Low space-complexity digit-serial dual basis systolic multiplier over Galois field GF(2m) using Hankel matrix and Karatsuba algorithm
Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2m) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods tha...
Saved in:
| Published in | IET information security Vol. 7; no. 2; pp. 75 - 86 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Stevenage
The Institution of Engineering and Technology
01.06.2013
IET John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8709 1751-8717 1751-8717 |
| DOI | 10.1049/iet-ifs.2012.0227 |
Cover
| Abstract | Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2m) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods that can keep balance of low space complexity and low time complexity at the same time. In order to achieve such an efficient aim, this study presents a novel digit-serial dual basis multiplier that is different from existing ones with a modified cut-set method using Karatsuba algorithm as well as Hankel matrix. As a result, the proposed multiplier can save much space and thus be particularly suitable for some hand held devices equipped with only limited resources. The proposed digit-serial dual basis multiplier saves 55% space complexity as compared with existing similar studies with National Institute of Standards and Technology (NIST) suggested values for elliptic curve cryptosystem. |
|---|---|
| AbstractList | Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2m) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods that can keep balance of low space complexity and low time complexity at the same time. In order to achieve such an efficient aim, this study presents a novel digit-serial dual basis multiplier that is different from existing ones with a modified cut-set method using Karatsuba algorithm as well as Hankel matrix. As a result, the proposed multiplier can save much space and thus be particularly suitable for some hand held devices equipped with only limited resources. The proposed digit-serial dual basis multiplier saves 55% space complexity as compared with existing similar studies with National Institute of Standards and Technology (NIST) suggested values for elliptic curve cryptosystem. Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field (2m) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods that can keep balance of low space complexity and low time complexity at the same time. In order to achieve such an efficient aim, this study presents a novel digit-serial dual basis multiplier that is different from existing ones with a modified cut-set method using Karatsuba algorithm as well as Hankel matrix. As a result, the proposed multiplier can save much space and thus be particularly suitable for some hand held devices equipped with only limited resources. The proposed digit-serial dual basis multiplier saves 55% space complexity as compared with existing similar studies with National Institute of Standards and Technology suggested values for elliptic curve cryptosystem. Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2 m ) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods that can keep balance of low space complexity and low time complexity at the same time. In order to achieve such an efficient aim, this study presents a novel digit‐serial dual basis multiplier that is different from existing ones with a modified cut‐set method using Karatsuba algorithm as well as Hankel matrix. As a result, the proposed multiplier can save much space and thus be particularly suitable for some hand held devices equipped with only limited resources. The proposed digit‐serial dual basis multiplier saves 55% space complexity as compared with existing similar studies with National Institute of Standards and Technology (NIST) suggested values for elliptic curve cryptosystem. |
| Author | Yan Hua, Ying Huan Liu, Yong Lee, Chiou-Yng Wun Chiou, Che Lin, Jim-Min |
| Author_xml | – sequence: 1 givenname: Ying surname: Yan Hua fullname: Yan Hua, Ying organization: 1College of Electronics and Information Engineering, Tongji University, No. 4800, Cao'an Hwy, Shanghai 201 804, People's Republic of China – sequence: 2 givenname: Jim-Min surname: Lin fullname: Lin, Jim-Min email: jimmy@fcu.edu.tw organization: 2Department of Information Engineering and Computer Science, Feng Chia University, Taichung City 407, Taiwan – sequence: 3 givenname: Che surname: Wun Chiou fullname: Wun Chiou, Che organization: 3Department of Computer Science and Information Engineering, Ching Yun University, Chung-Li 320, Taiwan – sequence: 4 givenname: Chiou-Yng surname: Lee fullname: Lee, Chiou-Yng organization: 4Department of Computer Information and Network Engineering, Lunghwa University of Science and Technology, Taoyuan County 333, Taiwan – sequence: 5 givenname: Yong surname: Huan Liu fullname: Huan Liu, Yong organization: 1College of Electronics and Information Engineering, Tongji University, No. 4800, Cao'an Hwy, Shanghai 201 804, People's Republic of China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27448939$$DView record in Pascal Francis |
| BookMark | eNqNkMtuEzEUhkeoSLSFB2BnCSG1iwm2x3MxO1olaUQkFi1r68RjBxfPeLA9pHkA3htHU0Wo4rY5tuTv8znnP8tOeterLHtN8Ixgxt8ZFXOjw4xiQmeY0vpZdkrqkuRNTeqT4x3zF9lZCPcYl1WJ-Wn2Y-12KAwgVS5dN1j1YOIetWZrYh6UN2BRO6aygWACCvsQnTUSdaONZrBGeeS-p7IE69K7Nsq2aLm4oN0lGoPpt-gG-q_Kog6iNw8I-hZ9BA8xjBtAYLfOm_ile5k912CDevV4nmefF_O765t8_Wm5uv6wzmVZNTiXBdHthqlKMgWkaCq6UUypqmCkTbsBrTAjXBaUt6zUmgPnoBVlNWaak3pTnGd0-nfsB9jvwFoxeNOB3wuCxSFIkYIUKUhxCFIcgkzSxSQN3n0bVYiiM0Eqa6FXbgyCVIkllDdNQt88Qe_d6Pu0kiBl2ZSsqtiBevtIQZBgtYdemnCchNaMNbzgiSMTJ70LwSv9X8PWTxxpIkTj-ujB2L-a7ydzZ6za_7uVWN3O6dUCY0xwki8n-YAdd17N78RqcfuLM7Q6sflv2D8P9hM_ruPZ |
| CitedBy_id | crossref_primary_10_1109_TC_2022_3215638 crossref_primary_10_1587_elex_16_20190268 crossref_primary_10_1587_elex_16_20190600 crossref_primary_10_1049_iet_ifs_2015_0336 crossref_primary_10_3390_app11156938 crossref_primary_10_1016_j_jksuci_2022_06_009 crossref_primary_10_1016_j_aej_2022_07_013 crossref_primary_10_1109_TCSII_2024_3369103 crossref_primary_10_1109_TCSI_2014_2335031 crossref_primary_10_3390_electronics10151777 crossref_primary_10_1016_j_eij_2022_01_001 crossref_primary_10_1016_j_aej_2020_10_058 crossref_primary_10_1016_j_micpro_2015_11_016 crossref_primary_10_1109_TVLSI_2016_2605183 crossref_primary_10_3390_math11020328 crossref_primary_10_1109_JIOT_2021_3087274 crossref_primary_10_1109_TVLSI_2014_2359113 crossref_primary_10_3390_s22062090 crossref_primary_10_1109_TCSI_2017_2677962 crossref_primary_10_3390_math10050848 |
| Cites_doi | 10.1090/S0025-5718-1987-0866109-5 10.1017/CBO9781139172769 10.1109/TVLSI.2004.842923 10.1109/TC.2007.19 10.1109/12.926154 10.1109/12.736433 10.1007/BF00196789 10.1109/TC.1985.1676616 10.1137/0403012 10.1049/ip-cdt:19981906 10.1007/s11265-011-0654-2 10.1049/iet-ifs.2007.0132 10.1049/iet-cds:20080122 10.1007/3-540-39799-X_31 10.1093/ietfec/e88-a.11.3169 10.1007/0-387-34799-2_8 10.1007/s11390-007-9003-0 10.1016/0890-5401(89)90045-X 10.1049/iet-cds:20060314 10.1016/j.cose.2004.09.012 10.1109/12.663762 10.1109/12.485570 10.1109/12.660172 10.1109/12.257715 10.1109/TC.2002.1017695 10.1109/TC.2006.10 10.1007/3-540-51083-4_67 10.1109/TC.2004.52 10.1109/TC.2007.1076 10.1109/TVLSI.2009.2016753 10.1109/18.45274 10.1016/j.ipl.2011.01.005 10.1109/TC.2006.165 10.1109/TIT.1982.1056591 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology 2014 INIST-CNRS Copyright The Institution of Engineering & Technology Jun 2013 |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology – notice: 2014 INIST-CNRS – notice: Copyright The Institution of Engineering & Technology Jun 2013 |
| DBID | AAYXX CITATION IQODW 3V. 7XB 8AL 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W 7SC 7SP 8FD F28 FR3 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1049/iet-ifs.2012.0227 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer Science Database Technology Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences Mathematics |
| EISSN | 1751-8717 |
| EndPage | 86 |
| ExternalDocumentID | 10.1049/iet-ifs.2012.0227 3418754171 27448939 10_1049_iet_ifs_2012_0227 ISE2BF00010 |
| Genre | article Feature |
| GroupedDBID | 0R 24P 29I 3V. 4.4 5GY 6IK 8AL 8FE 8FG AAJGR ABJCF ABUWG ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BFFAM BGLVJ BPHCQ CS3 DU5 DWQXO EBS EJD GNUQQ HCIFZ HZ IFIPE IPLJI JAVBF K6V K7- L6V LAI LOTEE LXI LXU M0N M43 M7S NADUK NXXTH O9- OCL P2P P62 PQEST PQQKQ PQUKI PROAC PTHSS RIE RIG RNS RUI S0W UNMZH UNR ZZ .DC 0R~ 0ZK 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ADEYR ADZOD AEEZP AEGXH AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC MCNEO OK1 ROL ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN IQODW 7XB 8FK JQ2 PKEHL PRINS Q9U 7SC 7SP 8FD F28 FR3 L7M L~C L~D PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5680-c31fdb4e6c4ea13862be4ee6341d870a260419c329d45ff9a99afe24704f917b3 |
| IEDL.DBID | IDLOA |
| ISSN | 1751-8709 1751-8717 |
| IngestDate | Thu Oct 30 06:00:34 EDT 2025 Sun Aug 24 03:31:26 EDT 2025 Wed Aug 13 02:27:19 EDT 2025 Mon Jul 21 09:10:51 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Wed Oct 29 21:16:16 EDT 2025 Wed Jan 22 16:32:42 EST 2025 Thu May 09 18:13:39 EDT 2019 Tue Jan 05 21:44:05 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | low space complexity digit serial dual basis systolic multiplier Hankel matrix cut set method public key cryptography Galois field GF(2m) elliptic curve cryptosystem Hankel matrices Galois fields Karatsuba algorithm finite field arithmetic operation cryptographic computations computational complexity Finite field Space complexity Galois algebra Standardization Multiplier Public key cryptography Elliptic curve Arithmetic operation Computational complexity Time complexity Mobile computing |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5680-c31fdb4e6c4ea13862be4ee6341d870a260419c329d45ff9a99afe24704f917b3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2012.0227 |
| PQID | 1558546648 |
| PQPubID | 1936350 |
| PageCount | 12 |
| ParticipantIDs | wiley_primary_10_1049_iet_ifs_2012_0227_ISE2BF00010 proquest_miscellaneous_1620112988 proquest_journals_1558546648 iet_journals_10_1049_iet_ifs_2012_0227 crossref_primary_10_1049_iet_ifs_2012_0227 unpaywall_primary_10_1049_iet_ifs_2012_0227 crossref_citationtrail_10_1049_iet_ifs_2012_0227 pascalfrancis_primary_27448939 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | June 2013 |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: June 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Stevenage |
| PublicationPlace_xml | – name: Stevenage |
| PublicationTitle | IET information security |
| PublicationYear | 2013 |
| Publisher | The Institution of Engineering and Technology IET John Wiley & Sons, Inc |
| Publisher_xml | – name: The Institution of Engineering and Technology – name: IET – name: John Wiley & Sons, Inc |
| References | Fan, H.; Hasan, M.A. (C33) 2007; 56 Kumar, S.; Wollinger, T.; Paar, C. (C20) 2006; 55 Chang, P.L.; Chen, L.H.; Lee, C.Y. (C48) 2009; 3 Reyhani-Masoleh, A. (C28) 2006; 55 Morii, M.; Kasahara, M.; Whiting, D.L. (C4) 1989; IT- 35 Koblitz, N. (C7) 1987; 48 Bartee, T.C.; Schneider, D.J. (C10) 1963; 6 Wu, H. (C16) 2002; 51 Talapatra, S.; Rahaman, H.; Mathew, J. (C21) 2010; 18 Lee, C.Y.; Chiou, C.W. (C25) 2005; E88-A Guo, J.-H.; Wang, C.-L. (C18) 1998; 145 Lee, C.-Y.; Chen, Y.-H.; Chiou, C.W.; Lin, J.-M. (C41) 2007; 22 Wu, H.; Hasan, M.A.; Blake, I.F. (C22) 1998; 47 Itoh, T.; Tsujii, S. (C13) 1989; 83 Fenn, S.T.J.; Benaissa, M.; Taylor, D. (C23) 1996; 45 Sunar, B. (C35) 2004; 53 Kim, C.H.; Hong, C.P.; Kwon, S. (C19) 2005; 13 Wang, M.; Blake, I.F. (C24) 1990; 3 Lee, C.-Y.; Chiou, C.W.; Lin, J.-M.; Chang, C.-C. (C42) 2007; 1 Paar, C.; Fleischmann, P.; Roelse, P. (C15) 1998; 47 Wang, C.C.; Truong, T.K.; Shao, H.M.; Deutsch, L.J.; Omura, J.K.; Reed, I.S. (C27) 1985; C-34 Agnew, G.B.; Mullin, R.C.; Onyszchuk, I.M.; Vanstone, S.A. (C30) 1991; 3 Lee, C.Y.; Lu, E.H.; Lee, J.Y. (C14) 2001; 50 Fan, H.; Hasan, M.A. (C37) 2009; 3 Li, Y.; Chen, G.-L.; Li, J.-H. (C38) 2011; 111 Hasan, M.A.; Wang, M.Z.; Bhargava, V.K. (C31) 1993; 42 Lee, C.-Y.; Chiou, C.W. (C44) 2012; 69 Chen, L.H.; Chang, P.L.; Lee, C.Y.; Yang, Y.K. (C45) 2011; 7 Chiou, C.W.; Lee, C.Y. (C29) 2005; 24 Fan, H.; Hasan, M.A. (C17) 2007; 56 Chiou, C.W.; Lee, C.-Y.; Lin, J.-M.; Hou, T.-W.; Chang, C.-C. (C43) 2009; 3 Berlekamp, E.R. (C3) 1982; IT-28 Lee, C.-Y.; Chiou, C.W. (C40) 2005; E88-A Koç, Ç.K.; Sunar, B. (C12) 1998; 47 1991; 3 1989; 83 2001; 50 1962; 145 1985; C‐34 2010; 18 2002; 51 2006; 55 1993; 42 1994 2004 2005; E88‐A 2003 2007; 56 2011; 111 2011; 7 1998; 47 2005; 24 1977 1989; IT‐ 35 1990; 3 2004; 53 1982; IT‐28 1963; 6 1986 1985 1962 2009; 3 2012; 69 2007; 1 2007; 22 1998; 145 1987; 48 2005; 13 1996; 45 1988 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 Weste N. (e_1_2_8_48_2) 1985 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_45_2 Chen L.H. (e_1_2_8_46_2) 2011; 7 e_1_2_8_25_2 e_1_2_8_26_2 Partington J.R. (e_1_2_8_40_2) 1988 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_42_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_22_2 e_1_2_8_43_2 Bartee T.C. (e_1_2_8_11_2) 1963; 6 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_35_2 Blahut R.E. (e_1_2_8_3_2) 1985 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 Mac Williams F.J. (e_1_2_8_2_2) 1977 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 Chang P.L. (e_1_2_8_49_2) 2009; 3 e_1_2_8_32_2 |
| References_xml | – volume: 111 start-page: 390 issue: 8 year: 2011 end-page: 394 ident: C38 article-title: Speeding of bit-parallel Karatsuba multiplier in GF(2 ) generated by trinomials publication-title: Inf. Process. Lett. – volume: 3 start-page: 1113 issue: 4 year: 2009 end-page: 1118 ident: C48 article-title: Low-complexity dual basis digit serial GF(2 ) multiplier publication-title: ICIC Express Lett. – volume: E88-A start-page: 3169 issue: 11 year: 2005 end-page: 3179 ident: C40 article-title: Efficient design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2 ) publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – volume: IT-28 start-page: 869 year: 1982 end-page: 874 ident: C3 article-title: Bit-serial Reed–Solomon encoder publication-title: IEEE Trans. Inf. Theory – volume: 42 start-page: 1278 issue: 10 year: 1993 end-page: 1280 ident: C31 article-title: A modified Massey–Omura parallel multiplier for a class of finite fields publication-title: IEEE Trans. Comput. – volume: 47 start-page: 353 issue: 3 year: 1998 end-page: 356 ident: C12 article-title: Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields publication-title: IEEE Trans. Comput. – volume: 45 start-page: 319 issue: 3 year: 1996 end-page: 327 ident: C23 article-title: GF(2 ) multiplication and division over the dual basis publication-title: IEEE Trans. Comput. – volume: 7 start-page: 1193 issue: 3 year: 2011 end-page: 1208 ident: C45 article-title: Scalable and systolic dual basis multiplier over GF(2 ) publication-title: Int. J. Innov. Comput. – volume: IT- 35 start-page: 1177 issue: 6 year: 1989 end-page: 1183 ident: C4 article-title: Efficient bit-serial multiplication and the discrete-time Wiener–Hopf equation over finite fields publication-title: IEEE Trans. Inf. Theory – volume: 6 start-page: 79 year: 1963 end-page: 98 ident: C10 article-title: Computation with finite fields publication-title: Inf. Comput. – volume: 145 start-page: 143 issue: 2 year: 1998 end-page: 148 ident: C18 article-title: Digit-serial systolic multiplier for finite fields GF(2 ) publication-title: IEE Proc. Comput. Digit. Tech. – volume: 1 start-page: 477 issue: 6 year: 2007 end-page: 484 ident: C42 article-title: Scalable and systolic montgomery multiplier over GF(2 ) generated by trinomials publication-title: IET Circuits Dev. Syst. – volume: 50 start-page: 385 issue: 5 year: 2001 end-page: 393 ident: C14 article-title: Bit-parallel systolic multipliers for GF(2 ) fields defined by all-one and equally-spaced polynomials publication-title: IEEE Trans. Comput. – volume: 48 start-page: 203 year: 1987 end-page: 209 ident: C7 article-title: Elliptic curve cryptosystems publication-title: Math. Comput. – volume: 69 start-page: 197 issue: 2 year: 2012 end-page: 211 ident: C44 article-title: Scalable Gaussian normal basis multipliers over GF(2 ) using Hankel matrix–vector representation publication-title: J. Signal Process. Syst. – volume: 22 start-page: 28 issue: 1 year: 2007 end-page: 38 ident: C41 article-title: Unified parallel systolic multipliers over GF(2 ) publication-title: J. Comput. Sci. Technol. – volume: 51 start-page: 750 issue: 7 year: 2002 end-page: 758 ident: C16 article-title: Bit-parallel finite field multiplier and squarer using polynomial basis publication-title: IEEE Trans. Comput. – volume: 56 start-page: 224 issue: 2 year: 2007 end-page: 233 ident: C17 article-title: A new approach to subquadratic space complexity parallel multipliers for extended binary fields publication-title: IEEE Trans. Comput. – volume: C-34 start-page: 709 issue: 8 year: 1985 end-page: 717 ident: C27 article-title: VLSI architectures for computing multiplications and inverses in GF(2 ) publication-title: IEEE Trans. Comput. – volume: 83 start-page: 21 year: 1989 end-page: 40 ident: C13 article-title: Structure of parallel multipliers for a class of fields GF(2 ) publication-title: Inf. Comput. – volume: 3 start-page: 60 issue: 2 year: 2009 end-page: 65 ident: C37 article-title: Alternative to the Karatsuba algorithm for software implementations of GF(2 ) multiplications publication-title: IET Inf. Sec. – volume: 18 start-page: 847 issue: 5 year: 2010 end-page: 852 ident: C21 article-title: Low complexity digit serial systolic montgomery multipliers for special class of GF(2 ) publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. – volume: 3 start-page: 63 year: 1991 end-page: 79 ident: C30 article-title: An implementation for a fast public-key cryptosystem publication-title: J. Cryptol. – volume: 47 start-page: 162 issue: 2 year: 1998 end-page: 170 ident: C15 article-title: Efficient multiplier architectures for Galois fields GF(2 ) publication-title: IEEE Trans. Comput. – volume: 3 start-page: 22 issue: 1 year: 2009 end-page: 40 ident: C43 article-title: Concurrent error detection and correction in dual basis multiplier over GF(2 ) publication-title: IET Circuits Dev. Syst. – volume: 53 start-page: 1097 issue: 9 year: 2004 end-page: 1105 ident: C35 article-title: A generalized method for constructing subquadratic complexity GF(2 ) multipliers publication-title: IEEE Trans. Comput. – volume: 47 start-page: 1223 issue: 11 year: 1998 end-page: 1234 ident: C22 article-title: New low-complexity bit-parallel finite field multipliers using weakly dual bases publication-title: IEEE Trans. Comput. – volume: 13 start-page: 476 issue: 4 year: 2005 end-page: 483 ident: C19 article-title: A digit-serial multiplier for finite field GF(2 ) publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. – volume: 55 start-page: 1306 issue: 10 year: 2006 end-page: 1311 ident: C20 article-title: Optimum digit-serial GF(2 ) multipliers for curve-based cryptography publication-title: IEEE Trans. Comput. – volume: E88-A start-page: 3169 issue: 11 year: 2005 end-page: 3179 ident: C25 article-title: Efficient design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2 ) publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – volume: 56 start-page: 1435 issue: 10 year: 2007 end-page: 1437 ident: C33 article-title: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases publication-title: IEEE Trans. Comput. – volume: 55 start-page: 34 issue: 1 year: 2006 end-page: 47 ident: C28 article-title: Efficient algorithms and architectures for field multiplication using Gaussian normal bases publication-title: IEEE Trans. Comput. – volume: 3 start-page: 140 issue: 1 year: 1990 end-page: 148 ident: C24 article-title: Bit serial multiplication in finite fields publication-title: SIAM J. Disc. Math. – volume: 24 start-page: 83 issue: 1 year: 2005 end-page: 86 ident: C29 article-title: Multiplexer-based double-exponentiation for normal basis of GF (2 ) publication-title: Comput. Sec. – year: 1985 – volume: 55 start-page: 1306 issue: 10 year: 2006 end-page: 1311 article-title: Optimum digit‐serial GF(2 ) multipliers for curve‐based cryptography publication-title: IEEE Trans. Comput. – volume: 42 start-page: 1278 issue: 10 year: 1993 end-page: 1280 article-title: A modified Massey–Omura parallel multiplier for a class of finite fields publication-title: IEEE Trans. Comput. – volume: 1 start-page: 477 issue: 6 year: 2007 end-page: 484 article-title: Scalable and systolic montgomery multiplier over GF(2 ) generated by trinomials publication-title: IET Circuits Dev. Syst. – volume: 111 start-page: 390 issue: 8 year: 2011 end-page: 394 article-title: Speeding of bit‐parallel Karatsuba multiplier in GF(2 ) generated by trinomials publication-title: Inf. Process. Lett. – start-page: 94 year: 1988 end-page: 99 article-title: A family of Jacobians suitable for discrete log cryptosystems – volume: 69 start-page: 197 issue: 2 year: 2012 end-page: 211 article-title: Scalable Gaussian normal basis multipliers over GF(2 ) using Hankel matrix–vector representation publication-title: J. Signal Process. Syst. – volume: 47 start-page: 1223 issue: 11 year: 1998 end-page: 1234 article-title: New low‐complexity bit‐parallel finite field multipliers using weakly dual bases publication-title: IEEE Trans. Comput. – volume: IT‐28 start-page: 869 year: 1982 end-page: 874 article-title: Bit‐serial Reed–Solomon encoder publication-title: IEEE Trans. Inf. Theory – start-page: 297 year: 1988 end-page: 309 article-title: VLSI architectures for multiplication over finite field GF(2 ) – volume: 47 start-page: 162 issue: 2 year: 1998 end-page: 170 article-title: Efficient multiplier architectures for Galois fields GF(2 ) publication-title: IEEE Trans. Comput. – volume: 83 start-page: 21 year: 1989 end-page: 40 article-title: Structure of parallel multipliers for a class of fields GF(2 ) publication-title: Inf. Comput. – volume: 13 start-page: 476 issue: 4 year: 2005 end-page: 483 article-title: A digit‐serial multiplier for finite field GF(2 ) publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. – volume: 18 start-page: 847 issue: 5 year: 2010 end-page: 852 article-title: Low complexity digit serial systolic montgomery multipliers for special class of GF(2 ) publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. – start-page: 417 year: 1986 end-page: 426 article-title: Use of elliptic curves in cryptography – volume: E88‐A start-page: 3169 issue: 11 year: 2005 end-page: 3179 article-title: Efficient design of low‐complexity bit‐parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2 ) publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – volume: 56 start-page: 224 issue: 2 year: 2007 end-page: 233 article-title: A new approach to subquadratic space complexity parallel multipliers for extended binary fields publication-title: IEEE Trans. Comput. – volume: C‐34 start-page: 709 issue: 8 year: 1985 end-page: 717 article-title: VLSI architectures for computing multiplications and inverses in GF(2 ) publication-title: IEEE Trans. Comput. – volume: 56 start-page: 1435 issue: 10 year: 2007 end-page: 1437 article-title: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases publication-title: IEEE Trans. Comput. – volume: 3 start-page: 140 issue: 1 year: 1990 end-page: 148 article-title: Bit serial multiplication in finite fields publication-title: SIAM J. Disc. Math. – volume: 24 start-page: 83 issue: 1 year: 2005 end-page: 86 article-title: Multiplexer‐based double‐exponentiation for normal basis of GF (2 ) publication-title: Comput. Sec. – year: 1977 – year: 1994 – volume: 6 start-page: 79 year: 1963 end-page: 98 article-title: Computation with finite fields publication-title: Inf. Comput. – volume: 53 start-page: 1097 issue: 9 year: 2004 end-page: 1105 article-title: A generalized method for constructing subquadratic complexity GF(2 ) multipliers publication-title: IEEE Trans. Comput. – year: 1986 – volume: 3 start-page: 22 issue: 1 year: 2009 end-page: 40 article-title: Concurrent error detection and correction in dual basis multiplier over GF(2 ) publication-title: IET Circuits Dev. Syst. – volume: 50 start-page: 385 issue: 5 year: 2001 end-page: 393 article-title: Bit‐parallel systolic multipliers for GF(2 ) fields defined by all‐one and equally‐spaced polynomials publication-title: IEEE Trans. Comput. – volume: 7 start-page: 1193 issue: 3 year: 2011 end-page: 1208 article-title: Scalable and systolic dual basis multiplier over GF(2 ) publication-title: Int. J. Innov. Comput. – volume: IT‐ 35 start-page: 1177 issue: 6 year: 1989 end-page: 1183 article-title: Efficient bit‐serial multiplication and the discrete‐time Wiener–Hopf equation over finite fields publication-title: IEEE Trans. Inf. Theory – start-page: 196 year: 2003 end-page: 202 article-title: A low complexity and a low latency bit parallel systolic multiplier over GF(2 ) using an optimal normal basis of type II – start-page: 405 year: 2003 end-page: 410 article-title: On fully parallel Karatsuba multipliers for GF(2 ) – volume: 48 start-page: 203 year: 1987 end-page: 209 article-title: Elliptic curve cryptosystems publication-title: Math. Comput. – volume: 47 start-page: 353 issue: 3 year: 1998 end-page: 356 article-title: Low‐complexity bit‐parallel canonical and normal basis multipliers for a class of finite fields publication-title: IEEE Trans. Comput. – volume: 3 start-page: 63 year: 1991 end-page: 79 article-title: An implementation for a fast public‐key cryptosystem publication-title: J. Cryptol. – year: 1988 – year: 2004 – volume: 45 start-page: 319 issue: 3 year: 1996 end-page: 327 article-title: GF(2 ) multiplication and division over the dual basis publication-title: IEEE Trans. Comput. – volume: 22 start-page: 28 issue: 1 year: 2007 end-page: 38 article-title: Unified parallel systolic multipliers over GF(2 ) publication-title: J. Comput. Sci. Technol. – start-page: 293 year: 1962 end-page: 294 article-title: Multiplication of many‐digital numbers by automatic computers – volume: 145 start-page: 143 issue: 2 year: 1998 end-page: 148 article-title: Digit‐serial systolic multiplier for finite fields GF(2 ) publication-title: IEE Proc. Comput. Digit. Tech. – volume: 3 start-page: 1113 issue: 4 year: 2009 end-page: 1118 article-title: Low‐complexity dual basis digit serial GF(2 ) multiplier publication-title: ICIC Express Lett. – volume: 3 start-page: 60 issue: 2 year: 2009 end-page: 65 article-title: Alternative to the Karatsuba algorithm for software implementations of GF(2 ) multiplications publication-title: IET Inf. Sec. – volume: 145 start-page: 293 year: 1962 end-page: 294 article-title: Multiplication of many‐digital numbers by automatic computers – volume: 55 start-page: 34 issue: 1 year: 2006 end-page: 47 article-title: Efficient algorithms and architectures for field multiplication using Gaussian normal bases publication-title: IEEE Trans. Comput. – volume: 51 start-page: 750 issue: 7 year: 2002 end-page: 758 article-title: Bit‐parallel finite field multiplier and squarer using polynomial basis publication-title: IEEE Trans. Comput. – ident: e_1_2_8_8_2 doi: 10.1090/S0025-5718-1987-0866109-5 – ident: e_1_2_8_6_2 doi: 10.1017/CBO9781139172769 – ident: e_1_2_8_27_2 – ident: e_1_2_8_20_2 doi: 10.1109/TVLSI.2004.842923 – volume-title: The theory of error‐correcting codes year: 1977 ident: e_1_2_8_2_2 – ident: e_1_2_8_18_2 doi: 10.1109/TC.2007.19 – volume-title: An introduction to Hankel operators. LMS Student Texts.13 year: 1988 ident: e_1_2_8_40_2 – ident: e_1_2_8_15_2 doi: 10.1109/12.926154 – ident: e_1_2_8_23_2 doi: 10.1109/12.736433 – ident: e_1_2_8_35_2 – ident: e_1_2_8_31_2 doi: 10.1007/BF00196789 – ident: e_1_2_8_28_2 doi: 10.1109/TC.1985.1676616 – ident: e_1_2_8_25_2 doi: 10.1137/0403012 – ident: e_1_2_8_19_2 doi: 10.1049/ip-cdt:19981906 – ident: e_1_2_8_45_2 doi: 10.1007/s11265-011-0654-2 – volume-title: Fast algorithms for digital signal processing year: 1985 ident: e_1_2_8_3_2 – ident: e_1_2_8_38_2 doi: 10.1049/iet-ifs.2007.0132 – ident: e_1_2_8_44_2 doi: 10.1049/iet-cds:20080122 – ident: e_1_2_8_7_2 doi: 10.1007/3-540-39799-X_31 – ident: e_1_2_8_26_2 doi: 10.1093/ietfec/e88-a.11.3169 – ident: e_1_2_8_37_2 – ident: e_1_2_8_9_2 doi: 10.1007/0-387-34799-2_8 – ident: e_1_2_8_42_2 doi: 10.1007/s11390-007-9003-0 – volume: 3 start-page: 1113 issue: 4 year: 2009 ident: e_1_2_8_49_2 article-title: Low‐complexity dual basis digit serial GF(2 m ) multiplier publication-title: ICIC Express Lett. – ident: e_1_2_8_14_2 doi: 10.1016/0890-5401(89)90045-X – ident: e_1_2_8_43_2 doi: 10.1049/iet-cds:20060314 – ident: e_1_2_8_30_2 doi: 10.1016/j.cose.2004.09.012 – volume: 7 start-page: 1193 issue: 3 year: 2011 ident: e_1_2_8_46_2 article-title: Scalable and systolic dual basis multiplier over GF(2 m ) publication-title: Int. J. Innov. Comput. – ident: e_1_2_8_16_2 doi: 10.1109/12.663762 – ident: e_1_2_8_24_2 doi: 10.1109/12.485570 – volume-title: Principles of CMOS VLSI design: a system perspective year: 1985 ident: e_1_2_8_48_2 – ident: e_1_2_8_13_2 doi: 10.1109/12.660172 – ident: e_1_2_8_32_2 doi: 10.1109/12.257715 – ident: e_1_2_8_17_2 doi: 10.1109/TC.2002.1017695 – ident: e_1_2_8_29_2 doi: 10.1109/TC.2006.10 – ident: e_1_2_8_12_2 doi: 10.1007/3-540-51083-4_67 – ident: e_1_2_8_36_2 doi: 10.1109/TC.2004.52 – ident: e_1_2_8_33_2 – ident: e_1_2_8_34_2 doi: 10.1109/TC.2007.1076 – volume: 6 start-page: 79 year: 1963 ident: e_1_2_8_11_2 article-title: Computation with finite fields publication-title: Inf. Comput. – ident: e_1_2_8_41_2 doi: 10.1093/ietfec/e88-a.11.3169 – ident: e_1_2_8_22_2 doi: 10.1109/TVLSI.2009.2016753 – ident: e_1_2_8_5_2 doi: 10.1109/18.45274 – ident: e_1_2_8_39_2 doi: 10.1016/j.ipl.2011.01.005 – ident: e_1_2_8_21_2 doi: 10.1109/TC.2006.165 – ident: e_1_2_8_47_2 – ident: e_1_2_8_10_2 – ident: e_1_2_8_4_2 doi: 10.1109/TIT.1982.1056591 |
| SSID | ssj0056509 |
| Score | 2.0426924 |
| Snippet | Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2m) have been... Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2 m ) have been... Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field (2m) have been widely... |
| SourceID | unpaywall proquest pascalfrancis crossref wiley iet |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 75 |
| SubjectTerms | Algebra Algorithms Applied sciences Balancing Complexity Computation computational complexity cryptographic computations Cryptography cut set method elliptic curve cryptosystem Exact sciences and technology Field theory and polynomials finite field arithmetic operation Galois field GF(2m) Galois fields Hand held Hankel matrices Hankel matrix Information, signal and communications theory Karatsuba algorithm low space complexity digit serial dual basis systolic multiplier Mathematical analysis Mathematics Multipliers public key cryptography Sciences and techniques of general use Signal and communications theory Telecommunications and information theory |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa27gFeuCMyxmQQQlxkLRcnjR8QYqhdy6VCbJP2tMiJ7S4iTQNptPEb-NOckxvrS-G1PlVan-NzPsfH30fIcxGK2JOSsyHXAeMC9qxhbBLG5dAfKl8oWWsdfpkFk1P-8cw_2yKz7i4MtlV2ObFO1GqZ4DvyA6h7oY9c6OG74gdD1Sg8Xe0kNGQrraDe1hRj22THRWasAdk5HM2-futys498cfUVSd-BPGCL_pxTHKR6xVKDDN74etBFmZlrlWobhrFvUpYwdabRvFgDpTeqvJC_LmWWrcPcuk6N75BbLcCk75uIuEu2dH6P3O7EG2i7lu-T35-XlxTSSaJZ3VaurwCPU5XO0xVrwpLiNS0KZS4tKRI-I4MwbRsQoZhSbP6kRzJbwnjdCEePxi_d87Iq6OL8FcWO-jmdyPy7zugClQCuqMwV_YRk42UVSyqzOczw6mLxgJyORycfJqxVZmCJH4Q2SzzHqBi8m3AtHQ92RbHmWgdQEhVMq4RNEndE4rlCcd8YIYWQRrt8aHMD-8PYe0gG-TLXjwhNbM6FBzghBiCaqCBWARfSNpBZjK2GtkXszgtR0tKWo3pGFtXH51xE4JkIHBeh4yJ0nEVe918pGs6OTcYv8LN25ZabDJ-tGU5HJ9F0fPzXICqUscj-Woj0z0ciRoCGwiJ7Xcxce2Yf2xZ52g_DOsfDG5nrZQU2AUI1V4Rg86aPtf_5f14djf-2jKbHI_cQu00de3fzz3xMbrqNLAiznT0yWP2s9BMAZ6t4v11xfwAUJDZH priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELba7QEulKeatlQGIcRDKXk4yfpY0L54VEjtSuUUObG9jZpNVt1ELZy4c-E38kuYyQsWoQIStyiexPJ4PPONPZ4h5BHv88gVgpkBU77JOPis_UjHJhOBF0iPS1HVOnx36I-n7PWJd7JGRu1dmDo_RLfhhiuj0te4wBdS13q-9joZf5Gowkw0Zt3GLT3HCdbJhu8BKO-Rjenh-4MP1XVIz4Y1XwV7NM920J1v_uYfKxZqHZoxXlIsgWW6rnWxAkavldlCfLwQaboKbyv7NNwkp-3I6rCUs_2yiPbjT78kffwPQ79JbjQYlh7UQneLrKnsNtls60PQRl3cIV_e5hcUNFasvn3-WsWuq0sA_VQms6SAV7X0U7wNRsGaJkuKeaUxUTFt4hzBZlOMMaUjkebQXsXb0dHwiUPn9CnFoP0ZHYvsTKV0jsUGLqnIJH2D-cyXZSSoSGf5eVKczu-S6XBw_GpsNsUfzNjz-5YZu7aWEQhQzJSwXXC8IsWU8sHqSphNAX4Ys3nsOlwyT2suOBdaOSywmAYXNHLvkV6WZ2qL0NhijLsARSLAurH0I-kzLiwNyktbMrAMYrUTHsZNZnQs0JGG1Qk94yEwOwRmh8jsEJltkGfdJ4s6LchVxI_xXaMcllcRPlwhnAyOw8nw6AdBCHJgkL0Vaez6x1yPgD65QXZb8fypTw_8Qiwl0DfIg64ZVAmeD4lM5SXQ-IgGHd4HmuedWP_N-NxKWv9MGU6OBs5LDGi1re1_6mOHXHfqQiSmZe-SXnFeqvsAB4tor1nq3wG_glzy priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALb0SgVAYhxEMRTuI8fIRqt7u8hNRW6i2yY3uJyCarblYtN67c-I38EmbyggipIK7xJFEyM55v7PE3hDwWiVCBlNyNuYlcLiBnTZTNXC7jMNah0LLpdfj-QzQ75m9OwpMtst-fhWn5IYYFN_SMZr5GB5eq7UICoBaUmJvazS0ybuNynu_H2-SSB3gGzdznH_vpOESKuOZUZOiB6zMxbG2Kl388YhSctmEYSyXlGv6WbdtcjHDo5U25kl_OZFGMkW0TmqbXydUOU9JXrRHcIFumvEmu9f0aaOe-t8i3d9UZhRkkMz--fm9qyc05gHCq80Vew6XWGimezqIQ3fI1RZ5nJA6mXd0hxFCKNZ_0QBYVjDf1b_Rg-tRfPqNYQr-gM1l-NgVdIvX_OZWlpm-RXXy9UZLKYlGd5vWn5W1yPJ0c7c_crhWDm4VRwtws8KxWoM6MG-kFkAYpw42JIAZq-KkSsiLuiSzwheahtUIKIa3xecy4hYRQBXfITlmV5i6hGeNcBAAMFCDPTEdKR1xIZmEqsUzHzCGs10GadTzl2C6jSJv9ci5S0EsKaktRbSmqzSHPh1tWLUnHRcJP8FrnquuLBB-NBOeTo3Q-PfwlkK60dcjeyECG9yPzImBB4ZDd3mJ-e2cIWRoS-ycOeTgMg2Pjbo0sTbUBmQixmS8SkHkxWNq_fF_Q2OLfJdP54cR_jeWlHrv3X3fdJ1f8tj2Iy7xdslOfbswDAGm12muc8Ceu6Tag priority: 102 providerName: Wiley-Blackwell |
| Title | Low space-complexity digit-serial dual basis systolic multiplier over Galois field GF(2m) using Hankel matrix and Karatsuba algorithm |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2012.0227 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ifs.2012.0227 https://www.proquest.com/docview/1558546648 https://www.proquest.com/docview/1620112988 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2012.0227 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056509 issn: 1751-8717 databaseCode: IDLOA dateStart: 20130301 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1751-8717 dateEnd: 20140930 omitProxy: true ssIdentifier: ssj0056509 issn: 1751-8717 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1751-8717 dateEnd: 20140930 omitProxy: true ssIdentifier: ssj0056509 issn: 1751-8717 databaseCode: 8FG dateStart: 20070301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056509 issn: 1751-8717 databaseCode: AVUZU dateStart: 0 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley - Open Access customDbUrl: eissn: 1751-8717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056509 issn: 1751-8717 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdo-wAvfCMyRmUQQnzIWuI4H37coF8wqoqt0niKnNgu1dK0Wltt_AH839wlaUclNPaSSvG1Vu_Od7-zz3eEvJGxTH2lBIuECZmQELPGqc2YUFEQ6UBqVfY6_DYM-2Px5Sw4u74eracT7JXBNjtuuFtuqpsHmLoNdvig5nHVkATw7QEQsKnF0tu4r8d51CAtDtE5b5LW4PMxhliVZQ6wWlx5QTLwwAq4cnvK-Y8f2fFTDRjGrEm1BMbZquPFDiS9uy4W6telyvNdkFt6qe5Dcr-Gl_Sw0odH5I4pHpMHm9YNtF7JT8jv4_klBWOSGVYmlZsrQOO05AurlJLiJS0KTm66pFjuGesH0zr9EFwpxdRP2lP5HMbLNDja677js_cUM-kntK-Kc5PTGXYAuKKq0PQrFhlfrlNFVT6ZX0xXP2dPybjbOf3UZ3VHBpYFYeyyzPesTkGqmTDK8yEaSo0wJgRXqIGhCoIj4cnM51KLwFqppFTWcBG5wkJcmPrPSLOYF-Y5oZkrhPQBH6QAQDMdpjoUUrkWLIp1deQ6xN3wP8nqcuXYNSNPymNzIROQSQIiS1BkCYrMIR-2X1lUtTpuIn6L7zbadBPh6x3CQec0GXRPrgmShbYOae8ox3Z-LMAIkFA6ZH-jLX_NGUCwhvX9Y4e82g7D-sZDG1WY-RpoQoRoXMZA83GrZbf5f36ph_-nTAYnHX6EWaaeu3dbrrwg93jVGIS53j5pri7W5iXAs1XaJg0uRvCMu702aR11hqPv7Xolwud4ODr88QeMpzoS |
| linkProvider | Institution of Engineering and Technology |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF71cSgX3oiUUhYECIpW9WPteA8VopA0IWmEaCr1VLP27qYRjhNworS_gf_Eb2PGsU1zCVx69U5sRzM786139vsIeSkCEblSclbn2mdcwJo1iEzMuKx7deUJJXOtw-Oe3zrln8-8szXyuzwLg22VZU7ME7Uax_iNfB_qXuAhF3rwfvKDoWoU7q6WEhqykFZQBznFWHGwo6Ov5rCEyw7an8Dfrxyn2eh_bLFCZYDFnh9YLHZtoyJ405hrabuA8CPNtfYhvSsIZgmAn9sidh2huGeMkEJIox1et7iBtU7kwn3XySZ3uYDF3-Zho_fla1kLPOSny49kejbkHUtU-6pif6inbGiQMRw_Rzooa3OtMq7DMPZpygxcZRYaG0sgeGuWTuTVXCbJMqzO62LzLrldAFr6YRGB98iaTu-TO6VYBC1yxwPyqzueU0hfsWZ5G7u-BPxP1XAwnLLFNKB4LIxCWR1mFAmmkbGYFg2PULwpNpvSI5mMYTxvvKNHzTfOeTab0NH5W4od_APakul3ndARKg9cUpkq2kFy82wWSSqTAXh0ejF6SE5vxEePyEY6TvVjQmOLc-ECLokA-MbKj5TPhbQMZDJjqbpVI1bphTAuaNJRrSMJ8-16LkLwTAiOC9FxITquRvaqn0wWHCGrjF_jtSJTZKsMXywZthv9sN08-WsQTpSpkd2lEKmej8SPAEVFjeyUMXPtmdVcqpHn1TDkFdwskqkez8DGR2joiABs3lWx9j__z82j8d-WYfuk4Rxid6ttba9-zWdkq9U_7obddq_zhNxyFpIkzLJ3yMb050w_BWA4jXaL2UfJt5ue8H8AU8BymQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF21RQJeuCMCpSwIEAVZ8WV92QeEgMZJSKmQ2kp9qll7d0OE4wQcK-038Ed8HTO-0bwEXvrqndiOZnbmrHf2HEKe84DHjhDM8JnyDMZhzRrEOjGY8F1fulyKUuvw84E3OGafTtyTDfK7OQuDbZVNTiwTtZwl-I28C3UvcJELPejqui3iy174bv7DQAUp3Glt5DSqEBmp8yUs3_K3wz3w9QvbDntHHwdGrTBgJK4XmEbiWFrG8JYJU8JyAN3HiinlQWqXEMgCwD6zeOLYXDJXay44F1rZzDeZhnVO7MB9N8kVH1nc8ZR62G-qgIvMdOVhTNeCjGPydkeVdydqYUw0coXjh0gbBW0u1MRNGMYOTZGDk3SlrrECf68V2VycL0WargLqsiKGt8iNGsrS91Xs3SYbKrtDbjYyEbTOGnfJr_3ZkkLiSpRRNrCrM0D-VE7Gk4VRTQCKB8IoFNRJTpFaGrmKad3qCGWbYpsp7Yt0BuNlyx3th6_s07yY0-npLsXe_TEdiOy7SukUNQfOqMgkHSGteV7Egop0DP5bfJveI8eX4qH7ZCubZeoBoYnJGHcAkcQAeRPpxdJjXJgacpg2pW92iNl4IUpqgnTU6UijcqOe8Qg8E4HjInRchI7rkNftT-YVO8g645d4rc4R-TrDZyuGw95RNAwP_xpEc6k7ZGclRNrnI-UjgFDeIdtNzFx4ZjuLOuRpOwwZBbeJRKZmBdh4CAptHoDNmzbW_uf_OWU0_tsyGh727A_Y12qZD9e_5hNyFaZ5tD88GD0i1-1Ki8QwrW2ytfhZqMeACBfxTjn1KPl62XP9DyUgcDM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELba7QEulKeatlQGIcRDKXk4yfpY0L54VEjtSuUUObG9jZpNVt1ELZy4c-E38kuYyQsWoQIStyiexPJ4PPONPZ4h5BHv88gVgpkBU77JOPis_UjHJhOBF0iPS1HVOnx36I-n7PWJd7JGRu1dmDo_RLfhhiuj0te4wBdS13q-9joZf5Gowkw0Zt3GLT3HCdbJhu8BKO-Rjenh-4MP1XVIz4Y1XwV7NM920J1v_uYfKxZqHZoxXlIsgWW6rnWxAkavldlCfLwQaboKbyv7NNwkp-3I6rCUs_2yiPbjT78kffwPQ79JbjQYlh7UQneLrKnsNtls60PQRl3cIV_e5hcUNFasvn3-WsWuq0sA_VQms6SAV7X0U7wNRsGaJkuKeaUxUTFt4hzBZlOMMaUjkebQXsXb0dHwiUPn9CnFoP0ZHYvsTKV0jsUGLqnIJH2D-cyXZSSoSGf5eVKczu-S6XBw_GpsNsUfzNjz-5YZu7aWEQhQzJSwXXC8IsWU8sHqSphNAX4Ys3nsOlwyT2suOBdaOSywmAYXNHLvkV6WZ2qL0NhijLsARSLAurH0I-kzLiwNyktbMrAMYrUTHsZNZnQs0JGG1Qk94yEwOwRmh8jsEJltkGfdJ4s6LchVxI_xXaMcllcRPlwhnAyOw8nw6AdBCHJgkL0Vaez6x1yPgD65QXZb8fypTw_8Qiwl0DfIg64ZVAmeD4lM5SXQ-IgGHd4HmuedWP_N-NxKWv9MGU6OBs5LDGi1re1_6mOHXHfqQiSmZe-SXnFeqvsAB4tor1nq3wG_glzy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+space-complexity+digit-serial+dual+basis+systolic+multiplier+over+Galois+field+GF%282+super%28+m%29%29+using+Hankel+matrix+and+Karatsuba+algorithm&rft.jtitle=IET+information+security&rft.au=Hua%2C+Ying+Yan&rft.au=Lin%2C+Jim-Min&rft.au=Chiou%2C+Che+Wun&rft.au=Lee%2C+Chiou-Yng&rft.date=2013-06-01&rft.issn=1751-8709&rft.eissn=1751-8717&rft.volume=7&rft.issue=2&rft.spage=75&rft.epage=75&rft_id=info:doi/10.1049%2Fiet-ifs.2012.0227&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8709&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8709&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8709&client=summon |