Logical quantum processor based on reconfigurable atom arrays

Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2 – 6 for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redund...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 626; no. 7997; pp. 58 - 65
Main Authors Bluvstein, Dolev, Evered, Simon J., Geim, Alexandra A., Li, Sophie H., Zhou, Hengyun, Manovitz, Tom, Ebadi, Sepehr, Cain, Madelyn, Kalinowski, Marcin, Hangleiter, Dominik, Bonilla Ataides, J. Pablo, Maskara, Nishad, Cong, Iris, Gao, Xun, Sales Rodriguez, Pedro, Karolyshyn, Thomas, Semeghini, Giulia, Gullans, Michael J., Greiner, Markus, Vuletić, Vladan, Lukin, Mikhail D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2024
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-023-06927-3

Cover

Abstract Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2 – 6 for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy 2 – 4 , poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays 7 , our system combines high two-qubit gate fidelities 8 , arbitrary connectivity 7 , 9 , as well as fully programmable single-qubit rotations and mid-circuit readout 10 – 15 . Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code 6 distance from d  = 3 to d  = 7, preparation of colour-code qubits with break-even fidelities 5 , fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks 16 , 17 , we realize computationally complex sampling circuits 18 with up to 48 logical qubits entangled with hypercube connectivity 19 with 228 logical two-qubit gates and 48 logical CCZ gates 20 . We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling 21 , 22 . These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled.
AbstractList Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2 – 6 for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy 2 – 4 , poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays 7 , our system combines high two-qubit gate fidelities 8 , arbitrary connectivity 7 , 9 , as well as fully programmable single-qubit rotations and mid-circuit readout 10 – 15 . Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code 6 distance from d  = 3 to d  = 7, preparation of colour-code qubits with break-even fidelities 5 , fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks 16 , 17 , we realize computationally complex sampling circuits 18 with up to 48 logical qubits entangled with hypercube connectivity 19 with 228 logical two-qubit gates and 48 logical CCZ gates 20 . We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling 21 , 22 . These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled.
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
Suppressing errors is the central challenge for useful quantum computing, requiring quantum error correction (QEC) for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays, our system combines high two-qubit gate fidelities, arbitrary connectivity, as well as fully programmable single-qubit rotations and mid-circuit readout. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks, we realize computationally complex sampling circuits with up to 48 logical qubits entangled with hypercube connectivity with 228 logical two-qubit gates and 48 logical CCZ gates. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
Suppressing errors is the central challenge for useful quantum computing , requiring quantum error correction (QEC) for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy , poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays , our system combines high two-qubit gate fidelities , arbitrary connectivity , as well as fully programmable single-qubit rotations and mid-circuit readout . Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities , fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks , we realize computationally complex sampling circuits with up to 48 logical qubits entangled with hypercube connectivity with 228 logical two-qubit gates and 48 logical CCZ gates . We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling . These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2 6 for large-scale processing. However, the overhead in the realization of error-corrected logical' qubits, in which information is encoded across many physical qubits for redundancy2 4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10 15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d=3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical GreenbergerHorne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks1617, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6 for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy2–4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10–15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled.
Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2–6 for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy 2–4 , poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays 7 , our system combines high two-qubit gate fidelities 8 , arbitrary connectivity 7,9 , as well as fully programmable single-qubit rotations and mid-circuit readout 10–15 . Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code 6 distance from d  = 3 to d  = 7, preparation of colour-code qubits with break-even fidelities 5 , fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks 16,17 , we realize computationally complex sampling circuits 18 with up to 48 logical qubits entangled with hypercube connectivity 19 with 228 logical two-qubit gates and 48 logical CCZ gates 20 . We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling 21,22 . These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
Author Cain, Madelyn
Semeghini, Giulia
Zhou, Hengyun
Lukin, Mikhail D.
Karolyshyn, Thomas
Bluvstein, Dolev
Manovitz, Tom
Maskara, Nishad
Vuletić, Vladan
Geim, Alexandra A.
Cong, Iris
Bonilla Ataides, J. Pablo
Ebadi, Sepehr
Kalinowski, Marcin
Evered, Simon J.
Hangleiter, Dominik
Greiner, Markus
Sales Rodriguez, Pedro
Gao, Xun
Gullans, Michael J.
Li, Sophie H.
Author_xml – sequence: 1
  givenname: Dolev
  orcidid: 0000-0002-9934-9530
  surname: Bluvstein
  fullname: Bluvstein, Dolev
  organization: Department of Physics, Harvard University
– sequence: 2
  givenname: Simon J.
  orcidid: 0000-0001-8986-1103
  surname: Evered
  fullname: Evered, Simon J.
  organization: Department of Physics, Harvard University
– sequence: 3
  givenname: Alexandra A.
  orcidid: 0000-0001-5294-4941
  surname: Geim
  fullname: Geim, Alexandra A.
  organization: Department of Physics, Harvard University
– sequence: 4
  givenname: Sophie H.
  surname: Li
  fullname: Li, Sophie H.
  organization: Department of Physics, Harvard University
– sequence: 5
  givenname: Hengyun
  orcidid: 0000-0002-2148-8856
  surname: Zhou
  fullname: Zhou, Hengyun
  organization: Department of Physics, Harvard University, QuEra Computing Inc
– sequence: 6
  givenname: Tom
  orcidid: 0000-0003-3470-1369
  surname: Manovitz
  fullname: Manovitz, Tom
  organization: Department of Physics, Harvard University
– sequence: 7
  givenname: Sepehr
  surname: Ebadi
  fullname: Ebadi, Sepehr
  organization: Department of Physics, Harvard University
– sequence: 8
  givenname: Madelyn
  orcidid: 0000-0002-5298-3112
  surname: Cain
  fullname: Cain, Madelyn
  organization: Department of Physics, Harvard University
– sequence: 9
  givenname: Marcin
  orcidid: 0000-0003-0605-8791
  surname: Kalinowski
  fullname: Kalinowski, Marcin
  organization: Department of Physics, Harvard University
– sequence: 10
  givenname: Dominik
  orcidid: 0000-0002-4766-7967
  surname: Hangleiter
  fullname: Hangleiter, Dominik
  organization: Joint Center for Quantum Information and Computer Science, NIST/University of Maryland
– sequence: 11
  givenname: J. Pablo
  surname: Bonilla Ataides
  fullname: Bonilla Ataides, J. Pablo
  organization: Department of Physics, Harvard University
– sequence: 12
  givenname: Nishad
  orcidid: 0000-0001-5775-9542
  surname: Maskara
  fullname: Maskara, Nishad
  organization: Department of Physics, Harvard University
– sequence: 13
  givenname: Iris
  orcidid: 0000-0001-7706-5927
  surname: Cong
  fullname: Cong, Iris
  organization: Department of Physics, Harvard University
– sequence: 14
  givenname: Xun
  surname: Gao
  fullname: Gao, Xun
  organization: Department of Physics, Harvard University
– sequence: 15
  givenname: Pedro
  orcidid: 0009-0002-8337-0762
  surname: Sales Rodriguez
  fullname: Sales Rodriguez, Pedro
  organization: QuEra Computing Inc
– sequence: 16
  givenname: Thomas
  surname: Karolyshyn
  fullname: Karolyshyn, Thomas
  organization: QuEra Computing Inc
– sequence: 17
  givenname: Giulia
  surname: Semeghini
  fullname: Semeghini, Giulia
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 18
  givenname: Michael J.
  orcidid: 0000-0003-3974-2987
  surname: Gullans
  fullname: Gullans, Michael J.
  organization: Joint Center for Quantum Information and Computer Science, NIST/University of Maryland
– sequence: 19
  givenname: Markus
  orcidid: 0000-0002-2935-2363
  surname: Greiner
  fullname: Greiner, Markus
  organization: Department of Physics, Harvard University
– sequence: 20
  givenname: Vladan
  orcidid: 0000-0002-9786-0538
  surname: Vuletić
  fullname: Vuletić, Vladan
  organization: Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 21
  givenname: Mikhail D.
  orcidid: 0000-0002-8658-1007
  surname: Lukin
  fullname: Lukin, Mikhail D.
  email: lukin@physics.harvard.edu
  organization: Department of Physics, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38056497$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2471928$$D View this record in Osti.gov
BookMark eNqNkc1u1DAURi3Uik4LL8ACRbBhE_BfbGeBEKqAIo3EBtbWjedm6iqxp3YCmrfHJVNKu6hYeeHzfb73-JQchRiQkBeMvmVUmHdZssaomnJRU9VyXYsnZMWkVrVURh-RFaXc1NQIdUJOc76ilDZMy6fkRBjaKNnqFXm_jlvvYKiuZwjTPFa7FB3mHFPVQcZNFUOV0MXQ--2coBuwgimOFaQE-_yMHPcwZHx-OM_Ij8-fvp9f1OtvX76ef1zXrlFmqlnnKJWblmllQDFUjskNYo_USG5a4FQoBrxFJrpGNtC7DhhK1jPR9iC0OCNi6Z3DDva_YBjsLvkR0t4yam9k2EWGLTLsHxlWlNSHJbWbuxE3DsOU4C4Zwdv7N8Ff2m38WQqNoJLz0vBqaYh58jY7P6G7LDICuslyqVnLTYHeHJ5J8XrGPNnRZ4fDAAHjnG3ZsBW60Y0q6OsH6FWcUyjqLG-5oJpJygr18t-5_w58-2sFMAvgUsw5YW_LZDD5eLOGHx53wh9E_0vkQX8ucNhiuhv7kdRvtfTKnQ
CitedBy_id crossref_primary_10_1103_PRXQuantum_6_010306
crossref_primary_10_1103_PhysRevApplied_22_064021
crossref_primary_10_1103_PhysRevResearch_6_043048
crossref_primary_10_1103_PhysRevApplied_22_034054
crossref_primary_10_22331_q_2024_07_22_1420
crossref_primary_10_1038_s41586_024_07913_z
crossref_primary_10_1103_PhysRevB_111_085303
crossref_primary_10_1103_PRXQuantum_5_030316
crossref_primary_10_1103_PRXQuantum_6_010301
crossref_primary_10_1103_PhysRevA_111_L011305
crossref_primary_10_1103_PhysRevA_111_032427
crossref_primary_10_1109_JSSC_2024_3430079
crossref_primary_10_1021_acs_jctc_4c00352
crossref_primary_10_1103_PhysRevA_110_012417
crossref_primary_10_1103_PhysRevA_111_033514
crossref_primary_10_1126_sciadv_adt4713
crossref_primary_10_1103_PRXQuantum_5_040352
crossref_primary_10_1038_s41534_025_00983_5
crossref_primary_10_1088_2058_9565_ad9ed4
crossref_primary_10_1038_s42254_024_00749_6
crossref_primary_10_1002_qute_202300245
crossref_primary_10_22331_q_2024_12_27_1578
crossref_primary_10_22331_q_2024_12_27_1577
crossref_primary_10_1038_s41534_024_00855_4
crossref_primary_10_1103_PhysRevResearch_7_013243
crossref_primary_10_1103_PhysRevApplied_23_014031
crossref_primary_10_1103_PhysRevLett_134_120801
crossref_primary_10_1038_s41467_025_56305_y
crossref_primary_10_1103_PhysRevC_111_034317
crossref_primary_10_1103_PhysRevA_110_052423
crossref_primary_10_1103_PhysRevA_110_053518
crossref_primary_10_1038_s41567_024_02727_2
crossref_primary_10_1088_1361_6633_adac8b
crossref_primary_10_1364_OPTICAQ_546797
crossref_primary_10_1103_PhysRevLett_134_080801
crossref_primary_10_1103_PhysRevLett_133_150601
crossref_primary_10_1103_PhysRevA_111_032420
crossref_primary_10_1103_PRXQuantum_5_040343
crossref_primary_10_2151_sola_2025_006
crossref_primary_10_1103_PhysRevApplied_23_024072
crossref_primary_10_1103_PhysRevLett_133_150603
crossref_primary_10_1103_PRXQuantum_5_040342
crossref_primary_10_1103_PhysRevLett_133_150604
crossref_primary_10_1103_PhysRevApplied_23_024074
crossref_primary_10_1109_LCOMM_2024_3454804
crossref_primary_10_1103_PhysRevResearch_7_013115
crossref_primary_10_1038_s41567_024_02480_6
crossref_primary_10_1103_PhysRevResearch_6_013092
crossref_primary_10_1088_2058_9565_ad5eb6
crossref_primary_10_22331_q_2024_03_14_1281
crossref_primary_10_3390_technologies12050064
crossref_primary_10_1038_s41567_025_02797_w
crossref_primary_10_1103_PhysRevResearch_6_043143
crossref_primary_10_1038_s41467_024_53140_5
crossref_primary_10_1186_s40580_024_00418_5
crossref_primary_10_1103_PhysRevB_111_115141
crossref_primary_10_1140_epja_s10050_024_01385_5
crossref_primary_10_1038_s41586_024_08177_3
crossref_primary_10_1038_s42005_024_01883_4
crossref_primary_10_1103_PhysRevA_110_012438
crossref_primary_10_1103_PhysRevResearch_6_033333
crossref_primary_10_20935_AcadQuant7467
crossref_primary_10_1103_PRXQuantum_5_040334
crossref_primary_10_1002_lpor_202401595
crossref_primary_10_1103_PhysRevA_110_042603
crossref_primary_10_1103_PhysRevLett_133_111901
crossref_primary_10_22331_q_2024_10_02_1488
crossref_primary_10_1103_PhysRevResearch_7_013003
crossref_primary_10_1103_PhysRevResearch_6_033217
crossref_primary_10_1038_s41467_024_53405_z
crossref_primary_10_22331_q_2024_05_06_1337
crossref_primary_10_1088_1361_6463_ad6c5a
crossref_primary_10_1103_PhysRevLett_133_223401
crossref_primary_10_1103_PhysRevB_109_064303
crossref_primary_10_1103_PhysRevLett_133_223402
crossref_primary_10_1103_PhysRevResearch_6_043253
crossref_primary_10_1103_PRXQuantum_6_010310
crossref_primary_10_22331_q_2025_01_28_1612
crossref_primary_10_1103_PhysRevApplied_22_024034
crossref_primary_10_1364_AO_540890
crossref_primary_10_1002_qute_202400074
crossref_primary_10_1364_OE_538445
crossref_primary_10_1103_PhysRevResearch_6_033104
crossref_primary_10_1103_PhysRevLett_132_263601
crossref_primary_10_1103_PhysRevLett_133_070401
crossref_primary_10_1126_sciadv_ads8171
crossref_primary_10_1103_PRXQuantum_5_040328
crossref_primary_10_1103_PhysRevA_110_042612
crossref_primary_10_1038_s42254_024_00799_w
crossref_primary_10_22331_q_2024_03_21_1297
crossref_primary_10_1103_PhysRevResearch_6_033282
crossref_primary_10_1145_3670417
crossref_primary_10_1038_s41586_025_08642_7
crossref_primary_10_2139_ssrn_4727071
crossref_primary_10_1088_2058_9565_adbb86
crossref_primary_10_1103_PhysRevResearch_6_023241
crossref_primary_10_1103_PRXQuantum_5_040313
crossref_primary_10_1103_PhysRevA_111_022432
crossref_primary_10_1103_PhysRevA_111_022433
crossref_primary_10_1103_PhysRevResearch_6_023129
crossref_primary_10_22331_q_2024_10_10_1498
crossref_primary_10_1038_s41467_024_46623_y
crossref_primary_10_1103_PhysRevB_111_054311
crossref_primary_10_1103_PhysRevResearch_7_013040
crossref_primary_10_1088_1751_8121_ad5085
crossref_primary_10_1016_j_asoc_2024_112096
crossref_primary_10_1016_j_pquantelec_2024_100534
crossref_primary_10_1039_D4CP03454F
crossref_primary_10_1103_PhysRevA_110_012454
crossref_primary_10_1103_PhysRevA_110_013303
crossref_primary_10_1103_PhysRevLett_133_020601
crossref_primary_10_1103_PRXQuantum_5_040301
crossref_primary_10_1103_PhysRevA_110_053320
crossref_primary_10_1016_j_scib_2025_03_007
crossref_primary_10_1093_ptep_ptae192
crossref_primary_10_5802_crphys_229
crossref_primary_10_1103_PhysRevA_109_062604
crossref_primary_10_1103_PhysRevLett_132_203602
crossref_primary_10_1007_s13218_024_00873_6
crossref_primary_10_1103_PhysRevD_110_034507
crossref_primary_10_22331_q_2024_09_11_1468
crossref_primary_10_22331_q_2024_09_11_1467
crossref_primary_10_1002_qute_202400143
crossref_primary_10_1103_PhysRevB_111_064308
crossref_primary_10_1380_vss_68_167
crossref_primary_10_1088_1367_2630_ad9945
crossref_primary_10_1103_PhysRevA_111_033102
crossref_primary_10_1016_j_compfluid_2024_106507
crossref_primary_10_1103_PRXQuantum_5_020363
crossref_primary_10_1088_0256_307X_41_4_040302
crossref_primary_10_1186_s43074_024_00144_5
crossref_primary_10_1103_PhysRevLett_133_180601
crossref_primary_10_1103_PhysRevLett_134_090603
crossref_primary_10_1103_PhysRevResearch_7_013288
crossref_primary_10_1038_s41534_024_00901_1
crossref_primary_10_1088_1361_648X_adbb9b
crossref_primary_10_1103_PhysRevA_110_042404
crossref_primary_10_1103_PhysRevA_110_042420
crossref_primary_10_22331_q_2025_01_27_1609
crossref_primary_10_3788_AOS240573
crossref_primary_10_1103_PhysRevA_110_032619
crossref_primary_10_1103_PhysRevApplied_22_034021
crossref_primary_10_1038_s41467_024_51162_7
crossref_primary_10_1103_PhysRevApplied_22_034020
crossref_primary_10_1103_PhysRevA_111_012411
crossref_primary_10_1103_PhysRevA_110_032616
crossref_primary_10_1103_PhysRevB_109_134412
crossref_primary_10_1038_s41586_024_08449_y
crossref_primary_10_1103_PhysRevA_111_L010401
crossref_primary_10_1103_PhysRevLett_133_240602
crossref_primary_10_1063_pt_qoys_tiuw
crossref_primary_10_1016_j_future_2024_06_058
crossref_primary_10_1126_sciadv_adp2008
crossref_primary_10_1103_PhysRevA_111_022442
crossref_primary_10_1038_s41586_024_08353_5
crossref_primary_10_1103_PhysRevA_109_062607
crossref_primary_10_1541_ieejjournal_144_589
crossref_primary_10_1103_PhysRevLett_133_243401
crossref_primary_10_1038_s41467_024_54864_0
crossref_primary_10_1038_s41586_024_08148_8
crossref_primary_10_1103_PhysRevLett_132_150606
crossref_primary_10_1103_PhysRevLett_132_150605
crossref_primary_10_1103_PhysRevA_111_012422
crossref_primary_10_1103_PhysRevLett_132_150603
crossref_primary_10_1103_PhysRevResearch_6_043329
crossref_primary_10_7498_aps_73_20240135
crossref_primary_10_1038_s41467_024_55570_7
crossref_primary_10_1103_PhysRevA_111_012424
crossref_primary_10_1103_PhysRevA_111_012419
crossref_primary_10_1103_PRXQuantum_5_020344
crossref_primary_10_1126_science_adr7075
crossref_primary_10_1126_science_adp6016
crossref_primary_10_1002_wcms_1701
crossref_primary_10_1038_d41586_024_00075_y
crossref_primary_10_1038_s43246_025_00742_1
crossref_primary_10_1063_5_0235279
crossref_primary_10_1103_PRXQuantum_5_020101
crossref_primary_10_1088_2058_9565_ad48b2
crossref_primary_10_1364_OE_544727
crossref_primary_10_1103_PhysRevA_110_L051303
crossref_primary_10_1063_5_0213120
crossref_primary_10_1103_PhysRevB_111_L060304
crossref_primary_10_1103_PhysRevLett_133_073603
crossref_primary_10_1088_1367_2630_ad1e93
crossref_primary_10_1088_1742_6596_2934_1_012018
crossref_primary_10_1364_OPTICAQ_542350
crossref_primary_10_1126_sciadv_adp6388
crossref_primary_10_1103_PhysRevResearch_7_L012006
crossref_primary_10_1063_5_0197119
crossref_primary_10_1103_PhysRevLett_133_170601
crossref_primary_10_1038_s41534_025_01002_3
crossref_primary_10_1103_PRXQuantum_5_020360
crossref_primary_10_1103_PhysRevResearch_6_L042014
crossref_primary_10_1103_PhysRevA_109_032405
crossref_primary_10_3390_photonics12030204
crossref_primary_10_1038_s42254_024_00796_z
crossref_primary_10_1103_PRXQuantum_5_020355
crossref_primary_10_1038_s41567_024_02638_2
crossref_primary_10_1103_PhysRevA_109_043320
crossref_primary_10_1103_PhysRevB_111_104303
crossref_primary_10_1038_s41598_025_87410_z
crossref_primary_10_3390_e26080649
crossref_primary_10_1103_PhysRevLett_134_053604
crossref_primary_10_1103_PhysRevLett_134_070602
crossref_primary_10_1039_D4DD00321G
crossref_primary_10_1103_PhysRevB_111_115303
crossref_primary_10_1103_PhysRevLett_133_010601
crossref_primary_10_1103_PhysRevA_110_022607
crossref_primary_10_1103_PhysRevA_111_012444
crossref_primary_10_1103_PhysRevX_14_041050
crossref_primary_10_1103_PhysRevA_110_032411
crossref_primary_10_1103_PhysRevA_110_062618
crossref_primary_10_1103_PhysRevB_111_064111
crossref_primary_10_1103_PhysRevApplied_22_044031
crossref_primary_10_1038_s43588_024_00628_1
crossref_primary_10_1038_s41534_024_00945_3
crossref_primary_10_1038_s42254_024_00706_3
crossref_primary_10_1103_PhysRevApplied_21_034036
crossref_primary_10_1039_D4CP00436A
crossref_primary_10_1103_PhysRevX_14_041062
crossref_primary_10_1126_science_adw2572
crossref_primary_10_1557_s43577_024_00775_w
crossref_primary_10_1088_1367_2630_ad3775
crossref_primary_10_1103_PhysRevB_110_205402
crossref_primary_10_1103_PhysRevResearch_6_L042030
crossref_primary_10_1142_S0217732324300064
crossref_primary_10_1063_5_0239165
crossref_primary_10_1103_PhysRevA_110_062603
crossref_primary_10_1103_PRXQuantum_5_030353
crossref_primary_10_1103_PRXQuantum_5_030352
crossref_primary_10_1093_pnasnexus_pgaf063
crossref_primary_10_1103_PRXQuantum_5_030350
crossref_primary_10_1038_s41586_024_07998_6
crossref_primary_10_1103_PRXQuantum_6_010101
crossref_primary_10_1103_PhysRevD_109_114510
crossref_primary_10_1038_s41567_024_02479_z
crossref_primary_10_1038_s41567_024_02738_z
crossref_primary_10_22331_q_2025_02_06_1623
crossref_primary_10_1103_PhysRevA_110_043116
crossref_primary_10_1103_PhysRevApplied_23_034016
crossref_primary_10_4204_EPTCS_406_5
crossref_primary_10_1103_PhysRevA_110_043118
crossref_primary_10_1103_PRXQuantum_6_010339
crossref_primary_10_1088_1402_4896_adbf70
crossref_primary_10_1103_PhysRevLett_134_080201
crossref_primary_10_1103_PhysRevLett_132_223601
crossref_primary_10_1038_s42005_024_01733_3
crossref_primary_10_1103_PhysRevB_110_085115
crossref_primary_10_1103_PRXQuantum_6_010331
crossref_primary_10_1103_PRXQuantum_6_010334
crossref_primary_10_1038_s41467_025_57818_2
crossref_primary_10_1103_PRXQuantum_6_010337
crossref_primary_10_1103_PhysRevA_110_012610
crossref_primary_10_1088_2058_9565_ad5a37
crossref_primary_10_1007_s40820_025_01693_5
crossref_primary_10_1016_j_talanta_2024_127078
crossref_primary_10_1063_5_0211159
crossref_primary_10_1103_PhysRevResearch_6_033322
crossref_primary_10_1103_PhysRevLett_132_240602
crossref_primary_10_1088_1361_6633_ad6805
crossref_primary_10_1103_PhysRevB_110_045101
crossref_primary_10_1103_PRXQuantum_6_010341
crossref_primary_10_1038_s41467_025_56255_5
crossref_primary_10_1088_0256_307X_42_3_034203
crossref_primary_10_1103_PhysRevA_110_062424
crossref_primary_10_1038_s41377_025_01775_4
crossref_primary_10_1103_PhysRevResearch_7_013313
crossref_primary_10_1103_PhysRevResearch_6_013293
crossref_primary_10_1007_s44214_025_00077_5
crossref_primary_10_1038_s41598_024_76967_w
crossref_primary_10_1145_3656419
crossref_primary_10_1103_PhysRevA_111_L030402
crossref_primary_10_1287_ijoc_2024_0587
crossref_primary_10_1103_PhysRevA_110_062413
crossref_primary_10_1103_PhysRevA_110_062414
crossref_primary_10_1088_2058_9565_ad33ac
crossref_primary_10_1103_PRXQuantum_5_030328
crossref_primary_10_1103_PRXQuantum_6_010354
crossref_primary_10_1103_PhysRevB_111_L081102
crossref_primary_10_1103_PRXQuantum_5_030326
crossref_primary_10_1038_s41534_025_00998_y
crossref_primary_10_1103_PhysRevA_110_032217
crossref_primary_10_1088_1367_2630_ad5752
crossref_primary_10_1103_PhysRevApplied_22_024073
crossref_primary_10_1103_PhysRevLett_133_233005
crossref_primary_10_1109_TCAD_2024_3355277
crossref_primary_10_1103_PhysRevLett_134_020602
crossref_primary_10_1631_jzus_A2400397
crossref_primary_10_1038_s41586_024_08005_8
crossref_primary_10_1103_PhysRevD_109_046005
crossref_primary_10_22331_q_2024_09_04_1460
crossref_primary_10_1038_s41586_024_08406_9
crossref_primary_10_22331_q_2025_03_20_1665
crossref_primary_10_1103_PhysRevA_110_043105
crossref_primary_10_1103_PhysRevApplied_21_034006
Cites_doi 10.1103/PhysRevA.86.032324
10.1038/s41586-021-03582-4
10.22331/q-2017-04-25-8
10.1126/science.ade5337
10.1088/1367-2630/17/8/083002
10.1038/s41586-022-04603-6
10.1103/PhysRevLett.102.110502
10.1038/s41586-022-05434-1
10.1103/PRXQuantum.4.010301
10.1038/s41586-023-06096-3
10.1103/PhysRevA.102.053101
10.1103/PhysRevLett.78.2252
10.1103/PhysRevA.105.032618
10.1098/rspa.1996.0136
10.1103/PRXQuantum.4.030325
10.1038/s41586-022-04725-x
10.1103/PhysRevLett.127.050501
10.1103/PhysRevLett.106.230501
10.22331/q-2019-09-02-181
10.1088/1367-2630/17/8/083026
10.22331/q-2018-08-06-79
10.1103/PhysRevLett.109.020505
10.1126/science.aau4963
10.1063/1.1499754
10.1088/1367-2630/aa5a3b
10.1038/s41567-018-0124-x
10.1038/s41534-018-0106-y
10.1103/PhysRevLett.123.170503
10.1140/epjd/e2013-30729-x
10.1088/2058-9565/aab73c
10.1038/s41586-023-05954-4
10.1103/PhysRevA.72.022340
10.1088/1367-2630/ab68fd
10.1126/science.aah3778
10.1126/sciadv.aay4929
10.1126/science.abe8770
10.1038/s41586-019-1666-5
10.1103/PhysRevLett.129.203602
10.1103/PhysRevA.91.032330
10.1103/PhysRevA.70.052328
10.1126/sciadv.1701074
10.1103/PhysRevLett.127.180501
10.1088/1367-2630/14/12/123011
10.1038/s41586-023-06438-1
10.1103/PhysRevLett.126.200603
10.1038/s41586-023-06516-4
10.22331/q-2018-05-22-65
10.1038/s41586-022-04592-6
10.1103/PhysRevLett.117.080501
10.1103/PRXQuantum.2.020341
10.22331/q-2022-05-13-712
10.1126/science.abi9917
10.1126/science.abn7293
10.1126/science.aaf6725
10.1038/s41567-018-0318-2
10.1038/nature03350
10.1038/s41586-021-03585-1
10.1038/s41586-021-03928-y
10.1038/srep19578
10.22331/q-2021-04-15-433
10.1006/jmra.1994.1159
10.1103/PhysRevLett.128.030501
10.22331/q-2021-07-06-497
10.1038/s41586-022-04566-8
10.1038/s41467-022-29977-z
10.1103/PhysRevLett.85.2208
10.1126/science.abg5029
10.1088/1126-6708/2008/10/065
10.1103/PhysRevA.52.R2493
10.1103/PhysRevA.67.042308
10.1007/JHEP11(2020)154
10.1038/s41586-023-06481-y
10.1038/s41467-022-32094-6
10.1038/nphys698
10.1088/1367-2630/ab8e5c
10.1038/s41586-022-04721-1
10.1103/PhysRevLett.106.130506
10.1103/PhysRevResearch.2.033444
10.1103/PhysRevX.13.041051
10.1103/PhysRevX.13.041034
10.22331/q-2024-03-14-1281
10.1103/PhysRevResearch.4.033019
10.22331/q-2023-11-07-1172
10.1007/s11128-011-0297-z
10.1103/PhysRevLett.133.013401
10.1038/s41567-023-02282-2
10.22331/q-2024-05-06-1337
10.1103/PhysRevX.13.041035
10.1103/PhysRevLett.105.170502
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
Copyright Nature Publishing Group Feb 1, 2024
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: Copyright Nature Publishing Group Feb 1, 2024
CorporateAuthor Krell Institute, Ames, IA (United States)
CorporateAuthor_xml – name: Krell Institute, Ames, IA (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OIOZB
OTOTI
5PM
ADTOC
UNPAY
DOI 10.1038/s41586-023-06927-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users]
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Research Library (Proquest)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Agricultural Science Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Freely Accessible)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 65
ExternalDocumentID 10.1038/s41586-023-06927-3
PMC10830422
2471928
38056497
10_1038_s41586_023_06927_3
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LGEZI
LK5
LK8
LOTEE
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NADUK
NAPCQ
NEPJS
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PV9
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AFKWF
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
TUS
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
MVM
N4W
NEJ
NPM
OHT
P-O
PEA
PM3
QS-
R4F
RHI
SKT
SV3
TH9
TUD
UBY
UHB
USG
VOH
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
ABUFD
AGSTI
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
SOI
7X8
ACMFV
OIOZB
OTOTI
UMC
5PM
ADTOC
ESTFP
UNPAY
ID FETCH-LOGICAL-c568t-1bc004d91768a61e6c14deefe084289a20361a29e13b545afcba1e41f139fa373
IEDL.DBID UNPAY
ISSN 0028-0836
1476-4687
IngestDate Sun Oct 26 04:10:41 EDT 2025
Tue Sep 30 17:09:59 EDT 2025
Mon May 12 02:34:01 EDT 2025
Tue Sep 30 21:53:31 EDT 2025
Tue Oct 07 07:16:51 EDT 2025
Mon Jul 21 05:51:30 EDT 2025
Wed Oct 01 03:39:16 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Fri Feb 21 02:39:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7997
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-1bc004d91768a61e6c14deefe084289a20361a29e13b545afcba1e41f139fa373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0020347; SC0021110; W911NF-20-1-0082; DGE1745303; OMA-2120757
Army Research Office MURI
USDOE Office of Science (SC)
NSF Graduate Research Fellowship Program
ORCID 0000-0001-8986-1103
0000-0003-3974-2987
0000-0002-2148-8856
0000-0001-5775-9542
0000-0003-0605-8791
0000-0001-5294-4941
0009-0002-8337-0762
0000-0002-9934-9530
0000-0003-3470-1369
0000-0002-5298-3112
0000-0001-7706-5927
0000-0002-4766-7967
0000-0002-8658-1007
0000-0002-2935-2363
0000-0002-9786-0538
0000000152944941
0000000334701369
0000000177065927
0000000339742987
0000000229352363
0000000299349530
0009000283370762
0000000189861103
0000000306058791
0000000286581007
0000000157759542
0000000247667967
0000000252983112
0000000221488856
0000000297860538
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1038/s41586-023-06927-3
PMID 38056497
PQID 2923071401
PQPubID 40569
PageCount 8
ParticipantIDs unpaywall_primary_10_1038_s41586_023_06927_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10830422
osti_scitechconnect_2471928
proquest_miscellaneous_2899375756
proquest_journals_2923071401
pubmed_primary_38056497
crossref_citationtrail_10_1038_s41586_023_06927_3
crossref_primary_10_1038_s41586_023_06927_3
springer_journals_10_1038_s41586_023_06927_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Aaronson, Gottesman (CR44) 2004; 70
Madsen (CR109) 2022; 606
Postler (CR41) 2022; 605
Arute (CR18) 2019; 574
Knill (CR86) 2005; 434
Ma (CR13) 2023; 622
Andersen (CR28) 2023; 618
Ebadi (CR30) 2021; 595
Le Kien, Schneeweiss, Rauschenbeutel (CR73) 2013; 67
CR47
CR46
Graham (CR34) 2022; 604
Goto (CR38) 2016; 6
Hangleiter, Bermejo-Vega, Schwarz, Eisert (CR99) 2018; 2
Singh (CR11) 2023; 380
Steane (CR3) 1996; 452
Pan, Zhang (CR106) 2022; 128
CR59
CR56
CR55
Bravyi (CR50) 2019; 3
CR52
Bremner, Montanaro, Shepherd (CR20) 2016; 117
Higgott, Bohdanowicz, Kubica, Flammia, Campbell (CR77) 2023; 13
Bremner, Montanaro, Shepherd (CR101) 2017; 1
Mezher, Ghalbouni, Dgheim, Markham (CR45) 2020; 2
Gidney (CR76) 2021; 5
Deist (CR10) 2022; 129
Shor (CR87) 1995; 52
Hashizume, Bentsen, Weber, Daley (CR96) 2021; 126
Levine (CR63) 2022; 105
Tóth, Gühne (CR90) 2005; 72
Scholl (CR31) 2021; 595
Jandura, Pupillo (CR64) 2022; 6
Wu, Kolkowitz, Puri, Thompson (CR57) 2022; 13
CR69
CR67
CR66
CR65
Wimperis (CR70) 1994; 109
Kim (CR54) 2023; 618
Zhong (CR108) 2020; 370
Kubica, Yoshida, Pastawski (CR91) 2015; 17
Cong (CR35) 2022; 12
CR61
Barredo, De Léséleuc, Lienhard, Lahaye, Browaeys (CR62) 2016; 354
Brown (CR43) 2020; 6
Barnes (CR72) 2022; 13
Horsman, Fowler, Devitt, Meter (CR89) 2012; 14
Linke (CR95) 2017; 3
Hutzler, Liu, Yu, Ni (CR74) 2017; 19
CR79
Cummins, Llewellyn, Jones (CR71) 2003; 67
CR78
Jia, Verbaarschot (CR97) 2020; 2020
Evered (CR8) 2023; 622
Mi (CR94) 2021; 374
Shea, Baker, Joseph, Kim, Gauthier (CR75) 2020; 102
Chamberland, Kubica, Yoder, Zhu (CR92) 2020; 22
Kuriyattil, Hashizume, Bentsen, Daley (CR19) 2023; 4
Daley, Pichler, Schachenmayer, Zoller (CR21) 2012; 109
Shepherd, Bremner (CR105) 2009; 465
CR2
Krinner (CR88) 2022; 605
CR5
Fowler, Mariantoni, Martinis, Cleland (CR24) 2012; 86
Steane (CR80) 1997; 78
Dennis, Kitaev, Landahl, Preskill (CR4) 2002; 43
Beugnon (CR9) 2007; 3
Flammia, Liu (CR39) 2011; 106
Iverson, Preskill (CR110) 2020; 22
Kaufman (CR112) 2016; 353
Egan (CR40) 2021; 598
CR85
CR83
Preskill (CR1) 2018; 2
CR82
Huang (CR22) 2022; 376
Wu (CR48) 2021; 127
Sekino, Susskind (CR51) 2008; 2008
CR81
Dordević (CR58) 2021; 373
Bombín (CR37) 2015; 17
Bravyi, Englbrecht, König, Peard (CR49) 2018; 4
Boixo (CR107) 2018; 14
(CR6) 2023; 614
CR16
CR15
CR14
CR12
Haug, Kim (CR53) 2023; 4
Gidney, Ekerå (CR23) 2021; 5
Monz (CR84) 2011; 106
Iyer, Poulin (CR111) 2017; 3
Xu (CR60) 2021; 127
Scholl (CR33) 2023; 622
Levine (CR68) 2019; 123
Brydges (CR113) 2019; 364
Vasmer, Kubica (CR17) 2022; 10
CR29
Beverland, Kubica, Svore (CR36) 2021; 2
CR27
Bluvstein (CR7) 2022; 604
CR26
CR25
CR104
CR102
CR103
Eastin, Knill (CR42) 2009; 102
Bremner, Jozsa, Shepherd (CR98) 2011; 467
Bouland, Fefferman, Nirkhe, Vazirani (CR100) 2019; 15
Jaksch (CR32) 2000; 85
Kubica, Beverland (CR93) 2015; 91
C Gidney (6927_CR23) 2021; 5
MJ Bremner (6927_CR98) 2011; 467
J Beugnon (6927_CR9) 2007; 3
R Mezher (6927_CR45) 2020; 2
S Ma (6927_CR13) 2023; 622
S Bravyi (6927_CR49) 2018; 4
T Hashizume (6927_CR96) 2021; 126
ME Shea (6927_CR75) 2020; 102
K Singh (6927_CR11) 2023; 380
T Monz (6927_CR84) 2011; 106
E Knill (6927_CR86) 2005; 434
A Kubica (6927_CR91) 2015; 17
AM Steane (6927_CR80) 1997; 78
PW Shor (6927_CR87) 1995; 52
L Postler (6927_CR41) 2022; 605
6927_CR29
6927_CR26
6927_CR27
6927_CR25
T Dordević (6927_CR58) 2021; 373
X Mi (6927_CR94) 2021; 374
NM Linke (6927_CR95) 2017; 3
H Bombín (6927_CR37) 2015; 17
TM Graham (6927_CR34) 2022; 604
F Arute (6927_CR18) 2019; 574
D Jaksch (6927_CR32) 2000; 85
S Bravyi (6927_CR50) 2019; 3
K Barnes (6927_CR72) 2022; 13
A Bouland (6927_CR100) 2019; 15
W Xu (6927_CR60) 2021; 127
C Gidney (6927_CR76) 2021; 5
Google Quantum AI (6927_CR6) 2023; 614
6927_CR59
H Levine (6927_CR68) 2019; 123
E Dennis (6927_CR4) 2002; 43
6927_CR55
6927_CR56
HK Cummins (6927_CR71) 2003; 67
F Le Kien (6927_CR73) 2013; 67
Y Wu (6927_CR57) 2022; 13
A Steane (6927_CR3) 1996; 452
MJ Bremner (6927_CR20) 2016; 117
6927_CR52
Y Sekino (6927_CR51) 2008; 2008
D Bluvstein (6927_CR7) 2022; 604
S Jandura (6927_CR64) 2022; 6
6927_CR2
S Kuriyattil (6927_CR19) 2023; 4
H-S Zhong (6927_CR108) 2020; 370
6927_CR5
F Pan (6927_CR106) 2022; 128
HY Huang (6927_CR22) 2022; 376
C Horsman (6927_CR89) 2012; 14
M Vasmer (6927_CR17) 2022; 10
6927_CR103
JK Iverson (6927_CR110) 2020; 22
6927_CR104
6927_CR102
6927_CR46
6927_CR47
A Kubica (6927_CR93) 2015; 91
D Hangleiter (6927_CR99) 2018; 2
P Scholl (6927_CR33) 2023; 622
Y Kim (6927_CR54) 2023; 618
I Cong (6927_CR35) 2022; 12
Y Jia (6927_CR97) 2020; 2020
6927_CR81
H Levine (6927_CR63) 2022; 105
T Haug (6927_CR53) 2023; 4
H Goto (6927_CR38) 2016; 6
AG Fowler (6927_CR24) 2012; 86
S Ebadi (6927_CR30) 2021; 595
6927_CR79
ME Beverland (6927_CR36) 2021; 2
6927_CR78
E Deist (6927_CR10) 2022; 129
C Chamberland (6927_CR92) 2020; 22
SJ Evered (6927_CR8) 2023; 622
TI Andersen (6927_CR28) 2023; 618
G Tóth (6927_CR90) 2005; 72
NR Hutzler (6927_CR74) 2017; 19
S Krinner (6927_CR88) 2022; 605
L Egan (6927_CR40) 2021; 598
6927_CR69
AJ Daley (6927_CR21) 2012; 109
6927_CR66
6927_CR67
6927_CR65
MJ Bremner (6927_CR101) 2017; 1
BJ Brown (6927_CR43) 2020; 6
6927_CR61
D Barredo (6927_CR62) 2016; 354
AM Kaufman (6927_CR112) 2016; 353
D Shepherd (6927_CR105) 2009; 465
P Scholl (6927_CR31) 2021; 595
O Higgott (6927_CR77) 2023; 13
S Aaronson (6927_CR44) 2004; 70
LS Madsen (6927_CR109) 2022; 606
6927_CR15
6927_CR16
P Iyer (6927_CR111) 2017; 3
6927_CR14
6927_CR12
S Boixo (6927_CR107) 2018; 14
T Brydges (6927_CR113) 2019; 364
B Eastin (6927_CR42) 2009; 102
J Preskill (6927_CR1) 2018; 2
Y Wu (6927_CR48) 2021; 127
S Wimperis (6927_CR70) 1994; 109
6927_CR85
ST Flammia (6927_CR39) 2011; 106
6927_CR82
6927_CR83
References_xml – volume: 86
  start-page: 032324
  year: 2012
  ident: CR24
  article-title: Surface codes: towards practical large-scale quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– volume: 595
  start-page: 227
  year: 2021
  end-page: 232
  ident: CR30
  article-title: Quantum phases of matter on a 256-atom programmable quantum simulator
  publication-title: Nature
  doi: 10.1038/s41586-021-03582-4
– volume: 1
  start-page: 8
  year: 2017
  ident: CR101
  article-title: Achieving quantum supremacy with sparse and noisy commuting quantum computations
  publication-title: Quantum
  doi: 10.22331/q-2017-04-25-8
– volume: 380
  start-page: 1265
  year: 2023
  end-page: 1269
  ident: CR11
  article-title: Mid-circuit correction of correlated phase errors using an array of spectator qubits
  publication-title: Science
  doi: 10.1126/science.ade5337
– volume: 17
  start-page: 083002
  year: 2015
  ident: CR37
  article-title: Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083002
– volume: 604
  start-page: 457
  year: 2022
  end-page: 462
  ident: CR34
  article-title: Multi-qubit entanglement and algorithms on a neutral-atom quantum computer
  publication-title: Nature
  doi: 10.1038/s41586-022-04603-6
– ident: CR16
– volume: 102
  start-page: 110502
  year: 2009
  ident: CR42
  article-title: Restrictions on transversal encoded quantum gate sets
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.110502
– volume: 614
  start-page: 676
  year: 2023
  end-page: 681
  ident: CR6
  article-title: Suppressing quantum errors by scaling a surface code logical qubit
  publication-title: Nature
  doi: 10.1038/s41586-022-05434-1
– volume: 4
  start-page: 010301
  year: 2023
  ident: CR53
  article-title: Scalable measures of magic resource for quantum computers
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.4.010301
– volume: 618
  start-page: 500
  year: 2023
  end-page: 505
  ident: CR54
  article-title: Evidence for the utility of quantum computing before fault tolerance
  publication-title: Nature
  doi: 10.1038/s41586-023-06096-3
– ident: CR25
– volume: 102
  start-page: 053101
  year: 2020
  ident: CR75
  article-title: Submillisecond, nondestructive, time-resolved quantum-state readout of a single, trapped neutral atom
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.053101
– volume: 78
  start-page: 2252
  year: 1997
  ident: CR80
  article-title: Active stabilization, quantum computation, and quantum state synthesis
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.2252
– volume: 105
  start-page: 032618
  year: 2022
  ident: CR63
  article-title: Dispersive optics for scalable Raman driving of hyperfine qubits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.032618
– volume: 452
  start-page: 2551
  year: 1996
  end-page: 2577
  ident: CR3
  article-title: Multiple-particle interference and quantum error correction
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1996.0136
– volume: 4
  start-page: 030325
  year: 2023
  ident: CR19
  article-title: Onset of scrambling as a dynamical transition in tunable-range quantum circuits
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.4.030325
– volume: 606
  start-page: 75
  year: 2022
  end-page: 81
  ident: CR109
  article-title: Quantum computational advantage with a programmable photonic processor
  publication-title: Nature
  doi: 10.1038/s41586-022-04725-x
– volume: 127
  start-page: 050501
  year: 2021
  ident: CR60
  article-title: Fast preparation and detection of a Rydberg qubit using atomic ensembles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.050501
– volume: 106
  start-page: 230501
  year: 2011
  ident: CR39
  article-title: Direct fidelity estimation from few Pauli measurements
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.230501
– volume: 3
  start-page: 181
  year: 2019
  ident: CR50
  article-title: Simulation of quantum circuits by low-rank stabilizer decompositions
  publication-title: Quantum
  doi: 10.22331/q-2019-09-02-181
– ident: CR85
– volume: 17
  start-page: 083026
  year: 2015
  ident: CR91
  article-title: Unfolding the color code
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083026
– ident: CR5
– volume: 465
  start-page: 1413
  year: 2009
  end-page: 1439
  ident: CR105
  article-title: Temporally unstructured quantum computation
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 2
  start-page: 79
  year: 2018
  ident: CR1
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 109
  start-page: 020505
  year: 2012
  ident: CR21
  article-title: Measuring entanglement growth in quench dynamics of bosons in an optical lattice
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.020505
– ident: CR66
– volume: 364
  start-page: 260
  year: 2019
  end-page: 263
  ident: CR113
  article-title: Probing Rényi entanglement entropy via randomized measurements
  publication-title: Science
  doi: 10.1126/science.aau4963
– ident: CR47
– volume: 467
  start-page: 459
  year: 2011
  end-page: 472
  ident: CR98
  article-title: Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 43
  start-page: 4452
  year: 2002
  end-page: 4505
  ident: CR4
  article-title: Topological quantum memory
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1499754
– volume: 13
  start-page: 031007
  year: 2023
  ident: CR77
  article-title: Improved decoding of circuit noise and fragile boundaries of tailored surface codes
  publication-title: Phys. Rev. X
– volume: 19
  start-page: 023007
  year: 2017
  ident: CR74
  article-title: Eliminating light shifts for single atom trapping
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa5a3b
– volume: 14
  start-page: 595
  year: 2018
  end-page: 600
  ident: CR107
  article-title: Characterizing quantum supremacy in near-term devices
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0124-x
– volume: 10
  start-page: 030319
  year: 2022
  ident: CR17
  article-title: Morphing quantum codes
  publication-title: Phys. Rev. Appl.
– volume: 4
  year: 2018
  ident: CR49
  article-title: Correcting coherent errors with surface codes
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-018-0106-y
– ident: CR27
– ident: CR69
– ident: CR103
– ident: CR52
– volume: 123
  start-page: 170503
  year: 2019
  ident: CR68
  article-title: Parallel implementation of high-fidelity multiqubit gates with neutral atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.170503
– volume: 67
  start-page: 92
  year: 2013
  ident: CR73
  article-title: Dynamical polarizability of atoms in arbitrary light fields: General theory and application to cesium
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2013-30729-x
– volume: 3
  start-page: 030504
  year: 2017
  ident: CR111
  article-title: A small quantum computer is needed to optimize fault-tolerant protocols
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aab73c
– volume: 618
  start-page: 264
  year: 2023
  end-page: 269
  ident: CR28
  article-title: Non-Abelian braiding of graph vertices in a superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-023-05954-4
– ident: CR55
– volume: 72
  start-page: 022340
  year: 2005
  ident: CR90
  article-title: Entanglement detection in the stabilizer formalism
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.022340
– volume: 22
  start-page: 023019
  year: 2020
  ident: CR92
  article-title: Triangular color codes on trivalent graphs with flag qubits
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab68fd
– ident: CR83
– volume: 354
  start-page: 1021
  year: 2016
  end-page: 1023
  ident: CR62
  article-title: An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays
  publication-title: Science
  doi: 10.1126/science.aah3778
– volume: 6
  start-page: eaay4929
  year: 2020
  ident: CR43
  article-title: A fault-tolerant non-Clifford gate for the surface code in two dimensions
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay4929
– ident: CR102
– volume: 370
  start-page: 1460
  year: 2020
  end-page: 1463
  ident: CR108
  article-title: Quantum computational advantage using photons
  publication-title: Science
  doi: 10.1126/science.abe8770
– volume: 574
  start-page: 505
  year: 2019
  end-page: 510
  ident: CR18
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 129
  start-page: 203602
  year: 2022
  ident: CR10
  article-title: Mid-circuit cavity measurement in a neutral atom array
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.203602
– ident: CR12
– volume: 91
  start-page: 032330
  year: 2015
  ident: CR93
  article-title: Universal transversal gates with color codes: a simplified approach
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.032330
– volume: 70
  start-page: 052328
  year: 2004
  ident: CR44
  article-title: Improved simulation of stabilizer circuits
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.052328
– volume: 3
  start-page: e1701074
  year: 2017
  ident: CR95
  article-title: Fault-tolerant quantum error detection
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701074
– volume: 127
  start-page: 180501
  year: 2021
  ident: CR48
  article-title: Strong quantum computational advantage using a superconducting quantum processor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.180501
– volume: 14
  start-page: 123011
  year: 2012
  ident: CR89
  article-title: Surface code quantum computing by lattice surgery
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/12/123011
– ident: CR29
– ident: CR61
– volume: 622
  start-page: 279
  year: 2023
  end-page: 284
  ident: CR13
  article-title: High-fidelity gates and mid-circuit erasure conversion in an atomic qubit
  publication-title: Nature
  doi: 10.1038/s41586-023-06438-1
– ident: CR46
– volume: 126
  start-page: 200603
  year: 2021
  ident: CR96
  article-title: Deterministic fast scrambling with neutral atom arrays
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.200603
– volume: 622
  start-page: 273
  year: 2023
  end-page: 278
  ident: CR33
  article-title: Erasure conversion in a high-fidelity Rydberg quantum simulator
  publication-title: Nature
  doi: 10.1038/s41586-023-06516-4
– ident: CR67
– ident: CR15
– volume: 2
  start-page: 65
  year: 2018
  ident: CR99
  article-title: Anticoncentration theorems for schemes showing a quantum speedup
  publication-title: Quantum
  doi: 10.22331/q-2018-05-22-65
– volume: 604
  start-page: 451
  year: 2022
  end-page: 456
  ident: CR7
  article-title: A quantum processor based on coherent transport of entangled atom arrays
  publication-title: Nature
  doi: 10.1038/s41586-022-04592-6
– volume: 117
  start-page: 080501
  year: 2016
  ident: CR20
  article-title: Average-case complexity versus approximate simulation of commuting quantum computations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.080501
– volume: 2
  start-page: 020341
  year: 2021
  ident: CR36
  article-title: Cost of universality: a comparative study of the overhead of state distillation and code switching with color codes
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.020341
– volume: 6
  start-page: 712
  year: 2022
  ident: CR64
  article-title: Time-optimal two- and three-qubit gates for Rydberg atoms
  publication-title: Quantum
  doi: 10.22331/q-2022-05-13-712
– volume: 373
  start-page: 1511
  year: 2021
  end-page: 1514
  ident: CR58
  article-title: Entanglement transport and a nanophotonic interface for atoms in optical tweezers
  publication-title: Science
  doi: 10.1126/science.abi9917
– volume: 376
  start-page: 1182
  year: 2022
  end-page: 1186
  ident: CR22
  article-title: Quantum advantage in learning from experiments
  publication-title: Science
  doi: 10.1126/science.abn7293
– ident: CR78
– volume: 353
  start-page: 794
  year: 2016
  end-page: 800
  ident: CR112
  article-title: Quantum thermalization through entanglement in an isolated many-body system
  publication-title: Science
  doi: 10.1126/science.aaf6725
– ident: CR81
– ident: CR26
– volume: 15
  start-page: 159
  year: 2019
  end-page: 163
  ident: CR100
  article-title: On the complexity and verification of quantum random circuit sampling
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0318-2
– volume: 434
  start-page: 39
  year: 2005
  end-page: 44
  ident: CR86
  article-title: Quantum computing with realistically noisy devices
  publication-title: Nature
  doi: 10.1038/nature03350
– volume: 595
  start-page: 233
  year: 2021
  end-page: 238
  ident: CR31
  article-title: Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
  publication-title: Nature
  doi: 10.1038/s41586-021-03585-1
– volume: 598
  start-page: 281
  year: 2021
  end-page: 286
  ident: CR40
  article-title: Fault-tolerant control of an error-corrected qubit
  publication-title: Nature
  doi: 10.1038/s41586-021-03928-y
– ident: CR14
– volume: 6
  year: 2016
  ident: CR38
  article-title: Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code
  publication-title: Sci. Rep.
  doi: 10.1038/srep19578
– ident: CR2
– volume: 5
  start-page: 433
  year: 2021
  ident: CR23
  article-title: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits
  publication-title: Quantum
  doi: 10.22331/q-2021-04-15-433
– volume: 109
  start-page: 221
  year: 1994
  end-page: 231
  ident: CR70
  article-title: Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments
  publication-title: J. Magn. Reson. A
  doi: 10.1006/jmra.1994.1159
– volume: 128
  start-page: 030501
  year: 2022
  ident: CR106
  article-title: Simulation of quantum circuits using the big-batch tensor network method
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.030501
– volume: 5
  start-page: 497
  year: 2021
  ident: CR76
  article-title: Stim: a fast stabilizer circuit simulator
  publication-title: Quantum
  doi: 10.22331/q-2021-07-06-497
– ident: CR82
– ident: CR79
– volume: 12
  start-page: 021049
  year: 2022
  ident: CR35
  article-title: Hardware-efficient, fault-tolerant quantum computation with Rydberg atoms
  publication-title: Phys. Rev. X
– ident: CR56
– volume: 605
  start-page: 669
  year: 2022
  end-page: 674
  ident: CR88
  article-title: Realizing repeated quantum error correction in a distance-three surface code
  publication-title: Nature
  doi: 10.1038/s41586-022-04566-8
– ident: CR104
– volume: 13
  year: 2022
  ident: CR72
  article-title: Assembly and coherent control of a register of nuclear spin qubits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29977-z
– volume: 85
  start-page: 2208
  year: 2000
  end-page: 2211
  ident: CR32
  article-title: Fast quantum gates for neutral atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.2208
– volume: 374
  start-page: 1479
  year: 2021
  end-page: 1483
  ident: CR94
  article-title: Information scrambling in quantum circuits
  publication-title: Science
  doi: 10.1126/science.abg5029
– volume: 2008
  start-page: 065
  year: 2008
  ident: CR51
  article-title: Fast scramblers
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/10/065
– ident: CR65
– volume: 52
  start-page: R2493
  year: 1995
  ident: CR87
  article-title: Scheme for reducing decoherence in quantum computer memory
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.R2493
– volume: 67
  start-page: 042308
  year: 2003
  ident: CR71
  article-title: Tackling systematic errors in quantum logic gates with composite rotations
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.042308
– volume: 2020
  start-page: 154
  year: 2020
  ident: CR97
  article-title: Chaos on the hypercube
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2020)154
– volume: 622
  start-page: 268
  year: 2023
  end-page: 272
  ident: CR8
  article-title: High-fidelity parallel entangling gates on a neutral-atom quantum computer
  publication-title: Nature
  doi: 10.1038/s41586-023-06481-y
– ident: CR59
– volume: 13
  start-page: 4657
  year: 2022
  ident: CR57
  article-title: Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32094-6
– volume: 3
  start-page: 696
  year: 2007
  end-page: 699
  ident: CR9
  article-title: Two-dimensional transport and transfer of a single atomic qubit in optical tweezers
  publication-title: Nat. Phys.
  doi: 10.1038/nphys698
– volume: 22
  start-page: 073066
  year: 2020
  ident: CR110
  article-title: Coherence in logical quantum channels
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab8e5c
– volume: 605
  start-page: 675
  year: 2022
  end-page: 680
  ident: CR41
  article-title: Demonstration of fault-tolerant universal quantum gate operations
  publication-title: Nature
  doi: 10.1038/s41586-022-04721-1
– volume: 106
  start-page: 130506
  year: 2011
  ident: CR84
  article-title: 14-qubit entanglement: creation and coherence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.130506
– volume: 2
  start-page: 033444
  year: 2020
  ident: CR45
  article-title: Fault-tolerant quantum speedup from constant depth quantum circuits
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033444
– volume: 129
  start-page: 203602
  year: 2022
  ident: 6927_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.203602
– ident: 6927_CR2
– volume: 13
  year: 2022
  ident: 6927_CR72
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29977-z
– ident: 6927_CR52
– volume: 354
  start-page: 1021
  year: 2016
  ident: 6927_CR62
  publication-title: Science
  doi: 10.1126/science.aah3778
– ident: 6927_CR61
– volume: 109
  start-page: 020505
  year: 2012
  ident: 6927_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.020505
– volume: 91
  start-page: 032330
  year: 2015
  ident: 6927_CR93
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.032330
– volume: 622
  start-page: 279
  year: 2023
  ident: 6927_CR13
  publication-title: Nature
  doi: 10.1038/s41586-023-06438-1
– volume: 17
  start-page: 083002
  year: 2015
  ident: 6927_CR37
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083002
– ident: 6927_CR5
– ident: 6927_CR12
  doi: 10.1103/PhysRevX.13.041051
– volume: 106
  start-page: 130506
  year: 2011
  ident: 6927_CR84
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.130506
– volume: 2020
  start-page: 154
  year: 2020
  ident: 6927_CR97
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2020)154
– ident: 6927_CR15
  doi: 10.1103/PhysRevX.13.041034
– ident: 6927_CR26
– volume: 595
  start-page: 227
  year: 2021
  ident: 6927_CR30
  publication-title: Nature
  doi: 10.1038/s41586-021-03582-4
– volume: 72
  start-page: 022340
  year: 2005
  ident: 6927_CR90
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.022340
– volume: 2
  start-page: 033444
  year: 2020
  ident: 6927_CR45
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033444
– ident: 6927_CR69
  doi: 10.22331/q-2024-03-14-1281
– ident: 6927_CR78
– volume: 123
  start-page: 170503
  year: 2019
  ident: 6927_CR68
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.170503
– ident: 6927_CR29
– volume: 3
  start-page: e1701074
  year: 2017
  ident: 6927_CR95
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701074
– volume: 22
  start-page: 023019
  year: 2020
  ident: 6927_CR92
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab68fd
– volume: 126
  start-page: 200603
  year: 2021
  ident: 6927_CR96
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.200603
– volume: 10
  start-page: 030319
  year: 2022
  ident: 6927_CR17
  publication-title: Phys. Rev. Appl.
– volume: 370
  start-page: 1460
  year: 2020
  ident: 6927_CR108
  publication-title: Science
  doi: 10.1126/science.abe8770
– volume: 4
  start-page: 010301
  year: 2023
  ident: 6927_CR53
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.4.010301
– ident: 6927_CR16
– volume: 12
  start-page: 021049
  year: 2022
  ident: 6927_CR35
  publication-title: Phys. Rev. X
– volume: 353
  start-page: 794
  year: 2016
  ident: 6927_CR112
  publication-title: Science
  doi: 10.1126/science.aaf6725
– volume: 70
  start-page: 052328
  year: 2004
  ident: 6927_CR44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.052328
– volume: 5
  start-page: 433
  year: 2021
  ident: 6927_CR23
  publication-title: Quantum
  doi: 10.22331/q-2021-04-15-433
– volume: 5
  start-page: 497
  year: 2021
  ident: 6927_CR76
  publication-title: Quantum
  doi: 10.22331/q-2021-07-06-497
– volume: 43
  start-page: 4452
  year: 2002
  ident: 6927_CR4
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1499754
– volume: 3
  start-page: 696
  year: 2007
  ident: 6927_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys698
– volume: 622
  start-page: 273
  year: 2023
  ident: 6927_CR33
  publication-title: Nature
  doi: 10.1038/s41586-023-06516-4
– volume: 52
  start-page: R2493
  year: 1995
  ident: 6927_CR87
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.R2493
– volume: 452
  start-page: 2551
  year: 1996
  ident: 6927_CR3
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1996.0136
– ident: 6927_CR65
  doi: 10.1103/PhysRevResearch.4.033019
– volume: 2
  start-page: 79
  year: 2018
  ident: 6927_CR1
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 67
  start-page: 92
  year: 2013
  ident: 6927_CR73
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2013-30729-x
– ident: 6927_CR104
– ident: 6927_CR83
– volume: 15
  start-page: 159
  year: 2019
  ident: 6927_CR100
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0318-2
– ident: 6927_CR55
– ident: 6927_CR81
  doi: 10.22331/q-2023-11-07-1172
– volume: 17
  start-page: 083026
  year: 2015
  ident: 6927_CR91
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083026
– volume: 13
  start-page: 031007
  year: 2023
  ident: 6927_CR77
  publication-title: Phys. Rev. X
– volume: 595
  start-page: 233
  year: 2021
  ident: 6927_CR31
  publication-title: Nature
  doi: 10.1038/s41586-021-03585-1
– volume: 605
  start-page: 669
  year: 2022
  ident: 6927_CR88
  publication-title: Nature
  doi: 10.1038/s41586-022-04566-8
– volume: 102
  start-page: 110502
  year: 2009
  ident: 6927_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.110502
– volume: 4
  year: 2018
  ident: 6927_CR49
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-018-0106-y
– volume: 622
  start-page: 268
  year: 2023
  ident: 6927_CR8
  publication-title: Nature
  doi: 10.1038/s41586-023-06481-y
– ident: 6927_CR27
– volume: 465
  start-page: 1413
  year: 2009
  ident: 6927_CR105
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 106
  start-page: 230501
  year: 2011
  ident: 6927_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.230501
– ident: 6927_CR102
– volume: 6
  year: 2016
  ident: 6927_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep19578
– volume: 3
  start-page: 181
  year: 2019
  ident: 6927_CR50
  publication-title: Quantum
  doi: 10.22331/q-2019-09-02-181
– volume: 13
  start-page: 4657
  year: 2022
  ident: 6927_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32094-6
– volume: 618
  start-page: 264
  year: 2023
  ident: 6927_CR28
  publication-title: Nature
  doi: 10.1038/s41586-023-05954-4
– volume: 604
  start-page: 457
  year: 2022
  ident: 6927_CR34
  publication-title: Nature
  doi: 10.1038/s41586-022-04603-6
– ident: 6927_CR56
– volume: 127
  start-page: 050501
  year: 2021
  ident: 6927_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.050501
– ident: 6927_CR79
– volume: 128
  start-page: 030501
  year: 2022
  ident: 6927_CR106
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.030501
– volume: 574
  start-page: 505
  year: 2019
  ident: 6927_CR18
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 85
  start-page: 2208
  year: 2000
  ident: 6927_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.2208
– volume: 606
  start-page: 75
  year: 2022
  ident: 6927_CR109
  publication-title: Nature
  doi: 10.1038/s41586-022-04725-x
– ident: 6927_CR47
– volume: 4
  start-page: 030325
  year: 2023
  ident: 6927_CR19
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.4.030325
– volume: 374
  start-page: 1479
  year: 2021
  ident: 6927_CR94
  publication-title: Science
  doi: 10.1126/science.abg5029
– ident: 6927_CR85
– volume: 380
  start-page: 1265
  year: 2023
  ident: 6927_CR11
  publication-title: Science
  doi: 10.1126/science.ade5337
– volume: 434
  start-page: 39
  year: 2005
  ident: 6927_CR86
  publication-title: Nature
  doi: 10.1038/nature03350
– volume: 3
  start-page: 030504
  year: 2017
  ident: 6927_CR111
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aab73c
– volume: 86
  start-page: 032324
  year: 2012
  ident: 6927_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– volume: 376
  start-page: 1182
  year: 2022
  ident: 6927_CR22
  publication-title: Science
  doi: 10.1126/science.abn7293
– ident: 6927_CR67
  doi: 10.1007/s11128-011-0297-z
– volume: 14
  start-page: 595
  year: 2018
  ident: 6927_CR107
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0124-x
– ident: 6927_CR59
  doi: 10.1103/PhysRevLett.133.013401
– volume: 102
  start-page: 053101
  year: 2020
  ident: 6927_CR75
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.053101
– volume: 1
  start-page: 8
  year: 2017
  ident: 6927_CR101
  publication-title: Quantum
  doi: 10.22331/q-2017-04-25-8
– volume: 618
  start-page: 500
  year: 2023
  ident: 6927_CR54
  publication-title: Nature
  doi: 10.1038/s41586-023-06096-3
– volume: 6
  start-page: 712
  year: 2022
  ident: 6927_CR64
  publication-title: Quantum
  doi: 10.22331/q-2022-05-13-712
– volume: 604
  start-page: 451
  year: 2022
  ident: 6927_CR7
  publication-title: Nature
  doi: 10.1038/s41586-022-04592-6
– volume: 2
  start-page: 65
  year: 2018
  ident: 6927_CR99
  publication-title: Quantum
  doi: 10.22331/q-2018-05-22-65
– ident: 6927_CR25
  doi: 10.1038/s41567-023-02282-2
– ident: 6927_CR103
– volume: 6
  start-page: eaay4929
  year: 2020
  ident: 6927_CR43
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay4929
– volume: 127
  start-page: 180501
  year: 2021
  ident: 6927_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.180501
– volume: 67
  start-page: 042308
  year: 2003
  ident: 6927_CR71
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.042308
– ident: 6927_CR82
– volume: 467
  start-page: 459
  year: 2011
  ident: 6927_CR98
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 605
  start-page: 675
  year: 2022
  ident: 6927_CR41
  publication-title: Nature
  doi: 10.1038/s41586-022-04721-1
– volume: 2
  start-page: 020341
  year: 2021
  ident: 6927_CR36
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.020341
– volume: 109
  start-page: 221
  year: 1994
  ident: 6927_CR70
  publication-title: J. Magn. Reson. A
  doi: 10.1006/jmra.1994.1159
– volume: 117
  start-page: 080501
  year: 2016
  ident: 6927_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.080501
– ident: 6927_CR46
  doi: 10.22331/q-2024-05-06-1337
– volume: 373
  start-page: 1511
  year: 2021
  ident: 6927_CR58
  publication-title: Science
  doi: 10.1126/science.abi9917
– volume: 105
  start-page: 032618
  year: 2022
  ident: 6927_CR63
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.032618
– volume: 78
  start-page: 2252
  year: 1997
  ident: 6927_CR80
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.2252
– ident: 6927_CR14
  doi: 10.1103/PhysRevX.13.041035
– volume: 19
  start-page: 023007
  year: 2017
  ident: 6927_CR74
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa5a3b
– volume: 2008
  start-page: 065
  year: 2008
  ident: 6927_CR51
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/10/065
– volume: 614
  start-page: 676
  year: 2023
  ident: 6927_CR6
  publication-title: Nature
  doi: 10.1038/s41586-022-05434-1
– volume: 598
  start-page: 281
  year: 2021
  ident: 6927_CR40
  publication-title: Nature
  doi: 10.1038/s41586-021-03928-y
– volume: 14
  start-page: 123011
  year: 2012
  ident: 6927_CR89
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/12/123011
– volume: 364
  start-page: 260
  year: 2019
  ident: 6927_CR113
  publication-title: Science
  doi: 10.1126/science.aau4963
– volume: 22
  start-page: 073066
  year: 2020
  ident: 6927_CR110
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab8e5c
– ident: 6927_CR66
  doi: 10.1103/PhysRevLett.105.170502
SSID ssj0005174
Score 2.7737138
Snippet Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2 – 6 for large-scale processing....
Suppressing errors is the central challenge for useful quantum computing 1 , requiring quantum error correction (QEC) 2–6 for large-scale processing. However,...
Suppressing errors is the central challenge for useful quantum computing , requiring quantum error correction (QEC) for large-scale processing. However, the...
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2 6 for large-scale processing. However, the...
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the...
Suppressing errors is the central challenge for useful quantum computing, requiring quantum error correction (QEC) for large-scale processing. However, the...
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6 for large-scale processing. However, the...
SourceID unpaywall
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 58
SubjectTerms 639/624/1107/1110
639/766/36
639/766/483/2802
639/766/483/481
Algorithms
Arrays
ATOMIC AND MOLECULAR PHYSICS
Coding
Color
Error correction
Error correction & detection
Error detection
Fault tolerance
Field programmable gate arrays
Gates (circuits)
Humanities and Social Sciences
Hypercubes
Logic circuits
Microprocessors
multidisciplinary
Optical manipulation and tweezers
Quantum computing
Quantum entanglement
Quantum information
Qubits
Qubits (quantum computing)
Reconfiguration
Science
Science & Technology - Other Topics
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFdE-iK0fja2ygg-KDb3N7iW7DyIqLUXwELHQt2Wz2dTCNbleLkj_e2fydZ7K4XM2sLszk_lNZuY3AK-U9LmWmQ6TiXehTFIepmMhiV57kkdJ5HjTt_ZlGp-dy88Xk4stmPa9MFRW2X8Tmw91Vjr6R34caSpZpnDg_fwmpKlRlF3tR2jYbrRC9q6hGLsD2xExY41g--PJ9Ou3VdHHH7zMXRvNWKjjCl2ZooJcmnagIzS9NVc1KtHk_gVD_66mHFKqO3CvLub29qedzX7zWqcP4UEHN9mHVj92YcsXe3C3Kft01R7sdqZdsdcd__SbR9DMX0bRsZsar72-ZvO2maBcMPJ5GSsL1sTR-dVlvaDWK4aR-zWzi4W9rR7D-enJ909nYTdlIXSTWC1Dnjo0lAzDtljZmPvYcZl5n_uxwtBEW8pUchtpz0WKArS5Sy33kueIHXMrEvEERkVZ-H1giUsQUcUiU2Mv8TXtuIgVj3MrnU5lEgDvL9S4joKcJmHMTJMKF8q0QjAoBNMIwYgA3g7vzFsCjo2rD0hOBuEDceA6KhZySxOhC9aRCuCwF5_pTLUyK8UK4OXwGI2MMie28GWNaxTBOES2cQBPW2kPmxEKMaTUeDi1pgfDAiLwXn9SXP1oiLw5qiBxsAVw1KvMal-bDnk0qNV_3Mmzzac-gPsRArW2Ev0QRstF7Z8j0FqmLzrr-QW9mR-k
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB7sibR9KNW2NtWWFXxo6YXeZvc2u49yVERonyr4tmw2GxXO5EwuFP_7zm5ysaci7fP-INmZYb5hZr4BOJTcFYrnKk6nzsY8zWicTRj39NrTIkkTS0Pf2o-f4uSMn55PzzdgvOqFWcvfB-ruBl2M9IWyfgqBStAknsGmRMX08wpmYnZX0HGPc7lvkcFbvj28Y80NjSo0p8cg5sNKySFd-hKet-XC3P428_lfHun4NbzqoSQ56mS_DRuu3IGtUNJpmx3Y7s22IZ97bukvbyDMVkaxkJsWn7S9JouuUaCqifdnOalKEmLk4uqirX1bFcGo_JqYuja3zVs4O_7-a3YS9xMUYjsVchnTzKIR5BiSCWkEdcJSnjtXuInEsEMZn4WkJlGOsgyFYwqbGeo4LRAXFoal7B2Myqp074GkNkW0JFguJ47jMWUpE5KKwnCrMp5GQFcPqm1PL-6nXMx1SHMzqTshaBSCDkLQLIKvw5lFR67x5O49LyeN0MDz21pfCGSXOkH3qhIZwf5KfLo3w0Ynyte5-xgygoNhGQ3IZ0VM6aoW90gP0RC1igh2O2kPH8Mk4kOu8Ofkmh4MGzw59_pKeXUZSLopqqDnV4tgvFKZu-966ifHg1r9w5t8-L_b9-BFgqCsqzrfh9Gybt1HBFXL7FOwpT_VsxKP
  priority: 102
  providerName: Springer Nature
Title Logical quantum processor based on reconfigurable atom arrays
URI https://link.springer.com/article/10.1038/s41586-023-06927-3
https://www.ncbi.nlm.nih.gov/pubmed/38056497
https://www.proquest.com/docview/2923071401
https://www.proquest.com/docview/2899375756
https://www.osti.gov/servlets/purl/2471928
https://pubmed.ncbi.nlm.nih.gov/PMC10830422
https://doi.org/10.1038/s41586-023-06927-3
UnpaywallVersion publishedVersion
Volume 626
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: AFBBN
  dateStart: 20190103
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-4687
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database (NC LIVE)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8FG
  dateStart: 19900104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xVgh4ADYGhI0qSDyAWEYdO7bzOKqVCYlqQlQqT5HjODDRJSU_hMZfzzlJwwrTNF4iRXGq2HfX-0539x3AS8lMGrIk9ERgtMdETLx4TJml1w5SX_iaNH1rH2f8ZM4-LIJFR5Nje2E28vdUvi3RwUhbJmtnEIQ-GsQWDHmAuHsAw_ns9OjLZZrlppVIcI9xKboOmat_ZMMLDXK0pqsQ5r-Fkn229B7cqbOVuviplstLDmn6oJ1sVDY8hrYO5fthXcWH-tdfLI832-tDuN_hUveoVaRtuGWyHbjd1Ifqcge2u_-A0n3VEVW_fgTNoGaUsfujRvnU5-6q7TrIC9c6x8TNM7cJuNOzr3Vhe7RcDPHPXVUU6qLchfn0-PPkxOvGMXg64LLySKzRohKM77hUnBiuCUuMSc1YYgwTKpvSJMoPDaExSlqlOlbEMJIiyEwVFfQxDLI8M0_BFVog9OI0kWPD8LVQE8ol4aliOoyZcICsxRPpjqvcjsxYRk3OnMqoPasIzypqziqiDrzp31m1TB3Xrt6zUo8QZ1iyXG2rinQV-eirQ186sL9Whqiz6TLyQ1s0bwNSB170j9EabYpFZSavcY20eA8hMHfgSas7_cdQiWCThbg5uaFV_QLL9L35JDv71jB-E1RuS9bmwMFaAf9813WbPOiV9AZn8uz_lu_BXR8RXlvCvg-DqqjNc0RoVTyCLbEQeJUTYq_T9yMYvjuenX7CuwmfjDrT_Q1Jyi-w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qg1DLAdGyhRYwEkggGnUcexLngBACqildTq00N9dxHFppmkyzqJo_xW_kOdswgEZcerYd2X7b57wN4I3gJgl5HLrByGiXBxF1oyHjtrz2KPECT9M6b-34xB-f8e-T0WQNfna5MDasstOJtaKOM23_ke95oQ1Zts-BT7Nr13aNst7VroVGwxaHZn6DT7bi48FXpO9bz9v_dvpl7LZdBVw98kXp0kgjY8T4TPGF8qnxNeWxMYkZCoTiobKeOaq80FAW4YZVoiNFDacJYqVEsYDhd-_AXc5Ql6D8BJNgEVLyR9XnNklnyMRegYZS2HBf20sh9FCwlwzhIEOB_hfI_TtWs3fY3of1Kp2p-Y2aTn-zifsP4UELZsnnhvs2Yc2kW3CvDirVxRZstoqjIO_a6tbvH0Hd3RkZg1xXSNTqisyaVIUsJ9aixiRLSf1KTy5_VLlN7CKqzK6IynM1Lx7D2a3c9hMYpFlqngEJdIB4zWexGBqOy0JNmS-onyiuw4gHDtDuQqVuC5zbPhtTWTvamZANESQSQdZEkMyBD_2aWVPeY-XsbUsnieDEVtjVNhRJl9JDAx96woGdjnyyVQSFXLCtA6_7YRRh65dRqckqnCMsSETc7DvwtKF2vxkmEKHyEA8nlvign2DLgy-PpJcXdZlwiixoK7w5sNuxzGJfqw6527PVf9zJ89WnfgXr49PjI3l0cHK4DRseQsIm5n0HBmVemRcI6croZS1HBM5vW3B_AdVTVZk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIr4eEBtfYQOMBBKIRa1jN7EfEEKMamMw8cCkvhnHcbZJXdI1jab-a_x1nPNVCqjiZc9xItt35_s597s7gJeC21TyRPrR0BqfRzH14wHjrrz2MA2iwNAqb-3rUbh_zD-Ph-MN-NnmwjhaZXsmVgd1khv3j7wfSEdZdteBftrQIr7tjd5PL3zXQcpFWtt2GrWKHNrFJV7fincHeyjrV0Ew-vT9477fdBjwzTAUc5_GBpUkwStLKHRIbWgoT6xN7UAgLJfaRemoDqSlLMbJ69TEmlpOU8RNqWYRw-9eg-sRY9LRCaNxtKSX_FEBuknYGTDRL9BpCkf9dX0VZIBGvuIUezka978A79-8zS54ewduldlULy71ZPKbfxzdg7sNsCUfak3chA2bbcGNimBqii3YbA6RgrxuKl2_uQ9Vp2dUEnJRooDLczKt0xbyGXHeNSF5Rqobe3p2Us5ckhfR8_yc6NlML4oHcHwlu_0Qelme2cdAIhMhdgtZIgaW42vSUBYKGqaaGxnzyAPabqgyTbFz13NjoqqgOxOqFoJCIahKCIp58LZ7Z1qX-lg7etvJSSFQcdV2jaMlmbkK0NnLQHiw04pPNYdCoZYq7MGL7jGas4vR6MzmJY4RDjAihg49eFRLu5sME4hWucTFiRU96Aa4UuGrT7Kz06pkOEUVdNXePNhtVWY5r3WL3O3U6j_25Mn6VT-Hm2iy6svB0eE23A4QHdb09x3ozWelfYrobh4_q8yIwI-rtttfW15Z3A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg4FFpeoQUZiQOIpqxjx7GPFaKqkKg4sFI5WY7jlIptsuShqv31jJNs2oWqKmc7UeyZyXyjmfkG4K3kLlc8U2ESOxvyJKVhOmXc02vHeZRElnZ9a18PxcGMfzmKjwaaHN8Ls5K_Z_JjjQ5G-jJZP4NARWgQd2FNxIi7J7A2O_y29-MqzXLXSpSIkAuZDB0y179kxQtNSrSm6xDmv4WSY7b0Idxvi4U5PzPz-RWHtP-on2xUdzyGvg7l127bpLv24i-Wx9ud9TGsD7iU7PWKtAF3XLEJ97r6UFtvwsbwD6jJu4Go-v0T6AY1o4zJ7xbl056SRd91UFbEO8eMlAXpAu785LitfI8WwRD_lJiqMuf1U5jtf_7-6SAcxjGENhayCWlq0aIyjO-ENII6YSnPnMvdVGIMo4xPaVITKUdZipI2uU0NdZzmCDJzwxL2DCZFWbgXQBKbIPQSLJNTx_ExZSkTkorccKtSngRAl-LRduAq9yMz5rrLmTOp-7vSeFe6uyvNAvgwPrPomTpu3L3lpa4RZ3iyXOurimyjI_TVKpIBbC-VQQ82XetI-aJ5H5AG8GZcRmv0KRZTuLLFPdLjPYTAIoDnve6MH8Mkgk2u8HByRavGDZ7pe3WlOPnZMX5TVG5P1hbAzlIBL7_rpkPujEp6izt5-X_bt-BBhAivL2HfhklTte4VIrQmfT2Y5h-3OCqf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logical+quantum+processor+based+on+reconfigurable+atom+arrays&rft.jtitle=Nature+%28London%29&rft.au=Bluvstein%2C+Dolev&rft.au=Evered%2C+Simon+J.&rft.au=Geim%2C+Alexandra+A.&rft.au=Li%2C+Sophie+H.&rft.date=2024-02-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=626&rft.issue=7997&rft_id=info:doi/10.1038%2Fs41586-023-06927-3&rft.externalDocID=2471928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon