Generalized Causal Mediation Analysis

The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested in the context of a causal model as characterized by a directed acyclic graph (DAG), where mediation via a specific path from exposure to outcome may...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 67; no. 3; pp. 1028 - 1038
Main Authors Albert, Jeffrey M., Nelson, Suchitra
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.09.2011
Wiley-Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/j.1541-0420.2010.01547.x

Cover

Abstract The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested in the context of a causal model as characterized by a directed acyclic graph (DAG), where mediation via a specific path from exposure to outcome may involve an arbitrary number of links (or “stages”). Methods for estimating mediation (or pathway) effects are available for a continuous outcome and a continuous mediator related via a linear model, while for a categorical outcome or categorical mediator, methods are usually limited to two‐stage mediation. We present a method applicable to multiple stages of mediation and mixed variable types using generalized linear models. We define pathway effects using a potential outcomes framework and present a general formula that provides the effect of exposure through any specified pathway. Some pathway effects are nonidentifiable and their estimation requires an assumption regarding the correlation between counterfactuals. We provide a sensitivity analysis to assess the impact of this assumption. Confidence intervals for pathway effect estimates are obtained via a bootstrap method. The method is applied to a cohort study of dental caries in very low birth weight adolescents. A simulation study demonstrates low bias of pathway effect estimators and close‐to‐nominal coverage rates of confidence intervals. We also find low sensitivity to the counterfactual correlation in most scenarios.
AbstractList The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested in the context of a causal model as characterized by a directed acyclic graph (DAG), where mediation via a specific path from exposure to outcome may involve an arbitrary number of links (or “stages”). Methods for estimating mediation (or pathway) effects are available for a continuous outcome and a continuous mediator related via a linear model, while for a categorical outcome or categorical mediator, methods are usually limited to two‐stage mediation. We present a method applicable to multiple stages of mediation and mixed variable types using generalized linear models. We define pathway effects using a potential outcomes framework and present a general formula that provides the effect of exposure through any specified pathway. Some pathway effects are nonidentifiable and their estimation requires an assumption regarding the correlation between counterfactuals. We provide a sensitivity analysis to assess the impact of this assumption. Confidence intervals for pathway effect estimates are obtained via a bootstrap method. The method is applied to a cohort study of dental caries in very low birth weight adolescents. A simulation study demonstrates low bias of pathway effect estimators and close‐to‐nominal coverage rates of confidence intervals. We also find low sensitivity to the counterfactual correlation in most scenarios.
The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested in the context of a causal model as characterized by a directed acyclic graph (DAG), where mediation via a specific path from exposure to outcome may involve an arbitrary number of links (or ‘stages’). Methods for estimating mediation (or pathway) effects are available for a continuous outcome and a continuous mediator related via a linear model, while for a categorical outcome or categorical mediator, methods are usually limited to two-stage mediation. We present a method applicable to multiple stages of mediation and mixed variable types using generalized linear models. We define pathway effects using a potential outcomes framework and present a general formula that provides the effect of exposure through any specified pathway. Some pathway effects are nonidentifiable and their estimation requires an assumption regarding the correlation between counterfactuals. We provide a sensitivity analysis to assess of the impact of this assumption. Confidence intervals for pathway effect estimates are obtained via a bootstrap method. The method is applied to a cohort study of dental caries in very low birth weight adolescents. A simulation study demonstrates low bias of pathway effect estimators and close-to-nominal coverage rates of confidence intervals. We also find low sensitivity to the counterfactual correlation in most scenarios.
Summary The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested in the context of a causal model as characterized by a directed acyclic graph (DAG), where mediation via a specific path from exposure to outcome may involve an arbitrary number of links (or "stages"). Methods for estimating mediation (or pathway) effects are available for a continuous outcome and a continuous mediator related via a linear model, while for a categorical outcome or categorical mediator, methods are usually limited to two-stage mediation. We present a method applicable to multiple stages of mediation and mixed variable types using generalized linear models. We define pathway effects using a potential outcomes framework and present a general formula that provides the effect of exposure through any specified pathway. Some pathway effects are nonidentifiable and their estimation requires an assumption regarding the correlation between counterfactuals. We provide a sensitivity analysis to assess the impact of this assumption. Confidence intervals for pathway effect estimates are obtained via a bootstrap method. The method is applied to a cohort study of dental caries in very low birth weight adolescents. A simulation study demonstrates low bias of pathway effect estimators and close-to-nominal coverage rates of confidence intervals. We also find low sensitivity to the counterfactual correlation in most scenarios.
The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested in the context of a causal model as characterized by a directed acyclic graph (DAG), where mediation via a specific path from exposure to outcome may involve an arbitrary number of links (or "stages"). Methods for estimating mediation (or pathway) effects are available for a continuous outcome and a continuous mediator related via a linear model, while for a categorical outcome or categorical mediator, methods are usually limited to two-stage mediation. We present a method applicable to multiple stages of mediation and mixed variable types using generalized linear models. We define pathway effects using a potential outcomes framework and present a general formula that provides the effect of exposure through any specified pathway. Some pathway effects are nonidentifiable and their estimation requires an assumption regarding the correlation between counterfactuals. We provide a sensitivity analysis to assess the impact of this assumption. Confidence intervals for pathway effect estimates are obtained via a bootstrap method. The method is applied to a cohort study of dental caries in very low birth weight adolescents. A simulation study demonstrates low bias of pathway effect estimators and close-to-nominal coverage rates of confidence intervals. We also find low sensitivity to the counterfactual correlation in most scenarios.The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested in the context of a causal model as characterized by a directed acyclic graph (DAG), where mediation via a specific path from exposure to outcome may involve an arbitrary number of links (or "stages"). Methods for estimating mediation (or pathway) effects are available for a continuous outcome and a continuous mediator related via a linear model, while for a categorical outcome or categorical mediator, methods are usually limited to two-stage mediation. We present a method applicable to multiple stages of mediation and mixed variable types using generalized linear models. We define pathway effects using a potential outcomes framework and present a general formula that provides the effect of exposure through any specified pathway. Some pathway effects are nonidentifiable and their estimation requires an assumption regarding the correlation between counterfactuals. We provide a sensitivity analysis to assess the impact of this assumption. Confidence intervals for pathway effect estimates are obtained via a bootstrap method. The method is applied to a cohort study of dental caries in very low birth weight adolescents. A simulation study demonstrates low bias of pathway effect estimators and close-to-nominal coverage rates of confidence intervals. We also find low sensitivity to the counterfactual correlation in most scenarios.
Author Albert, Jeffrey M.
Nelson, Suchitra
AuthorAffiliation 2 Department of Community Dentistry, Case School of Dental Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, U.S.A
1 Department of Epidemiology and Biostatistics, School of Medicine, WG-43, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, U.S.A
AuthorAffiliation_xml – name: 2 Department of Community Dentistry, Case School of Dental Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, U.S.A
– name: 1 Department of Epidemiology and Biostatistics, School of Medicine, WG-43, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, U.S.A
Author_xml – sequence: 1
  givenname: Jeffrey M.
  surname: Albert
  fullname: Albert, Jeffrey M.
– sequence: 2
  givenname: Suchitra
  surname: Nelson
  fullname: Nelson, Suchitra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21306353$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1v0zAUhi00xLrBTwAqpAluUvz9cYM0KiiTVjaJjXF35DrOcJcmI05Gy6_HWbsCu0CLFMXO-_o5x-fdQztVXXmEhgSPSHrezkdEcJJhTvGI4vQXp70aLR-hwVbYQQOMscwYJ9920V6M87Q1AtMnaJcShiUTbIAOJr7yjS3DL58Px7aLthxOfR5sG-pqeFjZchVDfIoeF7aM_tnmu4_OP344G3_Kjk8mR-PD48wJqVXmCqKNIzMsuLDSOVFQT71Sns9mRV5wqUjucs0kN0aZQlFGXHqpMoRgPaNsH71bc6-72cLnzldt6g2um7CwzQpqG-BfpQrf4bK-AUaYUZInwOsNoKl_dD62sAjR-bK0la-7CNpgqaThvfPNf51EKi2k4rq3vrpnndddk0aTeNqk3qUyyfTi79a3Pd-N-s_dXFPH2PgCXGhvx5xuEkogGPpsYQ59hNBHCH22cJstLBNA3wPc1XjA0U3tn6H0qwefg_dHJ9N-mQDP14B5bOtmC-CEcioESXq21kNs_XKr2-YKpGJKwMXnCXy9ONVnU3wK_Uhfrv2FrcFeNiHC-ZdUWmBMuGaMs98QltrH
CODEN BIOMA5
CitedBy_id crossref_primary_10_1007_s10461_021_03207_x
crossref_primary_10_1002_bimj_201400124
crossref_primary_10_3390_bs12080279
crossref_primary_10_1002_jae_2765
crossref_primary_10_1016_j_euroecorev_2023_104480
crossref_primary_10_1371_journal_pcbi_1007768
crossref_primary_10_3390_jcm14061950
crossref_primary_10_1111_biom_12421
crossref_primary_10_1002_sim_8058
crossref_primary_10_1080_07350015_2014_937437
crossref_primary_10_3390_nu15122744
crossref_primary_10_1080_07350015_2015_1017644
crossref_primary_10_1213_ANE_0000000000005763
crossref_primary_10_1093_aje_kwx051
crossref_primary_10_1146_annurev_publhealth_032315_021402
crossref_primary_10_1093_biostatistics_kxu048
crossref_primary_10_1093_neuros_nyaa566
crossref_primary_10_1111_biom_12022
crossref_primary_10_1016_j_csbj_2021_05_042
crossref_primary_10_3102_1076998620934500
crossref_primary_10_1093_biomet_asac004
crossref_primary_10_1183_23120541_00476_2021
crossref_primary_10_3389_fgene_2021_688871
crossref_primary_10_1002_jae_2341
crossref_primary_10_1213_ANE_0b013e3182a44cb9
crossref_primary_10_1177_09622802221130580
crossref_primary_10_1002_sim_9329
crossref_primary_10_1159_000368560
crossref_primary_10_1097_EDE_0b013e31826c2bb9
crossref_primary_10_1111_biom_12248
crossref_primary_10_22257_kjp_2018_09_37_3_441
crossref_primary_10_1002_pam_21853
crossref_primary_10_1002_pam_22268
crossref_primary_10_1080_10705511_2023_2230519
crossref_primary_10_3390_ijerph20054611
crossref_primary_10_1002_sim_8352
crossref_primary_10_1093_aje_kwz016
crossref_primary_10_1093_pan_mps040
crossref_primary_10_1016_j_cct_2015_10_006
crossref_primary_10_1111_joes_12452
crossref_primary_10_1177_1471082X18798067
crossref_primary_10_1097_EDE_0000000000001848
crossref_primary_10_1080_10705511_2020_1863154
crossref_primary_10_1093_bioinformatics_btaf038
crossref_primary_10_1214_19_AOAS1260
crossref_primary_10_1177_0962280218776483
crossref_primary_10_1002_sim_8929
crossref_primary_10_1016_j_cct_2017_05_002
crossref_primary_10_1093_ije_dyu107
crossref_primary_10_1097_JOM_0000000000000462
crossref_primary_10_1002_sim_8485
crossref_primary_10_1146_annurev_psych_010814_015258
crossref_primary_10_3390_ijerph20237099
crossref_primary_10_1214_17_AOAS1120
crossref_primary_10_1093_ectj_utac003
crossref_primary_10_3758_s13428_014_0481_z
crossref_primary_10_1177_0962280216686131
crossref_primary_10_3102_1076998617694879
crossref_primary_10_1111_rssb_12487
crossref_primary_10_1177_13563890231223171
crossref_primary_10_1002_sim_5380
crossref_primary_10_1515_em_2012_0010
crossref_primary_10_1080_07350015_2021_1971089
crossref_primary_10_1111_biom_13705
crossref_primary_10_1515_sagmb_2023_0031
crossref_primary_10_1086_720310
crossref_primary_10_1111_biom_12575
crossref_primary_10_1097_EDE_0000000000000651
crossref_primary_10_1002_sim_8300
crossref_primary_10_1002_sim_9079
crossref_primary_10_1002_sim_5830
crossref_primary_10_1093_biomtc_ujae099
crossref_primary_10_1080_01621459_2022_2057316
crossref_primary_10_15446_rce_v45n1_94553
crossref_primary_10_1080_10705511_2022_2148674
crossref_primary_10_1111_j_1467_985X_2012_01032_x
crossref_primary_10_1177_09622802211003113
crossref_primary_10_3390_ijms25179512
crossref_primary_10_1080_07350015_2020_1831929
crossref_primary_10_1097_EDE_0000000000001518
crossref_primary_10_1177_0962280215615899
crossref_primary_10_1111_biom_12445
crossref_primary_10_1093_biostatistics_kxx027
crossref_primary_10_1111_rssc_12233
crossref_primary_10_3390_e17075117
crossref_primary_10_1186_s12982_015_0037_4
crossref_primary_10_1177_09622802231167435
crossref_primary_10_3390_econometrics8040044
crossref_primary_10_1007_s12561_017_9191_2
crossref_primary_10_1515_jci_2015_0027
crossref_primary_10_1515_jem_2017_0016
crossref_primary_10_1093_aje_kwy248
crossref_primary_10_1093_geronb_gbx022
crossref_primary_10_2139_ssrn_4125543
crossref_primary_10_1177_0022034514555365
crossref_primary_10_1111_anzs_12422
crossref_primary_10_1080_07474938_2022_2127077
crossref_primary_10_1080_02664763_2024_2367148
crossref_primary_10_1111_rssc_12188
crossref_primary_10_1007_s11222_023_10340_1
crossref_primary_10_1111_rssb_12194
crossref_primary_10_1017_S1751731116000227
crossref_primary_10_1002_jmv_29660
Cites_doi 10.1097/01.ede.0000147107.76079.07
10.1037/1082-989X.7.1.83
10.1002/sim.3016
10.1080/00273170802034877
10.1016/0270-0255(86)90088-6
10.1007/978-1-4899-4541-9
10.1542/peds.100.6.987
10.1111/j.1541-0420.2008.01058.x
10.1002/sim.1847
10.1159/000320160
10.14490/jjss1995.31.1
10.1097/00001648-199203000-00013
10.1214/10-STS321
10.1002/sim.2730
10.1111/j.1541-0420.2007.00766.x
10.1177/1094428107300344
10.1002/sim.4780110204
10.1037/0022-3514.51.6.1173
10.1214/ss/1177012032
10.1111/j.1467-9469.2004.02-123.x
ContentType Journal Article
Copyright 2011 International Biometric Society
2011, The International Biometric Society
2011, The International Biometric Society.
Copyright_xml – notice: 2011 International Biometric Society
– notice: 2011, The International Biometric Society
– notice: 2011, The International Biometric Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7S9
L.6
7X8
5PM
DOI 10.1111/j.1541-0420.2010.01547.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

AGRICOLA
MEDLINE
ProQuest Computer Science Collection


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1038
ExternalDocumentID PMC3139764
2453726851
21306353
10_1111_j_1541_0420_2010_01547_x
BIOM1547
41242551
ark_67375_WNG_VWP8TM0P_4
US201500148334
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R03 DE018391
– fundername: NIDCR NIH HHS
  grantid: R21 DE016469
– fundername: NIDCR NIH HHS
  grantid: R03-DE018391
– fundername: NIDCR NIH HHS
  grantid: R21-DE16469
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAMMB
AANHP
AAUAY
AAWIL
AAYCA
AAZSN
ABAWQ
ABDFA
ABEJV
ABGNP
ABMNT
ABXSQ
ABXVV
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJAOE
AJBYB
AJNCP
ALRMG
BSCLL
H13
IPSME
KOP
NU-
OIG
OJZSN
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
ROX
AGORE
ALIPV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c5687-cf189c1b0545a6cc5f2e2e77e4bbfdf4671dcd83649979f7231c2312791108b23
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Tue Sep 30 16:59:36 EDT 2025
Sun Sep 28 06:20:32 EDT 2025
Fri Oct 03 00:01:48 EDT 2025
Wed Aug 13 03:49:15 EDT 2025
Mon Jul 21 05:56:31 EDT 2025
Thu Apr 24 22:58:51 EDT 2025
Wed Oct 01 01:41:28 EDT 2025
Wed Jan 22 16:26:56 EST 2025
Thu Jul 03 21:22:20 EDT 2025
Sun Sep 21 06:19:40 EDT 2025
Wed Dec 27 19:11:16 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2011, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5687-cf189c1b0545a6cc5f2e2e77e4bbfdf4671dcd83649979f7231c2312791108b23
Notes http://dx.doi.org/10.1111/j.1541-0420.2010.01547.x
ArticleID:BIOM1547
istex:490F9C4BC0B7A98BD70142B649724C38E433B358
ark:/67375/WNG-VWP8TM0P-4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
sxn15@case.edu
jma13@case.edu
PMID 21306353
PQID 889911679
PQPubID 35366
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3139764
proquest_miscellaneous_890676944
proquest_miscellaneous_1678567484
proquest_journals_889911679
pubmed_primary_21306353
crossref_citationtrail_10_1111_j_1541_0420_2010_01547_x
crossref_primary_10_1111_j_1541_0420_2010_01547_x
wiley_primary_10_1111_j_1541_0420_2010_01547_x_BIOM1547
jstor_primary_41242551
istex_primary_ark_67375_WNG_VWP8TM0P_4
fao_agris_US201500148334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: England
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2011
Publisher Blackwell Publishing Inc
Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References Huang, B., Sivaganesan, S., Succop, P., and Goodman, E. (2004). Statistical assessment of mediational effects for logistic mediational models. Statistics in Medicine 23, 2713-2728.
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., and Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods 7, 83-104.
Freedman, L. S., Graubard, B. I., and Schatzkin, A. (1992). Statistical validation of intermediate endpoints for chronic diseases. Statistics in Medicine 11, 167-178.
Singer, L. T., Yamashita, T. S., Lilien, L., Collin, M., and Baley, J. A. (1997). Longitudinal study of infants with bronchopulmonary dysplasia and very low birth weight. Pediatrics 100, 987-993.
Li, Y., Schneider, J. A., and Bennett, D. A. (2007). Estimation of the mediation effect with a binary mediator. Statistics in Medicine 26, 3398-3414.
Robins, J. M. and Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology 3, 143-155.
Nelson, S., Albert, J. M., Lombardi, G., Wishnek, S., Asaad, G., Kirchner, H. L., and Singer, L. T. (2010). Dental caries and enamel defects in very low birth weight adolescents. Caries Research 44, 509-518.
Schluchter, M. D. (2008). Flexible approaches to computing mediated effects in generalized linear models: Generalized estimating equations and bootstrapping. Multivariate Behavioral Research 43, 268-288.
Imai, K., Keele, L., and Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal mediation effects. Statistical Science 25, 51-71.
Baron, R. M. and Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51, 1173-1182.
Rubin, D. B. (1990). Neyman (1923) and causal inference in experiments and observational studies. Statistical Science 5, 472-480.
Song, P. X.-K., Li, M., and Yuan, Y. (2009). Joint regression analysis of correlated data using Gaussian copulas. Biometrics 65, 60-68.
Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. London : Chapman & Hall.
Ditlevsen, S., Christensen, U., Lynch, J., Damsgaard, M. T., and Keiding N. (2005). The mediation proportion: A structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable. Epidemiology 16, 114-120.
Avin, C., Shpitser, I., and Pearl, J. (2005) Identifiability of path-specific effects. Proceedings of the International Joint Conference on Artificial Intelligence 19, 357-363.
Robins, J. (1986). A new approach to causal inference in mortality studies with sustained exposure periods-Applications to control of the healthy worker survivor effect. Mathematical Modeling 7, 1393-1512.
Taylor, A. B., MacKinnon, D., and Tein, J. -Y. (2008). Test of the three-path mediated effect. Organizational Research Methods 11, 241-269.
Pearl, J. (2000). Models, Reasoning, and Inference. Cambridge , UK : Cambridge University Press.
Eskima, N., Tabata, M., and Zhi, G. (2001). Path analysis with logistic regression models: Effect analysis of fully recursive causal systems of categorical variables. Journal of the Japan Statistical Society 31, 1-14.
Albert, J. M. (2008). Mediation analysis via potential outcomes models. Statistics in Medicine 27, 1282-1304.
Rubin, D. B. (2004). Direct and indirect causal effects via potential outcomes. Scandinavian Journal of Statistics 31, 161-170.
Ten Have, T. R., Joffe, M. M., Lynch, K. G., Brown, G. K., Maisto, S. A., and Beck, A. T. (2007). Causal mediation analyses with rank preserving models. Biometrics 63, 926-934.
2010; 44
2004; 31
2005; 19
2010; 25
2009; 65
1986; 51
2001
1986; 7
2000
2008; 27
2004; 23
2002; 7
1997; 100
2008; 43
1993
2008; 11
2007; 63
2005; 16
1992; 11
1992; 3
2001; 31
2007; 26
1990; 5
MacKinnon (10.1111/j.1541-0420.2010.01547.x-BIB11|cit11) 2002; 7
10.1111/j.1541-0420.2010.01547.x-BIB14|cit14
Nelson (10.1111/j.1541-0420.2010.01547.x-BIB12|cit12) 2010; 44
Rubin (10.1111/j.1541-0420.2010.01547.x-BIB17|cit17) 1990; 5
Singer (10.1111/j.1541-0420.2010.01547.x-BIB20|cit20) 1997; 100
Schluchter (10.1111/j.1541-0420.2010.01547.x-BIB19|cit19) 2008; 43
Baron (10.1111/j.1541-0420.2010.01547.x-BIB3|cit3) 1986; 51
Freedman (10.1111/j.1541-0420.2010.01547.x-BIB7|cit7) 1992; 11
Song (10.1111/j.1541-0420.2010.01547.x-BIB21|cit21) 2009; 65
Eskima (10.1111/j.1541-0420.2010.01547.x-BIB6|cit6) 2001; 31
Avin (10.1111/j.1541-0420.2010.01547.x-BIB2|cit2) 2005; 19
Efron (10.1111/j.1541-0420.2010.01547.x-BIB5|cit5) 1993
Huang (10.1111/j.1541-0420.2010.01547.x-BIB8|cit8) 2004; 23
Ditlevsen (10.1111/j.1541-0420.2010.01547.x-BIB4|cit4) 2005; 16
Pearl (10.1111/j.1541-0420.2010.01547.x-BIB13|cit13) 2000
Rubin (10.1111/j.1541-0420.2010.01547.x-BIB18|cit18) 2004; 31
Li (10.1111/j.1541-0420.2010.01547.x-BIB10|cit10) 2007; 26
Robins (10.1111/j.1541-0420.2010.01547.x-BIB16|cit16) 1992; 3
Ten Have (10.1111/j.1541-0420.2010.01547.x-BIB23|cit23) 2007; 63
Imai (10.1111/j.1541-0420.2010.01547.x-BIB9|cit9) 2010; 25
Robins (10.1111/j.1541-0420.2010.01547.x-BIB15|cit15) 1986; 7
Taylor (10.1111/j.1541-0420.2010.01547.x-BIB22|cit22) 2008; 11
Albert (10.1111/j.1541-0420.2010.01547.x-BIB1|cit1) 2008; 27
References_xml – reference: Pearl, J. (2000). Models, Reasoning, and Inference. Cambridge , UK : Cambridge University Press.
– reference: Avin, C., Shpitser, I., and Pearl, J. (2005) Identifiability of path-specific effects. Proceedings of the International Joint Conference on Artificial Intelligence 19, 357-363.
– reference: Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. London : Chapman & Hall.
– reference: Baron, R. M. and Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51, 1173-1182.
– reference: Ditlevsen, S., Christensen, U., Lynch, J., Damsgaard, M. T., and Keiding N. (2005). The mediation proportion: A structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable. Epidemiology 16, 114-120.
– reference: Rubin, D. B. (1990). Neyman (1923) and causal inference in experiments and observational studies. Statistical Science 5, 472-480.
– reference: Rubin, D. B. (2004). Direct and indirect causal effects via potential outcomes. Scandinavian Journal of Statistics 31, 161-170.
– reference: Nelson, S., Albert, J. M., Lombardi, G., Wishnek, S., Asaad, G., Kirchner, H. L., and Singer, L. T. (2010). Dental caries and enamel defects in very low birth weight adolescents. Caries Research 44, 509-518.
– reference: Taylor, A. B., MacKinnon, D., and Tein, J. -Y. (2008). Test of the three-path mediated effect. Organizational Research Methods 11, 241-269.
– reference: Ten Have, T. R., Joffe, M. M., Lynch, K. G., Brown, G. K., Maisto, S. A., and Beck, A. T. (2007). Causal mediation analyses with rank preserving models. Biometrics 63, 926-934.
– reference: Freedman, L. S., Graubard, B. I., and Schatzkin, A. (1992). Statistical validation of intermediate endpoints for chronic diseases. Statistics in Medicine 11, 167-178.
– reference: Robins, J. M. and Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology 3, 143-155.
– reference: Imai, K., Keele, L., and Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal mediation effects. Statistical Science 25, 51-71.
– reference: Eskima, N., Tabata, M., and Zhi, G. (2001). Path analysis with logistic regression models: Effect analysis of fully recursive causal systems of categorical variables. Journal of the Japan Statistical Society 31, 1-14.
– reference: Huang, B., Sivaganesan, S., Succop, P., and Goodman, E. (2004). Statistical assessment of mediational effects for logistic mediational models. Statistics in Medicine 23, 2713-2728.
– reference: Singer, L. T., Yamashita, T. S., Lilien, L., Collin, M., and Baley, J. A. (1997). Longitudinal study of infants with bronchopulmonary dysplasia and very low birth weight. Pediatrics 100, 987-993.
– reference: Song, P. X.-K., Li, M., and Yuan, Y. (2009). Joint regression analysis of correlated data using Gaussian copulas. Biometrics 65, 60-68.
– reference: Robins, J. (1986). A new approach to causal inference in mortality studies with sustained exposure periods-Applications to control of the healthy worker survivor effect. Mathematical Modeling 7, 1393-1512.
– reference: Li, Y., Schneider, J. A., and Bennett, D. A. (2007). Estimation of the mediation effect with a binary mediator. Statistics in Medicine 26, 3398-3414.
– reference: MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., and Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods 7, 83-104.
– reference: Albert, J. M. (2008). Mediation analysis via potential outcomes models. Statistics in Medicine 27, 1282-1304.
– reference: Schluchter, M. D. (2008). Flexible approaches to computing mediated effects in generalized linear models: Generalized estimating equations and bootstrapping. Multivariate Behavioral Research 43, 268-288.
– volume: 16
  start-page: 114
  year: 2005
  end-page: 120
  article-title: The mediation proportion: A structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable
  publication-title: Epidemiology
– volume: 11
  start-page: 167
  year: 1992
  end-page: 178
  article-title: Statistical validation of intermediate endpoints for chronic diseases
  publication-title: Statistics in Medicine
– volume: 26
  start-page: 3398
  year: 2007
  end-page: 3414
  article-title: Estimation of the mediation effect with a binary mediator
  publication-title: Statistics in Medicine
– volume: 25
  start-page: 51
  year: 2010
  end-page: 71
  article-title: Identification, inference and sensitivity analysis for causal mediation effects
  publication-title: Statistical Science
– volume: 7
  start-page: 1393
  year: 1986
  end-page: 1512
  article-title: A new approach to causal inference in mortality studies with sustained exposure periods—Applications to control of the healthy worker survivor effect
  publication-title: Mathematical Modeling
– volume: 44
  start-page: 509
  year: 2010
  end-page: 518
  article-title: Dental caries and enamel defects in very low birth weight adolescents
  publication-title: Caries Research
– volume: 63
  start-page: 926
  year: 2007
  end-page: 934
  article-title: Causal mediation analyses with rank preserving models
  publication-title: Biometrics
– volume: 11
  start-page: 241
  year: 2008
  end-page: 269
  article-title: Test of the three‐path mediated effect
  publication-title: Organizational Research Methods
– volume: 7
  start-page: 83
  year: 2002
  end-page: 104
  article-title: A comparison of methods to test mediation and other intervening variable effects
  publication-title: Psychological Methods
– year: 2000
– volume: 43
  start-page: 268
  year: 2008
  end-page: 288
  article-title: Flexible approaches to computing mediated effects in generalized linear models: Generalized estimating equations and bootstrapping
  publication-title: Multivariate Behavioral Research
– volume: 5
  start-page: 472
  year: 1990
  end-page: 480
  article-title: Neyman (1923) and causal inference in experiments and observational studies
  publication-title: Statistical Science
– volume: 19
  start-page: 357
  year: 2005
  end-page: 363
  article-title: Identifiability of path‐specific effects
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– volume: 51
  start-page: 1173
  year: 1986
  end-page: 1182
  article-title: The moderator‐mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations
  publication-title: Journal of Personality and Social Psychology
– start-page: 411
  year: 2001
  end-page: 420
– volume: 3
  start-page: 143
  year: 1992
  end-page: 155
  article-title: Identifiability and exchangeability for direct and indirect effects
  publication-title: Epidemiology
– year: 1993
– volume: 31
  start-page: 161
  year: 2004
  end-page: 170
  article-title: Direct and indirect causal effects via potential outcomes
  publication-title: Scandinavian Journal of Statistics
– volume: 100
  start-page: 987
  year: 1997
  end-page: 993
  article-title: Longitudinal study of infants with bronchopulmonary dysplasia and very low birth weight
  publication-title: Pediatrics
– volume: 65
  start-page: 60
  year: 2009
  end-page: 68
  article-title: Joint regression analysis of correlated data using Gaussian copulas
  publication-title: Biometrics
– volume: 27
  start-page: 1282
  year: 2008
  end-page: 1304
  article-title: Mediation analysis via potential outcomes models
  publication-title: Statistics in Medicine
– volume: 31
  start-page: 1
  year: 2001
  end-page: 14
  article-title: Path analysis with logistic regression models: Effect analysis of fully recursive causal systems of categorical variables
  publication-title: Journal of the Japan Statistical Society
– volume: 23
  start-page: 2713
  year: 2004
  end-page: 2728
  article-title: Statistical assessment of mediational effects for logistic mediational models
  publication-title: Statistics in Medicine
– volume: 16
  start-page: 114
  year: 2005
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB4|cit4
  article-title: The mediation proportion: A structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000147107.76079.07
– volume: 19
  start-page: 357
  year: 2005
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB2|cit2
  article-title: Identifiability of path-specific effects
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– volume: 7
  start-page: 83
  year: 2002
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB11|cit11
  article-title: A comparison of methods to test mediation and other intervening variable effects
  publication-title: Psychological Methods
  doi: 10.1037/1082-989X.7.1.83
– volume-title: Models, Reasoning, and Inference.
  year: 2000
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB13|cit13
– volume: 27
  start-page: 1282
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB1|cit1
  article-title: Mediation analysis via potential outcomes models
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3016
– volume: 43
  start-page: 268
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB19|cit19
  article-title: Flexible approaches to computing mediated effects in generalized linear models: Generalized estimating equations and bootstrapping
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273170802034877
– volume: 7
  start-page: 1393
  year: 1986
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB15|cit15
  article-title: A new approach to causal inference in mortality studies with sustained exposure periods-Applications to control of the healthy worker survivor effect
  publication-title: Mathematical Modeling
  doi: 10.1016/0270-0255(86)90088-6
– volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB5|cit5
  doi: 10.1007/978-1-4899-4541-9
– volume: 100
  start-page: 987
  year: 1997
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB20|cit20
  article-title: Longitudinal study of infants with bronchopulmonary dysplasia and very low birth weight
  publication-title: Pediatrics
  doi: 10.1542/peds.100.6.987
– volume: 65
  start-page: 60
  year: 2009
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB21|cit21
  article-title: Joint regression analysis of correlated data using Gaussian copulas
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01058.x
– volume: 23
  start-page: 2713
  year: 2004
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB8|cit8
  article-title: Statistical assessment of mediational effects for logistic mediational models
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.1847
– volume: 44
  start-page: 509
  year: 2010
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB12|cit12
  article-title: Dental caries and enamel defects in very low birth weight adolescents
  publication-title: Caries Research
  doi: 10.1159/000320160
– volume: 31
  start-page: 1
  year: 2001
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB6|cit6
  article-title: Path analysis with logistic regression models: Effect analysis of fully recursive causal systems of categorical variables
  publication-title: Journal of the Japan Statistical Society
  doi: 10.14490/jjss1995.31.1
– volume: 3
  start-page: 143
  year: 1992
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB16|cit16
  article-title: Identifiability and exchangeability for direct and indirect effects
  publication-title: Epidemiology
  doi: 10.1097/00001648-199203000-00013
– volume: 25
  start-page: 51
  year: 2010
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB9|cit9
  article-title: Identification, inference and sensitivity analysis for causal mediation effects
  publication-title: Statistical Science
  doi: 10.1214/10-STS321
– volume: 26
  start-page: 3398
  year: 2007
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB10|cit10
  article-title: Estimation of the mediation effect with a binary mediator
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2730
– volume: 63
  start-page: 926
  year: 2007
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB23|cit23
  article-title: Causal mediation analyses with rank preserving models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00766.x
– volume: 11
  start-page: 241
  year: 2008
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB22|cit22
  article-title: Test of the three-path mediated effect
  publication-title: Organizational Research Methods
  doi: 10.1177/1094428107300344
– volume: 11
  start-page: 167
  year: 1992
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB7|cit7
  article-title: Statistical validation of intermediate endpoints for chronic diseases
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780110204
– ident: 10.1111/j.1541-0420.2010.01547.x-BIB14|cit14
– volume: 51
  start-page: 1173
  year: 1986
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB3|cit3
  article-title: The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/0022-3514.51.6.1173
– volume: 5
  start-page: 472
  year: 1990
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB17|cit17
  article-title: Neyman (1923) and causal inference in experiments and observational studies
  publication-title: Statistical Science
  doi: 10.1214/ss/1177012032
– volume: 31
  start-page: 161
  year: 2004
  ident: 10.1111/j.1541-0420.2010.01547.x-BIB18|cit18
  article-title: Direct and indirect causal effects via potential outcomes
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/j.1467-9469.2004.02-123.x
SSID ssj0009502
Score 2.3981678
Snippet The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested in the...
Summary The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on an outcome. More generally, we may be interested...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1028
SubjectTerms Adolescent
adolescents
BIOMETRIC METHODOLOGY
Biometrics
biometry
Causality
Cohort Studies
Confidence interval
Copula
Dental Caries
Dental models
Estimation methods
Expected values
G-computation algorithm
Generalized linear model
Graphs
Humans
Infant, Low Birth Weight
Infant, Newborn
Inference
linear models
Longitudinal Studies
low birth weight
Mediation
Modeling
Parametric models
Path analysis
Potential outcome
Root Cause Analysis - methods
Sealants
Sensitivity analysis
Tooth enamel
Treatment Outcome
Title Generalized Causal Mediation Analysis
URI https://api.istex.fr/ark:/67375/WNG-VWP8TM0P-4/fulltext.pdf
https://www.jstor.org/stable/41242551
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2010.01547.x
https://www.ncbi.nlm.nih.gov/pubmed/21306353
https://www.proquest.com/docview/889911679
https://www.proquest.com/docview/1678567484
https://www.proquest.com/docview/890676944
https://pubmed.ncbi.nlm.nih.gov/PMC3139764
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-0INQHP05rY1UiqG85ks0mu3nUYq1CatGevbdld7Or5SQnzR3U_vXObD64aIUiPgQu7OyEm8xOfrOZ_IaQF86ksYszHeWCs4hxDXFQFzbiVotE6ZQ637SvPMoPZ-zDPJt39U_4LUzLDzFsuOHK8PEaF7jSzXiRZwxSYUbjrkILzvkU8WSS5j67-kQ3-HfjljgcS71YMh8X9VypaPSkuunUEvArmv6iL128CpT-WVu5iXn9Q-vgLln0f7etVVlM1ys9NZe_MUH-H3vcI3c6bBu-bp3xPrlh6wm51Xa7_Dkht8uBIraZkG2EuS1L9APysmO_Pru0Vbiv1g2oKX0TEXCbsCdOeUhmB29P9g-jroFDZDK495FxiShMogEWZio3JnPUUsu5ZVq7ykGMTipTiTSHtIsXjgPWNHBQXuDHCZqmO2SrXtZ2l4SKFqIyEEySQjDLCsVTDUg0Fw4QlY15QHh_s6Tp2M2xycZ3uZHlgH0k2keifaS3j7wISDLM_NEyfFxjzi74g1RfIRDL2WeK20a4NZumLCCvvJMMutT5AovneCZPj97JL6fH4qSMjyUI7ngvGgSxDzgkeElA9nq3kl1AaaSAvNi_MgvI82EUIgG-3lG1Xa4bCaMiw94xoDr8i4woYqxpZiDyqPXT4fIU0AygzxQsOfLgQQCJyMcj9dk3T0ieYhqRg07uHfTaZpRv3n8s8efjf565R7bbXX6s-ntCtlbna_sUYOJKP_MB4Bfol1Dk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCDEe-CiMhfERJOAtVeI4sfMIE6ODpUzQsr5ZsWPDtClFayuN_fXcOR9qYEgT4iFSI58d9XK-_O5y-R0hL62OQxsmKkgFZwHjCvygykzAjRJRoWJqXdO-fJyOpuzDLJk17YDwW5iaH6JLuOHOcP4aNzgmpPu7PGEQCzMaNiVacM6HAChvsBTCFkRIn-kaA29YU4djsReLZv2ynktX6j2rrttiDggWlX_eFi9eBkv_rK5cR73usbV3l5y2f7iuVjkZrpZqqC9-44L8Txq5R-408NZ_U9vjfXLNVANys254-XNAbucdS-xiQDYR6dZE0Q_Iq4YA-_jClP5usVrAMrnrIwKW47fcKQ_JdO_dZHcUND0cAp3A7Q-0jUSmIwXIMClSrRNLDTWcG6aULS246ajUpYhTiLx4ZjnATQ0H5Rl-n6BovEU2qnlltolf0EyUGvxJlAlmWFbwWAEYTYUFUGVC7hHe3i2pG4Jz7LNxKtcCHdCPRP1I1I90-pHnHom6mT9qko8rzNkGg5DFN_DFcvqFYuYIs7NxzDzy2llJt1ZxdoL1czyRR-P38uvRoZjk4aEEwS1nRp0gtgKHGC_yyE5rV7LxKQspIDR2b8088qIbBWeAb3iKysxXCwmjIsH2MbC0_xcZkYVY1sxA5FFtqN3lKQAaAKAxaLJnwp0AcpH3R6rj746TPMZIIoU1ubPQK6tRvt3_lOPPx_888zm5NZrkB_Jgf_xxh2zWSX8sAnxCNpZnK_MUUONSPXPe4BcSZFUF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCLQ98FHYVsZHkIC3VInjxM4jbJQNSKlgZX2zYseGaVM6ra009tdz53yogSFNiIdIjXy-qJfz5XfO5XeEvLQ6CmwQKz8RnPmMK4iDKjU-N0qEuYqodU37slGyP2EfpvG0bgeE38JU_BDthhuuDBevcYGbs8J2V3nMIBdmNKhLtOCcDwBQ3mJxKrC-b-8LXWHgDSrqcCz2YuG0W9ZzpabOs-qmzWeAYNH4F03x4lWw9M_qylXU6x5bw3vktPnDVbXKyWC5UAN9-RsX5H-yyH1yt4a33pvKHx-QG6bskdtVw8ufPbKRtSyx8x5ZR6RbEUU_JK9qAuzjS1N4u_lyDmoy10cEPMdruFMekcnw3eHuvl_3cPB1DLff1zYUqQ4VIMM4T7SOLTXUcG6YUrawEKbDQhciSiDz4qnlADc1HJSn-H2CotEmWStnpdkmXk5TUWiIJ2EqmGFpziMFYDQRFkCVCXif8OZuSV0TnGOfjVO5kuiAfSTaR6J9pLOPvOiTsJ15VpF8XGPONjiEzL9DLJaTrxR3jnB3NopYn7x2XtLqys9PsH6Ox_Jo9F5-OxqLwywYSxDcdG7UCmIrcMjxwj7ZafxK1jFlLgWkxu6tWZ-8aEchGOAbnrw0s-VcwqiIsX0MqPb-IiPSAMuaGYhsVY7aXp4CoAEAGoElOy7cCiAXeXekPP7hOMkjzCQS0Mmdh17bjPLtwecMfz7-55nPyZ3x3lB-Ohh93CHr1Z4_1gA-IWuL86V5CqBxoZ65YPALQ9RUiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Causal+Mediation+Analysis&rft.jtitle=Biometrics&rft.au=Albert%2C+Jeffrey+M.&rft.au=Nelson%2C+Suchitra&rft.date=2011-09-01&rft.pub=Wiley-Blackwell&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=67&rft.issue=3&rft.spage=1028&rft.epage=1038&rft_id=info:doi/10.1111%2Fj.1541-0420.2010.01547.x&rft.externalDocID=41242551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon