Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages
Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic appr...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 42; pp. 16768 - 16769 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.10.2012
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1121131109 |
Cover
Abstract | Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents. |
---|---|
AbstractList | Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents. Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents. Here, we present genetic evidence for the central role of Hdac3 in the inflammatory gene expression program and identify one of the mechanisms involved in this regulation. These data suggest the possible use of selective Hdac3 inhibitors as anti-inflammatory agents. Understanding basic mechanisms of inflammation requires the identification of the sequence-specific transcription factors and transcriptional coregulators that directly control the rapid changes in gene expression that occur on exposure of innate immune response cells, such as macrophages, to inflammatory agents ( 3 ). HDACs deacetylate a large number of substrates, most notably histones, and seem to be required for inflammation as indicated by the known anti-inflammatory activity of pan-HDAC inhibitors, namely, chemicals that nonselectively interfere with the activity of 1 or more of the 11 distinct HDACs. However, the specific family members required for the activation of the inflammatory gene expression program are unknown. In the present study, we used a conditional Hdac3 KO to generate Hdac3-deficient macrophages, in which we characterized both the transcriptional and the genome-wide chromatin changes (histone acetylation) occurring as a consequence of loss of Hdac3 expression. Almost half of LPS-induced genes were down-regulated in KO cells. A major component of the observed defects was the loss of IFN-β production caused by severely impaired Ifnb1 gene activation ( Fig. P1 ). IFN-β controls a large fraction of the secondary gene response (namely, the one requiring new protein synthesis) in this system. Reduced Ifnb1 gene expression is largely ascribed to the overexpression of one of the two rate-limiting enzymes in prostaglandin biosynthesis, Cox-1 ( Fig. P1 ) ( 4 ). Consistent with the inhibitory activity of the molecules produced by Cox-1, including electrophilic oxoderivatives, on Ifnb1 gene expression, blocking the enzymatic activity of Cox-1 with a chemical inhibitor partially rescued the expression of Ifnb1 and its target genes. Cox-1 overexpression correlated with the hyperacetylation of a transcriptional enhancer just upstream of the Ptgs1 gene (encoding Cox-1), which contains several nuclear hormone receptor-binding sites. Because nuclear receptors that are not engaged by their ligands are negatively regulated by Hdac3 -containing complexes with transcriptional repression activity (commonly known as corepressors), these data suggest that Cox-1 overexpression reflects the unopposed activity of nuclear receptors in the absence of Hdac3. Inflammation is a complex response to physical and biological agents, including microbes and endogenous danger signals (e.g., cell debris), and involves the differential expression of hundreds of host genes. The complement of nuclear enzymes (and specifically those controlling covalent histone modifications) that regulates transcription of inflammatory genes has not been fully identified. Histone deacetylases (HDACs) belong to a family of lysine deacetylases targeting histones as well as a large number of nonhistone proteins. Chemical inhibitors of HDACs possess anti-inflammatory activity in various in vitro and in vivo models ( 1 , 2 ), but the specific HDAC(s) involved are unknown. Here, we identify Hdac3 as an essential regulator of the inflammatory transcriptional program. Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents. [PUBLICATION ABSTRACT] Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents.Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents. |
Author | Barozzi, Iros Dalli, Jesmond Recchiuti, Antonio Chen, Xuefen Termanini, Alberto Hiebert, Scott Mietton, Flore Matteoli, Gianluca Prosperini, Elena Natoli, Gioacchino |
Author_xml | – sequence: 1 givenname: Xuefen surname: Chen fullname: Chen, Xuefen – sequence: 2 givenname: Iros surname: Barozzi fullname: Barozzi, Iros – sequence: 3 givenname: Alberto surname: Termanini fullname: Termanini, Alberto – sequence: 4 givenname: Elena surname: Prosperini fullname: Prosperini, Elena – sequence: 5 givenname: Antonio surname: Recchiuti fullname: Recchiuti, Antonio – sequence: 6 givenname: Jesmond surname: Dalli fullname: Dalli, Jesmond – sequence: 7 givenname: Flore surname: Mietton fullname: Mietton, Flore – sequence: 8 givenname: Gianluca surname: Matteoli fullname: Matteoli, Gianluca – sequence: 9 givenname: Scott surname: Hiebert fullname: Hiebert, Scott – sequence: 10 givenname: Gioacchino surname: Natoli fullname: Natoli, Gioacchino |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22802645$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFMydQJC69pPX4I4kvSKhqKVIlJARny0nGu14lcWonFfvvcbTLFnqAi32YZ2bemXnPyMngByTkLdBLoCW_GgcTLwEYAAeg6gVZpRfyQih6QlaUsjKvBBOn5CzGLaVUyYq-IqeMVZQVQq6I-4YPswvY4zBl1ods2mC2cXFKfbIWTYPTrjMRs7vWNPxIuMF2pu_N5MMuW2Ni8ecYMEbnh2wMfh1Mn6CsN03w48asMb4mL63pIr45_Ofkx-3N9-u7_P7r5y_Xn-7zRhbllFsUWGJhLUhaK1O0ikpQCKKmtq1krWosG8tRCsuVKitTgW1rqGklmTW14efk477uONc9tk0aLJhOj8H1Juy0N07_HRncRq_9o-aiVJKpVODiUCD4hxnjpHsXG-w6M6Cfo4aKchCSl-z_aLoLA1FymtAPz9Ctn8OQNrFQ6R6Q5kzU-z_FH1X_PlgCrvZA2muMAe0RAaoXS-jFEvrJEilDPsto3GSmdKg0vev-kZcdpCyBpy5KC6ZvWFUsYt7tkW3ySzgyAsqCC875Lw9A0NA |
CitedBy_id | crossref_primary_10_3389_fmolb_2023_1190094 crossref_primary_10_3389_fimmu_2022_841716 crossref_primary_10_1021_acsami_2c08994 crossref_primary_10_3390_ph7060634 crossref_primary_10_1248_bpb_b24_00111 crossref_primary_10_1097_MOL_0000000000000109 crossref_primary_10_1124_jpet_114_217315 crossref_primary_10_1517_13543784_2016_1146251 crossref_primary_10_1530_JME_13_0216 crossref_primary_10_1073_pnas_2016049117 crossref_primary_10_1210_en_2017_03000 crossref_primary_10_1016_j_bbalip_2021_159019 crossref_primary_10_1155_2016_6591703 crossref_primary_10_18632_oncotarget_17027 crossref_primary_10_1080_14756366_2018_1437156 crossref_primary_10_15252_emmm_201404170 crossref_primary_10_1038_s41419_023_06147_7 crossref_primary_10_1158_0008_5472_CAN_22_1270 crossref_primary_10_1371_journal_pone_0208755 crossref_primary_10_1038_ni_3713 crossref_primary_10_1080_17501911_2024_2419357 crossref_primary_10_1161_ATVBAHA_115_305046 crossref_primary_10_1089_ars_2016_6695 crossref_primary_10_3389_fcvm_2022_1077290 crossref_primary_10_1074_jbc_RA119_010707 crossref_primary_10_3389_fimmu_2018_01977 crossref_primary_10_3389_fimmu_2021_669566 crossref_primary_10_1038_s41580_018_0076_0 crossref_primary_10_12997_jla_2021_10_3_251 crossref_primary_10_1016_j_jaut_2015_09_003 crossref_primary_10_11569_wcjd_v27_i3_139 crossref_primary_10_1016_j_lfs_2019_02_004 crossref_primary_10_1186_s12974_024_03159_8 crossref_primary_10_1016_j_imlet_2020_07_007 crossref_primary_10_1093_ehjopen_oeab022 crossref_primary_10_1007_s11904_023_00675_9 crossref_primary_10_1016_j_lfs_2023_121574 crossref_primary_10_1155_2018_7313515 crossref_primary_10_1016_j_coph_2013_06_002 crossref_primary_10_1016_j_csbj_2023_03_050 crossref_primary_10_1016_j_molcel_2020_08_015 crossref_primary_10_3892_mmr_2024_13367 crossref_primary_10_1038_s41420_023_01399_w crossref_primary_10_1089_ars_2014_5915 crossref_primary_10_1002_pmic_201400075 crossref_primary_10_1016_j_jacbts_2018_05_003 crossref_primary_10_1186_s12974_021_02273_1 crossref_primary_10_1016_j_intimp_2019_106086 crossref_primary_10_1016_j_smim_2015_10_003 crossref_primary_10_14336_AD_2021_1116 crossref_primary_10_3390_v11060555 crossref_primary_10_3389_fimmu_2024_1392145 crossref_primary_10_2492_inflammregen_35_129 crossref_primary_10_1016_j_intimp_2021_107791 crossref_primary_10_1002_glia_23887 crossref_primary_10_1016_j_pathol_2021_09_001 crossref_primary_10_1164_rccm_201211_2025ED crossref_primary_10_1016_j_trsl_2017_09_002 crossref_primary_10_1186_s13075_024_03335_4 crossref_primary_10_1016_j_ejmech_2019_05_038 crossref_primary_10_15406_jdmdc_2021_08_00216 crossref_primary_10_4049_jimmunol_1700223 crossref_primary_10_1128_spectrum_00737_24 crossref_primary_10_1186_s13395_021_00273_6 crossref_primary_10_1096_fj_201900394RRR crossref_primary_10_1172_JCI162190 crossref_primary_10_1093_nar_gkaa088 crossref_primary_10_1007_s00109_021_02141_8 crossref_primary_10_1016_j_it_2012_11_001 crossref_primary_10_1016_j_molcel_2022_11_016 crossref_primary_10_3389_fgene_2019_00640 crossref_primary_10_1016_j_rbmo_2023_103288 crossref_primary_10_3389_fcvm_2022_868788 crossref_primary_10_7554_eLife_80477 crossref_primary_10_1016_j_ejmech_2018_10_072 crossref_primary_10_3390_cancers12061411 crossref_primary_10_3390_ijms23179752 crossref_primary_10_1039_C6MD00375C crossref_primary_10_1016_j_molmed_2024_01_007 crossref_primary_10_1111_apt_13008 crossref_primary_10_3389_fcell_2022_931493 crossref_primary_10_1038_s41590_018_0184_1 crossref_primary_10_1038_nature15252 crossref_primary_10_18632_oncotarget_17748 crossref_primary_10_3164_jcbn_23_16 crossref_primary_10_1126_sciadv_ade6900 crossref_primary_10_1371_journal_pone_0152498 crossref_primary_10_1371_journal_ppat_1004785 crossref_primary_10_1016_j_jmb_2014_08_015 crossref_primary_10_3389_fimmu_2022_845678 crossref_primary_10_1016_j_immuni_2018_12_018 crossref_primary_10_1038_cti_2015_46 crossref_primary_10_1096_fj_13_248393 crossref_primary_10_1038_s41418_020_00631_9 crossref_primary_10_1038_nm_4114 crossref_primary_10_1016_j_coph_2017_04_008 crossref_primary_10_1172_JCI69738 crossref_primary_10_1016_j_it_2014_09_007 crossref_primary_10_1371_journal_pone_0121748 crossref_primary_10_1016_j_addr_2022_114298 crossref_primary_10_1091_mbc_e15_04_0209 crossref_primary_10_2217_epi_15_71 crossref_primary_10_1016_j_ejphar_2018_05_003 crossref_primary_10_1016_j_cbpa_2016_06_019 crossref_primary_10_1111_andr_13231 crossref_primary_10_1186_s13148_021_01046_0 crossref_primary_10_1038_s41598_017_08535_4 crossref_primary_10_1161_ATVBAHA_114_303393 crossref_primary_10_1074_jbc_R116_774745 crossref_primary_10_1371_journal_pbio_3000941 crossref_primary_10_3390_v10100525 crossref_primary_10_1016_j_phrs_2021_105969 crossref_primary_10_3389_fphys_2019_01060 crossref_primary_10_1186_s12943_023_01725_x crossref_primary_10_1002_mnfr_201400307 crossref_primary_10_1080_02648725_2021_1989847 crossref_primary_10_3390_ijms20194964 crossref_primary_10_1016_j_cbpa_2014_08_013 crossref_primary_10_1016_j_cellsig_2021_110099 crossref_primary_10_3390_ijms24097876 crossref_primary_10_1038_nrrheum_2013_17 crossref_primary_10_3389_fimmu_2024_1419685 crossref_primary_10_1136_annrheumdis_2015_209064 crossref_primary_10_1002_iub_2402 crossref_primary_10_3390_ijms18010137 crossref_primary_10_1074_jbc_M113_496281 crossref_primary_10_1021_acs_jmedchem_2c01132 crossref_primary_10_1186_s13059_018_1524_z crossref_primary_10_1136_annrheumdis_2014_205635 crossref_primary_10_1038_pr_2013_238 crossref_primary_10_1007_s10787_012_0166_0 crossref_primary_10_1016_j_intimp_2020_107340 crossref_primary_10_1016_j_autrev_2024_103733 crossref_primary_10_1073_pnas_1816399116 crossref_primary_10_3389_fphar_2023_1125866 crossref_primary_10_3389_fimmu_2020_550769 crossref_primary_10_1007_s00740_015_0064_3 crossref_primary_10_1016_j_jnutbio_2018_03_002 crossref_primary_10_1016_j_bbadis_2013_09_014 crossref_primary_10_3390_pathophysiology29030038 crossref_primary_10_1038_s41467_021_25393_x crossref_primary_10_3389_fimmu_2015_00661 crossref_primary_10_1089_jmf_2015_0156 crossref_primary_10_1186_s12931_024_02769_3 crossref_primary_10_3389_fimmu_2021_688910 crossref_primary_10_1155_2017_6237351 crossref_primary_10_1038_srep45047 crossref_primary_10_1089_jmf_2018_4253 crossref_primary_10_1242_dev_201548 crossref_primary_10_1007_s00281_019_00748_1 crossref_primary_10_1016_j_ejmech_2023_116037 crossref_primary_10_1007_s00011_022_01651_6 crossref_primary_10_1084_jem_20220666 crossref_primary_10_1002_acn3_47 crossref_primary_10_1016_j_atherosclerosis_2014_12_048 crossref_primary_10_1038_s41419_023_05656_9 crossref_primary_10_1111_jcmm_16616 crossref_primary_10_1016_j_celrep_2016_03_048 crossref_primary_10_4049_jimmunol_1400486 crossref_primary_10_1371_journal_ppat_1005938 crossref_primary_10_1038_s41563_018_0225_z crossref_primary_10_1098_rstb_2012_0370 crossref_primary_10_1002_adbi_202300211 crossref_primary_10_1021_acs_jafc_3c04417 crossref_primary_10_1038_s41563_018_0190_6 crossref_primary_10_1021_acs_jafc_8b01439 crossref_primary_10_3390_ijms20122949 crossref_primary_10_1038_icb_2013_56 crossref_primary_10_1007_s12975_020_00783_3 crossref_primary_10_1093_nutrit_nux001 crossref_primary_10_1177_0022034519885088 crossref_primary_10_3389_fonc_2014_00111 crossref_primary_10_1177_0192623314553805 crossref_primary_10_1002_cbin_11952 crossref_primary_10_3390_epigenomes3030019 crossref_primary_10_1111_imcb_12455 crossref_primary_10_3389_fcell_2020_576946 crossref_primary_10_1016_j_fsi_2023_109214 crossref_primary_10_1016_j_ejphar_2015_03_101 crossref_primary_10_1038_nature12687 crossref_primary_10_3390_cells11244072 crossref_primary_10_3390_cells10112962 crossref_primary_10_1002_1873_3468_12850 crossref_primary_10_1371_journal_pone_0132984 crossref_primary_10_1038_s41598_020_78364_5 crossref_primary_10_1089_jir_2016_0004 crossref_primary_10_3390_nu8060381 crossref_primary_10_1016_j_celrep_2022_110302 crossref_primary_10_3390_ijms20020346 crossref_primary_10_1371_journal_pntd_0005137 crossref_primary_10_3390_cancers14061469 crossref_primary_10_1177_0192623314553475 crossref_primary_10_1016_j_ejmech_2020_112171 crossref_primary_10_1016_j_neures_2021_05_014 crossref_primary_10_1002_jsfa_10734 crossref_primary_10_1016_j_biopha_2022_114052 crossref_primary_10_1371_journal_pone_0183679 crossref_primary_10_1016_j_pharmthera_2016_07_013 crossref_primary_10_1128_microbiolspec_MCHD_0010_2015 crossref_primary_10_1007_s12015_024_10759_7 crossref_primary_10_1111_jcmm_12595 crossref_primary_10_3389_fimmu_2021_652160 crossref_primary_10_1038_nri3777 crossref_primary_10_1016_j_bcp_2016_03_010 crossref_primary_10_1039_C8FO02438C crossref_primary_10_1074_jbc_M117_804328 crossref_primary_10_18632_oncotarget_24556 crossref_primary_10_1016_j_cellsig_2020_109553 crossref_primary_10_1021_acs_jmedchem_0c00230 crossref_primary_10_1126_sciimmunol_aah4609 crossref_primary_10_1007_s12035_022_03083_z crossref_primary_10_1016_j_celrep_2017_04_046 crossref_primary_10_1042_BCJ20240380 crossref_primary_10_1063_5_0087699 crossref_primary_10_1093_burnst_tkac057 crossref_primary_10_3109_08916934_2015_1134510 crossref_primary_10_1021_acschembio_7b00321 crossref_primary_10_1186_s12974_019_1495_3 crossref_primary_10_1016_j_biopha_2023_115309 crossref_primary_10_1016_j_celrep_2017_05_093 crossref_primary_10_1084_jem_20151764 crossref_primary_10_3390_cancers13071665 crossref_primary_10_1007_s40472_016_0130_9 crossref_primary_10_1093_intimm_dxy042 crossref_primary_10_1096_fj_202301762RR crossref_primary_10_3390_nu12123657 crossref_primary_10_1002_jcla_24699 crossref_primary_10_18632_oncotarget_17586 crossref_primary_10_3389_fnsys_2019_00037 crossref_primary_10_1002_jcp_26497 crossref_primary_10_1038_s41419_019_2212_y crossref_primary_10_1016_j_tem_2012_09_003 crossref_primary_10_3389_fimmu_2020_00036 crossref_primary_10_1002_ange_202310059 crossref_primary_10_1371_journal_pone_0068669 crossref_primary_10_1016_j_jtcme_2021_04_004 crossref_primary_10_1007_s00408_025_00798_3 crossref_primary_10_2217_epi_2016_0136 crossref_primary_10_1016_j_cyto_2022_155842 crossref_primary_10_1016_j_jff_2020_104309 crossref_primary_10_1016_j_banm_2023_01_023 crossref_primary_10_1371_journal_pone_0208602 crossref_primary_10_1073_pnas_2316104121 crossref_primary_10_1016_j_celrep_2018_09_002 crossref_primary_10_1080_15592294_2023_2241008 crossref_primary_10_1007_s10753_013_9686_z crossref_primary_10_1016_j_taap_2021_115795 crossref_primary_10_1089_ars_2013_5750 crossref_primary_10_1002_anie_202310059 crossref_primary_10_1021_acs_jmedchem_3c01095 crossref_primary_10_3389_fimmu_2023_1267550 crossref_primary_10_3390_pharmaceutics15122659 crossref_primary_10_1155_2018_8917804 crossref_primary_10_3389_fimmu_2023_1190333 crossref_primary_10_1021_acs_jmedchem_4c01062 crossref_primary_10_1073_pnas_1613156113 crossref_primary_10_1007_s10787_019_00663_9 crossref_primary_10_1172_JCI77088 crossref_primary_10_3389_fendo_2020_00062 crossref_primary_10_1016_j_isci_2023_107158 crossref_primary_10_18632_oncotarget_2289 crossref_primary_10_1016_j_it_2018_11_006 crossref_primary_10_1021_acs_jmedchem_0c01676 crossref_primary_10_3390_cancers14051221 crossref_primary_10_1038_nri3581 crossref_primary_10_1038_s41598_022_05698_7 crossref_primary_10_3390_ijms23137300 crossref_primary_10_1021_acschemneuro_1c00826 crossref_primary_10_1038_s41419_017_0174_5 crossref_primary_10_1042_CS20120504 crossref_primary_10_1186_s12974_022_02563_2 crossref_primary_10_2217_epi_2020_0380 crossref_primary_10_1016_j_bbadis_2020_165903 crossref_primary_10_1016_j_jaci_2023_04_022 crossref_primary_10_3389_fimmu_2024_1450440 crossref_primary_10_1007_s00101_014_2402_z crossref_primary_10_1016_j_tem_2016_06_008 crossref_primary_10_3389_fimmu_2024_1415597 crossref_primary_10_1016_j_coi_2022_102173 crossref_primary_10_3389_fmed_2022_1072453 |
Cites_doi | 10.1074/jbc.R900010200 10.1073/pnas.0405786101 10.1039/b703830p 10.1038/ng1966 10.1016/j.cell.2009.04.020 10.1038/nri2634 10.1096/fasebj.12.12.1063 10.1016/S0092-8674(04)00133-3 10.1126/science.1087262 10.1016/j.cell.2009.05.047 10.1038/nchembio.367 10.1016/j.cell.2009.12.052 10.1038/nrg2736 10.1038/sj.emboj.7600500 10.1210/me.2007-0302 10.1038/377454a0 10.1101/gad.207401 10.1128/MCB.00535-07 10.1038/nbt.1759 10.1038/nrm2346 10.1016/S1359-6446(04)03309-4 10.1182/blood-2009-11-256354 10.1101/gad.175950.111 10.1038/nrc1779 10.1038/47520 10.1101/gad.2018811 10.1146/annurev.immunol.021908.132532 10.1016/j.immuni.2010.02.008 10.1126/scisignal.2001501 10.1038/emboj.2009.271 10.1016/j.cell.2009.02.045 10.1016/j.it.2011.04.001 10.4049/jimmunol.0901467 10.1016/j.molcel.2010.08.010 10.1016/j.cell.2007.08.019 10.1371/journal.pbio.1000361 10.1038/20974 10.1073/pnas.97.13.7202 10.1038/nri3088 10.1016/j.molcel.2008.02.030 10.1126/science.1077790 10.1126/science.1175371 10.1038/34178 10.1126/science.1201711 10.4049/jimmunol.180.4.2125 10.1126/science.1179050 10.1038/377397a0 10.1038/nature09589 10.1016/S1074-7613(02)00390-4 10.1038/ng1651 10.1016/j.molcel.2010.05.004 10.1136/ard.2010.140533 10.1186/1745-6150-6-51 10.1073/pnas.052702999 10.1016/j.cell.2010.01.037 10.1074/jbc.R600038200 10.1073/pnas.97.9.4844 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Oct 16, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Oct 16, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1121131109 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Hdac3 controls inflammation |
EISSN | 1091-6490 |
EndPage | 16769 |
ExternalDocumentID | PMC3479529 2792047291 22802645 10_1073_pnas_1121131109 109_42_E2865 41763433 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA164605 – fundername: NIGMS NIH HHS grantid: R01 GM095967 – fundername: NIGMS NIH HHS grantid: 5P01GM095967 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c567t-fe4e7e6ff150b9a6d90519e14b0fd85b9be7cf3e54f39978a81fdb1b0852faba3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:04:11 EDT 2025 Fri Sep 05 09:06:15 EDT 2025 Fri Sep 05 06:12:26 EDT 2025 Mon Jun 30 08:26:20 EDT 2025 Wed Feb 19 01:52:23 EST 2025 Tue Jul 01 03:39:21 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Wed Nov 11 00:30:10 EST 2020 Thu May 29 08:40:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c567t-fe4e7e6ff150b9a6d90519e14b0fd85b9be7cf3e54f39978a81fdb1b0852faba3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Stephen T. Smale, University of California, Los Angeles, CA, and accepted by the Editorial Board May 9, 2012 (received for review December 21, 2011) Author contributions: G.N. designed research; X.C., E.P., A.R., J.D., F.M., and G.M. performed research; S.H. contributed new reagents/analytic tools; X.C., I.B., and A.T. analyzed data; and G.N. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/42/E2865.full.pdf |
PMID | 22802645 |
PQID | 1112801051 |
PQPubID | 42026 |
PageCount | 2 |
ParticipantIDs | proquest_journals_1112801051 crossref_citationtrail_10_1073_pnas_1121131109 pnas_primary_109_42_E2865 pubmed_primary_22802645 jstor_primary_41763433 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3479529 proquest_miscellaneous_1803145372 crossref_primary_10_1073_pnas_1121131109 proquest_miscellaneous_1113214730 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-16 |
PublicationDateYYYYMMDD | 2012-10-16 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Covic M (e_1_3_4_6_2) 2005; 24 Martinez FO (e_1_3_4_51_2) 2009; 27 e_1_1_2_18_7_4_2 e_1_1_2_18_7_2_2 Heintzman ND (e_1_3_4_31_2) 2007; 39 Hu Y (e_1_3_4_38_2) 2010; 116 Doyle S (e_1_3_4_30_2) 2002; 17 Ogawa S (e_1_3_4_35_2) 2004; 101 Leoni F (e_1_3_4_12_2) 2002; 99 Mullican SE (e_1_3_4_49_2) 2011; 25 Bantscheff M (e_1_3_4_53_2) 2011; 29 Rossi A (e_1_3_4_43_2) 2000; 403 Kim T (e_1_3_4_25_2) 2009; 137 Dickins RA (e_1_3_4_56_2) 2005; 37 Ramirez-Carrozzi VR (e_1_3_4_9_2) 2009; 138 Perissi V (e_1_3_4_21_2) 2010; 11 Dhalluin C (e_1_3_4_17_2) 1999; 399 van Essen D (e_1_3_4_8_2) 2010; 39 Heinz S (e_1_3_4_33_2) 2010; 38 Lawrence T (e_1_3_4_50_2) 2011; 11 Amit I (e_1_3_4_4_2) 2009; 326 Perissi V (e_1_3_4_5_2) 2004; 116 Ricote M (e_1_3_4_41_2) 1998; 391 Straus DS (e_1_3_4_42_2) 2000; 97 Medzhitov R (e_1_3_4_1_2) 2009; 9 Hargreaves DC (e_1_3_4_10_2) 2009; 138 Natoli G (e_1_3_4_3_2) 2011; 25 Kim BH (e_1_3_4_47_2) 2011; 332 e_1_1_2_18_7_3_2 e_1_1_2_18_7_1_2 Barozzi I (e_1_3_4_55_2) 2011; 6 De Santa F (e_1_3_4_57_2) 2007; 130 Wen YD (e_1_3_4_18_2) 2000; 97 Yang R (e_1_3_4_46_2) 2011 Ghisletti S (e_1_3_4_32_2) 2010; 32 Wolter S (e_1_3_4_48_2) 2008; 28 Groeger AL (e_1_3_4_40_2) 2010; 6 Nguyen T (e_1_3_4_37_2) 2009; 284 Bhaskara S (e_1_3_4_28_2) 2008; 30 Nicodeme E (e_1_3_4_11_2) 2010; 468 Hörlein AJ (e_1_3_4_19_2) 1995; 377 Bieliauskas AV (e_1_3_4_52_2) 2008; 37 Yamamoto M (e_1_3_4_29_2) 2003; 301 Yang XJ (e_1_3_4_24_2) 2008; 9 Pijnappel WW (e_1_3_4_23_2) 2001; 15 Smale ST (e_1_3_4_2_2) 2010; 140 Grabiec AM (e_1_3_4_13_2) 2010; 184 Gough DJ (e_1_3_4_26_2) 2010; 8 Chen JD (e_1_3_4_20_2) 1995; 377 Schonthaler HB (e_1_3_4_34_2) 2011; 70 Wang A (e_1_3_4_22_2) 2002; 298 Xu XJ (e_1_3_4_44_2) 2008; 180 Dubois RN (e_1_3_4_27_2) 1998; 12 Minucci S (e_1_3_4_15_2) 2006; 6 Choudhary C (e_1_3_4_16_2) 2009; 325 De Santa F (e_1_3_4_7_2) 2009; 28 Shakespear MR (e_1_3_4_14_2) 2011; 32 Cheng CS (e_1_3_4_36_2) 2011; 4 Sun H (e_1_3_4_45_2) 2008; 22 Park EJ (e_1_3_4_54_2) 2010; 140 Sugimoto Y (e_1_3_4_39_2) 2007; 282 15452344 - Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14461-6 20206554 - Immunity. 2010 Mar 26;32(3):317-28 15708534 - Drug Discov Today. 2005 Feb 1;10(3):197-204 18406327 - Mol Cell. 2008 Apr 11;30(1):61-72 9422508 - Nature. 1998 Jan 1;391(6662):79-82 19729616 - Science. 2009 Oct 9;326(5950):257-63 20141834 - Cell. 2010 Jan 22;140(2):197-208 12354379 - Immunity. 2002 Sep;17(3):251-63 20084085 - Nat Rev Genet. 2010 Feb;11(2):109-23 19379692 - Cell. 2009 Apr 17;137(2):259-72 10860984 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7202-7 19182219 - J Biol Chem. 2009 May 15;284(20):13291-5 20100935 - J Immunol. 2010 Mar 1;184(5):2718-28 22025054 - Nat Rev Immunol. 2011 Nov;11(11):750-61 11867742 - Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2995-3000 21343618 - Sci Signal. 2011;4(161):ra11 18443042 - Mol Cell Biol. 2008 Jul;28(13):4407-23 21068722 - Nature. 2010 Dec 23;468(7327):1119-23 21258344 - Nat Biotechnol. 2011 Mar;29(3):255-65 19779457 - EMBO J. 2009 Nov 4;28(21):3341-52 10638762 - Nature. 2000 Jan 6;403(6765):103-8 20436908 - PLoS Biol. 2010;8(4):e1000361 12855817 - Science. 2003 Aug 1;301(5633):640-3 19105661 - Annu Rev Immunol. 2009;27:451-83 9737710 - FASEB J. 1998 Sep;12(12):1063-73 18250418 - J Immunol. 2008 Feb 15;180(4):2125-31 18568166 - Chem Soc Rev. 2008 Jul;37(7):1402-13 21339212 - Ann Rheum Dis. 2011 Mar;70 Suppl 1:i109-12 12434058 - Science. 2002 Nov 15;298(5597):1412-4 11711434 - Genes Dev. 2001 Nov 15;15(22):2991-3004 16397526 - Nat Rev Cancer. 2006 Jan;6(1):38-51 18292778 - Nat Rev Mol Cell Biol. 2008 Mar;9(3):206-18 14980219 - Cell. 2004 Feb 20;116(4):511-26 20436486 - Nat Chem Biol. 2010 Jun;6(6):433-41 20832726 - Mol Cell. 2010 Sep 10;39(5):750-60 16200064 - Nat Genet. 2005 Nov;37(11):1289-95 19859064 - Nat Rev Immunol. 2009 Oct;9(10):692-703 20566897 - Blood. 2010 Oct 14;116(15):2732-41 21551061 - Science. 2011 May 6;332(6030):717-21 7566114 - Nature. 1995 Oct 5;377(6548):397-404 20303874 - Cell. 2010 Mar 19;140(6):833-44 15616592 - EMBO J. 2005 Jan 12;24(1):85-96 19596240 - Cell. 2009 Jul 10;138(1):129-45 7566127 - Nature. 1995 Oct 5;377(6548):454-7 22048801 - Curr Protoc Immunol. 2011 Nov;Chapter 14:Unit 14.26 21570914 - Trends Immunol. 2011 Jul;32(7):335-43 18599619 - Mol Endocrinol. 2008 Sep;22(9):2076-84 22156208 - Genes Dev. 2011 Dec 1;25(23):2480-8 17329241 - J Biol Chem. 2007 Apr 20;282(16):11613-7 17277777 - Nat Genet. 2007 Mar;39(3):311-8 19596239 - Cell. 2009 Jul 10;138(1):114-28 20513432 - Mol Cell. 2010 May 28;38(4):576-89 10781090 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4844-9 21978789 - Biol Direct. 2011;6:51 17825402 - Cell. 2007 Sep 21;130(6):1083-94 19608861 - Science. 2009 Aug 14;325(5942):834-40 21245163 - Genes Dev. 2011 Jan 15;25(2):101-6 10365964 - Nature. 1999 Jun 3;399(6735):491-6 |
References_xml | – volume: 284 start-page: 13291 year: 2009 ident: e_1_3_4_37_2 article-title: The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress publication-title: J Biol Chem doi: 10.1074/jbc.R900010200 – volume: 101 start-page: 14461 year: 2004 ident: e_1_3_4_35_2 article-title: A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0405786101 – volume: 37 start-page: 1402 year: 2008 ident: e_1_3_4_52_2 article-title: Isoform-selective histone deacetylase inhibitors publication-title: Chem Soc Rev doi: 10.1039/b703830p – volume: 39 start-page: 311 year: 2007 ident: e_1_3_4_31_2 article-title: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome publication-title: Nat Genet doi: 10.1038/ng1966 – volume: 138 start-page: 114 year: 2009 ident: e_1_3_4_9_2 article-title: A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling publication-title: Cell doi: 10.1016/j.cell.2009.04.020 – ident: e_1_1_2_18_7_3_2 doi: 10.1038/nri2634 – ident: e_1_1_2_18_7_4_2 doi: 10.1096/fasebj.12.12.1063 – volume: 116 start-page: 511 year: 2004 ident: e_1_3_4_5_2 article-title: A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors publication-title: Cell doi: 10.1016/S0092-8674(04)00133-3 – volume: 301 start-page: 640 year: 2003 ident: e_1_3_4_29_2 article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway publication-title: Science doi: 10.1126/science.1087262 – year: 2011 ident: e_1_3_4_46_2 article-title: Metabolomics-lipidomics of eicosanoids and docosanoids generated by phagocytes publication-title: Curr Protoc Immunol – volume: 138 start-page: 129 year: 2009 ident: e_1_3_4_10_2 article-title: Control of inducible gene expression by signal-dependent transcriptional elongation publication-title: Cell doi: 10.1016/j.cell.2009.05.047 – volume: 6 start-page: 433 year: 2010 ident: e_1_3_4_40_2 article-title: Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids publication-title: Nat Chem Biol doi: 10.1038/nchembio.367 – volume: 140 start-page: 197 year: 2010 ident: e_1_3_4_54_2 article-title: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression publication-title: Cell doi: 10.1016/j.cell.2009.12.052 – volume: 11 start-page: 109 year: 2010 ident: e_1_3_4_21_2 article-title: Deconstructing repression: Evolving models of co-repressor action publication-title: Nat Rev Genet doi: 10.1038/nrg2736 – volume: 24 start-page: 85 year: 2005 ident: e_1_3_4_6_2 article-title: Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression publication-title: EMBO J doi: 10.1038/sj.emboj.7600500 – volume: 22 start-page: 2076 year: 2008 ident: e_1_3_4_45_2 article-title: Corticosteroids induce cyclooxygenase 1 expression in cardiomyocytes: role of glucocorticoid receptor and Sp3 transcription factor publication-title: Mol Endocrinol doi: 10.1210/me.2007-0302 – volume: 377 start-page: 454 year: 1995 ident: e_1_3_4_20_2 article-title: A transcriptional co-repressor that interacts with nuclear hormone receptors publication-title: Nature doi: 10.1038/377454a0 – volume: 15 start-page: 2991 year: 2001 ident: e_1_3_4_23_2 article-title: The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program publication-title: Genes Dev doi: 10.1101/gad.207401 – volume: 28 start-page: 4407 year: 2008 ident: e_1_3_4_48_2 article-title: c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene publication-title: Mol Cell Biol doi: 10.1128/MCB.00535-07 – volume: 29 start-page: 255 year: 2011 ident: e_1_3_4_53_2 article-title: Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes publication-title: Nat Biotechnol doi: 10.1038/nbt.1759 – volume: 9 start-page: 206 year: 2008 ident: e_1_3_4_24_2 article-title: The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2346 – ident: e_1_1_2_18_7_1_2 doi: 10.1016/S1359-6446(04)03309-4 – volume: 116 start-page: 2732 year: 2010 ident: e_1_3_4_38_2 article-title: Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate publication-title: Blood doi: 10.1182/blood-2009-11-256354 – volume: 25 start-page: 2480 year: 2011 ident: e_1_3_4_49_2 article-title: Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation publication-title: Genes Dev doi: 10.1101/gad.175950.111 – volume: 6 start-page: 38 year: 2006 ident: e_1_3_4_15_2 article-title: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc1779 – volume: 403 start-page: 103 year: 2000 ident: e_1_3_4_43_2 article-title: Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase publication-title: Nature doi: 10.1038/47520 – volume: 25 start-page: 101 year: 2011 ident: e_1_3_4_3_2 article-title: The genomic landscapes of inflammation publication-title: Genes Dev doi: 10.1101/gad.2018811 – volume: 27 start-page: 451 year: 2009 ident: e_1_3_4_51_2 article-title: Alternative activation of macrophages: An immunologic functional perspective publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.021908.132532 – volume: 32 start-page: 317 year: 2010 ident: e_1_3_4_32_2 article-title: Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages publication-title: Immunity doi: 10.1016/j.immuni.2010.02.008 – volume: 4 start-page: ra11 year: 2011 ident: e_1_3_4_36_2 article-title: The specificity of innate immune responses is enforced by repression of interferon response elements by NF-κB p50 publication-title: Sci Signal doi: 10.1126/scisignal.2001501 – volume: 28 start-page: 3341 year: 2009 ident: e_1_3_4_7_2 article-title: Jmjd3 contributes to the control of gene expression in LPS-activated macrophages publication-title: EMBO J doi: 10.1038/emboj.2009.271 – volume: 137 start-page: 259 year: 2009 ident: e_1_3_4_25_2 article-title: Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions publication-title: Cell doi: 10.1016/j.cell.2009.02.045 – ident: e_1_1_2_18_7_2_2 doi: 10.1016/j.it.2011.04.001 – volume: 184 start-page: 2718 year: 2010 ident: e_1_3_4_13_2 article-title: Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue publication-title: J Immunol doi: 10.4049/jimmunol.0901467 – volume: 9 start-page: 692 year: 2009 ident: e_1_3_4_1_2 article-title: Transcriptional control of the inflammatory response publication-title: Nat Rev Immunol doi: 10.1038/nri2634 – volume: 39 start-page: 750 year: 2010 ident: e_1_3_4_8_2 article-title: A feed-forward circuit controlling inducible NF-κB target gene activation by promoter histone demethylation publication-title: Mol Cell doi: 10.1016/j.molcel.2010.08.010 – volume: 130 start-page: 1083 year: 2007 ident: e_1_3_4_57_2 article-title: The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing publication-title: Cell doi: 10.1016/j.cell.2007.08.019 – volume: 8 start-page: e1000361 year: 2010 ident: e_1_3_4_26_2 article-title: Functional crosstalk between type I and II interferon through the regulated expression of STAT1 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000361 – volume: 399 start-page: 491 year: 1999 ident: e_1_3_4_17_2 article-title: Structure and ligand of a histone acetyltransferase bromodomain publication-title: Nature doi: 10.1038/20974 – volume: 97 start-page: 7202 year: 2000 ident: e_1_3_4_18_2 article-title: The histone deacetylase-3 complex contains nuclear receptor corepressors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.13.7202 – volume: 11 start-page: 750 year: 2011 ident: e_1_3_4_50_2 article-title: Transcriptional regulation of macrophage polarization: Enabling diversity with identity publication-title: Nat Rev Immunol doi: 10.1038/nri3088 – volume: 12 start-page: 1063 year: 1998 ident: e_1_3_4_27_2 article-title: Cyclooxygenase in biology and disease publication-title: FASEB J doi: 10.1096/fasebj.12.12.1063 – volume: 30 start-page: 61 year: 2008 ident: e_1_3_4_28_2 article-title: Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control publication-title: Mol Cell doi: 10.1016/j.molcel.2008.02.030 – volume: 298 start-page: 1412 year: 2002 ident: e_1_3_4_22_2 article-title: Requirement of Hos2 histone deacetylase for gene activity in yeast publication-title: Science doi: 10.1126/science.1077790 – volume: 325 start-page: 834 year: 2009 ident: e_1_3_4_16_2 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science doi: 10.1126/science.1175371 – volume: 391 start-page: 79 year: 1998 ident: e_1_3_4_41_2 article-title: The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation publication-title: Nature doi: 10.1038/34178 – volume: 332 start-page: 717 year: 2011 ident: e_1_3_4_47_2 article-title: A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection publication-title: Science doi: 10.1126/science.1201711 – volume: 32 start-page: 335 year: 2011 ident: e_1_3_4_14_2 article-title: Histone deacetylases as regulators of inflammation and immunity publication-title: Trends Immunol doi: 10.1016/j.it.2011.04.001 – volume: 180 start-page: 2125 year: 2008 ident: e_1_3_4_44_2 article-title: Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-beta production publication-title: J Immunol doi: 10.4049/jimmunol.180.4.2125 – volume: 326 start-page: 257 year: 2009 ident: e_1_3_4_4_2 article-title: Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses publication-title: Science doi: 10.1126/science.1179050 – volume: 377 start-page: 397 year: 1995 ident: e_1_3_4_19_2 article-title: Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor publication-title: Nature doi: 10.1038/377397a0 – volume: 468 start-page: 1119 year: 2010 ident: e_1_3_4_11_2 article-title: Suppression of inflammation by a synthetic histone mimic publication-title: Nature doi: 10.1038/nature09589 – volume: 17 start-page: 251 year: 2002 ident: e_1_3_4_30_2 article-title: IRF3 mediates a TLR3/TLR4-specific antiviral gene program publication-title: Immunity doi: 10.1016/S1074-7613(02)00390-4 – volume: 37 start-page: 1289 year: 2005 ident: e_1_3_4_56_2 article-title: Probing tumor phenotypes using stable and regulated synthetic microRNA precursors publication-title: Nat Genet doi: 10.1038/ng1651 – volume: 38 start-page: 576 year: 2010 ident: e_1_3_4_33_2 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 70 start-page: i109 year: 2011 ident: e_1_3_4_34_2 article-title: Targeting inflammation by modulating the Jun/AP-1 pathway publication-title: Ann Rheum Dis doi: 10.1136/ard.2010.140533 – volume: 6 start-page: 51 year: 2011 ident: e_1_3_4_55_2 article-title: Fish the ChIPs: A pipeline for automated genomic annotation of ChIP-Seq data publication-title: Biol Direct doi: 10.1186/1745-6150-6-51 – volume: 99 start-page: 2995 year: 2002 ident: e_1_3_4_12_2 article-title: The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.052702999 – volume: 140 start-page: 833 year: 2010 ident: e_1_3_4_2_2 article-title: Selective transcription in response to an inflammatory stimulus publication-title: Cell doi: 10.1016/j.cell.2010.01.037 – volume: 282 start-page: 11613 year: 2007 ident: e_1_3_4_39_2 article-title: Prostaglandin E receptors publication-title: J Biol Chem doi: 10.1074/jbc.R600038200 – volume: 97 start-page: 4844 year: 2000 ident: e_1_3_4_42_2 article-title: 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.9.4844 – reference: 20084085 - Nat Rev Genet. 2010 Feb;11(2):109-23 – reference: 10860984 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7202-7 – reference: 19729616 - Science. 2009 Oct 9;326(5950):257-63 – reference: 21245163 - Genes Dev. 2011 Jan 15;25(2):101-6 – reference: 10365964 - Nature. 1999 Jun 3;399(6735):491-6 – reference: 10638762 - Nature. 2000 Jan 6;403(6765):103-8 – reference: 22025054 - Nat Rev Immunol. 2011 Nov;11(11):750-61 – reference: 19379692 - Cell. 2009 Apr 17;137(2):259-72 – reference: 7566127 - Nature. 1995 Oct 5;377(6548):454-7 – reference: 19182219 - J Biol Chem. 2009 May 15;284(20):13291-5 – reference: 12855817 - Science. 2003 Aug 1;301(5633):640-3 – reference: 18406327 - Mol Cell. 2008 Apr 11;30(1):61-72 – reference: 21978789 - Biol Direct. 2011;6:51 – reference: 19105661 - Annu Rev Immunol. 2009;27:451-83 – reference: 11867742 - Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2995-3000 – reference: 9737710 - FASEB J. 1998 Sep;12(12):1063-73 – reference: 15616592 - EMBO J. 2005 Jan 12;24(1):85-96 – reference: 19596239 - Cell. 2009 Jul 10;138(1):114-28 – reference: 15452344 - Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14461-6 – reference: 19608861 - Science. 2009 Aug 14;325(5942):834-40 – reference: 18568166 - Chem Soc Rev. 2008 Jul;37(7):1402-13 – reference: 18292778 - Nat Rev Mol Cell Biol. 2008 Mar;9(3):206-18 – reference: 21339212 - Ann Rheum Dis. 2011 Mar;70 Suppl 1:i109-12 – reference: 12354379 - Immunity. 2002 Sep;17(3):251-63 – reference: 16397526 - Nat Rev Cancer. 2006 Jan;6(1):38-51 – reference: 17277777 - Nat Genet. 2007 Mar;39(3):311-8 – reference: 7566114 - Nature. 1995 Oct 5;377(6548):397-404 – reference: 19596240 - Cell. 2009 Jul 10;138(1):129-45 – reference: 21258344 - Nat Biotechnol. 2011 Mar;29(3):255-65 – reference: 9422508 - Nature. 1998 Jan 1;391(6662):79-82 – reference: 20832726 - Mol Cell. 2010 Sep 10;39(5):750-60 – reference: 22156208 - Genes Dev. 2011 Dec 1;25(23):2480-8 – reference: 14980219 - Cell. 2004 Feb 20;116(4):511-26 – reference: 18250418 - J Immunol. 2008 Feb 15;180(4):2125-31 – reference: 20141834 - Cell. 2010 Jan 22;140(2):197-208 – reference: 20206554 - Immunity. 2010 Mar 26;32(3):317-28 – reference: 19859064 - Nat Rev Immunol. 2009 Oct;9(10):692-703 – reference: 21068722 - Nature. 2010 Dec 23;468(7327):1119-23 – reference: 17329241 - J Biol Chem. 2007 Apr 20;282(16):11613-7 – reference: 18443042 - Mol Cell Biol. 2008 Jul;28(13):4407-23 – reference: 20436486 - Nat Chem Biol. 2010 Jun;6(6):433-41 – reference: 22048801 - Curr Protoc Immunol. 2011 Nov;Chapter 14:Unit 14.26 – reference: 12434058 - Science. 2002 Nov 15;298(5597):1412-4 – reference: 21343618 - Sci Signal. 2011;4(161):ra11 – reference: 20100935 - J Immunol. 2010 Mar 1;184(5):2718-28 – reference: 21551061 - Science. 2011 May 6;332(6030):717-21 – reference: 20303874 - Cell. 2010 Mar 19;140(6):833-44 – reference: 11711434 - Genes Dev. 2001 Nov 15;15(22):2991-3004 – reference: 20513432 - Mol Cell. 2010 May 28;38(4):576-89 – reference: 21570914 - Trends Immunol. 2011 Jul;32(7):335-43 – reference: 19779457 - EMBO J. 2009 Nov 4;28(21):3341-52 – reference: 20436908 - PLoS Biol. 2010;8(4):e1000361 – reference: 20566897 - Blood. 2010 Oct 14;116(15):2732-41 – reference: 17825402 - Cell. 2007 Sep 21;130(6):1083-94 – reference: 16200064 - Nat Genet. 2005 Nov;37(11):1289-95 – reference: 15708534 - Drug Discov Today. 2005 Feb 1;10(3):197-204 – reference: 10781090 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4844-9 – reference: 18599619 - Mol Endocrinol. 2008 Sep;22(9):2076-84 |
SSID | ssj0009580 |
Score | 2.5567195 |
Snippet | Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16768 |
SubjectTerms | Animals anti-inflammatory activity Anti-inflammatory agents autocrine signaling Base Sequence Binding sites Biological Sciences Chromatin Immunoprecipitation Cyclooxygenase 1 - metabolism Cytokines - analysis DNA Primers - genetics Enzyme-Linked Immunosorbent Assay Flow Cytometry Gene expression gene expression regulation Gene Expression Regulation - genetics genes Genomics histone deacetylase Histone Deacetylases - deficiency Histone Deacetylases - metabolism inflammation interferon-beta macrophages Macrophages - metabolism Membrane Proteins - metabolism Mice Mice, Transgenic Molecular Sequence Data phenotype PNAS Plus PNAS PLUS (AUTHOR SUMMARIES) prostaglandins Proteins Real-Time Polymerase Chain Reaction receptors Reverse Transcriptase Polymerase Chain Reaction Sequence Analysis, DNA T cell receptors |
Title | Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages |
URI | https://www.jstor.org/stable/41763433 http://www.pnas.org/content/109/42/E2865.abstract https://www.ncbi.nlm.nih.gov/pubmed/22802645 https://www.proquest.com/docview/1112801051 https://www.proquest.com/docview/1113214730 https://www.proquest.com/docview/1803145372 https://pubmed.ncbi.nlm.nih.gov/PMC3479529 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQGMhIPAxVGXHi_HocU9FAoprQJvUtshNbq0TTqU0f6P_B_8ud4zjp1CHgJarii5PmvpzP9t13hLyvwhLGmZTBtCQTPg8r5mc5k35S8qhMRaClqQ34bZpcXPOvs3g2Gv0aRC1tGnlabvfmlfyPVuEc6BWzZP9Bs65TOAG_Qb9wBA3D8a90_F1hHK9Z4HPhgoZAuMZsKFGq5ic4x2p8UYkychJwZ4DBot1eh74V0vy34bAuXguXQRYCy3vdgMFZD13YSzfkrbsAg2m3onjW56dYo7Ee--PLaV_t-Nxmg8w2SvdZaJ_EarndmsCCLzBsu-UEHDbquak6hZsJatUsnS1fGZJz2ziBwVMMVzBYiKafWf7r1uqC0-InvK0b6sxykA_w11JwWSs7wXTavfYfDBYWLa7FGnOjGHIJtd0M0HC7MHBAHiDwBuN-IHThiV3TA_IwTMEl6xaBHJdzFnQsUWn08c7dkF7aXr_j67ThrsihC_L75jN3w3IHfs7VE_LYTlDoWYu2QzJS9VNy2GmTnlie8g_PyHwAPwrgogAFauFHB_CjBn5OYgg_ivCjPfyohR8I0QH8npPrz5Or8wvfVu7wyzhJG18rrlKVaA3TDZmLpEIWuFwxLgNdZbHMpUpLHamYa3CQ00xkTFeSSfD_Qy2kiI7IQQ0P-5LQSAaY-8wjxQIuuAabk1caxGBmo3UYeuS0e8dFaWntsbrKj8KEV6RRge-76PXjkRN3wW3L6HK_6JFRmpPjDIZjHkUe8Yxof31e8LAwuPTIcafawtoK7BP8QCxGyzzyzjWDJcftOVGr5cbImKphUfAHmQzLTcRRCv_7RYsW9xAd6jyS7uDICSCT_G5LPb8xjPKYTh6H-at7-3xNHvVf7jE5aFYb9Qa88Ua-Nd_Gbzk84vs |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Requirement+for+the+histone+deacetylase+Hdac3+for+the+inflammatory+gene+expression+program+in+macrophages&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chen%2C+Xuefen&rft.au=Barozzi%2C+Iros&rft.au=Termanini%2C+Alberto&rft.au=Prosperini%2C+Elena&rft.date=2012-10-16&rft.eissn=1091-6490&rft.volume=109&rft.issue=42&rft.spage=E2865&rft_id=info:doi/10.1073%2Fpnas.1121131109&rft_id=info%3Apmid%2F22802645&rft.externalDocID=22802645 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F42.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F42.cover.gif |