Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages

Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic appr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 42; pp. 16768 - 16769
Main Authors Chen, Xuefen, Barozzi, Iros, Termanini, Alberto, Prosperini, Elena, Recchiuti, Antonio, Dalli, Jesmond, Mietton, Flore, Matteoli, Gianluca, Hiebert, Scott, Natoli, Gioacchino
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.10.2012
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1121131109

Cover

Abstract Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents.
AbstractList Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents.
Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents. Here, we present genetic evidence for the central role of Hdac3 in the inflammatory gene expression program and identify one of the mechanisms involved in this regulation. These data suggest the possible use of selective Hdac3 inhibitors as anti-inflammatory agents. Understanding basic mechanisms of inflammation requires the identification of the sequence-specific transcription factors and transcriptional coregulators that directly control the rapid changes in gene expression that occur on exposure of innate immune response cells, such as macrophages, to inflammatory agents ( 3 ). HDACs deacetylate a large number of substrates, most notably histones, and seem to be required for inflammation as indicated by the known anti-inflammatory activity of pan-HDAC inhibitors, namely, chemicals that nonselectively interfere with the activity of 1 or more of the 11 distinct HDACs. However, the specific family members required for the activation of the inflammatory gene expression program are unknown. In the present study, we used a conditional Hdac3 KO to generate Hdac3-deficient macrophages, in which we characterized both the transcriptional and the genome-wide chromatin changes (histone acetylation) occurring as a consequence of loss of Hdac3 expression. Almost half of LPS-induced genes were down-regulated in KO cells. A major component of the observed defects was the loss of IFN-β production caused by severely impaired Ifnb1 gene activation ( Fig. P1 ). IFN-β controls a large fraction of the secondary gene response (namely, the one requiring new protein synthesis) in this system. Reduced Ifnb1 gene expression is largely ascribed to the overexpression of one of the two rate-limiting enzymes in prostaglandin biosynthesis, Cox-1 ( Fig. P1 ) ( 4 ). Consistent with the inhibitory activity of the molecules produced by Cox-1, including electrophilic oxoderivatives, on Ifnb1 gene expression, blocking the enzymatic activity of Cox-1 with a chemical inhibitor partially rescued the expression of Ifnb1 and its target genes. Cox-1 overexpression correlated with the hyperacetylation of a transcriptional enhancer just upstream of the Ptgs1 gene (encoding Cox-1), which contains several nuclear hormone receptor-binding sites. Because nuclear receptors that are not engaged by their ligands are negatively regulated by Hdac3 -containing complexes with transcriptional repression activity (commonly known as corepressors), these data suggest that Cox-1 overexpression reflects the unopposed activity of nuclear receptors in the absence of Hdac3. Inflammation is a complex response to physical and biological agents, including microbes and endogenous danger signals (e.g., cell debris), and involves the differential expression of hundreds of host genes. The complement of nuclear enzymes (and specifically those controlling covalent histone modifications) that regulates transcription of inflammatory genes has not been fully identified. Histone deacetylases (HDACs) belong to a family of lysine deacetylases targeting histones as well as a large number of nonhistone proteins. Chemical inhibitors of HDACs possess anti-inflammatory activity in various in vitro and in vivo models ( 1 , 2 ), but the specific HDAC(s) involved are unknown. Here, we identify Hdac3 as an essential regulator of the inflammatory transcriptional program.
Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents. [PUBLICATION ABSTRACT]
Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents.Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the specific contribution of each of the 11 HDAC proteins to the inflammatory gene expression program is unknown. Using an integrated genomic approach, we found that Hdac3-deficient macrophages were unable to activate almost half of the inflammatory gene expression program when stimulated with LPS. A large part of the activation defect was attributable to loss of basal and LPS-inducible expression of IFN-β, which maintains Stat1 protein levels in unstimulated cells and acts in an autocrine/paracrine manner after stimulation to promote a secondary wave of Stat1-dependent gene expression. Loss of Hdac3-mediated repression of nuclear receptors led to hyperacetylation of thousands of genomic sites and associated gene derepression. The up-regulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), a nuclear receptor target, had a causative role in the phenotype because its chemical inhibition reverted, albeit partially, the Ifn-β activation defect. These data indicate a central role for Hdac3 in inflammation and may have relevance for the use of selective Hdac inhibitors as antiinflammatory agents.
Author Barozzi, Iros
Dalli, Jesmond
Recchiuti, Antonio
Chen, Xuefen
Termanini, Alberto
Hiebert, Scott
Mietton, Flore
Matteoli, Gianluca
Prosperini, Elena
Natoli, Gioacchino
Author_xml – sequence: 1
  givenname: Xuefen
  surname: Chen
  fullname: Chen, Xuefen
– sequence: 2
  givenname: Iros
  surname: Barozzi
  fullname: Barozzi, Iros
– sequence: 3
  givenname: Alberto
  surname: Termanini
  fullname: Termanini, Alberto
– sequence: 4
  givenname: Elena
  surname: Prosperini
  fullname: Prosperini, Elena
– sequence: 5
  givenname: Antonio
  surname: Recchiuti
  fullname: Recchiuti, Antonio
– sequence: 6
  givenname: Jesmond
  surname: Dalli
  fullname: Dalli, Jesmond
– sequence: 7
  givenname: Flore
  surname: Mietton
  fullname: Mietton, Flore
– sequence: 8
  givenname: Gianluca
  surname: Matteoli
  fullname: Matteoli, Gianluca
– sequence: 9
  givenname: Scott
  surname: Hiebert
  fullname: Hiebert, Scott
– sequence: 10
  givenname: Gioacchino
  surname: Natoli
  fullname: Natoli, Gioacchino
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22802645$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFMydQJC69pPX4I4kvSKhqKVIlJARny0nGu14lcWonFfvvcbTLFnqAi32YZ2bemXnPyMngByTkLdBLoCW_GgcTLwEYAAeg6gVZpRfyQih6QlaUsjKvBBOn5CzGLaVUyYq-IqeMVZQVQq6I-4YPswvY4zBl1ods2mC2cXFKfbIWTYPTrjMRs7vWNPxIuMF2pu_N5MMuW2Ni8ecYMEbnh2wMfh1Mn6CsN03w48asMb4mL63pIr45_Ofkx-3N9-u7_P7r5y_Xn-7zRhbllFsUWGJhLUhaK1O0ikpQCKKmtq1krWosG8tRCsuVKitTgW1rqGklmTW14efk477uONc9tk0aLJhOj8H1Juy0N07_HRncRq_9o-aiVJKpVODiUCD4hxnjpHsXG-w6M6Cfo4aKchCSl-z_aLoLA1FymtAPz9Ctn8OQNrFQ6R6Q5kzU-z_FH1X_PlgCrvZA2muMAe0RAaoXS-jFEvrJEilDPsto3GSmdKg0vev-kZcdpCyBpy5KC6ZvWFUsYt7tkW3ySzgyAsqCC875Lw9A0NA
CitedBy_id crossref_primary_10_3389_fmolb_2023_1190094
crossref_primary_10_3389_fimmu_2022_841716
crossref_primary_10_1021_acsami_2c08994
crossref_primary_10_3390_ph7060634
crossref_primary_10_1248_bpb_b24_00111
crossref_primary_10_1097_MOL_0000000000000109
crossref_primary_10_1124_jpet_114_217315
crossref_primary_10_1517_13543784_2016_1146251
crossref_primary_10_1530_JME_13_0216
crossref_primary_10_1073_pnas_2016049117
crossref_primary_10_1210_en_2017_03000
crossref_primary_10_1016_j_bbalip_2021_159019
crossref_primary_10_1155_2016_6591703
crossref_primary_10_18632_oncotarget_17027
crossref_primary_10_1080_14756366_2018_1437156
crossref_primary_10_15252_emmm_201404170
crossref_primary_10_1038_s41419_023_06147_7
crossref_primary_10_1158_0008_5472_CAN_22_1270
crossref_primary_10_1371_journal_pone_0208755
crossref_primary_10_1038_ni_3713
crossref_primary_10_1080_17501911_2024_2419357
crossref_primary_10_1161_ATVBAHA_115_305046
crossref_primary_10_1089_ars_2016_6695
crossref_primary_10_3389_fcvm_2022_1077290
crossref_primary_10_1074_jbc_RA119_010707
crossref_primary_10_3389_fimmu_2018_01977
crossref_primary_10_3389_fimmu_2021_669566
crossref_primary_10_1038_s41580_018_0076_0
crossref_primary_10_12997_jla_2021_10_3_251
crossref_primary_10_1016_j_jaut_2015_09_003
crossref_primary_10_11569_wcjd_v27_i3_139
crossref_primary_10_1016_j_lfs_2019_02_004
crossref_primary_10_1186_s12974_024_03159_8
crossref_primary_10_1016_j_imlet_2020_07_007
crossref_primary_10_1093_ehjopen_oeab022
crossref_primary_10_1007_s11904_023_00675_9
crossref_primary_10_1016_j_lfs_2023_121574
crossref_primary_10_1155_2018_7313515
crossref_primary_10_1016_j_coph_2013_06_002
crossref_primary_10_1016_j_csbj_2023_03_050
crossref_primary_10_1016_j_molcel_2020_08_015
crossref_primary_10_3892_mmr_2024_13367
crossref_primary_10_1038_s41420_023_01399_w
crossref_primary_10_1089_ars_2014_5915
crossref_primary_10_1002_pmic_201400075
crossref_primary_10_1016_j_jacbts_2018_05_003
crossref_primary_10_1186_s12974_021_02273_1
crossref_primary_10_1016_j_intimp_2019_106086
crossref_primary_10_1016_j_smim_2015_10_003
crossref_primary_10_14336_AD_2021_1116
crossref_primary_10_3390_v11060555
crossref_primary_10_3389_fimmu_2024_1392145
crossref_primary_10_2492_inflammregen_35_129
crossref_primary_10_1016_j_intimp_2021_107791
crossref_primary_10_1002_glia_23887
crossref_primary_10_1016_j_pathol_2021_09_001
crossref_primary_10_1164_rccm_201211_2025ED
crossref_primary_10_1016_j_trsl_2017_09_002
crossref_primary_10_1186_s13075_024_03335_4
crossref_primary_10_1016_j_ejmech_2019_05_038
crossref_primary_10_15406_jdmdc_2021_08_00216
crossref_primary_10_4049_jimmunol_1700223
crossref_primary_10_1128_spectrum_00737_24
crossref_primary_10_1186_s13395_021_00273_6
crossref_primary_10_1096_fj_201900394RRR
crossref_primary_10_1172_JCI162190
crossref_primary_10_1093_nar_gkaa088
crossref_primary_10_1007_s00109_021_02141_8
crossref_primary_10_1016_j_it_2012_11_001
crossref_primary_10_1016_j_molcel_2022_11_016
crossref_primary_10_3389_fgene_2019_00640
crossref_primary_10_1016_j_rbmo_2023_103288
crossref_primary_10_3389_fcvm_2022_868788
crossref_primary_10_7554_eLife_80477
crossref_primary_10_1016_j_ejmech_2018_10_072
crossref_primary_10_3390_cancers12061411
crossref_primary_10_3390_ijms23179752
crossref_primary_10_1039_C6MD00375C
crossref_primary_10_1016_j_molmed_2024_01_007
crossref_primary_10_1111_apt_13008
crossref_primary_10_3389_fcell_2022_931493
crossref_primary_10_1038_s41590_018_0184_1
crossref_primary_10_1038_nature15252
crossref_primary_10_18632_oncotarget_17748
crossref_primary_10_3164_jcbn_23_16
crossref_primary_10_1126_sciadv_ade6900
crossref_primary_10_1371_journal_pone_0152498
crossref_primary_10_1371_journal_ppat_1004785
crossref_primary_10_1016_j_jmb_2014_08_015
crossref_primary_10_3389_fimmu_2022_845678
crossref_primary_10_1016_j_immuni_2018_12_018
crossref_primary_10_1038_cti_2015_46
crossref_primary_10_1096_fj_13_248393
crossref_primary_10_1038_s41418_020_00631_9
crossref_primary_10_1038_nm_4114
crossref_primary_10_1016_j_coph_2017_04_008
crossref_primary_10_1172_JCI69738
crossref_primary_10_1016_j_it_2014_09_007
crossref_primary_10_1371_journal_pone_0121748
crossref_primary_10_1016_j_addr_2022_114298
crossref_primary_10_1091_mbc_e15_04_0209
crossref_primary_10_2217_epi_15_71
crossref_primary_10_1016_j_ejphar_2018_05_003
crossref_primary_10_1016_j_cbpa_2016_06_019
crossref_primary_10_1111_andr_13231
crossref_primary_10_1186_s13148_021_01046_0
crossref_primary_10_1038_s41598_017_08535_4
crossref_primary_10_1161_ATVBAHA_114_303393
crossref_primary_10_1074_jbc_R116_774745
crossref_primary_10_1371_journal_pbio_3000941
crossref_primary_10_3390_v10100525
crossref_primary_10_1016_j_phrs_2021_105969
crossref_primary_10_3389_fphys_2019_01060
crossref_primary_10_1186_s12943_023_01725_x
crossref_primary_10_1002_mnfr_201400307
crossref_primary_10_1080_02648725_2021_1989847
crossref_primary_10_3390_ijms20194964
crossref_primary_10_1016_j_cbpa_2014_08_013
crossref_primary_10_1016_j_cellsig_2021_110099
crossref_primary_10_3390_ijms24097876
crossref_primary_10_1038_nrrheum_2013_17
crossref_primary_10_3389_fimmu_2024_1419685
crossref_primary_10_1136_annrheumdis_2015_209064
crossref_primary_10_1002_iub_2402
crossref_primary_10_3390_ijms18010137
crossref_primary_10_1074_jbc_M113_496281
crossref_primary_10_1021_acs_jmedchem_2c01132
crossref_primary_10_1186_s13059_018_1524_z
crossref_primary_10_1136_annrheumdis_2014_205635
crossref_primary_10_1038_pr_2013_238
crossref_primary_10_1007_s10787_012_0166_0
crossref_primary_10_1016_j_intimp_2020_107340
crossref_primary_10_1016_j_autrev_2024_103733
crossref_primary_10_1073_pnas_1816399116
crossref_primary_10_3389_fphar_2023_1125866
crossref_primary_10_3389_fimmu_2020_550769
crossref_primary_10_1007_s00740_015_0064_3
crossref_primary_10_1016_j_jnutbio_2018_03_002
crossref_primary_10_1016_j_bbadis_2013_09_014
crossref_primary_10_3390_pathophysiology29030038
crossref_primary_10_1038_s41467_021_25393_x
crossref_primary_10_3389_fimmu_2015_00661
crossref_primary_10_1089_jmf_2015_0156
crossref_primary_10_1186_s12931_024_02769_3
crossref_primary_10_3389_fimmu_2021_688910
crossref_primary_10_1155_2017_6237351
crossref_primary_10_1038_srep45047
crossref_primary_10_1089_jmf_2018_4253
crossref_primary_10_1242_dev_201548
crossref_primary_10_1007_s00281_019_00748_1
crossref_primary_10_1016_j_ejmech_2023_116037
crossref_primary_10_1007_s00011_022_01651_6
crossref_primary_10_1084_jem_20220666
crossref_primary_10_1002_acn3_47
crossref_primary_10_1016_j_atherosclerosis_2014_12_048
crossref_primary_10_1038_s41419_023_05656_9
crossref_primary_10_1111_jcmm_16616
crossref_primary_10_1016_j_celrep_2016_03_048
crossref_primary_10_4049_jimmunol_1400486
crossref_primary_10_1371_journal_ppat_1005938
crossref_primary_10_1038_s41563_018_0225_z
crossref_primary_10_1098_rstb_2012_0370
crossref_primary_10_1002_adbi_202300211
crossref_primary_10_1021_acs_jafc_3c04417
crossref_primary_10_1038_s41563_018_0190_6
crossref_primary_10_1021_acs_jafc_8b01439
crossref_primary_10_3390_ijms20122949
crossref_primary_10_1038_icb_2013_56
crossref_primary_10_1007_s12975_020_00783_3
crossref_primary_10_1093_nutrit_nux001
crossref_primary_10_1177_0022034519885088
crossref_primary_10_3389_fonc_2014_00111
crossref_primary_10_1177_0192623314553805
crossref_primary_10_1002_cbin_11952
crossref_primary_10_3390_epigenomes3030019
crossref_primary_10_1111_imcb_12455
crossref_primary_10_3389_fcell_2020_576946
crossref_primary_10_1016_j_fsi_2023_109214
crossref_primary_10_1016_j_ejphar_2015_03_101
crossref_primary_10_1038_nature12687
crossref_primary_10_3390_cells11244072
crossref_primary_10_3390_cells10112962
crossref_primary_10_1002_1873_3468_12850
crossref_primary_10_1371_journal_pone_0132984
crossref_primary_10_1038_s41598_020_78364_5
crossref_primary_10_1089_jir_2016_0004
crossref_primary_10_3390_nu8060381
crossref_primary_10_1016_j_celrep_2022_110302
crossref_primary_10_3390_ijms20020346
crossref_primary_10_1371_journal_pntd_0005137
crossref_primary_10_3390_cancers14061469
crossref_primary_10_1177_0192623314553475
crossref_primary_10_1016_j_ejmech_2020_112171
crossref_primary_10_1016_j_neures_2021_05_014
crossref_primary_10_1002_jsfa_10734
crossref_primary_10_1016_j_biopha_2022_114052
crossref_primary_10_1371_journal_pone_0183679
crossref_primary_10_1016_j_pharmthera_2016_07_013
crossref_primary_10_1128_microbiolspec_MCHD_0010_2015
crossref_primary_10_1007_s12015_024_10759_7
crossref_primary_10_1111_jcmm_12595
crossref_primary_10_3389_fimmu_2021_652160
crossref_primary_10_1038_nri3777
crossref_primary_10_1016_j_bcp_2016_03_010
crossref_primary_10_1039_C8FO02438C
crossref_primary_10_1074_jbc_M117_804328
crossref_primary_10_18632_oncotarget_24556
crossref_primary_10_1016_j_cellsig_2020_109553
crossref_primary_10_1021_acs_jmedchem_0c00230
crossref_primary_10_1126_sciimmunol_aah4609
crossref_primary_10_1007_s12035_022_03083_z
crossref_primary_10_1016_j_celrep_2017_04_046
crossref_primary_10_1042_BCJ20240380
crossref_primary_10_1063_5_0087699
crossref_primary_10_1093_burnst_tkac057
crossref_primary_10_3109_08916934_2015_1134510
crossref_primary_10_1021_acschembio_7b00321
crossref_primary_10_1186_s12974_019_1495_3
crossref_primary_10_1016_j_biopha_2023_115309
crossref_primary_10_1016_j_celrep_2017_05_093
crossref_primary_10_1084_jem_20151764
crossref_primary_10_3390_cancers13071665
crossref_primary_10_1007_s40472_016_0130_9
crossref_primary_10_1093_intimm_dxy042
crossref_primary_10_1096_fj_202301762RR
crossref_primary_10_3390_nu12123657
crossref_primary_10_1002_jcla_24699
crossref_primary_10_18632_oncotarget_17586
crossref_primary_10_3389_fnsys_2019_00037
crossref_primary_10_1002_jcp_26497
crossref_primary_10_1038_s41419_019_2212_y
crossref_primary_10_1016_j_tem_2012_09_003
crossref_primary_10_3389_fimmu_2020_00036
crossref_primary_10_1002_ange_202310059
crossref_primary_10_1371_journal_pone_0068669
crossref_primary_10_1016_j_jtcme_2021_04_004
crossref_primary_10_1007_s00408_025_00798_3
crossref_primary_10_2217_epi_2016_0136
crossref_primary_10_1016_j_cyto_2022_155842
crossref_primary_10_1016_j_jff_2020_104309
crossref_primary_10_1016_j_banm_2023_01_023
crossref_primary_10_1371_journal_pone_0208602
crossref_primary_10_1073_pnas_2316104121
crossref_primary_10_1016_j_celrep_2018_09_002
crossref_primary_10_1080_15592294_2023_2241008
crossref_primary_10_1007_s10753_013_9686_z
crossref_primary_10_1016_j_taap_2021_115795
crossref_primary_10_1089_ars_2013_5750
crossref_primary_10_1002_anie_202310059
crossref_primary_10_1021_acs_jmedchem_3c01095
crossref_primary_10_3389_fimmu_2023_1267550
crossref_primary_10_3390_pharmaceutics15122659
crossref_primary_10_1155_2018_8917804
crossref_primary_10_3389_fimmu_2023_1190333
crossref_primary_10_1021_acs_jmedchem_4c01062
crossref_primary_10_1073_pnas_1613156113
crossref_primary_10_1007_s10787_019_00663_9
crossref_primary_10_1172_JCI77088
crossref_primary_10_3389_fendo_2020_00062
crossref_primary_10_1016_j_isci_2023_107158
crossref_primary_10_18632_oncotarget_2289
crossref_primary_10_1016_j_it_2018_11_006
crossref_primary_10_1021_acs_jmedchem_0c01676
crossref_primary_10_3390_cancers14051221
crossref_primary_10_1038_nri3581
crossref_primary_10_1038_s41598_022_05698_7
crossref_primary_10_3390_ijms23137300
crossref_primary_10_1021_acschemneuro_1c00826
crossref_primary_10_1038_s41419_017_0174_5
crossref_primary_10_1042_CS20120504
crossref_primary_10_1186_s12974_022_02563_2
crossref_primary_10_2217_epi_2020_0380
crossref_primary_10_1016_j_bbadis_2020_165903
crossref_primary_10_1016_j_jaci_2023_04_022
crossref_primary_10_3389_fimmu_2024_1450440
crossref_primary_10_1007_s00101_014_2402_z
crossref_primary_10_1016_j_tem_2016_06_008
crossref_primary_10_3389_fimmu_2024_1415597
crossref_primary_10_1016_j_coi_2022_102173
crossref_primary_10_3389_fmed_2022_1072453
Cites_doi 10.1074/jbc.R900010200
10.1073/pnas.0405786101
10.1039/b703830p
10.1038/ng1966
10.1016/j.cell.2009.04.020
10.1038/nri2634
10.1096/fasebj.12.12.1063
10.1016/S0092-8674(04)00133-3
10.1126/science.1087262
10.1016/j.cell.2009.05.047
10.1038/nchembio.367
10.1016/j.cell.2009.12.052
10.1038/nrg2736
10.1038/sj.emboj.7600500
10.1210/me.2007-0302
10.1038/377454a0
10.1101/gad.207401
10.1128/MCB.00535-07
10.1038/nbt.1759
10.1038/nrm2346
10.1016/S1359-6446(04)03309-4
10.1182/blood-2009-11-256354
10.1101/gad.175950.111
10.1038/nrc1779
10.1038/47520
10.1101/gad.2018811
10.1146/annurev.immunol.021908.132532
10.1016/j.immuni.2010.02.008
10.1126/scisignal.2001501
10.1038/emboj.2009.271
10.1016/j.cell.2009.02.045
10.1016/j.it.2011.04.001
10.4049/jimmunol.0901467
10.1016/j.molcel.2010.08.010
10.1016/j.cell.2007.08.019
10.1371/journal.pbio.1000361
10.1038/20974
10.1073/pnas.97.13.7202
10.1038/nri3088
10.1016/j.molcel.2008.02.030
10.1126/science.1077790
10.1126/science.1175371
10.1038/34178
10.1126/science.1201711
10.4049/jimmunol.180.4.2125
10.1126/science.1179050
10.1038/377397a0
10.1038/nature09589
10.1016/S1074-7613(02)00390-4
10.1038/ng1651
10.1016/j.molcel.2010.05.004
10.1136/ard.2010.140533
10.1186/1745-6150-6-51
10.1073/pnas.052702999
10.1016/j.cell.2010.01.037
10.1074/jbc.R600038200
10.1073/pnas.97.9.4844
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Oct 16, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Oct 16, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1121131109
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
CrossRef
Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Hdac3 controls inflammation
EISSN 1091-6490
EndPage 16769
ExternalDocumentID PMC3479529
2792047291
22802645
10_1073_pnas_1121131109
109_42_E2865
41763433
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA164605
– fundername: NIGMS NIH HHS
  grantid: R01 GM095967
– fundername: NIGMS NIH HHS
  grantid: 5P01GM095967
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c567t-fe4e7e6ff150b9a6d90519e14b0fd85b9be7cf3e54f39978a81fdb1b0852faba3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:04:11 EDT 2025
Fri Sep 05 09:06:15 EDT 2025
Fri Sep 05 06:12:26 EDT 2025
Mon Jun 30 08:26:20 EDT 2025
Wed Feb 19 01:52:23 EST 2025
Tue Jul 01 03:39:21 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Wed Nov 11 00:30:10 EST 2020
Thu May 29 08:40:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-fe4e7e6ff150b9a6d90519e14b0fd85b9be7cf3e54f39978a81fdb1b0852faba3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Stephen T. Smale, University of California, Los Angeles, CA, and accepted by the Editorial Board May 9, 2012 (received for review December 21, 2011)
Author contributions: G.N. designed research; X.C., E.P., A.R., J.D., F.M., and G.M. performed research; S.H. contributed new reagents/analytic tools; X.C., I.B., and A.T. analyzed data; and G.N. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/109/42/E2865.full.pdf
PMID 22802645
PQID 1112801051
PQPubID 42026
PageCount 2
ParticipantIDs proquest_journals_1112801051
crossref_citationtrail_10_1073_pnas_1121131109
pnas_primary_109_42_E2865
pubmed_primary_22802645
jstor_primary_41763433
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3479529
proquest_miscellaneous_1803145372
crossref_primary_10_1073_pnas_1121131109
proquest_miscellaneous_1113214730
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-16
PublicationDateYYYYMMDD 2012-10-16
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Covic M (e_1_3_4_6_2) 2005; 24
Martinez FO (e_1_3_4_51_2) 2009; 27
e_1_1_2_18_7_4_2
e_1_1_2_18_7_2_2
Heintzman ND (e_1_3_4_31_2) 2007; 39
Hu Y (e_1_3_4_38_2) 2010; 116
Doyle S (e_1_3_4_30_2) 2002; 17
Ogawa S (e_1_3_4_35_2) 2004; 101
Leoni F (e_1_3_4_12_2) 2002; 99
Mullican SE (e_1_3_4_49_2) 2011; 25
Bantscheff M (e_1_3_4_53_2) 2011; 29
Rossi A (e_1_3_4_43_2) 2000; 403
Kim T (e_1_3_4_25_2) 2009; 137
Dickins RA (e_1_3_4_56_2) 2005; 37
Ramirez-Carrozzi VR (e_1_3_4_9_2) 2009; 138
Perissi V (e_1_3_4_21_2) 2010; 11
Dhalluin C (e_1_3_4_17_2) 1999; 399
van Essen D (e_1_3_4_8_2) 2010; 39
Heinz S (e_1_3_4_33_2) 2010; 38
Lawrence T (e_1_3_4_50_2) 2011; 11
Amit I (e_1_3_4_4_2) 2009; 326
Perissi V (e_1_3_4_5_2) 2004; 116
Ricote M (e_1_3_4_41_2) 1998; 391
Straus DS (e_1_3_4_42_2) 2000; 97
Medzhitov R (e_1_3_4_1_2) 2009; 9
Hargreaves DC (e_1_3_4_10_2) 2009; 138
Natoli G (e_1_3_4_3_2) 2011; 25
Kim BH (e_1_3_4_47_2) 2011; 332
e_1_1_2_18_7_3_2
e_1_1_2_18_7_1_2
Barozzi I (e_1_3_4_55_2) 2011; 6
De Santa F (e_1_3_4_57_2) 2007; 130
Wen YD (e_1_3_4_18_2) 2000; 97
Yang R (e_1_3_4_46_2) 2011
Ghisletti S (e_1_3_4_32_2) 2010; 32
Wolter S (e_1_3_4_48_2) 2008; 28
Groeger AL (e_1_3_4_40_2) 2010; 6
Nguyen T (e_1_3_4_37_2) 2009; 284
Bhaskara S (e_1_3_4_28_2) 2008; 30
Nicodeme E (e_1_3_4_11_2) 2010; 468
Hörlein AJ (e_1_3_4_19_2) 1995; 377
Bieliauskas AV (e_1_3_4_52_2) 2008; 37
Yamamoto M (e_1_3_4_29_2) 2003; 301
Yang XJ (e_1_3_4_24_2) 2008; 9
Pijnappel WW (e_1_3_4_23_2) 2001; 15
Smale ST (e_1_3_4_2_2) 2010; 140
Grabiec AM (e_1_3_4_13_2) 2010; 184
Gough DJ (e_1_3_4_26_2) 2010; 8
Chen JD (e_1_3_4_20_2) 1995; 377
Schonthaler HB (e_1_3_4_34_2) 2011; 70
Wang A (e_1_3_4_22_2) 2002; 298
Xu XJ (e_1_3_4_44_2) 2008; 180
Dubois RN (e_1_3_4_27_2) 1998; 12
Minucci S (e_1_3_4_15_2) 2006; 6
Choudhary C (e_1_3_4_16_2) 2009; 325
De Santa F (e_1_3_4_7_2) 2009; 28
Shakespear MR (e_1_3_4_14_2) 2011; 32
Cheng CS (e_1_3_4_36_2) 2011; 4
Sun H (e_1_3_4_45_2) 2008; 22
Park EJ (e_1_3_4_54_2) 2010; 140
Sugimoto Y (e_1_3_4_39_2) 2007; 282
15452344 - Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14461-6
20206554 - Immunity. 2010 Mar 26;32(3):317-28
15708534 - Drug Discov Today. 2005 Feb 1;10(3):197-204
18406327 - Mol Cell. 2008 Apr 11;30(1):61-72
9422508 - Nature. 1998 Jan 1;391(6662):79-82
19729616 - Science. 2009 Oct 9;326(5950):257-63
20141834 - Cell. 2010 Jan 22;140(2):197-208
12354379 - Immunity. 2002 Sep;17(3):251-63
20084085 - Nat Rev Genet. 2010 Feb;11(2):109-23
19379692 - Cell. 2009 Apr 17;137(2):259-72
10860984 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7202-7
19182219 - J Biol Chem. 2009 May 15;284(20):13291-5
20100935 - J Immunol. 2010 Mar 1;184(5):2718-28
22025054 - Nat Rev Immunol. 2011 Nov;11(11):750-61
11867742 - Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2995-3000
21343618 - Sci Signal. 2011;4(161):ra11
18443042 - Mol Cell Biol. 2008 Jul;28(13):4407-23
21068722 - Nature. 2010 Dec 23;468(7327):1119-23
21258344 - Nat Biotechnol. 2011 Mar;29(3):255-65
19779457 - EMBO J. 2009 Nov 4;28(21):3341-52
10638762 - Nature. 2000 Jan 6;403(6765):103-8
20436908 - PLoS Biol. 2010;8(4):e1000361
12855817 - Science. 2003 Aug 1;301(5633):640-3
19105661 - Annu Rev Immunol. 2009;27:451-83
9737710 - FASEB J. 1998 Sep;12(12):1063-73
18250418 - J Immunol. 2008 Feb 15;180(4):2125-31
18568166 - Chem Soc Rev. 2008 Jul;37(7):1402-13
21339212 - Ann Rheum Dis. 2011 Mar;70 Suppl 1:i109-12
12434058 - Science. 2002 Nov 15;298(5597):1412-4
11711434 - Genes Dev. 2001 Nov 15;15(22):2991-3004
16397526 - Nat Rev Cancer. 2006 Jan;6(1):38-51
18292778 - Nat Rev Mol Cell Biol. 2008 Mar;9(3):206-18
14980219 - Cell. 2004 Feb 20;116(4):511-26
20436486 - Nat Chem Biol. 2010 Jun;6(6):433-41
20832726 - Mol Cell. 2010 Sep 10;39(5):750-60
16200064 - Nat Genet. 2005 Nov;37(11):1289-95
19859064 - Nat Rev Immunol. 2009 Oct;9(10):692-703
20566897 - Blood. 2010 Oct 14;116(15):2732-41
21551061 - Science. 2011 May 6;332(6030):717-21
7566114 - Nature. 1995 Oct 5;377(6548):397-404
20303874 - Cell. 2010 Mar 19;140(6):833-44
15616592 - EMBO J. 2005 Jan 12;24(1):85-96
19596240 - Cell. 2009 Jul 10;138(1):129-45
7566127 - Nature. 1995 Oct 5;377(6548):454-7
22048801 - Curr Protoc Immunol. 2011 Nov;Chapter 14:Unit 14.26
21570914 - Trends Immunol. 2011 Jul;32(7):335-43
18599619 - Mol Endocrinol. 2008 Sep;22(9):2076-84
22156208 - Genes Dev. 2011 Dec 1;25(23):2480-8
17329241 - J Biol Chem. 2007 Apr 20;282(16):11613-7
17277777 - Nat Genet. 2007 Mar;39(3):311-8
19596239 - Cell. 2009 Jul 10;138(1):114-28
20513432 - Mol Cell. 2010 May 28;38(4):576-89
10781090 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4844-9
21978789 - Biol Direct. 2011;6:51
17825402 - Cell. 2007 Sep 21;130(6):1083-94
19608861 - Science. 2009 Aug 14;325(5942):834-40
21245163 - Genes Dev. 2011 Jan 15;25(2):101-6
10365964 - Nature. 1999 Jun 3;399(6735):491-6
References_xml – volume: 284
  start-page: 13291
  year: 2009
  ident: e_1_3_4_37_2
  article-title: The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R900010200
– volume: 101
  start-page: 14461
  year: 2004
  ident: e_1_3_4_35_2
  article-title: A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0405786101
– volume: 37
  start-page: 1402
  year: 2008
  ident: e_1_3_4_52_2
  article-title: Isoform-selective histone deacetylase inhibitors
  publication-title: Chem Soc Rev
  doi: 10.1039/b703830p
– volume: 39
  start-page: 311
  year: 2007
  ident: e_1_3_4_31_2
  article-title: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
  publication-title: Nat Genet
  doi: 10.1038/ng1966
– volume: 138
  start-page: 114
  year: 2009
  ident: e_1_3_4_9_2
  article-title: A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.020
– ident: e_1_1_2_18_7_3_2
  doi: 10.1038/nri2634
– ident: e_1_1_2_18_7_4_2
  doi: 10.1096/fasebj.12.12.1063
– volume: 116
  start-page: 511
  year: 2004
  ident: e_1_3_4_5_2
  article-title: A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00133-3
– volume: 301
  start-page: 640
  year: 2003
  ident: e_1_3_4_29_2
  article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
  publication-title: Science
  doi: 10.1126/science.1087262
– year: 2011
  ident: e_1_3_4_46_2
  article-title: Metabolomics-lipidomics of eicosanoids and docosanoids generated by phagocytes
  publication-title: Curr Protoc Immunol
– volume: 138
  start-page: 129
  year: 2009
  ident: e_1_3_4_10_2
  article-title: Control of inducible gene expression by signal-dependent transcriptional elongation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.047
– volume: 6
  start-page: 433
  year: 2010
  ident: e_1_3_4_40_2
  article-title: Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.367
– volume: 140
  start-page: 197
  year: 2010
  ident: e_1_3_4_54_2
  article-title: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.052
– volume: 11
  start-page: 109
  year: 2010
  ident: e_1_3_4_21_2
  article-title: Deconstructing repression: Evolving models of co-repressor action
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2736
– volume: 24
  start-page: 85
  year: 2005
  ident: e_1_3_4_6_2
  article-title: Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600500
– volume: 22
  start-page: 2076
  year: 2008
  ident: e_1_3_4_45_2
  article-title: Corticosteroids induce cyclooxygenase 1 expression in cardiomyocytes: role of glucocorticoid receptor and Sp3 transcription factor
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2007-0302
– volume: 377
  start-page: 454
  year: 1995
  ident: e_1_3_4_20_2
  article-title: A transcriptional co-repressor that interacts with nuclear hormone receptors
  publication-title: Nature
  doi: 10.1038/377454a0
– volume: 15
  start-page: 2991
  year: 2001
  ident: e_1_3_4_23_2
  article-title: The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program
  publication-title: Genes Dev
  doi: 10.1101/gad.207401
– volume: 28
  start-page: 4407
  year: 2008
  ident: e_1_3_4_48_2
  article-title: c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00535-07
– volume: 29
  start-page: 255
  year: 2011
  ident: e_1_3_4_53_2
  article-title: Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1759
– volume: 9
  start-page: 206
  year: 2008
  ident: e_1_3_4_24_2
  article-title: The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2346
– ident: e_1_1_2_18_7_1_2
  doi: 10.1016/S1359-6446(04)03309-4
– volume: 116
  start-page: 2732
  year: 2010
  ident: e_1_3_4_38_2
  article-title: Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate
  publication-title: Blood
  doi: 10.1182/blood-2009-11-256354
– volume: 25
  start-page: 2480
  year: 2011
  ident: e_1_3_4_49_2
  article-title: Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation
  publication-title: Genes Dev
  doi: 10.1101/gad.175950.111
– volume: 6
  start-page: 38
  year: 2006
  ident: e_1_3_4_15_2
  article-title: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1779
– volume: 403
  start-page: 103
  year: 2000
  ident: e_1_3_4_43_2
  article-title: Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase
  publication-title: Nature
  doi: 10.1038/47520
– volume: 25
  start-page: 101
  year: 2011
  ident: e_1_3_4_3_2
  article-title: The genomic landscapes of inflammation
  publication-title: Genes Dev
  doi: 10.1101/gad.2018811
– volume: 27
  start-page: 451
  year: 2009
  ident: e_1_3_4_51_2
  article-title: Alternative activation of macrophages: An immunologic functional perspective
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.021908.132532
– volume: 32
  start-page: 317
  year: 2010
  ident: e_1_3_4_32_2
  article-title: Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.02.008
– volume: 4
  start-page: ra11
  year: 2011
  ident: e_1_3_4_36_2
  article-title: The specificity of innate immune responses is enforced by repression of interferon response elements by NF-κB p50
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2001501
– volume: 28
  start-page: 3341
  year: 2009
  ident: e_1_3_4_7_2
  article-title: Jmjd3 contributes to the control of gene expression in LPS-activated macrophages
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.271
– volume: 137
  start-page: 259
  year: 2009
  ident: e_1_3_4_25_2
  article-title: Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.045
– ident: e_1_1_2_18_7_2_2
  doi: 10.1016/j.it.2011.04.001
– volume: 184
  start-page: 2718
  year: 2010
  ident: e_1_3_4_13_2
  article-title: Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0901467
– volume: 9
  start-page: 692
  year: 2009
  ident: e_1_3_4_1_2
  article-title: Transcriptional control of the inflammatory response
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2634
– volume: 39
  start-page: 750
  year: 2010
  ident: e_1_3_4_8_2
  article-title: A feed-forward circuit controlling inducible NF-κB target gene activation by promoter histone demethylation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.08.010
– volume: 130
  start-page: 1083
  year: 2007
  ident: e_1_3_4_57_2
  article-title: The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.019
– volume: 8
  start-page: e1000361
  year: 2010
  ident: e_1_3_4_26_2
  article-title: Functional crosstalk between type I and II interferon through the regulated expression of STAT1
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000361
– volume: 399
  start-page: 491
  year: 1999
  ident: e_1_3_4_17_2
  article-title: Structure and ligand of a histone acetyltransferase bromodomain
  publication-title: Nature
  doi: 10.1038/20974
– volume: 97
  start-page: 7202
  year: 2000
  ident: e_1_3_4_18_2
  article-title: The histone deacetylase-3 complex contains nuclear receptor corepressors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.13.7202
– volume: 11
  start-page: 750
  year: 2011
  ident: e_1_3_4_50_2
  article-title: Transcriptional regulation of macrophage polarization: Enabling diversity with identity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3088
– volume: 12
  start-page: 1063
  year: 1998
  ident: e_1_3_4_27_2
  article-title: Cyclooxygenase in biology and disease
  publication-title: FASEB J
  doi: 10.1096/fasebj.12.12.1063
– volume: 30
  start-page: 61
  year: 2008
  ident: e_1_3_4_28_2
  article-title: Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.02.030
– volume: 298
  start-page: 1412
  year: 2002
  ident: e_1_3_4_22_2
  article-title: Requirement of Hos2 histone deacetylase for gene activity in yeast
  publication-title: Science
  doi: 10.1126/science.1077790
– volume: 325
  start-page: 834
  year: 2009
  ident: e_1_3_4_16_2
  article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions
  publication-title: Science
  doi: 10.1126/science.1175371
– volume: 391
  start-page: 79
  year: 1998
  ident: e_1_3_4_41_2
  article-title: The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation
  publication-title: Nature
  doi: 10.1038/34178
– volume: 332
  start-page: 717
  year: 2011
  ident: e_1_3_4_47_2
  article-title: A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection
  publication-title: Science
  doi: 10.1126/science.1201711
– volume: 32
  start-page: 335
  year: 2011
  ident: e_1_3_4_14_2
  article-title: Histone deacetylases as regulators of inflammation and immunity
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2011.04.001
– volume: 180
  start-page: 2125
  year: 2008
  ident: e_1_3_4_44_2
  article-title: Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-beta production
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.4.2125
– volume: 326
  start-page: 257
  year: 2009
  ident: e_1_3_4_4_2
  article-title: Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses
  publication-title: Science
  doi: 10.1126/science.1179050
– volume: 377
  start-page: 397
  year: 1995
  ident: e_1_3_4_19_2
  article-title: Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor
  publication-title: Nature
  doi: 10.1038/377397a0
– volume: 468
  start-page: 1119
  year: 2010
  ident: e_1_3_4_11_2
  article-title: Suppression of inflammation by a synthetic histone mimic
  publication-title: Nature
  doi: 10.1038/nature09589
– volume: 17
  start-page: 251
  year: 2002
  ident: e_1_3_4_30_2
  article-title: IRF3 mediates a TLR3/TLR4-specific antiviral gene program
  publication-title: Immunity
  doi: 10.1016/S1074-7613(02)00390-4
– volume: 37
  start-page: 1289
  year: 2005
  ident: e_1_3_4_56_2
  article-title: Probing tumor phenotypes using stable and regulated synthetic microRNA precursors
  publication-title: Nat Genet
  doi: 10.1038/ng1651
– volume: 38
  start-page: 576
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 70
  start-page: i109
  year: 2011
  ident: e_1_3_4_34_2
  article-title: Targeting inflammation by modulating the Jun/AP-1 pathway
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.2010.140533
– volume: 6
  start-page: 51
  year: 2011
  ident: e_1_3_4_55_2
  article-title: Fish the ChIPs: A pipeline for automated genomic annotation of ChIP-Seq data
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-6-51
– volume: 99
  start-page: 2995
  year: 2002
  ident: e_1_3_4_12_2
  article-title: The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.052702999
– volume: 140
  start-page: 833
  year: 2010
  ident: e_1_3_4_2_2
  article-title: Selective transcription in response to an inflammatory stimulus
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.037
– volume: 282
  start-page: 11613
  year: 2007
  ident: e_1_3_4_39_2
  article-title: Prostaglandin E receptors
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R600038200
– volume: 97
  start-page: 4844
  year: 2000
  ident: e_1_3_4_42_2
  article-title: 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.9.4844
– reference: 20084085 - Nat Rev Genet. 2010 Feb;11(2):109-23
– reference: 10860984 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7202-7
– reference: 19729616 - Science. 2009 Oct 9;326(5950):257-63
– reference: 21245163 - Genes Dev. 2011 Jan 15;25(2):101-6
– reference: 10365964 - Nature. 1999 Jun 3;399(6735):491-6
– reference: 10638762 - Nature. 2000 Jan 6;403(6765):103-8
– reference: 22025054 - Nat Rev Immunol. 2011 Nov;11(11):750-61
– reference: 19379692 - Cell. 2009 Apr 17;137(2):259-72
– reference: 7566127 - Nature. 1995 Oct 5;377(6548):454-7
– reference: 19182219 - J Biol Chem. 2009 May 15;284(20):13291-5
– reference: 12855817 - Science. 2003 Aug 1;301(5633):640-3
– reference: 18406327 - Mol Cell. 2008 Apr 11;30(1):61-72
– reference: 21978789 - Biol Direct. 2011;6:51
– reference: 19105661 - Annu Rev Immunol. 2009;27:451-83
– reference: 11867742 - Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2995-3000
– reference: 9737710 - FASEB J. 1998 Sep;12(12):1063-73
– reference: 15616592 - EMBO J. 2005 Jan 12;24(1):85-96
– reference: 19596239 - Cell. 2009 Jul 10;138(1):114-28
– reference: 15452344 - Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14461-6
– reference: 19608861 - Science. 2009 Aug 14;325(5942):834-40
– reference: 18568166 - Chem Soc Rev. 2008 Jul;37(7):1402-13
– reference: 18292778 - Nat Rev Mol Cell Biol. 2008 Mar;9(3):206-18
– reference: 21339212 - Ann Rheum Dis. 2011 Mar;70 Suppl 1:i109-12
– reference: 12354379 - Immunity. 2002 Sep;17(3):251-63
– reference: 16397526 - Nat Rev Cancer. 2006 Jan;6(1):38-51
– reference: 17277777 - Nat Genet. 2007 Mar;39(3):311-8
– reference: 7566114 - Nature. 1995 Oct 5;377(6548):397-404
– reference: 19596240 - Cell. 2009 Jul 10;138(1):129-45
– reference: 21258344 - Nat Biotechnol. 2011 Mar;29(3):255-65
– reference: 9422508 - Nature. 1998 Jan 1;391(6662):79-82
– reference: 20832726 - Mol Cell. 2010 Sep 10;39(5):750-60
– reference: 22156208 - Genes Dev. 2011 Dec 1;25(23):2480-8
– reference: 14980219 - Cell. 2004 Feb 20;116(4):511-26
– reference: 18250418 - J Immunol. 2008 Feb 15;180(4):2125-31
– reference: 20141834 - Cell. 2010 Jan 22;140(2):197-208
– reference: 20206554 - Immunity. 2010 Mar 26;32(3):317-28
– reference: 19859064 - Nat Rev Immunol. 2009 Oct;9(10):692-703
– reference: 21068722 - Nature. 2010 Dec 23;468(7327):1119-23
– reference: 17329241 - J Biol Chem. 2007 Apr 20;282(16):11613-7
– reference: 18443042 - Mol Cell Biol. 2008 Jul;28(13):4407-23
– reference: 20436486 - Nat Chem Biol. 2010 Jun;6(6):433-41
– reference: 22048801 - Curr Protoc Immunol. 2011 Nov;Chapter 14:Unit 14.26
– reference: 12434058 - Science. 2002 Nov 15;298(5597):1412-4
– reference: 21343618 - Sci Signal. 2011;4(161):ra11
– reference: 20100935 - J Immunol. 2010 Mar 1;184(5):2718-28
– reference: 21551061 - Science. 2011 May 6;332(6030):717-21
– reference: 20303874 - Cell. 2010 Mar 19;140(6):833-44
– reference: 11711434 - Genes Dev. 2001 Nov 15;15(22):2991-3004
– reference: 20513432 - Mol Cell. 2010 May 28;38(4):576-89
– reference: 21570914 - Trends Immunol. 2011 Jul;32(7):335-43
– reference: 19779457 - EMBO J. 2009 Nov 4;28(21):3341-52
– reference: 20436908 - PLoS Biol. 2010;8(4):e1000361
– reference: 20566897 - Blood. 2010 Oct 14;116(15):2732-41
– reference: 17825402 - Cell. 2007 Sep 21;130(6):1083-94
– reference: 16200064 - Nat Genet. 2005 Nov;37(11):1289-95
– reference: 15708534 - Drug Discov Today. 2005 Feb 1;10(3):197-204
– reference: 10781090 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4844-9
– reference: 18599619 - Mol Endocrinol. 2008 Sep;22(9):2076-84
SSID ssj0009580
Score 2.5567195
Snippet Histone deacetylases (HDACs) regulate inflammatory gene expression, as indicated by the potent antiinflammatory activity of pan-HDAC inhibitors. However, the...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16768
SubjectTerms Animals
anti-inflammatory activity
Anti-inflammatory agents
autocrine signaling
Base Sequence
Binding sites
Biological Sciences
Chromatin Immunoprecipitation
Cyclooxygenase 1 - metabolism
Cytokines - analysis
DNA Primers - genetics
Enzyme-Linked Immunosorbent Assay
Flow Cytometry
Gene expression
gene expression regulation
Gene Expression Regulation - genetics
genes
Genomics
histone deacetylase
Histone Deacetylases - deficiency
Histone Deacetylases - metabolism
inflammation
interferon-beta
macrophages
Macrophages - metabolism
Membrane Proteins - metabolism
Mice
Mice, Transgenic
Molecular Sequence Data
phenotype
PNAS Plus
PNAS PLUS (AUTHOR SUMMARIES)
prostaglandins
Proteins
Real-Time Polymerase Chain Reaction
receptors
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
T cell receptors
Title Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages
URI https://www.jstor.org/stable/41763433
http://www.pnas.org/content/109/42/E2865.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22802645
https://www.proquest.com/docview/1112801051
https://www.proquest.com/docview/1113214730
https://www.proquest.com/docview/1803145372
https://pubmed.ncbi.nlm.nih.gov/PMC3479529
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQGMhIPAxVGXHi_HocU9FAoprQJvUtshNbq0TTqU0f6P_B_8ud4zjp1CHgJarii5PmvpzP9t13hLyvwhLGmZTBtCQTPg8r5mc5k35S8qhMRaClqQ34bZpcXPOvs3g2Gv0aRC1tGnlabvfmlfyPVuEc6BWzZP9Bs65TOAG_Qb9wBA3D8a90_F1hHK9Z4HPhgoZAuMZsKFGq5ic4x2p8UYkychJwZ4DBot1eh74V0vy34bAuXguXQRYCy3vdgMFZD13YSzfkrbsAg2m3onjW56dYo7Ee--PLaV_t-Nxmg8w2SvdZaJ_EarndmsCCLzBsu-UEHDbquak6hZsJatUsnS1fGZJz2ziBwVMMVzBYiKafWf7r1uqC0-InvK0b6sxykA_w11JwWSs7wXTavfYfDBYWLa7FGnOjGHIJtd0M0HC7MHBAHiDwBuN-IHThiV3TA_IwTMEl6xaBHJdzFnQsUWn08c7dkF7aXr_j67ThrsihC_L75jN3w3IHfs7VE_LYTlDoWYu2QzJS9VNy2GmTnlie8g_PyHwAPwrgogAFauFHB_CjBn5OYgg_ivCjPfyohR8I0QH8npPrz5Or8wvfVu7wyzhJG18rrlKVaA3TDZmLpEIWuFwxLgNdZbHMpUpLHamYa3CQ00xkTFeSSfD_Qy2kiI7IQQ0P-5LQSAaY-8wjxQIuuAabk1caxGBmo3UYeuS0e8dFaWntsbrKj8KEV6RRge-76PXjkRN3wW3L6HK_6JFRmpPjDIZjHkUe8Yxof31e8LAwuPTIcafawtoK7BP8QCxGyzzyzjWDJcftOVGr5cbImKphUfAHmQzLTcRRCv_7RYsW9xAd6jyS7uDICSCT_G5LPb8xjPKYTh6H-at7-3xNHvVf7jE5aFYb9Qa88Ua-Nd_Gbzk84vs
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Requirement+for+the+histone+deacetylase+Hdac3+for+the+inflammatory+gene+expression+program+in+macrophages&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chen%2C+Xuefen&rft.au=Barozzi%2C+Iros&rft.au=Termanini%2C+Alberto&rft.au=Prosperini%2C+Elena&rft.date=2012-10-16&rft.eissn=1091-6490&rft.volume=109&rft.issue=42&rft.spage=E2865&rft_id=info:doi/10.1073%2Fpnas.1121131109&rft_id=info%3Apmid%2F22802645&rft.externalDocID=22802645
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F42.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F42.cover.gif