Low space-complexity digit-serial dual basis systolic multiplier over Galois field GF(2m) using Hankel matrix and Karatsuba algorithm

Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2m) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods tha...

Full description

Saved in:
Bibliographic Details
Published inIET information security Vol. 7; no. 2; pp. 75 - 86
Main Authors Yan Hua, Ying, Lin, Jim-Min, Wun Chiou, Che, Lee, Chiou-Yng, Huan Liu, Yong
Format Journal Article
LanguageEnglish
Published Stevenage The Institution of Engineering and Technology 01.06.2013
IET
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1751-8709
1751-8717
1751-8717
DOI10.1049/iet-ifs.2012.0227

Cover

Abstract Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2m) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods that can keep balance of low space complexity and low time complexity at the same time. In order to achieve such an efficient aim, this study presents a novel digit-serial dual basis multiplier that is different from existing ones with a modified cut-set method using Karatsuba algorithm as well as Hankel matrix. As a result, the proposed multiplier can save much space and thus be particularly suitable for some hand held devices equipped with only limited resources. The proposed digit-serial dual basis multiplier saves 55% space complexity as compared with existing similar studies with National Institute of Standards and Technology (NIST) suggested values for elliptic curve cryptosystem.
AbstractList Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2m) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods that can keep balance of low space complexity and low time complexity at the same time. In order to achieve such an efficient aim, this study presents a novel digit-serial dual basis multiplier that is different from existing ones with a modified cut-set method using Karatsuba algorithm as well as Hankel matrix. As a result, the proposed multiplier can save much space and thus be particularly suitable for some hand held devices equipped with only limited resources. The proposed digit-serial dual basis multiplier saves 55% space complexity as compared with existing similar studies with National Institute of Standards and Technology (NIST) suggested values for elliptic curve cryptosystem.
Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field (2m) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods that can keep balance of low space complexity and low time complexity at the same time. In order to achieve such an efficient aim, this study presents a novel digit-serial dual basis multiplier that is different from existing ones with a modified cut-set method using Karatsuba algorithm as well as Hankel matrix. As a result, the proposed multiplier can save much space and thus be particularly suitable for some hand held devices equipped with only limited resources. The proposed digit-serial dual basis multiplier saves 55% space complexity as compared with existing similar studies with National Institute of Standards and Technology suggested values for elliptic curve cryptosystem.
Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2 m ) have been widely applied in this kind of computations because of its advantage of small chip area. Nevertheless, up to date, there are only few methods that can keep balance of low space complexity and low time complexity at the same time. In order to achieve such an efficient aim, this study presents a novel digit‐serial dual basis multiplier that is different from existing ones with a modified cut‐set method using Karatsuba algorithm as well as Hankel matrix. As a result, the proposed multiplier can save much space and thus be particularly suitable for some hand held devices equipped with only limited resources. The proposed digit‐serial dual basis multiplier saves 55% space complexity as compared with existing similar studies with National Institute of Standards and Technology (NIST) suggested values for elliptic curve cryptosystem.
Author Yan Hua, Ying
Huan Liu, Yong
Lee, Chiou-Yng
Wun Chiou, Che
Lin, Jim-Min
Author_xml – sequence: 1
  givenname: Ying
  surname: Yan Hua
  fullname: Yan Hua, Ying
  organization: 1College of Electronics and Information Engineering, Tongji University, No. 4800, Cao'an Hwy, Shanghai 201 804, People's Republic of China
– sequence: 2
  givenname: Jim-Min
  surname: Lin
  fullname: Lin, Jim-Min
  email: jimmy@fcu.edu.tw
  organization: 2Department of Information Engineering and Computer Science, Feng Chia University, Taichung City 407, Taiwan
– sequence: 3
  givenname: Che
  surname: Wun Chiou
  fullname: Wun Chiou, Che
  organization: 3Department of Computer Science and Information Engineering, Ching Yun University, Chung-Li 320, Taiwan
– sequence: 4
  givenname: Chiou-Yng
  surname: Lee
  fullname: Lee, Chiou-Yng
  organization: 4Department of Computer Information and Network Engineering, Lunghwa University of Science and Technology, Taoyuan County 333, Taiwan
– sequence: 5
  givenname: Yong
  surname: Huan Liu
  fullname: Huan Liu, Yong
  organization: 1College of Electronics and Information Engineering, Tongji University, No. 4800, Cao'an Hwy, Shanghai 201 804, People's Republic of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27448939$$DView record in Pascal Francis
BookMark eNqNkMtuEzEUhkeoSLSFB2BnCSG1iwm2x3MxO1olaUQkFi1r68RjBxfPeLA9pHkA3htHU0Wo4rY5tuTv8znnP8tOeterLHtN8Ixgxt8ZFXOjw4xiQmeY0vpZdkrqkuRNTeqT4x3zF9lZCPcYl1WJ-Wn2Y-12KAwgVS5dN1j1YOIetWZrYh6UN2BRO6aygWACCvsQnTUSdaONZrBGeeS-p7IE69K7Nsq2aLm4oN0lGoPpt-gG-q_Kog6iNw8I-hZ9BA8xjBtAYLfOm_ile5k912CDevV4nmefF_O765t8_Wm5uv6wzmVZNTiXBdHthqlKMgWkaCq6UUypqmCkTbsBrTAjXBaUt6zUmgPnoBVlNWaak3pTnGd0-nfsB9jvwFoxeNOB3wuCxSFIkYIUKUhxCFIcgkzSxSQN3n0bVYiiM0Eqa6FXbgyCVIkllDdNQt88Qe_d6Pu0kiBl2ZSsqtiBevtIQZBgtYdemnCchNaMNbzgiSMTJ70LwSv9X8PWTxxpIkTj-ujB2L-a7ydzZ6za_7uVWN3O6dUCY0xwki8n-YAdd17N78RqcfuLM7Q6sflv2D8P9hM_ruPZ
CitedBy_id crossref_primary_10_1109_TC_2022_3215638
crossref_primary_10_1587_elex_16_20190268
crossref_primary_10_1587_elex_16_20190600
crossref_primary_10_1049_iet_ifs_2015_0336
crossref_primary_10_3390_app11156938
crossref_primary_10_1016_j_jksuci_2022_06_009
crossref_primary_10_1016_j_aej_2022_07_013
crossref_primary_10_1109_TCSII_2024_3369103
crossref_primary_10_1109_TCSI_2014_2335031
crossref_primary_10_3390_electronics10151777
crossref_primary_10_1016_j_eij_2022_01_001
crossref_primary_10_1016_j_aej_2020_10_058
crossref_primary_10_1016_j_micpro_2015_11_016
crossref_primary_10_1109_TVLSI_2016_2605183
crossref_primary_10_3390_math11020328
crossref_primary_10_1109_JIOT_2021_3087274
crossref_primary_10_1109_TVLSI_2014_2359113
crossref_primary_10_3390_s22062090
crossref_primary_10_1109_TCSI_2017_2677962
crossref_primary_10_3390_math10050848
Cites_doi 10.1090/S0025-5718-1987-0866109-5
10.1017/CBO9781139172769
10.1109/TVLSI.2004.842923
10.1109/TC.2007.19
10.1109/12.926154
10.1109/12.736433
10.1007/BF00196789
10.1109/TC.1985.1676616
10.1137/0403012
10.1049/ip-cdt:19981906
10.1007/s11265-011-0654-2
10.1049/iet-ifs.2007.0132
10.1049/iet-cds:20080122
10.1007/3-540-39799-X_31
10.1093/ietfec/e88-a.11.3169
10.1007/0-387-34799-2_8
10.1007/s11390-007-9003-0
10.1016/0890-5401(89)90045-X
10.1049/iet-cds:20060314
10.1016/j.cose.2004.09.012
10.1109/12.663762
10.1109/12.485570
10.1109/12.660172
10.1109/12.257715
10.1109/TC.2002.1017695
10.1109/TC.2006.10
10.1007/3-540-51083-4_67
10.1109/TC.2004.52
10.1109/TC.2007.1076
10.1109/TVLSI.2009.2016753
10.1109/18.45274
10.1016/j.ipl.2011.01.005
10.1109/TC.2006.165
10.1109/TIT.1982.1056591
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
2014 INIST-CNRS
Copyright The Institution of Engineering & Technology Jun 2013
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
– notice: 2014 INIST-CNRS
– notice: Copyright The Institution of Engineering & Technology Jun 2013
DBID AAYXX
CITATION
IQODW
3V.
7XB
8AL
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
7SC
7SP
8FD
F28
FR3
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1049/iet-ifs.2012.0227
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer Science Database

Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1751-8717
EndPage 86
ExternalDocumentID 10.1049/iet-ifs.2012.0227
3418754171
27448939
10_1049_iet_ifs_2012_0227
ISE2BF00010
Genre article
Feature
GroupedDBID 0R
24P
29I
3V.
4.4
5GY
6IK
8AL
8FE
8FG
AAJGR
ABJCF
ABUWG
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
GNUQQ
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M0N
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
RIE
RIG
RNS
RUI
S0W
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
MCNEO
OK1
ROL
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
IQODW
7XB
8FK
JQ2
PKEHL
PRINS
Q9U
7SC
7SP
8FD
F28
FR3
L7M
L~C
L~D
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c5680-c31fdb4e6c4ea13862be4ee6341d870a260419c329d45ff9a99afe24704f917b3
IEDL.DBID IDLOA
ISSN 1751-8709
1751-8717
IngestDate Thu Oct 30 06:00:34 EDT 2025
Sun Aug 24 03:31:26 EDT 2025
Wed Aug 13 02:27:19 EDT 2025
Mon Jul 21 09:10:51 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Wed Oct 29 21:16:16 EDT 2025
Wed Jan 22 16:32:42 EST 2025
Thu May 09 18:13:39 EDT 2019
Tue Jan 05 21:44:05 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords low space complexity digit serial dual basis systolic multiplier
Hankel matrix
cut set method
public key cryptography
Galois field GF(2m)
elliptic curve cryptosystem
Hankel matrices
Galois fields
Karatsuba algorithm
finite field arithmetic operation
cryptographic computations
computational complexity
Finite field
Space complexity
Galois algebra
Standardization
Multiplier
Public key cryptography
Elliptic curve
Arithmetic operation
Computational complexity
Time complexity
Mobile computing
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5680-c31fdb4e6c4ea13862be4ee6341d870a260419c329d45ff9a99afe24704f917b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2012.0227
PQID 1558546648
PQPubID 1936350
PageCount 12
ParticipantIDs wiley_primary_10_1049_iet_ifs_2012_0227_ISE2BF00010
proquest_miscellaneous_1620112988
proquest_journals_1558546648
iet_journals_10_1049_iet_ifs_2012_0227
crossref_primary_10_1049_iet_ifs_2012_0227
unpaywall_primary_10_1049_iet_ifs_2012_0227
crossref_citationtrail_10_1049_iet_ifs_2012_0227
pascalfrancis_primary_27448939
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate June 2013
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: June 2013
PublicationDecade 2010
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET information security
PublicationYear 2013
Publisher The Institution of Engineering and Technology
IET
John Wiley & Sons, Inc
Publisher_xml – name: The Institution of Engineering and Technology
– name: IET
– name: John Wiley & Sons, Inc
References Fan, H.; Hasan, M.A. (C33) 2007; 56
Kumar, S.; Wollinger, T.; Paar, C. (C20) 2006; 55
Chang, P.L.; Chen, L.H.; Lee, C.Y. (C48) 2009; 3
Reyhani-Masoleh, A. (C28) 2006; 55
Morii, M.; Kasahara, M.; Whiting, D.L. (C4) 1989; IT- 35
Koblitz, N. (C7) 1987; 48
Bartee, T.C.; Schneider, D.J. (C10) 1963; 6
Wu, H. (C16) 2002; 51
Talapatra, S.; Rahaman, H.; Mathew, J. (C21) 2010; 18
Lee, C.Y.; Chiou, C.W. (C25) 2005; E88-A
Guo, J.-H.; Wang, C.-L. (C18) 1998; 145
Lee, C.-Y.; Chen, Y.-H.; Chiou, C.W.; Lin, J.-M. (C41) 2007; 22
Wu, H.; Hasan, M.A.; Blake, I.F. (C22) 1998; 47
Itoh, T.; Tsujii, S. (C13) 1989; 83
Fenn, S.T.J.; Benaissa, M.; Taylor, D. (C23) 1996; 45
Sunar, B. (C35) 2004; 53
Kim, C.H.; Hong, C.P.; Kwon, S. (C19) 2005; 13
Wang, M.; Blake, I.F. (C24) 1990; 3
Lee, C.-Y.; Chiou, C.W.; Lin, J.-M.; Chang, C.-C. (C42) 2007; 1
Paar, C.; Fleischmann, P.; Roelse, P. (C15) 1998; 47
Wang, C.C.; Truong, T.K.; Shao, H.M.; Deutsch, L.J.; Omura, J.K.; Reed, I.S. (C27) 1985; C-34
Agnew, G.B.; Mullin, R.C.; Onyszchuk, I.M.; Vanstone, S.A. (C30) 1991; 3
Lee, C.Y.; Lu, E.H.; Lee, J.Y. (C14) 2001; 50
Fan, H.; Hasan, M.A. (C37) 2009; 3
Li, Y.; Chen, G.-L.; Li, J.-H. (C38) 2011; 111
Hasan, M.A.; Wang, M.Z.; Bhargava, V.K. (C31) 1993; 42
Lee, C.-Y.; Chiou, C.W. (C44) 2012; 69
Chen, L.H.; Chang, P.L.; Lee, C.Y.; Yang, Y.K. (C45) 2011; 7
Chiou, C.W.; Lee, C.Y. (C29) 2005; 24
Fan, H.; Hasan, M.A. (C17) 2007; 56
Chiou, C.W.; Lee, C.-Y.; Lin, J.-M.; Hou, T.-W.; Chang, C.-C. (C43) 2009; 3
Berlekamp, E.R. (C3) 1982; IT-28
Lee, C.-Y.; Chiou, C.W. (C40) 2005; E88-A
Koç, Ç.K.; Sunar, B. (C12) 1998; 47
1991; 3
1989; 83
2001; 50
1962; 145
1985; C‐34
2010; 18
2002; 51
2006; 55
1993; 42
1994
2004
2005; E88‐A
2003
2007; 56
2011; 111
2011; 7
1998; 47
2005; 24
1977
1989; IT‐ 35
1990; 3
2004; 53
1982; IT‐28
1963; 6
1986
1985
1962
2009; 3
2012; 69
2007; 1
2007; 22
1998; 145
1987; 48
2005; 13
1996; 45
1988
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
Weste N. (e_1_2_8_48_2) 1985
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_45_2
Chen L.H. (e_1_2_8_46_2) 2011; 7
e_1_2_8_25_2
e_1_2_8_26_2
Partington J.R. (e_1_2_8_40_2) 1988
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_22_2
e_1_2_8_43_2
Bartee T.C. (e_1_2_8_11_2) 1963; 6
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
Blahut R.E. (e_1_2_8_3_2) 1985
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
Mac Williams F.J. (e_1_2_8_2_2) 1977
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
Chang P.L. (e_1_2_8_49_2) 2009; 3
e_1_2_8_32_2
References_xml – volume: 111
  start-page: 390
  issue: 8
  year: 2011
  end-page: 394
  ident: C38
  article-title: Speeding of bit-parallel Karatsuba multiplier in GF(2 ) generated by trinomials
  publication-title: Inf. Process. Lett.
– volume: 3
  start-page: 1113
  issue: 4
  year: 2009
  end-page: 1118
  ident: C48
  article-title: Low-complexity dual basis digit serial GF(2 ) multiplier
  publication-title: ICIC Express Lett.
– volume: E88-A
  start-page: 3169
  issue: 11
  year: 2005
  end-page: 3179
  ident: C40
  article-title: Efficient design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2 )
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: IT-28
  start-page: 869
  year: 1982
  end-page: 874
  ident: C3
  article-title: Bit-serial Reed–Solomon encoder
  publication-title: IEEE Trans. Inf. Theory
– volume: 42
  start-page: 1278
  issue: 10
  year: 1993
  end-page: 1280
  ident: C31
  article-title: A modified Massey–Omura parallel multiplier for a class of finite fields
  publication-title: IEEE Trans. Comput.
– volume: 47
  start-page: 353
  issue: 3
  year: 1998
  end-page: 356
  ident: C12
  article-title: Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields
  publication-title: IEEE Trans. Comput.
– volume: 45
  start-page: 319
  issue: 3
  year: 1996
  end-page: 327
  ident: C23
  article-title: GF(2 ) multiplication and division over the dual basis
  publication-title: IEEE Trans. Comput.
– volume: 7
  start-page: 1193
  issue: 3
  year: 2011
  end-page: 1208
  ident: C45
  article-title: Scalable and systolic dual basis multiplier over GF(2 )
  publication-title: Int. J. Innov. Comput.
– volume: IT- 35
  start-page: 1177
  issue: 6
  year: 1989
  end-page: 1183
  ident: C4
  article-title: Efficient bit-serial multiplication and the discrete-time Wiener–Hopf equation over finite fields
  publication-title: IEEE Trans. Inf. Theory
– volume: 6
  start-page: 79
  year: 1963
  end-page: 98
  ident: C10
  article-title: Computation with finite fields
  publication-title: Inf. Comput.
– volume: 145
  start-page: 143
  issue: 2
  year: 1998
  end-page: 148
  ident: C18
  article-title: Digit-serial systolic multiplier for finite fields GF(2 )
  publication-title: IEE Proc. Comput. Digit. Tech.
– volume: 1
  start-page: 477
  issue: 6
  year: 2007
  end-page: 484
  ident: C42
  article-title: Scalable and systolic montgomery multiplier over GF(2 ) generated by trinomials
  publication-title: IET Circuits Dev. Syst.
– volume: 50
  start-page: 385
  issue: 5
  year: 2001
  end-page: 393
  ident: C14
  article-title: Bit-parallel systolic multipliers for GF(2 ) fields defined by all-one and equally-spaced polynomials
  publication-title: IEEE Trans. Comput.
– volume: 48
  start-page: 203
  year: 1987
  end-page: 209
  ident: C7
  article-title: Elliptic curve cryptosystems
  publication-title: Math. Comput.
– volume: 69
  start-page: 197
  issue: 2
  year: 2012
  end-page: 211
  ident: C44
  article-title: Scalable Gaussian normal basis multipliers over GF(2 ) using Hankel matrix–vector representation
  publication-title: J. Signal Process. Syst.
– volume: 22
  start-page: 28
  issue: 1
  year: 2007
  end-page: 38
  ident: C41
  article-title: Unified parallel systolic multipliers over GF(2 )
  publication-title: J. Comput. Sci. Technol.
– volume: 51
  start-page: 750
  issue: 7
  year: 2002
  end-page: 758
  ident: C16
  article-title: Bit-parallel finite field multiplier and squarer using polynomial basis
  publication-title: IEEE Trans. Comput.
– volume: 56
  start-page: 224
  issue: 2
  year: 2007
  end-page: 233
  ident: C17
  article-title: A new approach to subquadratic space complexity parallel multipliers for extended binary fields
  publication-title: IEEE Trans. Comput.
– volume: C-34
  start-page: 709
  issue: 8
  year: 1985
  end-page: 717
  ident: C27
  article-title: VLSI architectures for computing multiplications and inverses in GF(2 )
  publication-title: IEEE Trans. Comput.
– volume: 83
  start-page: 21
  year: 1989
  end-page: 40
  ident: C13
  article-title: Structure of parallel multipliers for a class of fields GF(2 )
  publication-title: Inf. Comput.
– volume: 3
  start-page: 60
  issue: 2
  year: 2009
  end-page: 65
  ident: C37
  article-title: Alternative to the Karatsuba algorithm for software implementations of GF(2 ) multiplications
  publication-title: IET Inf. Sec.
– volume: 18
  start-page: 847
  issue: 5
  year: 2010
  end-page: 852
  ident: C21
  article-title: Low complexity digit serial systolic montgomery multipliers for special class of GF(2 )
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
– volume: 3
  start-page: 63
  year: 1991
  end-page: 79
  ident: C30
  article-title: An implementation for a fast public-key cryptosystem
  publication-title: J. Cryptol.
– volume: 47
  start-page: 162
  issue: 2
  year: 1998
  end-page: 170
  ident: C15
  article-title: Efficient multiplier architectures for Galois fields GF(2 )
  publication-title: IEEE Trans. Comput.
– volume: 3
  start-page: 22
  issue: 1
  year: 2009
  end-page: 40
  ident: C43
  article-title: Concurrent error detection and correction in dual basis multiplier over GF(2 )
  publication-title: IET Circuits Dev. Syst.
– volume: 53
  start-page: 1097
  issue: 9
  year: 2004
  end-page: 1105
  ident: C35
  article-title: A generalized method for constructing subquadratic complexity GF(2 ) multipliers
  publication-title: IEEE Trans. Comput.
– volume: 47
  start-page: 1223
  issue: 11
  year: 1998
  end-page: 1234
  ident: C22
  article-title: New low-complexity bit-parallel finite field multipliers using weakly dual bases
  publication-title: IEEE Trans. Comput.
– volume: 13
  start-page: 476
  issue: 4
  year: 2005
  end-page: 483
  ident: C19
  article-title: A digit-serial multiplier for finite field GF(2 )
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
– volume: 55
  start-page: 1306
  issue: 10
  year: 2006
  end-page: 1311
  ident: C20
  article-title: Optimum digit-serial GF(2 ) multipliers for curve-based cryptography
  publication-title: IEEE Trans. Comput.
– volume: E88-A
  start-page: 3169
  issue: 11
  year: 2005
  end-page: 3179
  ident: C25
  article-title: Efficient design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2 )
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: 56
  start-page: 1435
  issue: 10
  year: 2007
  end-page: 1437
  ident: C33
  article-title: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases
  publication-title: IEEE Trans. Comput.
– volume: 55
  start-page: 34
  issue: 1
  year: 2006
  end-page: 47
  ident: C28
  article-title: Efficient algorithms and architectures for field multiplication using Gaussian normal bases
  publication-title: IEEE Trans. Comput.
– volume: 3
  start-page: 140
  issue: 1
  year: 1990
  end-page: 148
  ident: C24
  article-title: Bit serial multiplication in finite fields
  publication-title: SIAM J. Disc. Math.
– volume: 24
  start-page: 83
  issue: 1
  year: 2005
  end-page: 86
  ident: C29
  article-title: Multiplexer-based double-exponentiation for normal basis of GF (2 )
  publication-title: Comput. Sec.
– year: 1985
– volume: 55
  start-page: 1306
  issue: 10
  year: 2006
  end-page: 1311
  article-title: Optimum digit‐serial GF(2 ) multipliers for curve‐based cryptography
  publication-title: IEEE Trans. Comput.
– volume: 42
  start-page: 1278
  issue: 10
  year: 1993
  end-page: 1280
  article-title: A modified Massey–Omura parallel multiplier for a class of finite fields
  publication-title: IEEE Trans. Comput.
– volume: 1
  start-page: 477
  issue: 6
  year: 2007
  end-page: 484
  article-title: Scalable and systolic montgomery multiplier over GF(2 ) generated by trinomials
  publication-title: IET Circuits Dev. Syst.
– volume: 111
  start-page: 390
  issue: 8
  year: 2011
  end-page: 394
  article-title: Speeding of bit‐parallel Karatsuba multiplier in GF(2 ) generated by trinomials
  publication-title: Inf. Process. Lett.
– start-page: 94
  year: 1988
  end-page: 99
  article-title: A family of Jacobians suitable for discrete log cryptosystems
– volume: 69
  start-page: 197
  issue: 2
  year: 2012
  end-page: 211
  article-title: Scalable Gaussian normal basis multipliers over GF(2 ) using Hankel matrix–vector representation
  publication-title: J. Signal Process. Syst.
– volume: 47
  start-page: 1223
  issue: 11
  year: 1998
  end-page: 1234
  article-title: New low‐complexity bit‐parallel finite field multipliers using weakly dual bases
  publication-title: IEEE Trans. Comput.
– volume: IT‐28
  start-page: 869
  year: 1982
  end-page: 874
  article-title: Bit‐serial Reed–Solomon encoder
  publication-title: IEEE Trans. Inf. Theory
– start-page: 297
  year: 1988
  end-page: 309
  article-title: VLSI architectures for multiplication over finite field GF(2 )
– volume: 47
  start-page: 162
  issue: 2
  year: 1998
  end-page: 170
  article-title: Efficient multiplier architectures for Galois fields GF(2 )
  publication-title: IEEE Trans. Comput.
– volume: 83
  start-page: 21
  year: 1989
  end-page: 40
  article-title: Structure of parallel multipliers for a class of fields GF(2 )
  publication-title: Inf. Comput.
– volume: 13
  start-page: 476
  issue: 4
  year: 2005
  end-page: 483
  article-title: A digit‐serial multiplier for finite field GF(2 )
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
– volume: 18
  start-page: 847
  issue: 5
  year: 2010
  end-page: 852
  article-title: Low complexity digit serial systolic montgomery multipliers for special class of GF(2 )
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
– start-page: 417
  year: 1986
  end-page: 426
  article-title: Use of elliptic curves in cryptography
– volume: E88‐A
  start-page: 3169
  issue: 11
  year: 2005
  end-page: 3179
  article-title: Efficient design of low‐complexity bit‐parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2 )
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: 56
  start-page: 224
  issue: 2
  year: 2007
  end-page: 233
  article-title: A new approach to subquadratic space complexity parallel multipliers for extended binary fields
  publication-title: IEEE Trans. Comput.
– volume: C‐34
  start-page: 709
  issue: 8
  year: 1985
  end-page: 717
  article-title: VLSI architectures for computing multiplications and inverses in GF(2 )
  publication-title: IEEE Trans. Comput.
– volume: 56
  start-page: 1435
  issue: 10
  year: 2007
  end-page: 1437
  article-title: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases
  publication-title: IEEE Trans. Comput.
– volume: 3
  start-page: 140
  issue: 1
  year: 1990
  end-page: 148
  article-title: Bit serial multiplication in finite fields
  publication-title: SIAM J. Disc. Math.
– volume: 24
  start-page: 83
  issue: 1
  year: 2005
  end-page: 86
  article-title: Multiplexer‐based double‐exponentiation for normal basis of GF (2 )
  publication-title: Comput. Sec.
– year: 1977
– year: 1994
– volume: 6
  start-page: 79
  year: 1963
  end-page: 98
  article-title: Computation with finite fields
  publication-title: Inf. Comput.
– volume: 53
  start-page: 1097
  issue: 9
  year: 2004
  end-page: 1105
  article-title: A generalized method for constructing subquadratic complexity GF(2 ) multipliers
  publication-title: IEEE Trans. Comput.
– year: 1986
– volume: 3
  start-page: 22
  issue: 1
  year: 2009
  end-page: 40
  article-title: Concurrent error detection and correction in dual basis multiplier over GF(2 )
  publication-title: IET Circuits Dev. Syst.
– volume: 50
  start-page: 385
  issue: 5
  year: 2001
  end-page: 393
  article-title: Bit‐parallel systolic multipliers for GF(2 ) fields defined by all‐one and equally‐spaced polynomials
  publication-title: IEEE Trans. Comput.
– volume: 7
  start-page: 1193
  issue: 3
  year: 2011
  end-page: 1208
  article-title: Scalable and systolic dual basis multiplier over GF(2 )
  publication-title: Int. J. Innov. Comput.
– volume: IT‐ 35
  start-page: 1177
  issue: 6
  year: 1989
  end-page: 1183
  article-title: Efficient bit‐serial multiplication and the discrete‐time Wiener–Hopf equation over finite fields
  publication-title: IEEE Trans. Inf. Theory
– start-page: 196
  year: 2003
  end-page: 202
  article-title: A low complexity and a low latency bit parallel systolic multiplier over GF(2 ) using an optimal normal basis of type II
– start-page: 405
  year: 2003
  end-page: 410
  article-title: On fully parallel Karatsuba multipliers for GF(2 )
– volume: 48
  start-page: 203
  year: 1987
  end-page: 209
  article-title: Elliptic curve cryptosystems
  publication-title: Math. Comput.
– volume: 47
  start-page: 353
  issue: 3
  year: 1998
  end-page: 356
  article-title: Low‐complexity bit‐parallel canonical and normal basis multipliers for a class of finite fields
  publication-title: IEEE Trans. Comput.
– volume: 3
  start-page: 63
  year: 1991
  end-page: 79
  article-title: An implementation for a fast public‐key cryptosystem
  publication-title: J. Cryptol.
– year: 1988
– year: 2004
– volume: 45
  start-page: 319
  issue: 3
  year: 1996
  end-page: 327
  article-title: GF(2 ) multiplication and division over the dual basis
  publication-title: IEEE Trans. Comput.
– volume: 22
  start-page: 28
  issue: 1
  year: 2007
  end-page: 38
  article-title: Unified parallel systolic multipliers over GF(2 )
  publication-title: J. Comput. Sci. Technol.
– start-page: 293
  year: 1962
  end-page: 294
  article-title: Multiplication of many‐digital numbers by automatic computers
– volume: 145
  start-page: 143
  issue: 2
  year: 1998
  end-page: 148
  article-title: Digit‐serial systolic multiplier for finite fields GF(2 )
  publication-title: IEE Proc. Comput. Digit. Tech.
– volume: 3
  start-page: 1113
  issue: 4
  year: 2009
  end-page: 1118
  article-title: Low‐complexity dual basis digit serial GF(2 ) multiplier
  publication-title: ICIC Express Lett.
– volume: 3
  start-page: 60
  issue: 2
  year: 2009
  end-page: 65
  article-title: Alternative to the Karatsuba algorithm for software implementations of GF(2 ) multiplications
  publication-title: IET Inf. Sec.
– volume: 145
  start-page: 293
  year: 1962
  end-page: 294
  article-title: Multiplication of many‐digital numbers by automatic computers
– volume: 55
  start-page: 34
  issue: 1
  year: 2006
  end-page: 47
  article-title: Efficient algorithms and architectures for field multiplication using Gaussian normal bases
  publication-title: IEEE Trans. Comput.
– volume: 51
  start-page: 750
  issue: 7
  year: 2002
  end-page: 758
  article-title: Bit‐parallel finite field multiplier and squarer using polynomial basis
  publication-title: IEEE Trans. Comput.
– ident: e_1_2_8_8_2
  doi: 10.1090/S0025-5718-1987-0866109-5
– ident: e_1_2_8_6_2
  doi: 10.1017/CBO9781139172769
– ident: e_1_2_8_27_2
– ident: e_1_2_8_20_2
  doi: 10.1109/TVLSI.2004.842923
– volume-title: The theory of error‐correcting codes
  year: 1977
  ident: e_1_2_8_2_2
– ident: e_1_2_8_18_2
  doi: 10.1109/TC.2007.19
– volume-title: An introduction to Hankel operators. LMS Student Texts.13
  year: 1988
  ident: e_1_2_8_40_2
– ident: e_1_2_8_15_2
  doi: 10.1109/12.926154
– ident: e_1_2_8_23_2
  doi: 10.1109/12.736433
– ident: e_1_2_8_35_2
– ident: e_1_2_8_31_2
  doi: 10.1007/BF00196789
– ident: e_1_2_8_28_2
  doi: 10.1109/TC.1985.1676616
– ident: e_1_2_8_25_2
  doi: 10.1137/0403012
– ident: e_1_2_8_19_2
  doi: 10.1049/ip-cdt:19981906
– ident: e_1_2_8_45_2
  doi: 10.1007/s11265-011-0654-2
– volume-title: Fast algorithms for digital signal processing
  year: 1985
  ident: e_1_2_8_3_2
– ident: e_1_2_8_38_2
  doi: 10.1049/iet-ifs.2007.0132
– ident: e_1_2_8_44_2
  doi: 10.1049/iet-cds:20080122
– ident: e_1_2_8_7_2
  doi: 10.1007/3-540-39799-X_31
– ident: e_1_2_8_26_2
  doi: 10.1093/ietfec/e88-a.11.3169
– ident: e_1_2_8_37_2
– ident: e_1_2_8_9_2
  doi: 10.1007/0-387-34799-2_8
– ident: e_1_2_8_42_2
  doi: 10.1007/s11390-007-9003-0
– volume: 3
  start-page: 1113
  issue: 4
  year: 2009
  ident: e_1_2_8_49_2
  article-title: Low‐complexity dual basis digit serial GF(2 m ) multiplier
  publication-title: ICIC Express Lett.
– ident: e_1_2_8_14_2
  doi: 10.1016/0890-5401(89)90045-X
– ident: e_1_2_8_43_2
  doi: 10.1049/iet-cds:20060314
– ident: e_1_2_8_30_2
  doi: 10.1016/j.cose.2004.09.012
– volume: 7
  start-page: 1193
  issue: 3
  year: 2011
  ident: e_1_2_8_46_2
  article-title: Scalable and systolic dual basis multiplier over GF(2 m )
  publication-title: Int. J. Innov. Comput.
– ident: e_1_2_8_16_2
  doi: 10.1109/12.663762
– ident: e_1_2_8_24_2
  doi: 10.1109/12.485570
– volume-title: Principles of CMOS VLSI design: a system perspective
  year: 1985
  ident: e_1_2_8_48_2
– ident: e_1_2_8_13_2
  doi: 10.1109/12.660172
– ident: e_1_2_8_32_2
  doi: 10.1109/12.257715
– ident: e_1_2_8_17_2
  doi: 10.1109/TC.2002.1017695
– ident: e_1_2_8_29_2
  doi: 10.1109/TC.2006.10
– ident: e_1_2_8_12_2
  doi: 10.1007/3-540-51083-4_67
– ident: e_1_2_8_36_2
  doi: 10.1109/TC.2004.52
– ident: e_1_2_8_33_2
– ident: e_1_2_8_34_2
  doi: 10.1109/TC.2007.1076
– volume: 6
  start-page: 79
  year: 1963
  ident: e_1_2_8_11_2
  article-title: Computation with finite fields
  publication-title: Inf. Comput.
– ident: e_1_2_8_41_2
  doi: 10.1093/ietfec/e88-a.11.3169
– ident: e_1_2_8_22_2
  doi: 10.1109/TVLSI.2009.2016753
– ident: e_1_2_8_5_2
  doi: 10.1109/18.45274
– ident: e_1_2_8_39_2
  doi: 10.1016/j.ipl.2011.01.005
– ident: e_1_2_8_21_2
  doi: 10.1109/TC.2006.165
– ident: e_1_2_8_47_2
– ident: e_1_2_8_10_2
– ident: e_1_2_8_4_2
  doi: 10.1109/TIT.1982.1056591
SSID ssj0056509
Score 2.0426924
Snippet Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2m) have been...
Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field GF(2 m ) have been...
Multiplication is one important finite field arithmetic operation in cryptographic computations. Dual basis multipliers over Galois field (2m) have been widely...
SourceID unpaywall
proquest
pascalfrancis
crossref
wiley
iet
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 75
SubjectTerms Algebra
Algorithms
Applied sciences
Balancing
Complexity
Computation
computational complexity
cryptographic computations
Cryptography
cut set method
elliptic curve cryptosystem
Exact sciences and technology
Field theory and polynomials
finite field arithmetic operation
Galois field GF(2m)
Galois fields
Hand held
Hankel matrices
Hankel matrix
Information, signal and communications theory
Karatsuba algorithm
low space complexity digit serial dual basis systolic multiplier
Mathematical analysis
Mathematics
Multipliers
public key cryptography
Sciences and techniques of general use
Signal and communications theory
Telecommunications and information theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa27gFeuCMyxmQQQlxkLRcnjR8QYqhdy6VCbJP2tMiJ7S4iTQNptPEb-NOckxvrS-G1PlVan-NzPsfH30fIcxGK2JOSsyHXAeMC9qxhbBLG5dAfKl8oWWsdfpkFk1P-8cw_2yKz7i4MtlV2ObFO1GqZ4DvyA6h7oY9c6OG74gdD1Sg8Xe0kNGQrraDe1hRj22THRWasAdk5HM2-futys498cfUVSd-BPGCL_pxTHKR6xVKDDN74etBFmZlrlWobhrFvUpYwdabRvFgDpTeqvJC_LmWWrcPcuk6N75BbLcCk75uIuEu2dH6P3O7EG2i7lu-T35-XlxTSSaJZ3VaurwCPU5XO0xVrwpLiNS0KZS4tKRI-I4MwbRsQoZhSbP6kRzJbwnjdCEePxi_d87Iq6OL8FcWO-jmdyPy7zugClQCuqMwV_YRk42UVSyqzOczw6mLxgJyORycfJqxVZmCJH4Q2SzzHqBi8m3AtHQ92RbHmWgdQEhVMq4RNEndE4rlCcd8YIYWQRrt8aHMD-8PYe0gG-TLXjwhNbM6FBzghBiCaqCBWARfSNpBZjK2GtkXszgtR0tKWo3pGFtXH51xE4JkIHBeh4yJ0nEVe918pGs6OTcYv8LN25ZabDJ-tGU5HJ9F0fPzXICqUscj-Woj0z0ciRoCGwiJ7Xcxce2Yf2xZ52g_DOsfDG5nrZQU2AUI1V4Rg86aPtf_5f14djf-2jKbHI_cQu00de3fzz3xMbrqNLAiznT0yWP2s9BMAZ6t4v11xfwAUJDZH
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELba7QEulKeatlQGIcRDKXk4yfpY0L54VEjtSuUUObG9jZpNVt1ELZy4c-E38kuYyQsWoQIStyiexPJ4PPONPZ4h5BHv88gVgpkBU77JOPis_UjHJhOBF0iPS1HVOnx36I-n7PWJd7JGRu1dmDo_RLfhhiuj0te4wBdS13q-9joZf5Gowkw0Zt3GLT3HCdbJhu8BKO-Rjenh-4MP1XVIz4Y1XwV7NM920J1v_uYfKxZqHZoxXlIsgWW6rnWxAkavldlCfLwQaboKbyv7NNwkp-3I6rCUs_2yiPbjT78kffwPQ79JbjQYlh7UQneLrKnsNtls60PQRl3cIV_e5hcUNFasvn3-WsWuq0sA_VQms6SAV7X0U7wNRsGaJkuKeaUxUTFt4hzBZlOMMaUjkebQXsXb0dHwiUPn9CnFoP0ZHYvsTKV0jsUGLqnIJH2D-cyXZSSoSGf5eVKczu-S6XBw_GpsNsUfzNjz-5YZu7aWEQhQzJSwXXC8IsWU8sHqSphNAX4Ys3nsOlwyT2suOBdaOSywmAYXNHLvkV6WZ2qL0NhijLsARSLAurH0I-kzLiwNyktbMrAMYrUTHsZNZnQs0JGG1Qk94yEwOwRmh8jsEJltkGfdJ4s6LchVxI_xXaMcllcRPlwhnAyOw8nw6AdBCHJgkL0Vaez6x1yPgD65QXZb8fypTw_8Qiwl0DfIg64ZVAmeD4lM5SXQ-IgGHd4HmuedWP_N-NxKWv9MGU6OBs5LDGi1re1_6mOHXHfqQiSmZe-SXnFeqvsAB4tor1nq3wG_glzy
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALb0SgVAYhxEMRTuI8fIRqt7u8hNRW6i2yY3uJyCarblYtN67c-I38EmbyggipIK7xJFEyM55v7PE3hDwWiVCBlNyNuYlcLiBnTZTNXC7jMNah0LLpdfj-QzQ75m9OwpMtst-fhWn5IYYFN_SMZr5GB5eq7UICoBaUmJvazS0ybuNynu_H2-SSB3gGzdznH_vpOESKuOZUZOiB6zMxbG2Kl388YhSctmEYSyXlGv6WbdtcjHDo5U25kl_OZFGMkW0TmqbXydUOU9JXrRHcIFumvEmu9f0aaOe-t8i3d9UZhRkkMz--fm9qyc05gHCq80Vew6XWGimezqIQ3fI1RZ5nJA6mXd0hxFCKNZ_0QBYVjDf1b_Rg-tRfPqNYQr-gM1l-NgVdIvX_OZWlpm-RXXy9UZLKYlGd5vWn5W1yPJ0c7c_crhWDm4VRwtws8KxWoM6MG-kFkAYpw42JIAZq-KkSsiLuiSzwheahtUIKIa3xecy4hYRQBXfITlmV5i6hGeNcBAAMFCDPTEdKR1xIZmEqsUzHzCGs10GadTzl2C6jSJv9ci5S0EsKaktRbSmqzSHPh1tWLUnHRcJP8FrnquuLBB-NBOeTo3Q-PfwlkK60dcjeyECG9yPzImBB4ZDd3mJ-e2cIWRoS-ycOeTgMg2Pjbo0sTbUBmQixmS8SkHkxWNq_fF_Q2OLfJdP54cR_jeWlHrv3X3fdJ1f8tj2Iy7xdslOfbswDAGm12muc8Ceu6Tag
  priority: 102
  providerName: Wiley-Blackwell
Title Low space-complexity digit-serial dual basis systolic multiplier over Galois field GF(2m) using Hankel matrix and Karatsuba algorithm
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2012.0227
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ifs.2012.0227
https://www.proquest.com/docview/1558546648
https://www.proquest.com/docview/1620112988
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2012.0227
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056509
  issn: 1751-8717
  databaseCode: IDLOA
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1751-8717
  dateEnd: 20140930
  omitProxy: true
  ssIdentifier: ssj0056509
  issn: 1751-8717
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1751-8717
  dateEnd: 20140930
  omitProxy: true
  ssIdentifier: ssj0056509
  issn: 1751-8717
  databaseCode: 8FG
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056509
  issn: 1751-8717
  databaseCode: AVUZU
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley - Open Access
  customDbUrl:
  eissn: 1751-8717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056509
  issn: 1751-8717
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdo-wAvfCMyRmUQQnzIWuI4H37coF8wqoqt0niKnNgu1dK0Wltt_AH839wlaUclNPaSSvG1Vu_Od7-zz3eEvJGxTH2lBIuECZmQELPGqc2YUFEQ6UBqVfY6_DYM-2Px5Sw4u74eracT7JXBNjtuuFtuqpsHmLoNdvig5nHVkATw7QEQsKnF0tu4r8d51CAtDtE5b5LW4PMxhliVZQ6wWlx5QTLwwAq4cnvK-Y8f2fFTDRjGrEm1BMbZquPFDiS9uy4W6telyvNdkFt6qe5Dcr-Gl_Sw0odH5I4pHpMHm9YNtF7JT8jv4_klBWOSGVYmlZsrQOO05AurlJLiJS0KTm66pFjuGesH0zr9EFwpxdRP2lP5HMbLNDja677js_cUM-kntK-Kc5PTGXYAuKKq0PQrFhlfrlNFVT6ZX0xXP2dPybjbOf3UZ3VHBpYFYeyyzPesTkGqmTDK8yEaSo0wJgRXqIGhCoIj4cnM51KLwFqppFTWcBG5wkJcmPrPSLOYF-Y5oZkrhPQBH6QAQDMdpjoUUrkWLIp1deQ6xN3wP8nqcuXYNSNPymNzIROQSQIiS1BkCYrMIR-2X1lUtTpuIn6L7zbadBPh6x3CQec0GXRPrgmShbYOae8ox3Z-LMAIkFA6ZH-jLX_NGUCwhvX9Y4e82g7D-sZDG1WY-RpoQoRoXMZA83GrZbf5f36ph_-nTAYnHX6EWaaeu3dbrrwg93jVGIS53j5pri7W5iXAs1XaJg0uRvCMu702aR11hqPv7Xolwud4ODr88QeMpzoS
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF71cSgX3oiUUhYECIpW9WPteA8VopA0IWmEaCr1VLP27qYRjhNworS_gf_Eb2PGsU1zCVx69U5sRzM786139vsIeSkCEblSclbn2mdcwJo1iEzMuKx7deUJJXOtw-Oe3zrln8-8szXyuzwLg22VZU7ME7Uax_iNfB_qXuAhF3rwfvKDoWoU7q6WEhqykFZQBznFWHGwo6Ov5rCEyw7an8Dfrxyn2eh_bLFCZYDFnh9YLHZtoyJ405hrabuA8CPNtfYhvSsIZgmAn9sidh2huGeMkEJIox1et7iBtU7kwn3XySZ3uYDF3-Zho_fla1kLPOSny49kejbkHUtU-6pif6inbGiQMRw_Rzooa3OtMq7DMPZpygxcZRYaG0sgeGuWTuTVXCbJMqzO62LzLrldAFr6YRGB98iaTu-TO6VYBC1yxwPyqzueU0hfsWZ5G7u-BPxP1XAwnLLFNKB4LIxCWR1mFAmmkbGYFg2PULwpNpvSI5mMYTxvvKNHzTfOeTab0NH5W4od_APakul3ndARKg9cUpkq2kFy82wWSSqTAXh0ejF6SE5vxEePyEY6TvVjQmOLc-ECLokA-MbKj5TPhbQMZDJjqbpVI1bphTAuaNJRrSMJ8-16LkLwTAiOC9FxITquRvaqn0wWHCGrjF_jtSJTZKsMXywZthv9sN08-WsQTpSpkd2lEKmej8SPAEVFjeyUMXPtmdVcqpHn1TDkFdwskqkez8DGR2joiABs3lWx9j__z82j8d-WYfuk4Rxid6ttba9-zWdkq9U_7obddq_zhNxyFpIkzLJ3yMb050w_BWA4jXaL2UfJt5ue8H8AU8BymQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF21RQJeuCMCpSwIEAVZ8WV92QeEgMZJSKmQ2kp9qll7d0OE4wQcK-038Ed8HTO-0bwEXvrqndiOZnbmrHf2HEKe84DHjhDM8JnyDMZhzRrEOjGY8F1fulyKUuvw84E3OGafTtyTDfK7OQuDbZVNTiwTtZwl-I28C3UvcJELPejqui3iy174bv7DQAUp3Glt5DSqEBmp8yUs3_K3wz3w9QvbDntHHwdGrTBgJK4XmEbiWFrG8JYJU8JyAN3HiinlQWqXEMgCwD6zeOLYXDJXay44F1rZzDeZhnVO7MB9N8kVH1nc8ZR62G-qgIvMdOVhTNeCjGPydkeVdydqYUw0coXjh0gbBW0u1MRNGMYOTZGDk3SlrrECf68V2VycL0WargLqsiKGt8iNGsrS91Xs3SYbKrtDbjYyEbTOGnfJr_3ZkkLiSpRRNrCrM0D-VE7Gk4VRTQCKB8IoFNRJTpFaGrmKad3qCGWbYpsp7Yt0BuNlyx3th6_s07yY0-npLsXe_TEdiOy7SukUNQfOqMgkHSGteV7Egop0DP5bfJveI8eX4qH7ZCubZeoBoYnJGHcAkcQAeRPpxdJjXJgacpg2pW92iNl4IUpqgnTU6UijcqOe8Qg8E4HjInRchI7rkNftT-YVO8g645d4rc4R-TrDZyuGw95RNAwP_xpEc6k7ZGclRNrnI-UjgFDeIdtNzFx4ZjuLOuRpOwwZBbeJRKZmBdh4CAptHoDNmzbW_uf_OWU0_tsyGh727A_Y12qZD9e_5hNyFaZ5tD88GD0i1-1Ki8QwrW2ytfhZqMeACBfxTjn1KPl62XP9DyUgcDM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELba7QEulKeatlQGIcRDKXk4yfpY0L54VEjtSuUUObG9jZpNVt1ELZy4c-E38kuYyQsWoQIStyiexPJ4PPONPZ4h5BHv88gVgpkBU77JOPis_UjHJhOBF0iPS1HVOnx36I-n7PWJd7JGRu1dmDo_RLfhhiuj0te4wBdS13q-9joZf5Gowkw0Zt3GLT3HCdbJhu8BKO-Rjenh-4MP1XVIz4Y1XwV7NM920J1v_uYfKxZqHZoxXlIsgWW6rnWxAkavldlCfLwQaboKbyv7NNwkp-3I6rCUs_2yiPbjT78kffwPQ79JbjQYlh7UQneLrKnsNtls60PQRl3cIV_e5hcUNFasvn3-WsWuq0sA_VQms6SAV7X0U7wNRsGaJkuKeaUxUTFt4hzBZlOMMaUjkebQXsXb0dHwiUPn9CnFoP0ZHYvsTKV0jsUGLqnIJH2D-cyXZSSoSGf5eVKczu-S6XBw_GpsNsUfzNjz-5YZu7aWEQhQzJSwXXC8IsWU8sHqSphNAX4Ys3nsOlwyT2suOBdaOSywmAYXNHLvkV6WZ2qL0NhijLsARSLAurH0I-kzLiwNyktbMrAMYrUTHsZNZnQs0JGG1Qk94yEwOwRmh8jsEJltkGfdJ4s6LchVxI_xXaMcllcRPlwhnAyOw8nw6AdBCHJgkL0Vaez6x1yPgD65QXZb8fypTw_8Qiwl0DfIg64ZVAmeD4lM5SXQ-IgGHd4HmuedWP_N-NxKWv9MGU6OBs5LDGi1re1_6mOHXHfqQiSmZe-SXnFeqvsAB4tor1nq3wG_glzy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+space-complexity+digit-serial+dual+basis+systolic+multiplier+over+Galois+field+GF%282+super%28+m%29%29+using+Hankel+matrix+and+Karatsuba+algorithm&rft.jtitle=IET+information+security&rft.au=Hua%2C+Ying+Yan&rft.au=Lin%2C+Jim-Min&rft.au=Chiou%2C+Che+Wun&rft.au=Lee%2C+Chiou-Yng&rft.date=2013-06-01&rft.issn=1751-8709&rft.eissn=1751-8717&rft.volume=7&rft.issue=2&rft.spage=75&rft.epage=75&rft_id=info:doi/10.1049%2Fiet-ifs.2012.0227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8709&client=summon