ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43
Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43 Q³³¹ᴷ and TDP-43 ᴹ³³⁷ⱽ), bu...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 8; pp. E736 - E745 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.02.2013
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1222809110 |
Cover
Abstract | Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43 Q³³¹ᴷ and TDP-43 ᴹ³³⁷ⱽ), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43 Q³³¹ᴷ, but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43 Q³³¹ᴷ enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. |
---|---|
AbstractList | Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43 Q³³¹ᴷ and TDP-43 ᴹ³³⁷ⱽ), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43 Q³³¹ᴷ, but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43 Q³³¹ᴷ enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43... and TDP-43...), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43..., but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43... enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. (ProQuest: ... denotes formulae/symbols omitted.) Mutations in the RNA binding protein TDP-43 cause amyotrophic lateral sclerosis and frontotemporal dementia. Through expressing disease-causing mutants in mice and genome-wide RNA splicing analyses, mutant TDP-43 is shown to retain normal or enhanced activity for facilitating splicing of some RNA targets, but “loss-of-function” for others. These splicing changes, as well as age-dependent, mutant-dependent lower motor neuron disease, occur without loss of nuclear TDP-43 or accumulation of insoluble aggregates of TDP-43. Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43 Q331K and TDP-43 M337V ), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: ( i ) loss of TDP-43 from the corresponding nuclei, ( ii ) accumulation of TDP-43 aggregates, and ( iii ) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43 Q331K , but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43 Q331K enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. |
Author | Eveline S. Arnold Kevin M. Clutario Don W. Cleveland Shuo-Chien Ling Dara Ditsworth Magdalini Polymenidou Debbie Swing Holly B. Kordasiewicz Lino Tessarollo Stephanie C. Huelga Clotilde Lagier-Tourenne Philippe A. Parone Oleksandr Platoshyn Martin Marsala Melissa McAlonis-Downes Christopher E. Shaw Sandrine Da Cruz Gene W. Yeo |
Author_xml | – sequence: 1 givenname: Eveline S. surname: Arnold fullname: Arnold, Eveline S. organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 2 givenname: Shuo-Chien surname: Ling fullname: Ling, Shuo-Chien organization: Department of Neurosciences,, Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 3 givenname: Stephanie C. surname: Huelga fullname: Huelga, Stephanie C. organization: Department of Cellular and Molecular Medicine,, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093 – sequence: 4 givenname: Clotilde surname: Lagier-Tourenne fullname: Lagier-Tourenne, Clotilde organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 5 givenname: Magdalini surname: Polymenidou fullname: Polymenidou, Magdalini organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 6 givenname: Dara surname: Ditsworth fullname: Ditsworth, Dara organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 7 givenname: Holly B. surname: Kordasiewicz fullname: Kordasiewicz, Holly B. organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 8 givenname: Melissa surname: McAlonis-Downes fullname: McAlonis-Downes, Melissa organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 9 givenname: Oleksandr surname: Platoshyn fullname: Platoshyn, Oleksandr organization: Department of Anesthesiology,, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093 – sequence: 10 givenname: Philippe A. surname: Parone fullname: Parone, Philippe A. organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 11 givenname: Sandrine surname: Da Cruz fullname: Da Cruz, Sandrine organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 12 givenname: Kevin M. surname: Clutario fullname: Clutario, Kevin M. organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and – sequence: 13 givenname: Debbie surname: Swing fullname: Swing, Debbie organization: Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; and – sequence: 14 givenname: Lino surname: Tessarollo fullname: Tessarollo, Lino organization: Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; and – sequence: 15 givenname: Martin surname: Marsala fullname: Marsala, Martin organization: Department of Anesthesiology,, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093 – sequence: 16 givenname: Christopher E. surname: Shaw fullname: Shaw, Christopher E. organization: Medical Research Council Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom – sequence: 17 givenname: Gene W. surname: Yeo fullname: Yeo, Gene W. organization: Department of Cellular and Molecular Medicine,, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093 – sequence: 18 givenname: Don W. surname: Cleveland fullname: Cleveland, Don W. organization: Department of Neurosciences,, Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23382207$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEQxy1URNvAmRtY4sJlW792bV-QolIeUgSItmfLsb1bl42d2l4Q34EPjUPSAD3AaUaa3_zneQwOQgwOgKcYnWDE6ek66HyCCSECSYzRA3CEq9N0TKIDcIQQ4Y1ghB2C45xvEEKyFegROCSUCkIQPwI_5ouLZvThi7Pw8vWnhlG4moouPoYM1ynayTioly4lHQr8_GEO83r0xocB6mChttNYmsq6AlexxASDm1IM0PrsdHbwmy_XcSpQD0Nywy9dWKkx5gxjD8NkRqfTrvRj8LDXY3ZPdnYGrt6cX569axYf374_my8a03a8NH3bWi0wQ601zDLOupZZao1E1PQ9XlbPcC4Ja7mmjOJWyl6SZddLpLkjPZ2BV1vd9bRcOWtcKEmPap38SqfvKmqv_o4Ef62G-FXRVmBJSBV4uRNI8XZyuaiVz8aNow4uTllhgSjGHRXy_yjFBHPKJavoi3voTZxSqJtQmEgsBN3cfAae_dn8vuu7m1bgdAuYVLecXL9HMFIbBbX5GvX7a2pGey_D-O0P1On9-I-8u1Y2gX2Vigt1zmlXgedboNdR6SH5rK4uCMIdQpjVgRj9CTbC2cA |
CitedBy_id | crossref_primary_10_1016_j_celrep_2024_113999 crossref_primary_10_4103_1673_5374_241445 crossref_primary_10_1093_hmg_ddu563 crossref_primary_10_1093_hmg_ddx035 crossref_primary_10_1186_s13024_023_00619_2 crossref_primary_10_1016_j_neuron_2014_03_001 crossref_primary_10_1186_s13024_015_0036_5 crossref_primary_10_15252_embj_201592559 crossref_primary_10_1016_j_neures_2013_09_009 crossref_primary_10_1111_jnc_14327 crossref_primary_10_1016_j_nbd_2015_02_017 crossref_primary_10_1186_s13024_021_00470_3 crossref_primary_10_1038_s41586_024_07042_7 crossref_primary_10_15252_embj_201797452 crossref_primary_10_1016_j_ebiom_2023_104720 crossref_primary_10_1038_s41593_018_0293_z crossref_primary_10_1073_pnas_2307395120 crossref_primary_10_1007_s00401_024_02720_2 crossref_primary_10_1007_s00401_018_1942_8 crossref_primary_10_1080_15548627_2021_1926656 crossref_primary_10_2174_1566523223666221108113330 crossref_primary_10_1007_s00439_017_1802_y crossref_primary_10_1093_nar_gkaa410 crossref_primary_10_1186_s40478_020_0881_5 crossref_primary_10_3390_ijms22168853 crossref_primary_10_1016_j_tins_2014_07_008 crossref_primary_10_1016_j_ymthe_2016_10_013 crossref_primary_10_1096_fj_201700835R crossref_primary_10_1016_j_nbd_2014_07_007 crossref_primary_10_21769_BioProtoc_3594 crossref_primary_10_3389_fnins_2022_868556 crossref_primary_10_1083_jcb_201510032 crossref_primary_10_3389_fgene_2020_00731 crossref_primary_10_1038_s41573_022_00612_2 crossref_primary_10_1093_hmg_ddt349 crossref_primary_10_1186_1423_0127_20_33 crossref_primary_10_2217_nmt_13_66 crossref_primary_10_2217_nmt_14_36 crossref_primary_10_4103_1673_5374_322431 crossref_primary_10_1016_j_neuroscience_2014_04_032 crossref_primary_10_1021_acs_chemrev_8b00138 crossref_primary_10_1038_srep37968 crossref_primary_10_3390_ijms222111853 crossref_primary_10_1038_s41598_021_88015_y crossref_primary_10_3389_fnmol_2019_00025 crossref_primary_10_14336_AD_2024_0440 crossref_primary_10_1002_mco2_70108 crossref_primary_10_15252_embj_2020106177 crossref_primary_10_1016_j_heliyon_2025_e42482 crossref_primary_10_1038_s41467_023_44658_1 crossref_primary_10_15252_embj_201798684 crossref_primary_10_1002_wrna_1184 crossref_primary_10_1007_s12264_020_00567_7 crossref_primary_10_1093_hmg_ddt243 crossref_primary_10_1038_nrg_2015_3 crossref_primary_10_1002_iub_2603 crossref_primary_10_1007_s00401_013_1125_6 crossref_primary_10_1038_s41374_022_00791_x crossref_primary_10_1111_gtc_12512 crossref_primary_10_1016_j_nbd_2025_106850 crossref_primary_10_1038_nm_4130 crossref_primary_10_1111_joa_13463 crossref_primary_10_3389_fnins_2019_00335 crossref_primary_10_1002_jcp_29818 crossref_primary_10_1007_s12035_020_02019_9 crossref_primary_10_1002_humu_22319 crossref_primary_10_1038_s41419_018_1022_y crossref_primary_10_1186_s12920_017_0274_1 crossref_primary_10_3390_biom5020893 crossref_primary_10_1007_s42764_022_00091_0 crossref_primary_10_1093_hmg_ddad170 crossref_primary_10_1021_acs_jproteome_3c00908 crossref_primary_10_1016_j_bbagrm_2019_06_006 crossref_primary_10_1016_j_tig_2017_12_012 crossref_primary_10_1016_j_bbi_2017_05_014 crossref_primary_10_1186_s13024_021_00503_x crossref_primary_10_1002_glia_23879 crossref_primary_10_1038_nrneurol_2013_221 crossref_primary_10_1016_j_bbadis_2020_166046 crossref_primary_10_7554_eLife_85921 crossref_primary_10_3389_fnins_2024_1341109 crossref_primary_10_1261_rna_079001_121 crossref_primary_10_3390_ijms141020079 crossref_primary_10_1016_j_str_2016_07_007 crossref_primary_10_1111_nan_12902 crossref_primary_10_1038_s41467_019_12740_2 crossref_primary_10_1073_pnas_1322641111 crossref_primary_10_1007_s10048_014_0397_x crossref_primary_10_1016_j_molmed_2016_05_005 crossref_primary_10_1038_nbt_4246 crossref_primary_10_1111_acel_14325 crossref_primary_10_3390_ijms21103647 crossref_primary_10_3389_fnmol_2023_1193636 crossref_primary_10_1016_j_ejmg_2014_01_002 crossref_primary_10_1016_j_freeradbiomed_2016_05_016 crossref_primary_10_1016_j_brainres_2018_05_021 crossref_primary_10_1016_j_nbd_2013_03_003 crossref_primary_10_1371_journal_pone_0255710 crossref_primary_10_3390_ijms241813807 crossref_primary_10_1016_j_semcdb_2019_06_003 crossref_primary_10_1089_zeb_2018_1588 crossref_primary_10_1021_jacs_4c11229 crossref_primary_10_1111_jnc_13601 crossref_primary_10_1016_j_pneurobio_2025_102734 crossref_primary_10_1186_1750_1326_9_24 crossref_primary_10_3389_fmolb_2024_1383453 crossref_primary_10_1093_cercor_bhw185 crossref_primary_10_1177_1073858414555404 crossref_primary_10_1096_fj_202101275R crossref_primary_10_1038_s42003_022_03253_8 crossref_primary_10_3389_fmolb_2019_00154 crossref_primary_10_1080_07391102_2017_1310670 crossref_primary_10_3389_fncel_2017_00195 crossref_primary_10_1093_hmg_ddx250 crossref_primary_10_1371_journal_pone_0180828 crossref_primary_10_1186_s40478_021_01148_z crossref_primary_10_1093_nar_gkx175 crossref_primary_10_1111_nan_12925 crossref_primary_10_1242_dmm_038109 crossref_primary_10_1080_15476286_2021_1963099 crossref_primary_10_1002_glia_23728 crossref_primary_10_1007_s11357_022_00526_2 crossref_primary_10_1186_s40478_024_01893_x crossref_primary_10_1016_j_neurobiolaging_2023_02_010 crossref_primary_10_1007_s00401_023_02615_8 crossref_primary_10_1016_j_stem_2024_03_004 crossref_primary_10_1016_j_molcel_2024_07_001 crossref_primary_10_1007_s00401_017_1698_6 crossref_primary_10_1016_j_molmed_2013_11_003 crossref_primary_10_1038_s41598_017_06263_3 crossref_primary_10_1186_s40478_019_0800_9 crossref_primary_10_1016_j_neuron_2013_07_033 crossref_primary_10_1016_j_neuro_2023_12_002 crossref_primary_10_1371_journal_pone_0085962 crossref_primary_10_15252_embj_2018100989 crossref_primary_10_1016_j_brainres_2018_01_015 crossref_primary_10_3389_fnmol_2018_00463 crossref_primary_10_1002_wrna_1276 crossref_primary_10_1002_wrna_1397 crossref_primary_10_1186_s40035_022_00331_z crossref_primary_10_1021_acschemneuro_2c00416 crossref_primary_10_1186_s12974_018_1217_2 crossref_primary_10_1093_nar_gkt1343 crossref_primary_10_1128_MCB_00668_17 crossref_primary_10_1007_s00401_024_02734_w crossref_primary_10_1074_jbc_RA118_005889 crossref_primary_10_1038_s41598_017_14966_w crossref_primary_10_1007_s00401_020_02203_0 crossref_primary_10_3390_ijms21134571 crossref_primary_10_1016_j_nbd_2021_105359 crossref_primary_10_1038_s41582_019_0157_5 crossref_primary_10_3389_fcell_2021_728707 crossref_primary_10_15252_embj_201899645 crossref_primary_10_7554_eLife_55199 crossref_primary_10_7759_cureus_76027 crossref_primary_10_1016_j_neuron_2021_08_008 crossref_primary_10_15252_emmm_201607298 crossref_primary_10_3389_fnins_2022_902146 crossref_primary_10_3390_ijms21165646 crossref_primary_10_1101_gr_265298_120 crossref_primary_10_1134_S0006297924140037 crossref_primary_10_1007_s00401_019_02077_x crossref_primary_10_1016_j_nbd_2020_105078 crossref_primary_10_1038_s41380_021_01346_0 crossref_primary_10_7554_eLife_40811 crossref_primary_10_1002_acn3_51103 crossref_primary_10_1152_jn_00265_2018 crossref_primary_10_1007_s00018_021_03792_z crossref_primary_10_1186_s13024_024_00732_w crossref_primary_10_1038_s41598_019_53508_4 crossref_primary_10_3390_life14091125 crossref_primary_10_1080_21678421_2018_1510570 crossref_primary_10_1093_nar_gkz292 crossref_primary_10_1126_scitranslmed_adm7580 crossref_primary_10_1038_ncomms7171 crossref_primary_10_1098_rsos_210160 crossref_primary_10_1007_s00415_024_12485_z crossref_primary_10_3389_fnins_2014_00252 crossref_primary_10_1038_s41598_021_96122_z crossref_primary_10_1007_s12640_021_00455_6 crossref_primary_10_1016_j_nbd_2024_106614 crossref_primary_10_1007_s10072_024_07508_6 crossref_primary_10_1042_BST20130142 crossref_primary_10_1007_s12640_018_9865_7 crossref_primary_10_1172_JCI142854 crossref_primary_10_1016_j_celrep_2019_10_061 crossref_primary_10_1371_journal_pone_0086513 crossref_primary_10_1007_s00415_013_7112_y crossref_primary_10_1186_s13024_020_00397_1 crossref_primary_10_3389_fcell_2021_640414 crossref_primary_10_1126_science_abq5622 crossref_primary_10_1172_JCI71601 crossref_primary_10_1038_ncomms6999 crossref_primary_10_1084_jem_20221190 crossref_primary_10_1101_cshperspect_a024133 crossref_primary_10_1016_j_celrep_2022_111508 crossref_primary_10_1007_s00018_022_04544_3 crossref_primary_10_1111_bpa_12355 crossref_primary_10_1101_gr_217984_116 crossref_primary_10_1242_dmm_037424 crossref_primary_10_1096_fj_202400045R crossref_primary_10_1038_s41467_020_14815_x crossref_primary_10_1038_s41598_021_96418_0 crossref_primary_10_1007_s12035_023_03857_z crossref_primary_10_1038_s41598_025_86337_9 crossref_primary_10_1007_s00401_018_1934_8 crossref_primary_10_1084_jem_20140214 crossref_primary_10_1186_s13578_023_01189_y crossref_primary_10_3390_ijms221910285 crossref_primary_10_1016_j_expneurol_2020_113496 crossref_primary_10_1002_jnr_24554 crossref_primary_10_3389_fnins_2019_00601 crossref_primary_10_3390_ijms21239186 crossref_primary_10_1186_s13024_020_00386_4 crossref_primary_10_1007_s12035_015_9507_5 crossref_primary_10_1016_j_neuropharm_2020_107986 crossref_primary_10_3390_ijms222212236 crossref_primary_10_1016_j_freeradbiomed_2021_07_022 crossref_primary_10_1038_s41598_018_26397_2 crossref_primary_10_2139_ssrn_3293682 crossref_primary_10_3109_21678421_2015_1098818 crossref_primary_10_1038_s41598_021_91094_6 crossref_primary_10_1007_s40263_016_0317_8 crossref_primary_10_1021_acs_biochem_6b01134 crossref_primary_10_1038_s41374_021_00623_4 crossref_primary_10_3389_fnins_2021_783624 crossref_primary_10_1177_1087057113497256 crossref_primary_10_3390_ijms232012508 crossref_primary_10_3390_ijms24021581 crossref_primary_10_1007_s00401_015_1460_x crossref_primary_10_1186_s40478_016_0340_5 crossref_primary_10_1016_j_neuron_2022_02_011 crossref_primary_10_1038_s41598_022_11767_8 crossref_primary_10_1186_s40478_015_0212_4 crossref_primary_10_1016_j_molcel_2014_08_027 crossref_primary_10_1007_s13311_022_01260_5 crossref_primary_10_1016_j_bbrc_2020_02_027 crossref_primary_10_1038_nrn3430 crossref_primary_10_1007_s00439_017_1830_7 crossref_primary_10_1016_j_neurobiolaging_2020_03_019 crossref_primary_10_1016_j_celrep_2023_113046 crossref_primary_10_1080_21678421_2020_1779298 crossref_primary_10_3389_fgene_2014_00085 crossref_primary_10_1016_j_neuron_2019_01_048 crossref_primary_10_1093_nar_gkad319 crossref_primary_10_3390_ijms222111870 crossref_primary_10_1093_hmg_ddaa140 crossref_primary_10_1016_j_nbd_2023_106245 crossref_primary_10_1016_j_tig_2018_10_002 crossref_primary_10_26508_lsa_201900358 crossref_primary_10_3389_fnins_2019_01310 crossref_primary_10_1093_hmg_ddy047 crossref_primary_10_1016_j_isci_2021_102700 crossref_primary_10_3109_21678421_2015_1055275 crossref_primary_10_1038_s41598_022_08068_5 crossref_primary_10_1016_j_cell_2020_09_020 crossref_primary_10_1038_s41598_021_94225_1 crossref_primary_10_1038_nrg3778 crossref_primary_10_1111_nan_12187 crossref_primary_10_3390_plants13192816 crossref_primary_10_1016_j_cels_2020_03_003 crossref_primary_10_1002_0471141755_ph0567s69 crossref_primary_10_1038_s41467_024_45646_9 crossref_primary_10_1007_s00401_018_1921_0 crossref_primary_10_1111_bpa_12680 crossref_primary_10_1002_1873_3468_12646 crossref_primary_10_1016_j_ddmod_2018_10_001 crossref_primary_10_1186_2051_5960_1_42 crossref_primary_10_1016_j_neulet_2018_04_006 crossref_primary_10_1016_j_ymthe_2016_12_001 crossref_primary_10_1038_s42003_025_07752_2 crossref_primary_10_1371_journal_pone_0187813 crossref_primary_10_1186_s40478_019_0674_x crossref_primary_10_3390_metabo12080709 crossref_primary_10_1016_j_isci_2023_106645 crossref_primary_10_1073_pnas_1317317111 crossref_primary_10_3389_fnins_2022_818655 crossref_primary_10_1016_j_brainres_2018_03_024 crossref_primary_10_1371_journal_pone_0196528 crossref_primary_10_1002_acn3_158 crossref_primary_10_1080_17460441_2024_2387791 crossref_primary_10_3389_fnmol_2022_1000183 crossref_primary_10_1038_s41582_023_00846_7 crossref_primary_10_1007_s00401_015_1530_0 crossref_primary_10_3390_cells10113005 crossref_primary_10_1242_dmm_047548 crossref_primary_10_2139_ssrn_3236488 crossref_primary_10_1007_s13311_015_0340_3 crossref_primary_10_1016_j_celrep_2021_109237 crossref_primary_10_1038_s41467_019_12101_z crossref_primary_10_4103_1673_5374_317960 crossref_primary_10_1016_j_nicl_2020_102327 crossref_primary_10_1186_s40035_023_00377_7 crossref_primary_10_1371_journal_pgen_1009882 crossref_primary_10_1038_s41467_024_51676_0 crossref_primary_10_1016_j_pbiomolbio_2022_06_001 crossref_primary_10_1186_s13024_017_0227_3 crossref_primary_10_15252_embr_202051649 crossref_primary_10_1007_s13311_015_0338_x crossref_primary_10_7554_eLife_85921_3 crossref_primary_10_1038_s41467_021_26383_9 crossref_primary_10_1093_brain_awae039 crossref_primary_10_1093_cercor_bhad526 crossref_primary_10_1038_s41467_017_00088_4 crossref_primary_10_1080_21541248_2021_1892443 crossref_primary_10_1111_dgd_12879 crossref_primary_10_15252_embj_201797568 crossref_primary_10_1016_j_nbd_2022_105749 crossref_primary_10_1016_j_nbd_2025_106815 crossref_primary_10_3389_fncel_2017_00243 crossref_primary_10_1093_hmg_ddv104 crossref_primary_10_1083_jcb_201302044 crossref_primary_10_3390_jcm9010261 crossref_primary_10_1016_j_neuron_2018_09_044 crossref_primary_10_1038_s41467_023_36023_z crossref_primary_10_1093_hmg_ddu493 crossref_primary_10_1177_17590914231197527 crossref_primary_10_1016_j_biochi_2024_05_007 crossref_primary_10_1016_j_pneurobio_2016_09_004 crossref_primary_10_1038_s41467_021_24232_3 crossref_primary_10_1111_nan_12536 crossref_primary_10_3389_fnins_2018_00028 crossref_primary_10_1093_hmg_ddx093 crossref_primary_10_1038_s41593_018_0113_5 crossref_primary_10_1074_jbc_REV118_001188 crossref_primary_10_1093_mp_sst175 crossref_primary_10_7554_eLife_67587 crossref_primary_10_1074_jbc_M117_783498 crossref_primary_10_1016_j_celrep_2024_115205 crossref_primary_10_1084_jem_20180870 crossref_primary_10_1002_med_21937 crossref_primary_10_1186_s13024_018_0294_0 |
Cites_doi | 10.1007/s00401-008-0477-9 10.1038/nsmb.1720 10.1016/j.nbd.2005.06.005 10.1073/pnas.0908767106 10.1038/nature09320 10.1016/S0888-7543(03)00214-3 10.1523/JNEUROSCI.1630-10.2010 10.1371/journal.pgen.1000887 10.1016/j.conb.2011.05.029 10.1016/j.neuron.2005.01.032 10.1038/nn.2779 10.1038/ncomms1766 10.1016/S0028-3908(99)00257-9 10.1128/jvi.69.6.3584-3596.1995 10.1016/j.jmb.2005.02.038 10.1007/s00401-010-0659-0 10.1016/j.nbd.2010.06.017 10.1186/1750-1326-6-73 10.1074/jbc.M109.010264 10.1073/pnas.1002176107 10.1212/WNL.59.7.1077 10.1038/ng.132 10.1093/emboj/20.7.1774 10.1007/s00401-012-0979-3 10.1523/JNEUROSCI.3421-07.2007 10.1038/emboj.2010.310 10.1016/S1474-4422(08)70071-1 10.1002/ana.21344 10.1074/jbc.M800342200 10.1172/JCI44867 10.1073/pnas.0900688106 10.1074/jbc.M112.359000 10.1074/jbc.M109.061846 10.1002/dvg.20584 10.1126/science.1166066 10.1073/pnas.0705046104 10.1016/S0896-6273(02)00682-7 10.1093/hmg/ddq230 10.1016/j.bbrc.2006.10.093 10.1074/jbc.M110.125039 10.1074/jbc.M111.311977 10.1074/jbc.M809462200 10.1111/j.1468-1331.2008.02195.x 10.1016/S1050-3862(96)00167-2 10.1242/jcs.051672 10.1172/JCI59130 10.1074/jbc.M701465200 10.1093/nar/gkp342 10.1073/pnas.1003459107 10.1073/pnas.0802082105 10.1126/science.1154584 10.1093/brain/awr159 10.1126/science.1134108 10.2353/ajpath.2008.080003 10.1371/journal.pcbi.0020004 10.1084/jem.20092164 10.1097/01.jnen.0000171647.09589.07 10.1073/pnas.0912417107 10.1111/j.1440-1789.2009.01089.x 10.1073/pnas.0805422105 10.1126/science.1165942 10.1074/jbc.M505557200 10.1371/journal.pone.0012247 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 19, 2013 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 19, 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1222809110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | ALS-linked TDP-43 mutations produce aberrant RNA |
EISSN | 1091-6490 |
EndPage | E745 |
ExternalDocumentID | PMC3581922 2898370201 23382207 10_1073_pnas_1222809110 110_8_E736 US201600141884 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: T32 AG000216 – fundername: NINDS NIH HHS grantid: NS075449 – fundername: Medical Research Council grantid: G0300329 – fundername: NINDS NIH HHS grantid: RC1 NS069144 – fundername: Medical Research Council grantid: MC_G1000733 – fundername: NINDS NIH HHS grantid: K99 NS075216 – fundername: NIGMS NIH HHS grantid: T32 GM008666 – fundername: NIA NIH HHS grantid: T32 AG 000216 – fundername: Wellcome Trust grantid: 089701 – fundername: NINDS NIH HHS grantid: R01 NS075449 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ ADXHL AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c567t-f55da81405dc4d474654d3dc903cff1bdc9c7792457a3431599f92b6f90a7e2f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:21:09 EDT 2025 Fri Sep 05 08:02:26 EDT 2025 Fri Sep 05 08:33:31 EDT 2025 Mon Jun 30 07:46:53 EDT 2025 Sat May 31 02:09:11 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Tue Jul 01 03:39:37 EDT 2025 Wed Nov 11 00:29:59 EST 2020 Wed Dec 27 19:18:13 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c567t-f55da81405dc4d474654d3dc903cff1bdc9c7792457a3431599f92b6f90a7e2f3 |
Notes | http://dx.doi.org/10.1073/pnas.1222809110 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: E.S.A., S.-C.L., S.C.H., C.L.-T., M.P., D.D., H.B.K., O.P., P.A.P., S.D.C., M.M., G.W.Y., and D.W.C. designed research; E.S.A., S.-C.L., S.C.H., C.L.-T., M.P., D.D., H.B.K., M.M.-D., O.P., P.A.P., S.D.C., and K.M.C. performed research; D.S., L.T., and C.E.S. contributed new reagents/analytic tools; E.S.A., S.-C.L., S.C.H., C.L.-T., and M.P. analyzed data; and E.S.A., S.-C.L., S.C.H., C.L.-T., G.W.Y., and D.W.C. wrote the paper. 1E.S.A. and S.-C.L. contributed equally to this work. Contributed by Don W. Cleveland, January 2, 2013 (sent for review September 10, 2012) |
OpenAccessLink | https://www.pnas.org/content/pnas/110/8/E736.full.pdf |
PMID | 23382207 |
PQID | 1291883107 |
PQPubID | 42026 |
ParticipantIDs | proquest_journals_1291883107 pnas_primary_110_8_E736 pubmed_primary_23382207 proquest_miscellaneous_1312173794 crossref_primary_10_1073_pnas_1222809110 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3581922 proquest_miscellaneous_1803116389 crossref_citationtrail_10_1073_pnas_1222809110 fao_agris_US201600141884 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-19 |
PublicationDateYYYYMMDD | 2013-02-19 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 Wu LS (e_1_3_3_21_2) 2010; 48 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_38_2 doi: 10.1007/s00401-008-0477-9 – ident: e_1_3_3_51_2 doi: 10.1038/nsmb.1720 – ident: e_1_3_3_48_2 doi: 10.1016/j.nbd.2005.06.005 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.0908767106 – ident: e_1_3_3_43_2 doi: 10.1038/nature09320 – ident: e_1_3_3_15_2 doi: 10.1016/S0888-7543(03)00214-3 – ident: e_1_3_3_28_2 doi: 10.1523/JNEUROSCI.1630-10.2010 – ident: e_1_3_3_31_2 doi: 10.1371/journal.pgen.1000887 – ident: e_1_3_3_1_2 doi: 10.1016/j.conb.2011.05.029 – ident: e_1_3_3_49_2 doi: 10.1016/j.neuron.2005.01.032 – ident: e_1_3_3_11_2 doi: 10.1038/nn.2779 – ident: e_1_3_3_60_2 doi: 10.1038/ncomms1766 – ident: e_1_3_3_55_2 doi: 10.1016/S0028-3908(99)00257-9 – ident: e_1_3_3_12_2 doi: 10.1128/jvi.69.6.3584-3596.1995 – ident: e_1_3_3_16_2 doi: 10.1016/j.jmb.2005.02.038 – ident: e_1_3_3_20_2 doi: 10.1007/s00401-010-0659-0 – ident: e_1_3_3_30_2 doi: 10.1016/j.nbd.2010.06.017 – ident: e_1_3_3_34_2 doi: 10.1186/1750-1326-6-73 – ident: e_1_3_3_57_2 doi: 10.1074/jbc.M109.010264 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.1002176107 – ident: e_1_3_3_2_2 doi: 10.1212/WNL.59.7.1077 – ident: e_1_3_3_8_2 doi: 10.1038/ng.132 – ident: e_1_3_3_13_2 doi: 10.1093/emboj/20.7.1774 – ident: e_1_3_3_33_2 doi: 10.1007/s00401-012-0979-3 – ident: e_1_3_3_41_2 doi: 10.1523/JNEUROSCI.3421-07.2007 – ident: e_1_3_3_23_2 doi: 10.1038/emboj.2010.310 – ident: e_1_3_3_36_2 doi: 10.1016/S1474-4422(08)70071-1 – ident: e_1_3_3_7_2 doi: 10.1002/ana.21344 – ident: e_1_3_3_14_2 doi: 10.1074/jbc.M800342200 – ident: e_1_3_3_27_2 doi: 10.1172/JCI44867 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.0900688106 – ident: e_1_3_3_56_2 doi: 10.1074/jbc.M112.359000 – ident: e_1_3_3_19_2 doi: 10.1074/jbc.M109.061846 – volume: 48 start-page: 56 year: 2010 ident: e_1_3_3_21_2 article-title: TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis publication-title: Genesis doi: 10.1002/dvg.20584 – ident: e_1_3_3_10_2 doi: 10.1126/science.1166066 – ident: e_1_3_3_53_2 doi: 10.1073/pnas.0705046104 – ident: e_1_3_3_63_2 doi: 10.1016/S0896-6273(02)00682-7 – ident: e_1_3_3_46_2 doi: 10.1093/hmg/ddq230 – ident: e_1_3_3_5_2 doi: 10.1016/j.bbrc.2006.10.093 – ident: e_1_3_3_59_2 doi: 10.1074/jbc.M110.125039 – ident: e_1_3_3_61_2 doi: 10.1074/jbc.M111.311977 – ident: e_1_3_3_42_2 doi: 10.1074/jbc.M809462200 – ident: e_1_3_3_3_2 doi: 10.1111/j.1468-1331.2008.02195.x – ident: e_1_3_3_47_2 doi: 10.1016/S1050-3862(96)00167-2 – ident: e_1_3_3_58_2 doi: 10.1242/jcs.051672 – ident: e_1_3_3_35_2 doi: 10.1172/JCI59130 – ident: e_1_3_3_62_2 doi: 10.1074/jbc.M701465200 – ident: e_1_3_3_17_2 doi: 10.1093/nar/gkp342 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.1003459107 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.0802082105 – ident: e_1_3_3_6_2 doi: 10.1126/science.1154584 – ident: e_1_3_3_32_2 doi: 10.1093/brain/awr159 – ident: e_1_3_3_4_2 doi: 10.1126/science.1134108 – ident: e_1_3_3_37_2 doi: 10.2353/ajpath.2008.080003 – ident: e_1_3_3_52_2 doi: 10.1371/journal.pcbi.0020004 – ident: e_1_3_3_24_2 doi: 10.1084/jem.20092164 – ident: e_1_3_3_54_2 doi: 10.1097/01.jnen.0000171647.09589.07 – ident: e_1_3_3_26_2 doi: 10.1073/pnas.0912417107 – ident: e_1_3_3_39_2 doi: 10.1111/j.1440-1789.2009.01089.x – ident: e_1_3_3_50_2 doi: 10.1073/pnas.0805422105 – ident: e_1_3_3_9_2 doi: 10.1126/science.1165942 – ident: e_1_3_3_18_2 doi: 10.1074/jbc.M505557200 – ident: e_1_3_3_44_2 doi: 10.1371/journal.pone.0012247 |
SSID | ssj0009580 |
Score | 2.575689 |
Snippet | Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis... Mutations in the RNA binding protein TDP-43 cause amyotrophic lateral sclerosis and frontotemporal dementia. Through expressing disease-causing mutants in mice... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E736 |
SubjectTerms | alternative splicing Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - metabolism Amyotrophic Lateral Sclerosis - physiopathology Animals Binding sites Biological Sciences cell death Cell Nucleus - metabolism death Deoxyribonucleic acid DNA DNA-binding proteins DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism exons humans Mice Mice, Transgenic microarray technology motor neurons Mutants Mutation Neurons PNAS Plus Proteins Real-Time Polymerase Chain Reaction RNA RNA Splicing Rodents Ubiquitination |
Title | ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43 |
URI | http://www.pnas.org/content/110/8/E736.abstract https://www.ncbi.nlm.nih.gov/pubmed/23382207 https://www.proquest.com/docview/1291883107 https://www.proquest.com/docview/1312173794 https://www.proquest.com/docview/1803116389 https://pubmed.ncbi.nlm.nih.gov/PMC3581922 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6y4ULYnltYUFG4rAocmmejo_V0lWFSqloK_UW5eG0lbrJqk058Bv4T_w1ZhwnTZeCFi5RlDhjS_PFMx6PvyHknQUwcr3YZbJrxswJXcl8kUbMFNKL0aIJVYvg88gbzJxPc3feav1sZC3tiqgTfz96ruR_tArPQK94SvYfNFsLhQdwD_qFK2gYrvfScW84YbgDC07j9OOYObZxsyt0btutonKVRhjJDdijwvg66hlb3K2ujiUq6g2G2dSFAQrLN4Yit8yqTRsVo8W05XABi_KF9i03xhrsapn_EWPNCd1108sd11ZxW-UgjKqgY29_hEXPK1uDGePRviByb5PpUtb9b1J5wfWroa7AMlnucna1XO3PsQ12cl3GiFXeGh6cNxqskguw_gwZE9GuqODwOi9W60Q2ox5YgcJiem4tJ2rwc5jnlKVGO_LIs2p211mzJYz9xlzdLw89_G5EYNbDysdZuO2YGCADsVrIAV336EtwPRsOg2l_Pj0hDywOzlsVLqpZn_2SDkMPrOKW4vaHO-IP3KKTNMyRbBeaHFv43M3fbThE08fkkV7J0F4JyzPSktkTclbplF5qQvP3T8mPPU5pCRZa45RqnNIKpxRwSiucUsApbeCUKpzSEqdU45RqnNIGTim0QpzSPKUap7rrZ2R23Z9eDZiuAsJi1-MFS103CZGXzU1iJ3E4EgAmdhKLrh2nqRnBXcy5sByXhza4w64QqbAiLxXdkEsrtZ-T0yzP5DmhrjATz-d-4nQjkCGEFF4aeo4UrnREytukUykhiDVFPlZqWQcqVYPbAaok2GutTS7rD25Ldpg_Nz0HrQbhAmx3MJtYyOyISda-77TJC9W4lgAi_ADh2SYXlfYDPe-gTAFfwbIMxvu2fg1WAbf6wkzmO2hjm5bJbTC2f2njg0HH5ZjAAShA1UOwbBtWDtgDP4Ba3QBZ6Q_fZKulYqdHQkVhWS_vMbZX5OH-374gp8VmJ1-Dj19Eb9R_9AvQ7vyz |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALS-linked+TDP-43+mutations+produce+aberrant+RNA+splicing+and+adult-onset+motor+neuron+disease+without+aggregation+or+loss+of+nuclear+TDP-43&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Arnold%2C+Eveline+S&rft.au=Ling%2C+Shuo-Chien&rft.au=Huelga%2C+Stephanie+C&rft.au=Lagier-Tourenne%2C+Clotilde&rft.date=2013-02-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=110&rft.issue=8&rft.spage=E736&rft_id=info:doi/10.1073%2Fpnas.1222809110&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F8.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F8.cover.gif |