 7 , our system combines high two-qubit gate fidelities 8 , arbitrary connectivity 7,9 , as well as fully programmable single-qubit rotations and mid-circuit readout 10–15 . Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code 6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities 5 , fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks 16,17 , we realize computationally complex sampling circuits 18 with up to 48 logical qubits entangled with hypercube connectivity 19 with 228 logical two-qubit gates and 48 logical CCZ gates 20 . We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling 21,22 . These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.  | 
    
| Author | Cain, Madelyn Semeghini, Giulia Zhou, Hengyun Lukin, Mikhail D. Karolyshyn, Thomas Bluvstein, Dolev Manovitz, Tom Maskara, Nishad Vuletić, Vladan Geim, Alexandra A. Cong, Iris Bonilla Ataides, J. Pablo Ebadi, Sepehr Kalinowski, Marcin Evered, Simon J. Hangleiter, Dominik Greiner, Markus Sales Rodriguez, Pedro Gao, Xun Gullans, Michael J. Li, Sophie H.  | 
    
| Author_xml | – sequence: 1 givenname: Dolev orcidid: 0000-0002-9934-9530 surname: Bluvstein fullname: Bluvstein, Dolev organization: Department of Physics, Harvard University – sequence: 2 givenname: Simon J. orcidid: 0000-0001-8986-1103 surname: Evered fullname: Evered, Simon J. organization: Department of Physics, Harvard University – sequence: 3 givenname: Alexandra A. orcidid: 0000-0001-5294-4941 surname: Geim fullname: Geim, Alexandra A. organization: Department of Physics, Harvard University – sequence: 4 givenname: Sophie H. surname: Li fullname: Li, Sophie H. organization: Department of Physics, Harvard University – sequence: 5 givenname: Hengyun orcidid: 0000-0002-2148-8856 surname: Zhou fullname: Zhou, Hengyun organization: Department of Physics, Harvard University, QuEra Computing Inc – sequence: 6 givenname: Tom orcidid: 0000-0003-3470-1369 surname: Manovitz fullname: Manovitz, Tom organization: Department of Physics, Harvard University – sequence: 7 givenname: Sepehr surname: Ebadi fullname: Ebadi, Sepehr organization: Department of Physics, Harvard University – sequence: 8 givenname: Madelyn orcidid: 0000-0002-5298-3112 surname: Cain fullname: Cain, Madelyn organization: Department of Physics, Harvard University – sequence: 9 givenname: Marcin orcidid: 0000-0003-0605-8791 surname: Kalinowski fullname: Kalinowski, Marcin organization: Department of Physics, Harvard University – sequence: 10 givenname: Dominik orcidid: 0000-0002-4766-7967 surname: Hangleiter fullname: Hangleiter, Dominik organization: Joint Center for Quantum Information and Computer Science, NIST/University of Maryland – sequence: 11 givenname: J. Pablo surname: Bonilla Ataides fullname: Bonilla Ataides, J. Pablo organization: Department of Physics, Harvard University – sequence: 12 givenname: Nishad orcidid: 0000-0001-5775-9542 surname: Maskara fullname: Maskara, Nishad organization: Department of Physics, Harvard University – sequence: 13 givenname: Iris orcidid: 0000-0001-7706-5927 surname: Cong fullname: Cong, Iris organization: Department of Physics, Harvard University – sequence: 14 givenname: Xun surname: Gao fullname: Gao, Xun organization: Department of Physics, Harvard University – sequence: 15 givenname: Pedro orcidid: 0009-0002-8337-0762 surname: Sales Rodriguez fullname: Sales Rodriguez, Pedro organization: QuEra Computing Inc – sequence: 16 givenname: Thomas surname: Karolyshyn fullname: Karolyshyn, Thomas organization: QuEra Computing Inc – sequence: 17 givenname: Giulia surname: Semeghini fullname: Semeghini, Giulia organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University – sequence: 18 givenname: Michael J. orcidid: 0000-0003-3974-2987 surname: Gullans fullname: Gullans, Michael J. organization: Joint Center for Quantum Information and Computer Science, NIST/University of Maryland – sequence: 19 givenname: Markus orcidid: 0000-0002-2935-2363 surname: Greiner fullname: Greiner, Markus organization: Department of Physics, Harvard University – sequence: 20 givenname: Vladan orcidid: 0000-0002-9786-0538 surname: Vuletić fullname: Vuletić, Vladan organization: Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology – sequence: 21 givenname: Mikhail D. orcidid: 0000-0002-8658-1007 surname: Lukin fullname: Lukin, Mikhail D. email: lukin@physics.harvard.edu organization: Department of Physics, Harvard University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38056497$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2471928$$D View this record in Osti.gov  | 
    
| BookMark | eNqNkc1u1DAURi3Uik4LL8ACRbBhE_BfbGeBEKqAIo3EBtbWjedm6iqxp3YCmrfHJVNKu6hYeeHzfb73-JQchRiQkBeMvmVUmHdZssaomnJRU9VyXYsnZMWkVrVURh-RFaXc1NQIdUJOc76ilDZMy6fkRBjaKNnqFXm_jlvvYKiuZwjTPFa7FB3mHFPVQcZNFUOV0MXQ--2coBuwgimOFaQE-_yMHPcwZHx-OM_Ij8-fvp9f1OtvX76ef1zXrlFmqlnnKJWblmllQDFUjskNYo_USG5a4FQoBrxFJrpGNtC7DhhK1jPR9iC0OCNi6Z3DDva_YBjsLvkR0t4yam9k2EWGLTLsHxlWlNSHJbWbuxE3DsOU4C4Zwdv7N8Ff2m38WQqNoJLz0vBqaYh58jY7P6G7LDICuslyqVnLTYHeHJ5J8XrGPNnRZ4fDAAHjnG3ZsBW60Y0q6OsH6FWcUyjqLG-5oJpJygr18t-5_w58-2sFMAvgUsw5YW_LZDD5eLOGHx53wh9E_0vkQX8ucNhiuhv7kdRvtfTKnQ | 
    
| CitedBy_id | crossref_primary_10_1103_PRXQuantum_6_010306 crossref_primary_10_1103_PhysRevApplied_22_064021 crossref_primary_10_1103_PhysRevResearch_6_043048 crossref_primary_10_1103_PhysRevApplied_22_034054 crossref_primary_10_22331_q_2024_07_22_1420 crossref_primary_10_1038_s41586_024_07913_z crossref_primary_10_1103_PhysRevB_111_085303 crossref_primary_10_1103_PRXQuantum_5_030316 crossref_primary_10_1103_PRXQuantum_6_010301 crossref_primary_10_1103_PhysRevA_111_L011305 crossref_primary_10_1103_PhysRevA_111_032427 crossref_primary_10_1109_JSSC_2024_3430079 crossref_primary_10_1021_acs_jctc_4c00352 crossref_primary_10_1103_PhysRevA_110_012417 crossref_primary_10_1103_PhysRevA_111_033514 crossref_primary_10_1126_sciadv_adt4713 crossref_primary_10_1103_PRXQuantum_5_040352 crossref_primary_10_1038_s41534_025_00983_5 crossref_primary_10_1088_2058_9565_ad9ed4 crossref_primary_10_1038_s42254_024_00749_6 crossref_primary_10_1002_qute_202300245 crossref_primary_10_22331_q_2024_12_27_1578 crossref_primary_10_22331_q_2024_12_27_1577 crossref_primary_10_1038_s41534_024_00855_4 crossref_primary_10_1103_PhysRevResearch_7_013243 crossref_primary_10_1103_PhysRevApplied_23_014031 crossref_primary_10_1103_PhysRevLett_134_120801 crossref_primary_10_1038_s41467_025_56305_y crossref_primary_10_1103_PhysRevC_111_034317 crossref_primary_10_1103_PhysRevA_110_052423 crossref_primary_10_1103_PhysRevA_110_053518 crossref_primary_10_1038_s41567_024_02727_2 crossref_primary_10_1088_1361_6633_adac8b crossref_primary_10_1364_OPTICAQ_546797 crossref_primary_10_1103_PhysRevLett_134_080801 crossref_primary_10_1103_PhysRevLett_133_150601 crossref_primary_10_1103_PhysRevA_111_032420 crossref_primary_10_1103_PRXQuantum_5_040343 crossref_primary_10_2151_sola_2025_006 crossref_primary_10_1103_PhysRevApplied_23_024072 crossref_primary_10_1103_PhysRevLett_133_150603 crossref_primary_10_1103_PRXQuantum_5_040342 crossref_primary_10_1103_PhysRevLett_133_150604 crossref_primary_10_1103_PhysRevApplied_23_024074 crossref_primary_10_1109_LCOMM_2024_3454804 crossref_primary_10_1103_PhysRevResearch_7_013115 crossref_primary_10_1038_s41567_024_02480_6 crossref_primary_10_1103_PhysRevResearch_6_013092 crossref_primary_10_1088_2058_9565_ad5eb6 crossref_primary_10_22331_q_2024_03_14_1281 crossref_primary_10_3390_technologies12050064 crossref_primary_10_1038_s41567_025_02797_w crossref_primary_10_1103_PhysRevResearch_6_043143 crossref_primary_10_1038_s41467_024_53140_5 crossref_primary_10_1186_s40580_024_00418_5 crossref_primary_10_1103_PhysRevB_111_115141 crossref_primary_10_1140_epja_s10050_024_01385_5 crossref_primary_10_1038_s41586_024_08177_3 crossref_primary_10_1038_s42005_024_01883_4 crossref_primary_10_1103_PhysRevA_110_012438 crossref_primary_10_1103_PhysRevResearch_6_033333 crossref_primary_10_20935_AcadQuant7467 crossref_primary_10_1103_PRXQuantum_5_040334 crossref_primary_10_1002_lpor_202401595 crossref_primary_10_1103_PhysRevA_110_042603 crossref_primary_10_1103_PhysRevLett_133_111901 crossref_primary_10_22331_q_2024_10_02_1488 crossref_primary_10_1103_PhysRevResearch_7_013003 crossref_primary_10_1103_PhysRevResearch_6_033217 crossref_primary_10_1038_s41467_024_53405_z crossref_primary_10_22331_q_2024_05_06_1337 crossref_primary_10_1088_1361_6463_ad6c5a crossref_primary_10_1103_PhysRevLett_133_223401 crossref_primary_10_1103_PhysRevB_109_064303 crossref_primary_10_1103_PhysRevLett_133_223402 crossref_primary_10_1103_PhysRevResearch_6_043253 crossref_primary_10_1103_PRXQuantum_6_010310 crossref_primary_10_22331_q_2025_01_28_1612 crossref_primary_10_1103_PhysRevApplied_22_024034 crossref_primary_10_1364_AO_540890 crossref_primary_10_1002_qute_202400074 crossref_primary_10_1364_OE_538445 crossref_primary_10_1103_PhysRevResearch_6_033104 crossref_primary_10_1103_PhysRevLett_132_263601 crossref_primary_10_1103_PhysRevLett_133_070401 crossref_primary_10_1126_sciadv_ads8171 crossref_primary_10_1103_PRXQuantum_5_040328 crossref_primary_10_1103_PhysRevA_110_042612 crossref_primary_10_1038_s42254_024_00799_w crossref_primary_10_22331_q_2024_03_21_1297 crossref_primary_10_1103_PhysRevResearch_6_033282 crossref_primary_10_1145_3670417 crossref_primary_10_1038_s41586_025_08642_7 crossref_primary_10_2139_ssrn_4727071 crossref_primary_10_1088_2058_9565_adbb86 crossref_primary_10_1103_PhysRevResearch_6_023241 crossref_primary_10_1103_PRXQuantum_5_040313 crossref_primary_10_1103_PhysRevA_111_022432 crossref_primary_10_1103_PhysRevA_111_022433 crossref_primary_10_1103_PhysRevResearch_6_023129 crossref_primary_10_22331_q_2024_10_10_1498 crossref_primary_10_1038_s41467_024_46623_y crossref_primary_10_1103_PhysRevB_111_054311 crossref_primary_10_1103_PhysRevResearch_7_013040 crossref_primary_10_1088_1751_8121_ad5085 crossref_primary_10_1016_j_asoc_2024_112096 crossref_primary_10_1016_j_pquantelec_2024_100534 crossref_primary_10_1039_D4CP03454F crossref_primary_10_1103_PhysRevA_110_012454 crossref_primary_10_1103_PhysRevA_110_013303 crossref_primary_10_1103_PhysRevLett_133_020601 crossref_primary_10_1103_PRXQuantum_5_040301 crossref_primary_10_1103_PhysRevA_110_053320 crossref_primary_10_1016_j_scib_2025_03_007 crossref_primary_10_1093_ptep_ptae192 crossref_primary_10_5802_crphys_229 crossref_primary_10_1103_PhysRevA_109_062604 crossref_primary_10_1103_PhysRevLett_132_203602 crossref_primary_10_1007_s13218_024_00873_6 crossref_primary_10_1103_PhysRevD_110_034507 crossref_primary_10_22331_q_2024_09_11_1468 crossref_primary_10_22331_q_2024_09_11_1467 crossref_primary_10_1002_qute_202400143 crossref_primary_10_1103_PhysRevB_111_064308 crossref_primary_10_1380_vss_68_167 crossref_primary_10_1088_1367_2630_ad9945 crossref_primary_10_1103_PhysRevA_111_033102 crossref_primary_10_1016_j_compfluid_2024_106507 crossref_primary_10_1103_PRXQuantum_5_020363 crossref_primary_10_1088_0256_307X_41_4_040302 crossref_primary_10_1186_s43074_024_00144_5 crossref_primary_10_1103_PhysRevLett_133_180601 crossref_primary_10_1103_PhysRevLett_134_090603 crossref_primary_10_1103_PhysRevResearch_7_013288 crossref_primary_10_1038_s41534_024_00901_1 crossref_primary_10_1088_1361_648X_adbb9b crossref_primary_10_1103_PhysRevA_110_042404 crossref_primary_10_1103_PhysRevA_110_042420 crossref_primary_10_22331_q_2025_01_27_1609 crossref_primary_10_3788_AOS240573 crossref_primary_10_1103_PhysRevA_110_032619 crossref_primary_10_1103_PhysRevApplied_22_034021 crossref_primary_10_1038_s41467_024_51162_7 crossref_primary_10_1103_PhysRevApplied_22_034020 crossref_primary_10_1103_PhysRevA_111_012411 crossref_primary_10_1103_PhysRevA_110_032616 crossref_primary_10_1103_PhysRevB_109_134412 crossref_primary_10_1038_s41586_024_08449_y crossref_primary_10_1103_PhysRevA_111_L010401 crossref_primary_10_1103_PhysRevLett_133_240602 crossref_primary_10_1063_pt_qoys_tiuw crossref_primary_10_1016_j_future_2024_06_058 crossref_primary_10_1126_sciadv_adp2008 crossref_primary_10_1103_PhysRevA_111_022442 crossref_primary_10_1038_s41586_024_08353_5 crossref_primary_10_1103_PhysRevA_109_062607 crossref_primary_10_1541_ieejjournal_144_589 crossref_primary_10_1103_PhysRevLett_133_243401 crossref_primary_10_1038_s41467_024_54864_0 crossref_primary_10_1038_s41586_024_08148_8 crossref_primary_10_1103_PhysRevLett_132_150606 crossref_primary_10_1103_PhysRevLett_132_150605 crossref_primary_10_1103_PhysRevA_111_012422 crossref_primary_10_1103_PhysRevLett_132_150603 crossref_primary_10_1103_PhysRevResearch_6_043329 crossref_primary_10_7498_aps_73_20240135 crossref_primary_10_1038_s41467_024_55570_7 crossref_primary_10_1103_PhysRevA_111_012424 crossref_primary_10_1103_PhysRevA_111_012419 crossref_primary_10_1103_PRXQuantum_5_020344 crossref_primary_10_1126_science_adr7075 crossref_primary_10_1126_science_adp6016 crossref_primary_10_1002_wcms_1701 crossref_primary_10_1038_d41586_024_00075_y crossref_primary_10_1038_s43246_025_00742_1 crossref_primary_10_1063_5_0235279 crossref_primary_10_1103_PRXQuantum_5_020101 crossref_primary_10_1088_2058_9565_ad48b2 crossref_primary_10_1364_OE_544727 crossref_primary_10_1103_PhysRevA_110_L051303 crossref_primary_10_1063_5_0213120 crossref_primary_10_1103_PhysRevB_111_L060304 crossref_primary_10_1103_PhysRevLett_133_073603 crossref_primary_10_1088_1367_2630_ad1e93 crossref_primary_10_1088_1742_6596_2934_1_012018 crossref_primary_10_1364_OPTICAQ_542350 crossref_primary_10_1126_sciadv_adp6388 crossref_primary_10_1103_PhysRevResearch_7_L012006 crossref_primary_10_1063_5_0197119 crossref_primary_10_1103_PhysRevLett_133_170601 crossref_primary_10_1038_s41534_025_01002_3 crossref_primary_10_1103_PRXQuantum_5_020360 crossref_primary_10_1103_PhysRevResearch_6_L042014 crossref_primary_10_1103_PhysRevA_109_032405 crossref_primary_10_3390_photonics12030204 crossref_primary_10_1038_s42254_024_00796_z crossref_primary_10_1103_PRXQuantum_5_020355 crossref_primary_10_1038_s41567_024_02638_2 crossref_primary_10_1103_PhysRevA_109_043320 crossref_primary_10_1103_PhysRevB_111_104303 crossref_primary_10_1038_s41598_025_87410_z crossref_primary_10_3390_e26080649 crossref_primary_10_1103_PhysRevLett_134_053604 crossref_primary_10_1103_PhysRevLett_134_070602 crossref_primary_10_1039_D4DD00321G crossref_primary_10_1103_PhysRevB_111_115303 crossref_primary_10_1103_PhysRevLett_133_010601 crossref_primary_10_1103_PhysRevA_110_022607 crossref_primary_10_1103_PhysRevA_111_012444 crossref_primary_10_1103_PhysRevX_14_041050 crossref_primary_10_1103_PhysRevA_110_032411 crossref_primary_10_1103_PhysRevA_110_062618 crossref_primary_10_1103_PhysRevB_111_064111 crossref_primary_10_1103_PhysRevApplied_22_044031 crossref_primary_10_1038_s43588_024_00628_1 crossref_primary_10_1038_s41534_024_00945_3 crossref_primary_10_1038_s42254_024_00706_3 crossref_primary_10_1103_PhysRevApplied_21_034036 crossref_primary_10_1039_D4CP00436A crossref_primary_10_1103_PhysRevX_14_041062 crossref_primary_10_1126_science_adw2572 crossref_primary_10_1557_s43577_024_00775_w crossref_primary_10_1088_1367_2630_ad3775 crossref_primary_10_1103_PhysRevB_110_205402 crossref_primary_10_1103_PhysRevResearch_6_L042030 crossref_primary_10_1142_S0217732324300064 crossref_primary_10_1063_5_0239165 crossref_primary_10_1103_PhysRevA_110_062603 crossref_primary_10_1103_PRXQuantum_5_030353 crossref_primary_10_1103_PRXQuantum_5_030352 crossref_primary_10_1093_pnasnexus_pgaf063 crossref_primary_10_1103_PRXQuantum_5_030350 crossref_primary_10_1038_s41586_024_07998_6 crossref_primary_10_1103_PRXQuantum_6_010101 crossref_primary_10_1103_PhysRevD_109_114510 crossref_primary_10_1038_s41567_024_02479_z crossref_primary_10_1038_s41567_024_02738_z crossref_primary_10_22331_q_2025_02_06_1623 crossref_primary_10_1103_PhysRevA_110_043116 crossref_primary_10_1103_PhysRevApplied_23_034016 crossref_primary_10_4204_EPTCS_406_5 crossref_primary_10_1103_PhysRevA_110_043118 crossref_primary_10_1103_PRXQuantum_6_010339 crossref_primary_10_1088_1402_4896_adbf70 crossref_primary_10_1103_PhysRevLett_134_080201 crossref_primary_10_1103_PhysRevLett_132_223601 crossref_primary_10_1038_s42005_024_01733_3 crossref_primary_10_1103_PhysRevB_110_085115 crossref_primary_10_1103_PRXQuantum_6_010331 crossref_primary_10_1103_PRXQuantum_6_010334 crossref_primary_10_1038_s41467_025_57818_2 crossref_primary_10_1103_PRXQuantum_6_010337 crossref_primary_10_1103_PhysRevA_110_012610 crossref_primary_10_1088_2058_9565_ad5a37 crossref_primary_10_1007_s40820_025_01693_5 crossref_primary_10_1016_j_talanta_2024_127078 crossref_primary_10_1063_5_0211159 crossref_primary_10_1103_PhysRevResearch_6_033322 crossref_primary_10_1103_PhysRevLett_132_240602 crossref_primary_10_1088_1361_6633_ad6805 crossref_primary_10_1103_PhysRevB_110_045101 crossref_primary_10_1103_PRXQuantum_6_010341 crossref_primary_10_1038_s41467_025_56255_5 crossref_primary_10_1088_0256_307X_42_3_034203 crossref_primary_10_1103_PhysRevA_110_062424 crossref_primary_10_1038_s41377_025_01775_4 crossref_primary_10_1103_PhysRevResearch_7_013313 crossref_primary_10_1103_PhysRevResearch_6_013293 crossref_primary_10_1007_s44214_025_00077_5 crossref_primary_10_1038_s41598_024_76967_w crossref_primary_10_1145_3656419 crossref_primary_10_1103_PhysRevA_111_L030402 crossref_primary_10_1287_ijoc_2024_0587 crossref_primary_10_1103_PhysRevA_110_062413 crossref_primary_10_1103_PhysRevA_110_062414 crossref_primary_10_1088_2058_9565_ad33ac crossref_primary_10_1103_PRXQuantum_5_030328 crossref_primary_10_1103_PRXQuantum_6_010354 crossref_primary_10_1103_PhysRevB_111_L081102 crossref_primary_10_1103_PRXQuantum_5_030326 crossref_primary_10_1038_s41534_025_00998_y crossref_primary_10_1103_PhysRevA_110_032217 crossref_primary_10_1088_1367_2630_ad5752 crossref_primary_10_1103_PhysRevApplied_22_024073 crossref_primary_10_1103_PhysRevLett_133_233005 crossref_primary_10_1109_TCAD_2024_3355277 crossref_primary_10_1103_PhysRevLett_134_020602 crossref_primary_10_1631_jzus_A2400397 crossref_primary_10_1038_s41586_024_08005_8 crossref_primary_10_1103_PhysRevD_109_046005 crossref_primary_10_22331_q_2024_09_04_1460 crossref_primary_10_1038_s41586_024_08406_9 crossref_primary_10_22331_q_2025_03_20_1665 crossref_primary_10_1103_PhysRevA_110_043105 crossref_primary_10_1103_PhysRevApplied_21_034006  | 
    
| Cites_doi | 10.1103/PhysRevA.86.032324 10.1038/s41586-021-03582-4 10.22331/q-2017-04-25-8 10.1126/science.ade5337 10.1088/1367-2630/17/8/083002 10.1038/s41586-022-04603-6 10.1103/PhysRevLett.102.110502 10.1038/s41586-022-05434-1 10.1103/PRXQuantum.4.010301 10.1038/s41586-023-06096-3 10.1103/PhysRevA.102.053101 10.1103/PhysRevLett.78.2252 10.1103/PhysRevA.105.032618 10.1098/rspa.1996.0136 10.1103/PRXQuantum.4.030325 10.1038/s41586-022-04725-x 10.1103/PhysRevLett.127.050501 10.1103/PhysRevLett.106.230501 10.22331/q-2019-09-02-181 10.1088/1367-2630/17/8/083026 10.22331/q-2018-08-06-79 10.1103/PhysRevLett.109.020505 10.1126/science.aau4963 10.1063/1.1499754 10.1088/1367-2630/aa5a3b 10.1038/s41567-018-0124-x 10.1038/s41534-018-0106-y 10.1103/PhysRevLett.123.170503 10.1140/epjd/e2013-30729-x 10.1088/2058-9565/aab73c 10.1038/s41586-023-05954-4 10.1103/PhysRevA.72.022340 10.1088/1367-2630/ab68fd 10.1126/science.aah3778 10.1126/sciadv.aay4929 10.1126/science.abe8770 10.1038/s41586-019-1666-5 10.1103/PhysRevLett.129.203602 10.1103/PhysRevA.91.032330 10.1103/PhysRevA.70.052328 10.1126/sciadv.1701074 10.1103/PhysRevLett.127.180501 10.1088/1367-2630/14/12/123011 10.1038/s41586-023-06438-1 10.1103/PhysRevLett.126.200603 10.1038/s41586-023-06516-4 10.22331/q-2018-05-22-65 10.1038/s41586-022-04592-6 10.1103/PhysRevLett.117.080501 10.1103/PRXQuantum.2.020341 10.22331/q-2022-05-13-712 10.1126/science.abi9917 10.1126/science.abn7293 10.1126/science.aaf6725 10.1038/s41567-018-0318-2 10.1038/nature03350 10.1038/s41586-021-03585-1 10.1038/s41586-021-03928-y 10.1038/srep19578 10.22331/q-2021-04-15-433 10.1006/jmra.1994.1159 10.1103/PhysRevLett.128.030501 10.22331/q-2021-07-06-497 10.1038/s41586-022-04566-8 10.1038/s41467-022-29977-z 10.1103/PhysRevLett.85.2208 10.1126/science.abg5029 10.1088/1126-6708/2008/10/065 10.1103/PhysRevA.52.R2493 10.1103/PhysRevA.67.042308 10.1007/JHEP11(2020)154 10.1038/s41586-023-06481-y 10.1038/s41467-022-32094-6 10.1038/nphys698 10.1088/1367-2630/ab8e5c 10.1038/s41586-022-04721-1 10.1103/PhysRevLett.106.130506 10.1103/PhysRevResearch.2.033444 10.1103/PhysRevX.13.041051 10.1103/PhysRevX.13.041034 10.22331/q-2024-03-14-1281 10.1103/PhysRevResearch.4.033019 10.22331/q-2023-11-07-1172 10.1007/s11128-011-0297-z 10.1103/PhysRevLett.133.013401 10.1038/s41567-023-02282-2 10.22331/q-2024-05-06-1337 10.1103/PhysRevX.13.041035 10.1103/PhysRevLett.105.170502  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023 2023. The Author(s). Copyright Nature Publishing Group Feb 1, 2024  | 
    
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: Copyright Nature Publishing Group Feb 1, 2024  | 
    
| CorporateAuthor | Krell Institute, Ames, IA (United States) | 
    
| CorporateAuthor_xml | – name: Krell Institute, Ames, IA (United States) | 
    
| DBID | C6C AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI 5PM ADTOC UNPAY  | 
    
| DOI | 10.1038/s41586-023-06927-3 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users] ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Research Library (Proquest) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed Agricultural Science Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Freely Accessible) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Physics  | 
    
| EISSN | 1476-4687 | 
    
| EndPage | 65 | 
    
| ExternalDocumentID | 10.1038/s41586-023-06927-3 PMC10830422 2471928 38056497 10_1038_s41586_023_06927_3  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LGEZI LK5 LK8 LOTEE LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NADUK NAPCQ NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PV9 PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AFKWF AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO TUS .-4 .GJ .HR 00M 08P 0WA 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 MVM N4W NEJ NPM OHT P-O PEA PM3 QS- R4F RHI SKT SV3 TH9 TUD UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK ABUFD AGSTI C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI 7X8 ACMFV OIOZB OTOTI UMC 5PM ADTOC ESTFP UNPAY  | 
    
| ID | FETCH-LOGICAL-c568t-1bc004d91768a61e6c14deefe084289a20361a29e13b545afcba1e41f139fa373 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0028-0836 1476-4687  | 
    
| IngestDate | Sun Oct 26 04:10:41 EDT 2025 Tue Sep 30 17:09:59 EDT 2025 Mon May 12 02:34:01 EDT 2025 Tue Sep 30 21:53:31 EDT 2025 Tue Oct 07 07:16:51 EDT 2025 Mon Jul 21 05:51:30 EDT 2025 Wed Oct 01 03:39:16 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Fri Feb 21 02:39:32 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7997 | 
    
| Language | English | 
    
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c568t-1bc004d91768a61e6c14deefe084289a20361a29e13b545afcba1e41f139fa373 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0020347; SC0021110; W911NF-20-1-0082; DGE1745303; OMA-2120757 Army Research Office MURI USDOE Office of Science (SC) NSF Graduate Research Fellowship Program  | 
    
| ORCID | 0000-0001-8986-1103 0000-0003-3974-2987 0000-0002-2148-8856 0000-0001-5775-9542 0000-0003-0605-8791 0000-0001-5294-4941 0009-0002-8337-0762 0000-0002-9934-9530 0000-0003-3470-1369 0000-0002-5298-3112 0000-0001-7706-5927 0000-0002-4766-7967 0000-0002-8658-1007 0000-0002-2935-2363 0000-0002-9786-0538 0000000152944941 0000000334701369 0000000177065927 0000000339742987 0000000229352363 0000000299349530 0009000283370762 0000000189861103 0000000306058791 0000000286581007 0000000157759542 0000000247667967 0000000252983112 0000000221488856 0000000297860538  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1038/s41586-023-06927-3 | 
    
| PMID | 38056497 | 
    
| PQID | 2923071401 | 
    
| PQPubID | 40569 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1038_s41586_023_06927_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830422 osti_scitechconnect_2471928 proquest_miscellaneous_2899375756 proquest_journals_2923071401 pubmed_primary_38056497 crossref_citationtrail_10_1038_s41586_023_06927_3 crossref_primary_10_1038_s41586_023_06927_3 springer_journals_10_1038_s41586_023_06927_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-02-01 | 
    
| PublicationDateYYYYMMDD | 2024-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England – name: United States  | 
    
| PublicationSubtitle | International weekly journal of science | 
    
| PublicationTitle | Nature (London) | 
    
| PublicationTitleAbbrev | Nature | 
    
| PublicationTitleAlternate | Nature | 
    
| PublicationYear | 2024 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group  | 
    
| References | Aaronson, Gottesman (CR44) 2004; 70 Madsen (CR109) 2022; 606 Postler (CR41) 2022; 605 Arute (CR18) 2019; 574 Knill (CR86) 2005; 434 Ma (CR13) 2023; 622 Andersen (CR28) 2023; 618 Ebadi (CR30) 2021; 595 Le Kien, Schneeweiss, Rauschenbeutel (CR73) 2013; 67 CR47 CR46 Graham (CR34) 2022; 604 Goto (CR38) 2016; 6 Hangleiter, Bermejo-Vega, Schwarz, Eisert (CR99) 2018; 2 Singh (CR11) 2023; 380 Steane (CR3) 1996; 452 Pan, Zhang (CR106) 2022; 128 CR59 CR56 CR55 Bravyi (CR50) 2019; 3 CR52 Bremner, Montanaro, Shepherd (CR20) 2016; 117 Higgott, Bohdanowicz, Kubica, Flammia, Campbell (CR77) 2023; 13 Bremner, Montanaro, Shepherd (CR101) 2017; 1 Mezher, Ghalbouni, Dgheim, Markham (CR45) 2020; 2 Gidney (CR76) 2021; 5 Deist (CR10) 2022; 129 Shor (CR87) 1995; 52 Hashizume, Bentsen, Weber, Daley (CR96) 2021; 126 Levine (CR63) 2022; 105 Tóth, Gühne (CR90) 2005; 72 Scholl (CR31) 2021; 595 Jandura, Pupillo (CR64) 2022; 6 Wu, Kolkowitz, Puri, Thompson (CR57) 2022; 13 CR69 CR67 CR66 CR65 Wimperis (CR70) 1994; 109 Kim (CR54) 2023; 618 Zhong (CR108) 2020; 370 Kubica, Yoshida, Pastawski (CR91) 2015; 17 Cong (CR35) 2022; 12 CR61 Barredo, De Léséleuc, Lienhard, Lahaye, Browaeys (CR62) 2016; 354 Brown (CR43) 2020; 6 Barnes (CR72) 2022; 13 Horsman, Fowler, Devitt, Meter (CR89) 2012; 14 Linke (CR95) 2017; 3 Hutzler, Liu, Yu, Ni (CR74) 2017; 19 CR79 Cummins, Llewellyn, Jones (CR71) 2003; 67 CR78 Jia, Verbaarschot (CR97) 2020; 2020 Evered (CR8) 2023; 622 Mi (CR94) 2021; 374 Shea, Baker, Joseph, Kim, Gauthier (CR75) 2020; 102 Chamberland, Kubica, Yoder, Zhu (CR92) 2020; 22 Kuriyattil, Hashizume, Bentsen, Daley (CR19) 2023; 4 Daley, Pichler, Schachenmayer, Zoller (CR21) 2012; 109 Shepherd, Bremner (CR105) 2009; 465 CR2 Krinner (CR88) 2022; 605 CR5 Fowler, Mariantoni, Martinis, Cleland (CR24) 2012; 86 Steane (CR80) 1997; 78 Dennis, Kitaev, Landahl, Preskill (CR4) 2002; 43 Beugnon (CR9) 2007; 3 Flammia, Liu (CR39) 2011; 106 Iverson, Preskill (CR110) 2020; 22 Kaufman (CR112) 2016; 353 Egan (CR40) 2021; 598 CR85 CR83 Preskill (CR1) 2018; 2 CR82 Huang (CR22) 2022; 376 Wu (CR48) 2021; 127 Sekino, Susskind (CR51) 2008; 2008 CR81 Dordević (CR58) 2021; 373 Bombín (CR37) 2015; 17 Bravyi, Englbrecht, König, Peard (CR49) 2018; 4 Boixo (CR107) 2018; 14 (CR6) 2023; 614 CR16 CR15 CR14 CR12 Haug, Kim (CR53) 2023; 4 Gidney, Ekerå (CR23) 2021; 5 Monz (CR84) 2011; 106 Iyer, Poulin (CR111) 2017; 3 Xu (CR60) 2021; 127 Scholl (CR33) 2023; 622 Levine (CR68) 2019; 123 Brydges (CR113) 2019; 364 Vasmer, Kubica (CR17) 2022; 10 CR29 Beverland, Kubica, Svore (CR36) 2021; 2 CR27 Bluvstein (CR7) 2022; 604 CR26 CR25 CR104 CR102 CR103 Eastin, Knill (CR42) 2009; 102 Bremner, Jozsa, Shepherd (CR98) 2011; 467 Bouland, Fefferman, Nirkhe, Vazirani (CR100) 2019; 15 Jaksch (CR32) 2000; 85 Kubica, Beverland (CR93) 2015; 91 C Gidney (6927_CR23) 2021; 5 MJ Bremner (6927_CR98) 2011; 467 J Beugnon (6927_CR9) 2007; 3 R Mezher (6927_CR45) 2020; 2 S Ma (6927_CR13) 2023; 622 S Bravyi (6927_CR49) 2018; 4 T Hashizume (6927_CR96) 2021; 126 ME Shea (6927_CR75) 2020; 102 K Singh (6927_CR11) 2023; 380 T Monz (6927_CR84) 2011; 106 E Knill (6927_CR86) 2005; 434 A Kubica (6927_CR91) 2015; 17 AM Steane (6927_CR80) 1997; 78 PW Shor (6927_CR87) 1995; 52 L Postler (6927_CR41) 2022; 605 6927_CR29 6927_CR26 6927_CR27 6927_CR25 T Dordević (6927_CR58) 2021; 373 X Mi (6927_CR94) 2021; 374 NM Linke (6927_CR95) 2017; 3 H Bombín (6927_CR37) 2015; 17 TM Graham (6927_CR34) 2022; 604 F Arute (6927_CR18) 2019; 574 D Jaksch (6927_CR32) 2000; 85 S Bravyi (6927_CR50) 2019; 3 K Barnes (6927_CR72) 2022; 13 A Bouland (6927_CR100) 2019; 15 W Xu (6927_CR60) 2021; 127 C Gidney (6927_CR76) 2021; 5 Google Quantum AI (6927_CR6) 2023; 614 6927_CR59 H Levine (6927_CR68) 2019; 123 E Dennis (6927_CR4) 2002; 43 6927_CR55 6927_CR56 HK Cummins (6927_CR71) 2003; 67 F Le Kien (6927_CR73) 2013; 67 Y Wu (6927_CR57) 2022; 13 A Steane (6927_CR3) 1996; 452 MJ Bremner (6927_CR20) 2016; 117 6927_CR52 Y Sekino (6927_CR51) 2008; 2008 D Bluvstein (6927_CR7) 2022; 604 S Jandura (6927_CR64) 2022; 6 6927_CR2 S Kuriyattil (6927_CR19) 2023; 4 H-S Zhong (6927_CR108) 2020; 370 6927_CR5 F Pan (6927_CR106) 2022; 128 HY Huang (6927_CR22) 2022; 376 C Horsman (6927_CR89) 2012; 14 M Vasmer (6927_CR17) 2022; 10 6927_CR103 JK Iverson (6927_CR110) 2020; 22 6927_CR104 6927_CR102 6927_CR46 6927_CR47 A Kubica (6927_CR93) 2015; 91 D Hangleiter (6927_CR99) 2018; 2 P Scholl (6927_CR33) 2023; 622 Y Kim (6927_CR54) 2023; 618 I Cong (6927_CR35) 2022; 12 Y Jia (6927_CR97) 2020; 2020 6927_CR81 H Levine (6927_CR63) 2022; 105 T Haug (6927_CR53) 2023; 4 H Goto (6927_CR38) 2016; 6 AG Fowler (6927_CR24) 2012; 86 S Ebadi (6927_CR30) 2021; 595 6927_CR79 ME Beverland (6927_CR36) 2021; 2 6927_CR78 E Deist (6927_CR10) 2022; 129 C Chamberland (6927_CR92) 2020; 22 SJ Evered (6927_CR8) 2023; 622 TI Andersen (6927_CR28) 2023; 618 G Tóth (6927_CR90) 2005; 72 NR Hutzler (6927_CR74) 2017; 19 S Krinner (6927_CR88) 2022; 605 L Egan (6927_CR40) 2021; 598 6927_CR69 AJ Daley (6927_CR21) 2012; 109 6927_CR66 6927_CR67 6927_CR65 MJ Bremner (6927_CR101) 2017; 1 BJ Brown (6927_CR43) 2020; 6 6927_CR61 D Barredo (6927_CR62) 2016; 354 AM Kaufman (6927_CR112) 2016; 353 D Shepherd (6927_CR105) 2009; 465 P Scholl (6927_CR31) 2021; 595 O Higgott (6927_CR77) 2023; 13 S Aaronson (6927_CR44) 2004; 70 LS Madsen (6927_CR109) 2022; 606 6927_CR15 6927_CR16 P Iyer (6927_CR111) 2017; 3 6927_CR14 6927_CR12 S Boixo (6927_CR107) 2018; 14 T Brydges (6927_CR113) 2019; 364 B Eastin (6927_CR42) 2009; 102 J Preskill (6927_CR1) 2018; 2 Y Wu (6927_CR48) 2021; 127 S Wimperis (6927_CR70) 1994; 109 6927_CR85 ST Flammia (6927_CR39) 2011; 106 6927_CR82 6927_CR83  | 
    
| References_xml | – volume: 86 start-page: 032324 year: 2012 ident: CR24 article-title: Surface codes: towards practical large-scale quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – volume: 595 start-page: 227 year: 2021 end-page: 232 ident: CR30 article-title: Quantum phases of matter on a 256-atom programmable quantum simulator publication-title: Nature doi: 10.1038/s41586-021-03582-4 – volume: 1 start-page: 8 year: 2017 ident: CR101 article-title: Achieving quantum supremacy with sparse and noisy commuting quantum computations publication-title: Quantum doi: 10.22331/q-2017-04-25-8 – volume: 380 start-page: 1265 year: 2023 end-page: 1269 ident: CR11 article-title: Mid-circuit correction of correlated phase errors using an array of spectator qubits publication-title: Science doi: 10.1126/science.ade5337 – volume: 17 start-page: 083002 year: 2015 ident: CR37 article-title: Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083002 – volume: 604 start-page: 457 year: 2022 end-page: 462 ident: CR34 article-title: Multi-qubit entanglement and algorithms on a neutral-atom quantum computer publication-title: Nature doi: 10.1038/s41586-022-04603-6 – ident: CR16 – volume: 102 start-page: 110502 year: 2009 ident: CR42 article-title: Restrictions on transversal encoded quantum gate sets publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.110502 – volume: 614 start-page: 676 year: 2023 end-page: 681 ident: CR6 article-title: Suppressing quantum errors by scaling a surface code logical qubit publication-title: Nature doi: 10.1038/s41586-022-05434-1 – volume: 4 start-page: 010301 year: 2023 ident: CR53 article-title: Scalable measures of magic resource for quantum computers publication-title: PRX Quantum doi: 10.1103/PRXQuantum.4.010301 – volume: 618 start-page: 500 year: 2023 end-page: 505 ident: CR54 article-title: Evidence for the utility of quantum computing before fault tolerance publication-title: Nature doi: 10.1038/s41586-023-06096-3 – ident: CR25 – volume: 102 start-page: 053101 year: 2020 ident: CR75 article-title: Submillisecond, nondestructive, time-resolved quantum-state readout of a single, trapped neutral atom publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.053101 – volume: 78 start-page: 2252 year: 1997 ident: CR80 article-title: Active stabilization, quantum computation, and quantum state synthesis publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.2252 – volume: 105 start-page: 032618 year: 2022 ident: CR63 article-title: Dispersive optics for scalable Raman driving of hyperfine qubits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.032618 – volume: 452 start-page: 2551 year: 1996 end-page: 2577 ident: CR3 article-title: Multiple-particle interference and quantum error correction publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1996.0136 – volume: 4 start-page: 030325 year: 2023 ident: CR19 article-title: Onset of scrambling as a dynamical transition in tunable-range quantum circuits publication-title: PRX Quantum doi: 10.1103/PRXQuantum.4.030325 – volume: 606 start-page: 75 year: 2022 end-page: 81 ident: CR109 article-title: Quantum computational advantage with a programmable photonic processor publication-title: Nature doi: 10.1038/s41586-022-04725-x – volume: 127 start-page: 050501 year: 2021 ident: CR60 article-title: Fast preparation and detection of a Rydberg qubit using atomic ensembles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.050501 – volume: 106 start-page: 230501 year: 2011 ident: CR39 article-title: Direct fidelity estimation from few Pauli measurements publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.230501 – volume: 3 start-page: 181 year: 2019 ident: CR50 article-title: Simulation of quantum circuits by low-rank stabilizer decompositions publication-title: Quantum doi: 10.22331/q-2019-09-02-181 – ident: CR85 – volume: 17 start-page: 083026 year: 2015 ident: CR91 article-title: Unfolding the color code publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083026 – ident: CR5 – volume: 465 start-page: 1413 year: 2009 end-page: 1439 ident: CR105 article-title: Temporally unstructured quantum computation publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 2 start-page: 79 year: 2018 ident: CR1 article-title: Quantum computing in the NISQ era and beyond publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – volume: 109 start-page: 020505 year: 2012 ident: CR21 article-title: Measuring entanglement growth in quench dynamics of bosons in an optical lattice publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.020505 – ident: CR66 – volume: 364 start-page: 260 year: 2019 end-page: 263 ident: CR113 article-title: Probing Rényi entanglement entropy via randomized measurements publication-title: Science doi: 10.1126/science.aau4963 – ident: CR47 – volume: 467 start-page: 459 year: 2011 end-page: 472 ident: CR98 article-title: Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 43 start-page: 4452 year: 2002 end-page: 4505 ident: CR4 article-title: Topological quantum memory publication-title: J. Math. Phys. doi: 10.1063/1.1499754 – volume: 13 start-page: 031007 year: 2023 ident: CR77 article-title: Improved decoding of circuit noise and fragile boundaries of tailored surface codes publication-title: Phys. Rev. X – volume: 19 start-page: 023007 year: 2017 ident: CR74 article-title: Eliminating light shifts for single atom trapping publication-title: New J. Phys. doi: 10.1088/1367-2630/aa5a3b – volume: 14 start-page: 595 year: 2018 end-page: 600 ident: CR107 article-title: Characterizing quantum supremacy in near-term devices publication-title: Nat. Phys. doi: 10.1038/s41567-018-0124-x – volume: 10 start-page: 030319 year: 2022 ident: CR17 article-title: Morphing quantum codes publication-title: Phys. Rev. Appl. – volume: 4 year: 2018 ident: CR49 article-title: Correcting coherent errors with surface codes publication-title: npj Quantum Inf. doi: 10.1038/s41534-018-0106-y – ident: CR27 – ident: CR69 – ident: CR103 – ident: CR52 – volume: 123 start-page: 170503 year: 2019 ident: CR68 article-title: Parallel implementation of high-fidelity multiqubit gates with neutral atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.170503 – volume: 67 start-page: 92 year: 2013 ident: CR73 article-title: Dynamical polarizability of atoms in arbitrary light fields: General theory and application to cesium publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2013-30729-x – volume: 3 start-page: 030504 year: 2017 ident: CR111 article-title: A small quantum computer is needed to optimize fault-tolerant protocols publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aab73c – volume: 618 start-page: 264 year: 2023 end-page: 269 ident: CR28 article-title: Non-Abelian braiding of graph vertices in a superconducting processor publication-title: Nature doi: 10.1038/s41586-023-05954-4 – ident: CR55 – volume: 72 start-page: 022340 year: 2005 ident: CR90 article-title: Entanglement detection in the stabilizer formalism publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.022340 – volume: 22 start-page: 023019 year: 2020 ident: CR92 article-title: Triangular color codes on trivalent graphs with flag qubits publication-title: New J. Phys. doi: 10.1088/1367-2630/ab68fd – ident: CR83 – volume: 354 start-page: 1021 year: 2016 end-page: 1023 ident: CR62 article-title: An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays publication-title: Science doi: 10.1126/science.aah3778 – volume: 6 start-page: eaay4929 year: 2020 ident: CR43 article-title: A fault-tolerant non-Clifford gate for the surface code in two dimensions publication-title: Sci. Adv. doi: 10.1126/sciadv.aay4929 – ident: CR102 – volume: 370 start-page: 1460 year: 2020 end-page: 1463 ident: CR108 article-title: Quantum computational advantage using photons publication-title: Science doi: 10.1126/science.abe8770 – volume: 574 start-page: 505 year: 2019 end-page: 510 ident: CR18 article-title: Quantum supremacy using a programmable superconducting processor publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 129 start-page: 203602 year: 2022 ident: CR10 article-title: Mid-circuit cavity measurement in a neutral atom array publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.203602 – ident: CR12 – volume: 91 start-page: 032330 year: 2015 ident: CR93 article-title: Universal transversal gates with color codes: a simplified approach publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.032330 – volume: 70 start-page: 052328 year: 2004 ident: CR44 article-title: Improved simulation of stabilizer circuits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.052328 – volume: 3 start-page: e1701074 year: 2017 ident: CR95 article-title: Fault-tolerant quantum error detection publication-title: Sci. Adv. doi: 10.1126/sciadv.1701074 – volume: 127 start-page: 180501 year: 2021 ident: CR48 article-title: Strong quantum computational advantage using a superconducting quantum processor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.180501 – volume: 14 start-page: 123011 year: 2012 ident: CR89 article-title: Surface code quantum computing by lattice surgery publication-title: New J. Phys. doi: 10.1088/1367-2630/14/12/123011 – ident: CR29 – ident: CR61 – volume: 622 start-page: 279 year: 2023 end-page: 284 ident: CR13 article-title: High-fidelity gates and mid-circuit erasure conversion in an atomic qubit publication-title: Nature doi: 10.1038/s41586-023-06438-1 – ident: CR46 – volume: 126 start-page: 200603 year: 2021 ident: CR96 article-title: Deterministic fast scrambling with neutral atom arrays publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.200603 – volume: 622 start-page: 273 year: 2023 end-page: 278 ident: CR33 article-title: Erasure conversion in a high-fidelity Rydberg quantum simulator publication-title: Nature doi: 10.1038/s41586-023-06516-4 – ident: CR67 – ident: CR15 – volume: 2 start-page: 65 year: 2018 ident: CR99 article-title: Anticoncentration theorems for schemes showing a quantum speedup publication-title: Quantum doi: 10.22331/q-2018-05-22-65 – volume: 604 start-page: 451 year: 2022 end-page: 456 ident: CR7 article-title: A quantum processor based on coherent transport of entangled atom arrays publication-title: Nature doi: 10.1038/s41586-022-04592-6 – volume: 117 start-page: 080501 year: 2016 ident: CR20 article-title: Average-case complexity versus approximate simulation of commuting quantum computations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.080501 – volume: 2 start-page: 020341 year: 2021 ident: CR36 article-title: Cost of universality: a comparative study of the overhead of state distillation and code switching with color codes publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.020341 – volume: 6 start-page: 712 year: 2022 ident: CR64 article-title: Time-optimal two- and three-qubit gates for Rydberg atoms publication-title: Quantum doi: 10.22331/q-2022-05-13-712 – volume: 373 start-page: 1511 year: 2021 end-page: 1514 ident: CR58 article-title: Entanglement transport and a nanophotonic interface for atoms in optical tweezers publication-title: Science doi: 10.1126/science.abi9917 – volume: 376 start-page: 1182 year: 2022 end-page: 1186 ident: CR22 article-title: Quantum advantage in learning from experiments publication-title: Science doi: 10.1126/science.abn7293 – ident: CR78 – volume: 353 start-page: 794 year: 2016 end-page: 800 ident: CR112 article-title: Quantum thermalization through entanglement in an isolated many-body system publication-title: Science doi: 10.1126/science.aaf6725 – ident: CR81 – ident: CR26 – volume: 15 start-page: 159 year: 2019 end-page: 163 ident: CR100 article-title: On the complexity and verification of quantum random circuit sampling publication-title: Nat. Phys. doi: 10.1038/s41567-018-0318-2 – volume: 434 start-page: 39 year: 2005 end-page: 44 ident: CR86 article-title: Quantum computing with realistically noisy devices publication-title: Nature doi: 10.1038/nature03350 – volume: 595 start-page: 233 year: 2021 end-page: 238 ident: CR31 article-title: Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms publication-title: Nature doi: 10.1038/s41586-021-03585-1 – volume: 598 start-page: 281 year: 2021 end-page: 286 ident: CR40 article-title: Fault-tolerant control of an error-corrected qubit publication-title: Nature doi: 10.1038/s41586-021-03928-y – ident: CR14 – volume: 6 year: 2016 ident: CR38 article-title: Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code publication-title: Sci. Rep. doi: 10.1038/srep19578 – ident: CR2 – volume: 5 start-page: 433 year: 2021 ident: CR23 article-title: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits publication-title: Quantum doi: 10.22331/q-2021-04-15-433 – volume: 109 start-page: 221 year: 1994 end-page: 231 ident: CR70 article-title: Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments publication-title: J. Magn. Reson. A doi: 10.1006/jmra.1994.1159 – volume: 128 start-page: 030501 year: 2022 ident: CR106 article-title: Simulation of quantum circuits using the big-batch tensor network method publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.030501 – volume: 5 start-page: 497 year: 2021 ident: CR76 article-title: Stim: a fast stabilizer circuit simulator publication-title: Quantum doi: 10.22331/q-2021-07-06-497 – ident: CR82 – ident: CR79 – volume: 12 start-page: 021049 year: 2022 ident: CR35 article-title: Hardware-efficient, fault-tolerant quantum computation with Rydberg atoms publication-title: Phys. Rev. X – ident: CR56 – volume: 605 start-page: 669 year: 2022 end-page: 674 ident: CR88 article-title: Realizing repeated quantum error correction in a distance-three surface code publication-title: Nature doi: 10.1038/s41586-022-04566-8 – ident: CR104 – volume: 13 year: 2022 ident: CR72 article-title: Assembly and coherent control of a register of nuclear spin qubits publication-title: Nat. Commun. doi: 10.1038/s41467-022-29977-z – volume: 85 start-page: 2208 year: 2000 end-page: 2211 ident: CR32 article-title: Fast quantum gates for neutral atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.2208 – volume: 374 start-page: 1479 year: 2021 end-page: 1483 ident: CR94 article-title: Information scrambling in quantum circuits publication-title: Science doi: 10.1126/science.abg5029 – volume: 2008 start-page: 065 year: 2008 ident: CR51 article-title: Fast scramblers publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/10/065 – ident: CR65 – volume: 52 start-page: R2493 year: 1995 ident: CR87 article-title: Scheme for reducing decoherence in quantum computer memory publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.R2493 – volume: 67 start-page: 042308 year: 2003 ident: CR71 article-title: Tackling systematic errors in quantum logic gates with composite rotations publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.042308 – volume: 2020 start-page: 154 year: 2020 ident: CR97 article-title: Chaos on the hypercube publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2020)154 – volume: 622 start-page: 268 year: 2023 end-page: 272 ident: CR8 article-title: High-fidelity parallel entangling gates on a neutral-atom quantum computer publication-title: Nature doi: 10.1038/s41586-023-06481-y – ident: CR59 – volume: 13 start-page: 4657 year: 2022 ident: CR57 article-title: Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays publication-title: Nat. Commun. doi: 10.1038/s41467-022-32094-6 – volume: 3 start-page: 696 year: 2007 end-page: 699 ident: CR9 article-title: Two-dimensional transport and transfer of a single atomic qubit in optical tweezers publication-title: Nat. Phys. doi: 10.1038/nphys698 – volume: 22 start-page: 073066 year: 2020 ident: CR110 article-title: Coherence in logical quantum channels publication-title: New J. Phys. doi: 10.1088/1367-2630/ab8e5c – volume: 605 start-page: 675 year: 2022 end-page: 680 ident: CR41 article-title: Demonstration of fault-tolerant universal quantum gate operations publication-title: Nature doi: 10.1038/s41586-022-04721-1 – volume: 106 start-page: 130506 year: 2011 ident: CR84 article-title: 14-qubit entanglement: creation and coherence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.130506 – volume: 2 start-page: 033444 year: 2020 ident: CR45 article-title: Fault-tolerant quantum speedup from constant depth quantum circuits publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033444 – volume: 129 start-page: 203602 year: 2022 ident: 6927_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.203602 – ident: 6927_CR2 – volume: 13 year: 2022 ident: 6927_CR72 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29977-z – ident: 6927_CR52 – volume: 354 start-page: 1021 year: 2016 ident: 6927_CR62 publication-title: Science doi: 10.1126/science.aah3778 – ident: 6927_CR61 – volume: 109 start-page: 020505 year: 2012 ident: 6927_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.020505 – volume: 91 start-page: 032330 year: 2015 ident: 6927_CR93 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.032330 – volume: 622 start-page: 279 year: 2023 ident: 6927_CR13 publication-title: Nature doi: 10.1038/s41586-023-06438-1 – volume: 17 start-page: 083002 year: 2015 ident: 6927_CR37 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083002 – ident: 6927_CR5 – ident: 6927_CR12 doi: 10.1103/PhysRevX.13.041051 – volume: 106 start-page: 130506 year: 2011 ident: 6927_CR84 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.130506 – volume: 2020 start-page: 154 year: 2020 ident: 6927_CR97 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2020)154 – ident: 6927_CR15 doi: 10.1103/PhysRevX.13.041034 – ident: 6927_CR26 – volume: 595 start-page: 227 year: 2021 ident: 6927_CR30 publication-title: Nature doi: 10.1038/s41586-021-03582-4 – volume: 72 start-page: 022340 year: 2005 ident: 6927_CR90 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.022340 – volume: 2 start-page: 033444 year: 2020 ident: 6927_CR45 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033444 – ident: 6927_CR69 doi: 10.22331/q-2024-03-14-1281 – ident: 6927_CR78 – volume: 123 start-page: 170503 year: 2019 ident: 6927_CR68 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.170503 – ident: 6927_CR29 – volume: 3 start-page: e1701074 year: 2017 ident: 6927_CR95 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701074 – volume: 22 start-page: 023019 year: 2020 ident: 6927_CR92 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab68fd – volume: 126 start-page: 200603 year: 2021 ident: 6927_CR96 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.200603 – volume: 10 start-page: 030319 year: 2022 ident: 6927_CR17 publication-title: Phys. Rev. Appl. – volume: 370 start-page: 1460 year: 2020 ident: 6927_CR108 publication-title: Science doi: 10.1126/science.abe8770 – volume: 4 start-page: 010301 year: 2023 ident: 6927_CR53 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.4.010301 – ident: 6927_CR16 – volume: 12 start-page: 021049 year: 2022 ident: 6927_CR35 publication-title: Phys. Rev. X – volume: 353 start-page: 794 year: 2016 ident: 6927_CR112 publication-title: Science doi: 10.1126/science.aaf6725 – volume: 70 start-page: 052328 year: 2004 ident: 6927_CR44 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.052328 – volume: 5 start-page: 433 year: 2021 ident: 6927_CR23 publication-title: Quantum doi: 10.22331/q-2021-04-15-433 – volume: 5 start-page: 497 year: 2021 ident: 6927_CR76 publication-title: Quantum doi: 10.22331/q-2021-07-06-497 – volume: 43 start-page: 4452 year: 2002 ident: 6927_CR4 publication-title: J. Math. Phys. doi: 10.1063/1.1499754 – volume: 3 start-page: 696 year: 2007 ident: 6927_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys698 – volume: 622 start-page: 273 year: 2023 ident: 6927_CR33 publication-title: Nature doi: 10.1038/s41586-023-06516-4 – volume: 52 start-page: R2493 year: 1995 ident: 6927_CR87 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.R2493 – volume: 452 start-page: 2551 year: 1996 ident: 6927_CR3 publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1996.0136 – ident: 6927_CR65 doi: 10.1103/PhysRevResearch.4.033019 – volume: 2 start-page: 79 year: 2018 ident: 6927_CR1 publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – volume: 67 start-page: 92 year: 2013 ident: 6927_CR73 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2013-30729-x – ident: 6927_CR104 – ident: 6927_CR83 – volume: 15 start-page: 159 year: 2019 ident: 6927_CR100 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0318-2 – ident: 6927_CR55 – ident: 6927_CR81 doi: 10.22331/q-2023-11-07-1172 – volume: 17 start-page: 083026 year: 2015 ident: 6927_CR91 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083026 – volume: 13 start-page: 031007 year: 2023 ident: 6927_CR77 publication-title: Phys. Rev. X – volume: 595 start-page: 233 year: 2021 ident: 6927_CR31 publication-title: Nature doi: 10.1038/s41586-021-03585-1 – volume: 605 start-page: 669 year: 2022 ident: 6927_CR88 publication-title: Nature doi: 10.1038/s41586-022-04566-8 – volume: 102 start-page: 110502 year: 2009 ident: 6927_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.110502 – volume: 4 year: 2018 ident: 6927_CR49 publication-title: npj Quantum Inf. doi: 10.1038/s41534-018-0106-y – volume: 622 start-page: 268 year: 2023 ident: 6927_CR8 publication-title: Nature doi: 10.1038/s41586-023-06481-y – ident: 6927_CR27 – volume: 465 start-page: 1413 year: 2009 ident: 6927_CR105 publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 106 start-page: 230501 year: 2011 ident: 6927_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.230501 – ident: 6927_CR102 – volume: 6 year: 2016 ident: 6927_CR38 publication-title: Sci. Rep. doi: 10.1038/srep19578 – volume: 3 start-page: 181 year: 2019 ident: 6927_CR50 publication-title: Quantum doi: 10.22331/q-2019-09-02-181 – volume: 13 start-page: 4657 year: 2022 ident: 6927_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32094-6 – volume: 618 start-page: 264 year: 2023 ident: 6927_CR28 publication-title: Nature doi: 10.1038/s41586-023-05954-4 – volume: 604 start-page: 457 year: 2022 ident: 6927_CR34 publication-title: Nature doi: 10.1038/s41586-022-04603-6 – ident: 6927_CR56 – volume: 127 start-page: 050501 year: 2021 ident: 6927_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.050501 – ident: 6927_CR79 – volume: 128 start-page: 030501 year: 2022 ident: 6927_CR106 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.030501 – volume: 574 start-page: 505 year: 2019 ident: 6927_CR18 publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 85 start-page: 2208 year: 2000 ident: 6927_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.2208 – volume: 606 start-page: 75 year: 2022 ident: 6927_CR109 publication-title: Nature doi: 10.1038/s41586-022-04725-x – ident: 6927_CR47 – volume: 4 start-page: 030325 year: 2023 ident: 6927_CR19 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.4.030325 – volume: 374 start-page: 1479 year: 2021 ident: 6927_CR94 publication-title: Science doi: 10.1126/science.abg5029 – ident: 6927_CR85 – volume: 380 start-page: 1265 year: 2023 ident: 6927_CR11 publication-title: Science doi: 10.1126/science.ade5337 – volume: 434 start-page: 39 year: 2005 ident: 6927_CR86 publication-title: Nature doi: 10.1038/nature03350 – volume: 3 start-page: 030504 year: 2017 ident: 6927_CR111 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aab73c – volume: 86 start-page: 032324 year: 2012 ident: 6927_CR24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – volume: 376 start-page: 1182 year: 2022 ident: 6927_CR22 publication-title: Science doi: 10.1126/science.abn7293 – ident: 6927_CR67 doi: 10.1007/s11128-011-0297-z – volume: 14 start-page: 595 year: 2018 ident: 6927_CR107 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0124-x – ident: 6927_CR59 doi: 10.1103/PhysRevLett.133.013401 – volume: 102 start-page: 053101 year: 2020 ident: 6927_CR75 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.053101 – volume: 1 start-page: 8 year: 2017 ident: 6927_CR101 publication-title: Quantum doi: 10.22331/q-2017-04-25-8 – volume: 618 start-page: 500 year: 2023 ident: 6927_CR54 publication-title: Nature doi: 10.1038/s41586-023-06096-3 – volume: 6 start-page: 712 year: 2022 ident: 6927_CR64 publication-title: Quantum doi: 10.22331/q-2022-05-13-712 – volume: 604 start-page: 451 year: 2022 ident: 6927_CR7 publication-title: Nature doi: 10.1038/s41586-022-04592-6 – volume: 2 start-page: 65 year: 2018 ident: 6927_CR99 publication-title: Quantum doi: 10.22331/q-2018-05-22-65 – ident: 6927_CR25 doi: 10.1038/s41567-023-02282-2 – ident: 6927_CR103 – volume: 6 start-page: eaay4929 year: 2020 ident: 6927_CR43 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay4929 – volume: 127 start-page: 180501 year: 2021 ident: 6927_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.180501 – volume: 67 start-page: 042308 year: 2003 ident: 6927_CR71 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.042308 – ident: 6927_CR82 – volume: 467 start-page: 459 year: 2011 ident: 6927_CR98 publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 605 start-page: 675 year: 2022 ident: 6927_CR41 publication-title: Nature doi: 10.1038/s41586-022-04721-1 – volume: 2 start-page: 020341 year: 2021 ident: 6927_CR36 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.020341 – volume: 109 start-page: 221 year: 1994 ident: 6927_CR70 publication-title: J. Magn. Reson. A doi: 10.1006/jmra.1994.1159 – volume: 117 start-page: 080501 year: 2016 ident: 6927_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.080501 – ident: 6927_CR46 doi: 10.22331/q-2024-05-06-1337 – volume: 373 start-page: 1511 year: 2021 ident: 6927_CR58 publication-title: Science doi: 10.1126/science.abi9917 – volume: 105 start-page: 032618 year: 2022 ident: 6927_CR63 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.032618 – volume: 78 start-page: 2252 year: 1997 ident: 6927_CR80 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.2252 – ident: 6927_CR14 doi: 10.1103/PhysRevX.13.041035 – volume: 19 start-page: 023007 year: 2017 ident: 6927_CR74 publication-title: New J. Phys. doi: 10.1088/1367-2630/aa5a3b – volume: 2008 start-page: 065 year: 2008 ident: 6927_CR51 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/10/065 – volume: 614 start-page: 676 year: 2023 ident: 6927_CR6 publication-title: Nature doi: 10.1038/s41586-022-05434-1 – volume: 598 start-page: 281 year: 2021 ident: 6927_CR40 publication-title: Nature doi: 10.1038/s41586-021-03928-y – volume: 14 start-page: 123011 year: 2012 ident: 6927_CR89 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/12/123011 – volume: 364 start-page: 260 year: 2019 ident: 6927_CR113 publication-title: Science doi: 10.1126/science.aau4963 – volume: 22 start-page: 073066 year: 2020 ident: 6927_CR110 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab8e5c – ident: 6927_CR66 doi: 10.1103/PhysRevLett.105.170502  | 
    
| SSID | ssj0005174 | 
    
| Score | 2.7737138 | 
    
| Snippet | Suppressing errors is the central challenge for useful quantum computing
1
, requiring quantum error correction (QEC)
2
–
6
for large-scale processing.... Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2–6 for large-scale processing. However,... Suppressing errors is the central challenge for useful quantum computing , requiring quantum error correction (QEC) for large-scale processing. However, the... Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2 6 for large-scale processing. However, the... Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the... Suppressing errors is the central challenge for useful quantum computing, requiring quantum error correction (QEC) for large-scale processing. However, the... Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6 for large-scale processing. However, the...  | 
    
| SourceID | unpaywall pubmedcentral osti proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 58 | 
    
| SubjectTerms | 639/624/1107/1110 639/766/36 639/766/483/2802 639/766/483/481 Algorithms Arrays ATOMIC AND MOLECULAR PHYSICS Coding Color Error correction Error correction & detection Error detection Fault tolerance Field programmable gate arrays Gates (circuits) Humanities and Social Sciences Hypercubes Logic circuits Microprocessors multidisciplinary Optical manipulation and tweezers Quantum computing Quantum entanglement Quantum information Qubits Qubits (quantum computing) Reconfiguration Science Science & Technology - Other Topics Science (multidisciplinary)  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFdE-iK0fja2ygg-KDb3N7iW7DyIqLUXwELHQt2Wz2dTCNbleLkj_e2fydZ7K4XM2sLszk_lNZuY3AK-U9LmWmQ6TiXehTFIepmMhiV57kkdJ5HjTt_ZlGp-dy88Xk4stmPa9MFRW2X8Tmw91Vjr6R34caSpZpnDg_fwmpKlRlF3tR2jYbrRC9q6hGLsD2xExY41g--PJ9Ou3VdHHH7zMXRvNWKjjCl2ZooJcmnagIzS9NVc1KtHk_gVD_66mHFKqO3CvLub29qedzX7zWqcP4UEHN9mHVj92YcsXe3C3Kft01R7sdqZdsdcd__SbR9DMX0bRsZsar72-ZvO2maBcMPJ5GSsL1sTR-dVlvaDWK4aR-zWzi4W9rR7D-enJ909nYTdlIXSTWC1Dnjo0lAzDtljZmPvYcZl5n_uxwtBEW8pUchtpz0WKArS5Sy33kueIHXMrEvEERkVZ-H1giUsQUcUiU2Mv8TXtuIgVj3MrnU5lEgDvL9S4joKcJmHMTJMKF8q0QjAoBNMIwYgA3g7vzFsCjo2rD0hOBuEDceA6KhZySxOhC9aRCuCwF5_pTLUyK8UK4OXwGI2MMie28GWNaxTBOES2cQBPW2kPmxEKMaTUeDi1pgfDAiLwXn9SXP1oiLw5qiBxsAVw1KvMal-bDnk0qNV_3Mmzzac-gPsRArW2Ev0QRstF7Z8j0FqmLzrr-QW9mR-k priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB7sibR9KNW2NtWWFXxo6YXeZvc2u49yVERonyr4tmw2GxXO5EwuFP_7zm5ysaci7fP-INmZYb5hZr4BOJTcFYrnKk6nzsY8zWicTRj39NrTIkkTS0Pf2o-f4uSMn55PzzdgvOqFWcvfB-ruBl2M9IWyfgqBStAknsGmRMX08wpmYnZX0HGPc7lvkcFbvj28Y80NjSo0p8cg5sNKySFd-hKet-XC3P428_lfHun4NbzqoSQ56mS_DRuu3IGtUNJpmx3Y7s22IZ97bukvbyDMVkaxkJsWn7S9JouuUaCqifdnOalKEmLk4uqirX1bFcGo_JqYuja3zVs4O_7-a3YS9xMUYjsVchnTzKIR5BiSCWkEdcJSnjtXuInEsEMZn4WkJlGOsgyFYwqbGeo4LRAXFoal7B2Myqp074GkNkW0JFguJ47jMWUpE5KKwnCrMp5GQFcPqm1PL-6nXMx1SHMzqTshaBSCDkLQLIKvw5lFR67x5O49LyeN0MDz21pfCGSXOkH3qhIZwf5KfLo3w0Ynyte5-xgygoNhGQ3IZ0VM6aoW90gP0RC1igh2O2kPH8Mk4kOu8Ofkmh4MGzw59_pKeXUZSLopqqDnV4tgvFKZu-966ifHg1r9w5t8-L_b9-BFgqCsqzrfh9Gybt1HBFXL7FOwpT_VsxKP priority: 102 providerName: Springer Nature  | 
    
| Title | Logical quantum processor based on reconfigurable atom arrays | 
    
| URI | https://link.springer.com/article/10.1038/s41586-023-06927-3 https://www.ncbi.nlm.nih.gov/pubmed/38056497 https://www.proquest.com/docview/2923071401 https://www.proquest.com/docview/2899375756 https://www.osti.gov/servlets/purl/2471928 https://pubmed.ncbi.nlm.nih.gov/PMC10830422 https://doi.org/10.1038/s41586-023-06927-3  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 626 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: AFBBN dateStart: 20190103 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-4687 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 1476-4687 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database (NC LIVE) customDbUrl: eissn: 1476-4687 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8FG dateStart: 19900104 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xVgh4ADYGhI0qSDyAWEYdO7bzOKqVCYlqQlQqT5HjODDRJSU_hMZfzzlJwwrTNF4iRXGq2HfX-0539x3AS8lMGrIk9ERgtMdETLx4TJml1w5SX_iaNH1rH2f8ZM4-LIJFR5Nje2E28vdUvi3RwUhbJmtnEIQ-GsQWDHmAuHsAw_ns9OjLZZrlppVIcI9xKboOmat_ZMMLDXK0pqsQ5r-Fkn229B7cqbOVuviplstLDmn6oJ1sVDY8hrYO5fthXcWH-tdfLI832-tDuN_hUveoVaRtuGWyHbjd1Ifqcge2u_-A0n3VEVW_fgTNoGaUsfujRvnU5-6q7TrIC9c6x8TNM7cJuNOzr3Vhe7RcDPHPXVUU6qLchfn0-PPkxOvGMXg64LLySKzRohKM77hUnBiuCUuMSc1YYgwTKpvSJMoPDaExSlqlOlbEMJIiyEwVFfQxDLI8M0_BFVog9OI0kWPD8LVQE8ol4aliOoyZcICsxRPpjqvcjsxYRk3OnMqoPasIzypqziqiDrzp31m1TB3Xrt6zUo8QZ1iyXG2rinQV-eirQ186sL9Whqiz6TLyQ1s0bwNSB170j9EabYpFZSavcY20eA8hMHfgSas7_cdQiWCThbg5uaFV_QLL9L35JDv71jB-E1RuS9bmwMFaAf9813WbPOiV9AZn8uz_lu_BXR8RXlvCvg-DqqjNc0RoVTyCLbEQeJUTYq_T9yMYvjuenX7CuwmfjDrT_Q1Jyi-w | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qg1DLAdGyhRYwEkggGnUcexLngBACqildTq00N9dxHFppmkyzqJo_xW_kOdswgEZcerYd2X7b57wN4I3gJgl5HLrByGiXBxF1oyHjtrz2KPECT9M6b-34xB-f8e-T0WQNfna5MDasstOJtaKOM23_ke95oQ1Zts-BT7Nr13aNst7VroVGwxaHZn6DT7bi48FXpO9bz9v_dvpl7LZdBVw98kXp0kgjY8T4TPGF8qnxNeWxMYkZCoTiobKeOaq80FAW4YZVoiNFDacJYqVEsYDhd-_AXc5Ql6D8BJNgEVLyR9XnNklnyMRegYZS2HBf20sh9FCwlwzhIEOB_hfI_TtWs3fY3of1Kp2p-Y2aTn-zifsP4UELZsnnhvs2Yc2kW3CvDirVxRZstoqjIO_a6tbvH0Hd3RkZg1xXSNTqisyaVIUsJ9aixiRLSf1KTy5_VLlN7CKqzK6IynM1Lx7D2a3c9hMYpFlqngEJdIB4zWexGBqOy0JNmS-onyiuw4gHDtDuQqVuC5zbPhtTWTvamZANESQSQdZEkMyBD_2aWVPeY-XsbUsnieDEVtjVNhRJl9JDAx96woGdjnyyVQSFXLCtA6_7YRRh65dRqckqnCMsSETc7DvwtKF2vxkmEKHyEA8nlvign2DLgy-PpJcXdZlwiixoK7w5sNuxzGJfqw6527PVf9zJ89WnfgXr49PjI3l0cHK4DRseQsIm5n0HBmVemRcI6croZS1HBM5vW3B_AdVTVZk | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIr4eEBtfYQOMBBKIRa1jN7EfEEKMamMw8cCkvhnHcbZJXdI1jab-a_x1nPNVCqjiZc9xItt35_s597s7gJeC21TyRPrR0BqfRzH14wHjrrz2MA2iwNAqb-3rUbh_zD-Ph-MN-NnmwjhaZXsmVgd1khv3j7wfSEdZdteBftrQIr7tjd5PL3zXQcpFWtt2GrWKHNrFJV7fincHeyjrV0Ew-vT9477fdBjwzTAUc5_GBpUkwStLKHRIbWgoT6xN7UAgLJfaRemoDqSlLMbJ69TEmlpOU8RNqWYRw-9eg-sRY9LRCaNxtKSX_FEBuknYGTDRL9BpCkf9dX0VZIBGvuIUezka978A79-8zS54ewduldlULy71ZPKbfxzdg7sNsCUfak3chA2bbcGNimBqii3YbA6RgrxuKl2_uQ9Vp2dUEnJRooDLczKt0xbyGXHeNSF5Rqobe3p2Us5ckhfR8_yc6NlML4oHcHwlu_0Qelme2cdAIhMhdgtZIgaW42vSUBYKGqaaGxnzyAPabqgyTbFz13NjoqqgOxOqFoJCIahKCIp58LZ7Z1qX-lg7etvJSSFQcdV2jaMlmbkK0NnLQHiw04pPNYdCoZYq7MGL7jGas4vR6MzmJY4RDjAihg49eFRLu5sME4hWucTFiRU96Aa4UuGrT7Kz06pkOEUVdNXePNhtVWY5r3WL3O3U6j_25Mn6VT-Hm2iy6svB0eE23A4QHdb09x3ozWelfYrobh4_q8yIwI-rtttfW15Z3A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg4FFpeoQUZiQOIpqxjx7GPFaKqkKg4sFI5WY7jlIptsuShqv31jJNs2oWqKmc7UeyZyXyjmfkG4K3kLlc8U2ESOxvyJKVhOmXc02vHeZRElnZ9a18PxcGMfzmKjwaaHN8Ls5K_Z_JjjQ5G-jJZP4NARWgQd2FNxIi7J7A2O_y29-MqzXLXSpSIkAuZDB0y179kxQtNSrSm6xDmv4WSY7b0Idxvi4U5PzPz-RWHtP-on2xUdzyGvg7l127bpLv24i-Wx9ud9TGsD7iU7PWKtAF3XLEJ97r6UFtvwsbwD6jJu4Go-v0T6AY1o4zJ7xbl056SRd91UFbEO8eMlAXpAu785LitfI8WwRD_lJiqMuf1U5jtf_7-6SAcxjGENhayCWlq0aIyjO-ENII6YSnPnMvdVGIMo4xPaVITKUdZipI2uU0NdZzmCDJzwxL2DCZFWbgXQBKbIPQSLJNTx_ExZSkTkorccKtSngRAl-LRduAq9yMz5rrLmTOp-7vSeFe6uyvNAvgwPrPomTpu3L3lpa4RZ3iyXOurimyjI_TVKpIBbC-VQQ82XetI-aJ5H5AG8GZcRmv0KRZTuLLFPdLjPYTAIoDnve6MH8Mkgk2u8HByRavGDZ7pe3WlOPnZMX5TVG5P1hbAzlIBL7_rpkPujEp6izt5-X_bt-BBhAivL2HfhklTte4VIrQmfT2Y5h-3OCqf | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logical+quantum+processor+based+on+reconfigurable+atom+arrays&rft.jtitle=Nature+%28London%29&rft.au=Bluvstein%2C+Dolev&rft.au=Evered%2C+Simon+J.&rft.au=Geim%2C+Alexandra+A.&rft.au=Li%2C+Sophie+H.&rft.date=2024-02-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=626&rft.issue=7997&rft_id=info:doi/10.1038%2Fs41586-023-06927-3&rft.externalDocID=2471928 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |