ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43

Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43 Q³³¹ᴷ and TDP-43 ᴹ³³⁷ⱽ), bu...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 8; pp. E736 - E745
Main Authors Arnold, Eveline S., Ling, Shuo-Chien, Huelga, Stephanie C., Lagier-Tourenne, Clotilde, Polymenidou, Magdalini, Ditsworth, Dara, Kordasiewicz, Holly B., McAlonis-Downes, Melissa, Platoshyn, Oleksandr, Parone, Philippe A., Da Cruz, Sandrine, Clutario, Kevin M., Swing, Debbie, Tessarollo, Lino, Marsala, Martin, Shaw, Christopher E., Yeo, Gene W., Cleveland, Don W.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.02.2013
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1222809110

Cover

Abstract Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43 Q³³¹ᴷ and TDP-43 ᴹ³³⁷ⱽ), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43 Q³³¹ᴷ, but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43 Q³³¹ᴷ enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.
AbstractList Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43 Q³³¹ᴷ and TDP-43 ᴹ³³⁷ⱽ), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43 Q³³¹ᴷ, but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43 Q³³¹ᴷ enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.
Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43... and TDP-43...), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43..., but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43... enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. (ProQuest: ... denotes formulae/symbols omitted.)
Mutations in the RNA binding protein TDP-43 cause amyotrophic lateral sclerosis and frontotemporal dementia. Through expressing disease-causing mutants in mice and genome-wide RNA splicing analyses, mutant TDP-43 is shown to retain normal or enhanced activity for facilitating splicing of some RNA targets, but “loss-of-function” for others. These splicing changes, as well as age-dependent, mutant-dependent lower motor neuron disease, occur without loss of nuclear TDP-43 or accumulation of insoluble aggregates of TDP-43. Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43 Q331K and TDP-43 M337V ), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: ( i ) loss of TDP-43 from the corresponding nuclei, ( ii ) accumulation of TDP-43 aggregates, and ( iii ) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43 Q331K , but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43 Q331K enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.
Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.
Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.
Author Eveline S. Arnold
Kevin M. Clutario
Don W. Cleveland
Shuo-Chien Ling
Dara Ditsworth
Magdalini Polymenidou
Debbie Swing
Holly B. Kordasiewicz
Lino Tessarollo
Stephanie C. Huelga
Clotilde Lagier-Tourenne
Philippe A. Parone
Oleksandr Platoshyn
Martin Marsala
Melissa McAlonis-Downes
Christopher E. Shaw
Sandrine Da Cruz
Gene W. Yeo
Author_xml – sequence: 1
  givenname: Eveline S.
  surname: Arnold
  fullname: Arnold, Eveline S.
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 2
  givenname: Shuo-Chien
  surname: Ling
  fullname: Ling, Shuo-Chien
  organization: Department of Neurosciences,, Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 3
  givenname: Stephanie C.
  surname: Huelga
  fullname: Huelga, Stephanie C.
  organization: Department of Cellular and Molecular Medicine,, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093
– sequence: 4
  givenname: Clotilde
  surname: Lagier-Tourenne
  fullname: Lagier-Tourenne, Clotilde
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 5
  givenname: Magdalini
  surname: Polymenidou
  fullname: Polymenidou, Magdalini
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 6
  givenname: Dara
  surname: Ditsworth
  fullname: Ditsworth, Dara
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 7
  givenname: Holly B.
  surname: Kordasiewicz
  fullname: Kordasiewicz, Holly B.
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 8
  givenname: Melissa
  surname: McAlonis-Downes
  fullname: McAlonis-Downes, Melissa
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 9
  givenname: Oleksandr
  surname: Platoshyn
  fullname: Platoshyn, Oleksandr
  organization: Department of Anesthesiology,, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093
– sequence: 10
  givenname: Philippe A.
  surname: Parone
  fullname: Parone, Philippe A.
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 11
  givenname: Sandrine
  surname: Da Cruz
  fullname: Da Cruz, Sandrine
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 12
  givenname: Kevin M.
  surname: Clutario
  fullname: Clutario, Kevin M.
  organization: Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
– sequence: 13
  givenname: Debbie
  surname: Swing
  fullname: Swing, Debbie
  organization: Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; and
– sequence: 14
  givenname: Lino
  surname: Tessarollo
  fullname: Tessarollo, Lino
  organization: Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; and
– sequence: 15
  givenname: Martin
  surname: Marsala
  fullname: Marsala, Martin
  organization: Department of Anesthesiology,, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093
– sequence: 16
  givenname: Christopher E.
  surname: Shaw
  fullname: Shaw, Christopher E.
  organization: Medical Research Council Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
– sequence: 17
  givenname: Gene W.
  surname: Yeo
  fullname: Yeo, Gene W.
  organization: Department of Cellular and Molecular Medicine,, Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093
– sequence: 18
  givenname: Don W.
  surname: Cleveland
  fullname: Cleveland, Don W.
  organization: Department of Neurosciences,, Department of Cellular and Molecular Medicine,, Ludwig Institute for Cancer Research, and
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23382207$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEQxy1URNvAmRtY4sJlW792bV-QolIeUgSItmfLsb1bl42d2l4Q34EPjUPSAD3AaUaa3_zneQwOQgwOgKcYnWDE6ek66HyCCSECSYzRA3CEq9N0TKIDcIQQ4Y1ghB2C45xvEEKyFegROCSUCkIQPwI_5ouLZvThi7Pw8vWnhlG4moouPoYM1ynayTioly4lHQr8_GEO83r0xocB6mChttNYmsq6AlexxASDm1IM0PrsdHbwmy_XcSpQD0Nywy9dWKkx5gxjD8NkRqfTrvRj8LDXY3ZPdnYGrt6cX569axYf374_my8a03a8NH3bWi0wQ601zDLOupZZao1E1PQ9XlbPcC4Ja7mmjOJWyl6SZddLpLkjPZ2BV1vd9bRcOWtcKEmPap38SqfvKmqv_o4Ef62G-FXRVmBJSBV4uRNI8XZyuaiVz8aNow4uTllhgSjGHRXy_yjFBHPKJavoi3voTZxSqJtQmEgsBN3cfAae_dn8vuu7m1bgdAuYVLecXL9HMFIbBbX5GvX7a2pGey_D-O0P1On9-I-8u1Y2gX2Vigt1zmlXgedboNdR6SH5rK4uCMIdQpjVgRj9CTbC2cA
CitedBy_id crossref_primary_10_1016_j_celrep_2024_113999
crossref_primary_10_4103_1673_5374_241445
crossref_primary_10_1093_hmg_ddu563
crossref_primary_10_1093_hmg_ddx035
crossref_primary_10_1186_s13024_023_00619_2
crossref_primary_10_1016_j_neuron_2014_03_001
crossref_primary_10_1186_s13024_015_0036_5
crossref_primary_10_15252_embj_201592559
crossref_primary_10_1016_j_neures_2013_09_009
crossref_primary_10_1111_jnc_14327
crossref_primary_10_1016_j_nbd_2015_02_017
crossref_primary_10_1186_s13024_021_00470_3
crossref_primary_10_1038_s41586_024_07042_7
crossref_primary_10_15252_embj_201797452
crossref_primary_10_1016_j_ebiom_2023_104720
crossref_primary_10_1038_s41593_018_0293_z
crossref_primary_10_1073_pnas_2307395120
crossref_primary_10_1007_s00401_024_02720_2
crossref_primary_10_1007_s00401_018_1942_8
crossref_primary_10_1080_15548627_2021_1926656
crossref_primary_10_2174_1566523223666221108113330
crossref_primary_10_1007_s00439_017_1802_y
crossref_primary_10_1093_nar_gkaa410
crossref_primary_10_1186_s40478_020_0881_5
crossref_primary_10_3390_ijms22168853
crossref_primary_10_1016_j_tins_2014_07_008
crossref_primary_10_1016_j_ymthe_2016_10_013
crossref_primary_10_1096_fj_201700835R
crossref_primary_10_1016_j_nbd_2014_07_007
crossref_primary_10_21769_BioProtoc_3594
crossref_primary_10_3389_fnins_2022_868556
crossref_primary_10_1083_jcb_201510032
crossref_primary_10_3389_fgene_2020_00731
crossref_primary_10_1038_s41573_022_00612_2
crossref_primary_10_1093_hmg_ddt349
crossref_primary_10_1186_1423_0127_20_33
crossref_primary_10_2217_nmt_13_66
crossref_primary_10_2217_nmt_14_36
crossref_primary_10_4103_1673_5374_322431
crossref_primary_10_1016_j_neuroscience_2014_04_032
crossref_primary_10_1021_acs_chemrev_8b00138
crossref_primary_10_1038_srep37968
crossref_primary_10_3390_ijms222111853
crossref_primary_10_1038_s41598_021_88015_y
crossref_primary_10_3389_fnmol_2019_00025
crossref_primary_10_14336_AD_2024_0440
crossref_primary_10_1002_mco2_70108
crossref_primary_10_15252_embj_2020106177
crossref_primary_10_1016_j_heliyon_2025_e42482
crossref_primary_10_1038_s41467_023_44658_1
crossref_primary_10_15252_embj_201798684
crossref_primary_10_1002_wrna_1184
crossref_primary_10_1007_s12264_020_00567_7
crossref_primary_10_1093_hmg_ddt243
crossref_primary_10_1038_nrg_2015_3
crossref_primary_10_1002_iub_2603
crossref_primary_10_1007_s00401_013_1125_6
crossref_primary_10_1038_s41374_022_00791_x
crossref_primary_10_1111_gtc_12512
crossref_primary_10_1016_j_nbd_2025_106850
crossref_primary_10_1038_nm_4130
crossref_primary_10_1111_joa_13463
crossref_primary_10_3389_fnins_2019_00335
crossref_primary_10_1002_jcp_29818
crossref_primary_10_1007_s12035_020_02019_9
crossref_primary_10_1002_humu_22319
crossref_primary_10_1038_s41419_018_1022_y
crossref_primary_10_1186_s12920_017_0274_1
crossref_primary_10_3390_biom5020893
crossref_primary_10_1007_s42764_022_00091_0
crossref_primary_10_1093_hmg_ddad170
crossref_primary_10_1021_acs_jproteome_3c00908
crossref_primary_10_1016_j_bbagrm_2019_06_006
crossref_primary_10_1016_j_tig_2017_12_012
crossref_primary_10_1016_j_bbi_2017_05_014
crossref_primary_10_1186_s13024_021_00503_x
crossref_primary_10_1002_glia_23879
crossref_primary_10_1038_nrneurol_2013_221
crossref_primary_10_1016_j_bbadis_2020_166046
crossref_primary_10_7554_eLife_85921
crossref_primary_10_3389_fnins_2024_1341109
crossref_primary_10_1261_rna_079001_121
crossref_primary_10_3390_ijms141020079
crossref_primary_10_1016_j_str_2016_07_007
crossref_primary_10_1111_nan_12902
crossref_primary_10_1038_s41467_019_12740_2
crossref_primary_10_1073_pnas_1322641111
crossref_primary_10_1007_s10048_014_0397_x
crossref_primary_10_1016_j_molmed_2016_05_005
crossref_primary_10_1038_nbt_4246
crossref_primary_10_1111_acel_14325
crossref_primary_10_3390_ijms21103647
crossref_primary_10_3389_fnmol_2023_1193636
crossref_primary_10_1016_j_ejmg_2014_01_002
crossref_primary_10_1016_j_freeradbiomed_2016_05_016
crossref_primary_10_1016_j_brainres_2018_05_021
crossref_primary_10_1016_j_nbd_2013_03_003
crossref_primary_10_1371_journal_pone_0255710
crossref_primary_10_3390_ijms241813807
crossref_primary_10_1016_j_semcdb_2019_06_003
crossref_primary_10_1089_zeb_2018_1588
crossref_primary_10_1021_jacs_4c11229
crossref_primary_10_1111_jnc_13601
crossref_primary_10_1016_j_pneurobio_2025_102734
crossref_primary_10_1186_1750_1326_9_24
crossref_primary_10_3389_fmolb_2024_1383453
crossref_primary_10_1093_cercor_bhw185
crossref_primary_10_1177_1073858414555404
crossref_primary_10_1096_fj_202101275R
crossref_primary_10_1038_s42003_022_03253_8
crossref_primary_10_3389_fmolb_2019_00154
crossref_primary_10_1080_07391102_2017_1310670
crossref_primary_10_3389_fncel_2017_00195
crossref_primary_10_1093_hmg_ddx250
crossref_primary_10_1371_journal_pone_0180828
crossref_primary_10_1186_s40478_021_01148_z
crossref_primary_10_1093_nar_gkx175
crossref_primary_10_1111_nan_12925
crossref_primary_10_1242_dmm_038109
crossref_primary_10_1080_15476286_2021_1963099
crossref_primary_10_1002_glia_23728
crossref_primary_10_1007_s11357_022_00526_2
crossref_primary_10_1186_s40478_024_01893_x
crossref_primary_10_1016_j_neurobiolaging_2023_02_010
crossref_primary_10_1007_s00401_023_02615_8
crossref_primary_10_1016_j_stem_2024_03_004
crossref_primary_10_1016_j_molcel_2024_07_001
crossref_primary_10_1007_s00401_017_1698_6
crossref_primary_10_1016_j_molmed_2013_11_003
crossref_primary_10_1038_s41598_017_06263_3
crossref_primary_10_1186_s40478_019_0800_9
crossref_primary_10_1016_j_neuron_2013_07_033
crossref_primary_10_1016_j_neuro_2023_12_002
crossref_primary_10_1371_journal_pone_0085962
crossref_primary_10_15252_embj_2018100989
crossref_primary_10_1016_j_brainres_2018_01_015
crossref_primary_10_3389_fnmol_2018_00463
crossref_primary_10_1002_wrna_1276
crossref_primary_10_1002_wrna_1397
crossref_primary_10_1186_s40035_022_00331_z
crossref_primary_10_1021_acschemneuro_2c00416
crossref_primary_10_1186_s12974_018_1217_2
crossref_primary_10_1093_nar_gkt1343
crossref_primary_10_1128_MCB_00668_17
crossref_primary_10_1007_s00401_024_02734_w
crossref_primary_10_1074_jbc_RA118_005889
crossref_primary_10_1038_s41598_017_14966_w
crossref_primary_10_1007_s00401_020_02203_0
crossref_primary_10_3390_ijms21134571
crossref_primary_10_1016_j_nbd_2021_105359
crossref_primary_10_1038_s41582_019_0157_5
crossref_primary_10_3389_fcell_2021_728707
crossref_primary_10_15252_embj_201899645
crossref_primary_10_7554_eLife_55199
crossref_primary_10_7759_cureus_76027
crossref_primary_10_1016_j_neuron_2021_08_008
crossref_primary_10_15252_emmm_201607298
crossref_primary_10_3389_fnins_2022_902146
crossref_primary_10_3390_ijms21165646
crossref_primary_10_1101_gr_265298_120
crossref_primary_10_1134_S0006297924140037
crossref_primary_10_1007_s00401_019_02077_x
crossref_primary_10_1016_j_nbd_2020_105078
crossref_primary_10_1038_s41380_021_01346_0
crossref_primary_10_7554_eLife_40811
crossref_primary_10_1002_acn3_51103
crossref_primary_10_1152_jn_00265_2018
crossref_primary_10_1007_s00018_021_03792_z
crossref_primary_10_1186_s13024_024_00732_w
crossref_primary_10_1038_s41598_019_53508_4
crossref_primary_10_3390_life14091125
crossref_primary_10_1080_21678421_2018_1510570
crossref_primary_10_1093_nar_gkz292
crossref_primary_10_1126_scitranslmed_adm7580
crossref_primary_10_1038_ncomms7171
crossref_primary_10_1098_rsos_210160
crossref_primary_10_1007_s00415_024_12485_z
crossref_primary_10_3389_fnins_2014_00252
crossref_primary_10_1038_s41598_021_96122_z
crossref_primary_10_1007_s12640_021_00455_6
crossref_primary_10_1016_j_nbd_2024_106614
crossref_primary_10_1007_s10072_024_07508_6
crossref_primary_10_1042_BST20130142
crossref_primary_10_1007_s12640_018_9865_7
crossref_primary_10_1172_JCI142854
crossref_primary_10_1016_j_celrep_2019_10_061
crossref_primary_10_1371_journal_pone_0086513
crossref_primary_10_1007_s00415_013_7112_y
crossref_primary_10_1186_s13024_020_00397_1
crossref_primary_10_3389_fcell_2021_640414
crossref_primary_10_1126_science_abq5622
crossref_primary_10_1172_JCI71601
crossref_primary_10_1038_ncomms6999
crossref_primary_10_1084_jem_20221190
crossref_primary_10_1101_cshperspect_a024133
crossref_primary_10_1016_j_celrep_2022_111508
crossref_primary_10_1007_s00018_022_04544_3
crossref_primary_10_1111_bpa_12355
crossref_primary_10_1101_gr_217984_116
crossref_primary_10_1242_dmm_037424
crossref_primary_10_1096_fj_202400045R
crossref_primary_10_1038_s41467_020_14815_x
crossref_primary_10_1038_s41598_021_96418_0
crossref_primary_10_1007_s12035_023_03857_z
crossref_primary_10_1038_s41598_025_86337_9
crossref_primary_10_1007_s00401_018_1934_8
crossref_primary_10_1084_jem_20140214
crossref_primary_10_1186_s13578_023_01189_y
crossref_primary_10_3390_ijms221910285
crossref_primary_10_1016_j_expneurol_2020_113496
crossref_primary_10_1002_jnr_24554
crossref_primary_10_3389_fnins_2019_00601
crossref_primary_10_3390_ijms21239186
crossref_primary_10_1186_s13024_020_00386_4
crossref_primary_10_1007_s12035_015_9507_5
crossref_primary_10_1016_j_neuropharm_2020_107986
crossref_primary_10_3390_ijms222212236
crossref_primary_10_1016_j_freeradbiomed_2021_07_022
crossref_primary_10_1038_s41598_018_26397_2
crossref_primary_10_2139_ssrn_3293682
crossref_primary_10_3109_21678421_2015_1098818
crossref_primary_10_1038_s41598_021_91094_6
crossref_primary_10_1007_s40263_016_0317_8
crossref_primary_10_1021_acs_biochem_6b01134
crossref_primary_10_1038_s41374_021_00623_4
crossref_primary_10_3389_fnins_2021_783624
crossref_primary_10_1177_1087057113497256
crossref_primary_10_3390_ijms232012508
crossref_primary_10_3390_ijms24021581
crossref_primary_10_1007_s00401_015_1460_x
crossref_primary_10_1186_s40478_016_0340_5
crossref_primary_10_1016_j_neuron_2022_02_011
crossref_primary_10_1038_s41598_022_11767_8
crossref_primary_10_1186_s40478_015_0212_4
crossref_primary_10_1016_j_molcel_2014_08_027
crossref_primary_10_1007_s13311_022_01260_5
crossref_primary_10_1016_j_bbrc_2020_02_027
crossref_primary_10_1038_nrn3430
crossref_primary_10_1007_s00439_017_1830_7
crossref_primary_10_1016_j_neurobiolaging_2020_03_019
crossref_primary_10_1016_j_celrep_2023_113046
crossref_primary_10_1080_21678421_2020_1779298
crossref_primary_10_3389_fgene_2014_00085
crossref_primary_10_1016_j_neuron_2019_01_048
crossref_primary_10_1093_nar_gkad319
crossref_primary_10_3390_ijms222111870
crossref_primary_10_1093_hmg_ddaa140
crossref_primary_10_1016_j_nbd_2023_106245
crossref_primary_10_1016_j_tig_2018_10_002
crossref_primary_10_26508_lsa_201900358
crossref_primary_10_3389_fnins_2019_01310
crossref_primary_10_1093_hmg_ddy047
crossref_primary_10_1016_j_isci_2021_102700
crossref_primary_10_3109_21678421_2015_1055275
crossref_primary_10_1038_s41598_022_08068_5
crossref_primary_10_1016_j_cell_2020_09_020
crossref_primary_10_1038_s41598_021_94225_1
crossref_primary_10_1038_nrg3778
crossref_primary_10_1111_nan_12187
crossref_primary_10_3390_plants13192816
crossref_primary_10_1016_j_cels_2020_03_003
crossref_primary_10_1002_0471141755_ph0567s69
crossref_primary_10_1038_s41467_024_45646_9
crossref_primary_10_1007_s00401_018_1921_0
crossref_primary_10_1111_bpa_12680
crossref_primary_10_1002_1873_3468_12646
crossref_primary_10_1016_j_ddmod_2018_10_001
crossref_primary_10_1186_2051_5960_1_42
crossref_primary_10_1016_j_neulet_2018_04_006
crossref_primary_10_1016_j_ymthe_2016_12_001
crossref_primary_10_1038_s42003_025_07752_2
crossref_primary_10_1371_journal_pone_0187813
crossref_primary_10_1186_s40478_019_0674_x
crossref_primary_10_3390_metabo12080709
crossref_primary_10_1016_j_isci_2023_106645
crossref_primary_10_1073_pnas_1317317111
crossref_primary_10_3389_fnins_2022_818655
crossref_primary_10_1016_j_brainres_2018_03_024
crossref_primary_10_1371_journal_pone_0196528
crossref_primary_10_1002_acn3_158
crossref_primary_10_1080_17460441_2024_2387791
crossref_primary_10_3389_fnmol_2022_1000183
crossref_primary_10_1038_s41582_023_00846_7
crossref_primary_10_1007_s00401_015_1530_0
crossref_primary_10_3390_cells10113005
crossref_primary_10_1242_dmm_047548
crossref_primary_10_2139_ssrn_3236488
crossref_primary_10_1007_s13311_015_0340_3
crossref_primary_10_1016_j_celrep_2021_109237
crossref_primary_10_1038_s41467_019_12101_z
crossref_primary_10_4103_1673_5374_317960
crossref_primary_10_1016_j_nicl_2020_102327
crossref_primary_10_1186_s40035_023_00377_7
crossref_primary_10_1371_journal_pgen_1009882
crossref_primary_10_1038_s41467_024_51676_0
crossref_primary_10_1016_j_pbiomolbio_2022_06_001
crossref_primary_10_1186_s13024_017_0227_3
crossref_primary_10_15252_embr_202051649
crossref_primary_10_1007_s13311_015_0338_x
crossref_primary_10_7554_eLife_85921_3
crossref_primary_10_1038_s41467_021_26383_9
crossref_primary_10_1093_brain_awae039
crossref_primary_10_1093_cercor_bhad526
crossref_primary_10_1038_s41467_017_00088_4
crossref_primary_10_1080_21541248_2021_1892443
crossref_primary_10_1111_dgd_12879
crossref_primary_10_15252_embj_201797568
crossref_primary_10_1016_j_nbd_2022_105749
crossref_primary_10_1016_j_nbd_2025_106815
crossref_primary_10_3389_fncel_2017_00243
crossref_primary_10_1093_hmg_ddv104
crossref_primary_10_1083_jcb_201302044
crossref_primary_10_3390_jcm9010261
crossref_primary_10_1016_j_neuron_2018_09_044
crossref_primary_10_1038_s41467_023_36023_z
crossref_primary_10_1093_hmg_ddu493
crossref_primary_10_1177_17590914231197527
crossref_primary_10_1016_j_biochi_2024_05_007
crossref_primary_10_1016_j_pneurobio_2016_09_004
crossref_primary_10_1038_s41467_021_24232_3
crossref_primary_10_1111_nan_12536
crossref_primary_10_3389_fnins_2018_00028
crossref_primary_10_1093_hmg_ddx093
crossref_primary_10_1038_s41593_018_0113_5
crossref_primary_10_1074_jbc_REV118_001188
crossref_primary_10_1093_mp_sst175
crossref_primary_10_7554_eLife_67587
crossref_primary_10_1074_jbc_M117_783498
crossref_primary_10_1016_j_celrep_2024_115205
crossref_primary_10_1084_jem_20180870
crossref_primary_10_1002_med_21937
crossref_primary_10_1186_s13024_018_0294_0
Cites_doi 10.1007/s00401-008-0477-9
10.1038/nsmb.1720
10.1016/j.nbd.2005.06.005
10.1073/pnas.0908767106
10.1038/nature09320
10.1016/S0888-7543(03)00214-3
10.1523/JNEUROSCI.1630-10.2010
10.1371/journal.pgen.1000887
10.1016/j.conb.2011.05.029
10.1016/j.neuron.2005.01.032
10.1038/nn.2779
10.1038/ncomms1766
10.1016/S0028-3908(99)00257-9
10.1128/jvi.69.6.3584-3596.1995
10.1016/j.jmb.2005.02.038
10.1007/s00401-010-0659-0
10.1016/j.nbd.2010.06.017
10.1186/1750-1326-6-73
10.1074/jbc.M109.010264
10.1073/pnas.1002176107
10.1212/WNL.59.7.1077
10.1038/ng.132
10.1093/emboj/20.7.1774
10.1007/s00401-012-0979-3
10.1523/JNEUROSCI.3421-07.2007
10.1038/emboj.2010.310
10.1016/S1474-4422(08)70071-1
10.1002/ana.21344
10.1074/jbc.M800342200
10.1172/JCI44867
10.1073/pnas.0900688106
10.1074/jbc.M112.359000
10.1074/jbc.M109.061846
10.1002/dvg.20584
10.1126/science.1166066
10.1073/pnas.0705046104
10.1016/S0896-6273(02)00682-7
10.1093/hmg/ddq230
10.1016/j.bbrc.2006.10.093
10.1074/jbc.M110.125039
10.1074/jbc.M111.311977
10.1074/jbc.M809462200
10.1111/j.1468-1331.2008.02195.x
10.1016/S1050-3862(96)00167-2
10.1242/jcs.051672
10.1172/JCI59130
10.1074/jbc.M701465200
10.1093/nar/gkp342
10.1073/pnas.1003459107
10.1073/pnas.0802082105
10.1126/science.1154584
10.1093/brain/awr159
10.1126/science.1134108
10.2353/ajpath.2008.080003
10.1371/journal.pcbi.0020004
10.1084/jem.20092164
10.1097/01.jnen.0000171647.09589.07
10.1073/pnas.0912417107
10.1111/j.1440-1789.2009.01089.x
10.1073/pnas.0805422105
10.1126/science.1165942
10.1074/jbc.M505557200
10.1371/journal.pone.0012247
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 19, 2013
Copyright_xml – notice: Copyright National Academy of Sciences Feb 19, 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1222809110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Virology and AIDS Abstracts
AGRICOLA
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate ALS-linked TDP-43 mutations produce aberrant RNA
EISSN 1091-6490
EndPage E745
ExternalDocumentID PMC3581922
2898370201
23382207
10_1073_pnas_1222809110
110_8_E736
US201600141884
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: T32 AG000216
– fundername: NINDS NIH HHS
  grantid: NS075449
– fundername: Medical Research Council
  grantid: G0300329
– fundername: NINDS NIH HHS
  grantid: RC1 NS069144
– fundername: Medical Research Council
  grantid: MC_G1000733
– fundername: NINDS NIH HHS
  grantid: K99 NS075216
– fundername: NIGMS NIH HHS
  grantid: T32 GM008666
– fundername: NIA NIH HHS
  grantid: T32 AG 000216
– fundername: Wellcome Trust
  grantid: 089701
– fundername: NINDS NIH HHS
  grantid: R01 NS075449
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c567t-f55da81405dc4d474654d3dc903cff1bdc9c7792457a3431599f92b6f90a7e2f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:21:09 EDT 2025
Fri Sep 05 08:02:26 EDT 2025
Fri Sep 05 08:33:31 EDT 2025
Mon Jun 30 07:46:53 EDT 2025
Sat May 31 02:09:11 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Tue Jul 01 03:39:37 EDT 2025
Wed Nov 11 00:29:59 EST 2020
Wed Dec 27 19:18:13 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-f55da81405dc4d474654d3dc903cff1bdc9c7792457a3431599f92b6f90a7e2f3
Notes http://dx.doi.org/10.1073/pnas.1222809110
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: E.S.A., S.-C.L., S.C.H., C.L.-T., M.P., D.D., H.B.K., O.P., P.A.P., S.D.C., M.M., G.W.Y., and D.W.C. designed research; E.S.A., S.-C.L., S.C.H., C.L.-T., M.P., D.D., H.B.K., M.M.-D., O.P., P.A.P., S.D.C., and K.M.C. performed research; D.S., L.T., and C.E.S. contributed new reagents/analytic tools; E.S.A., S.-C.L., S.C.H., C.L.-T., and M.P. analyzed data; and E.S.A., S.-C.L., S.C.H., C.L.-T., G.W.Y., and D.W.C. wrote the paper.
1E.S.A. and S.-C.L. contributed equally to this work.
Contributed by Don W. Cleveland, January 2, 2013 (sent for review September 10, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/110/8/E736.full.pdf
PMID 23382207
PQID 1291883107
PQPubID 42026
ParticipantIDs proquest_journals_1291883107
pnas_primary_110_8_E736
pubmed_primary_23382207
proquest_miscellaneous_1312173794
crossref_primary_10_1073_pnas_1222809110
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3581922
proquest_miscellaneous_1803116389
crossref_citationtrail_10_1073_pnas_1222809110
fao_agris_US201600141884
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-19
PublicationDateYYYYMMDD 2013-02-19
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
Wu LS (e_1_3_3_21_2) 2010; 48
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_38_2
  doi: 10.1007/s00401-008-0477-9
– ident: e_1_3_3_51_2
  doi: 10.1038/nsmb.1720
– ident: e_1_3_3_48_2
  doi: 10.1016/j.nbd.2005.06.005
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0908767106
– ident: e_1_3_3_43_2
  doi: 10.1038/nature09320
– ident: e_1_3_3_15_2
  doi: 10.1016/S0888-7543(03)00214-3
– ident: e_1_3_3_28_2
  doi: 10.1523/JNEUROSCI.1630-10.2010
– ident: e_1_3_3_31_2
  doi: 10.1371/journal.pgen.1000887
– ident: e_1_3_3_1_2
  doi: 10.1016/j.conb.2011.05.029
– ident: e_1_3_3_49_2
  doi: 10.1016/j.neuron.2005.01.032
– ident: e_1_3_3_11_2
  doi: 10.1038/nn.2779
– ident: e_1_3_3_60_2
  doi: 10.1038/ncomms1766
– ident: e_1_3_3_55_2
  doi: 10.1016/S0028-3908(99)00257-9
– ident: e_1_3_3_12_2
  doi: 10.1128/jvi.69.6.3584-3596.1995
– ident: e_1_3_3_16_2
  doi: 10.1016/j.jmb.2005.02.038
– ident: e_1_3_3_20_2
  doi: 10.1007/s00401-010-0659-0
– ident: e_1_3_3_30_2
  doi: 10.1016/j.nbd.2010.06.017
– ident: e_1_3_3_34_2
  doi: 10.1186/1750-1326-6-73
– ident: e_1_3_3_57_2
  doi: 10.1074/jbc.M109.010264
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.1002176107
– ident: e_1_3_3_2_2
  doi: 10.1212/WNL.59.7.1077
– ident: e_1_3_3_8_2
  doi: 10.1038/ng.132
– ident: e_1_3_3_13_2
  doi: 10.1093/emboj/20.7.1774
– ident: e_1_3_3_33_2
  doi: 10.1007/s00401-012-0979-3
– ident: e_1_3_3_41_2
  doi: 10.1523/JNEUROSCI.3421-07.2007
– ident: e_1_3_3_23_2
  doi: 10.1038/emboj.2010.310
– ident: e_1_3_3_36_2
  doi: 10.1016/S1474-4422(08)70071-1
– ident: e_1_3_3_7_2
  doi: 10.1002/ana.21344
– ident: e_1_3_3_14_2
  doi: 10.1074/jbc.M800342200
– ident: e_1_3_3_27_2
  doi: 10.1172/JCI44867
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.0900688106
– ident: e_1_3_3_56_2
  doi: 10.1074/jbc.M112.359000
– ident: e_1_3_3_19_2
  doi: 10.1074/jbc.M109.061846
– volume: 48
  start-page: 56
  year: 2010
  ident: e_1_3_3_21_2
  article-title: TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis
  publication-title: Genesis
  doi: 10.1002/dvg.20584
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1166066
– ident: e_1_3_3_53_2
  doi: 10.1073/pnas.0705046104
– ident: e_1_3_3_63_2
  doi: 10.1016/S0896-6273(02)00682-7
– ident: e_1_3_3_46_2
  doi: 10.1093/hmg/ddq230
– ident: e_1_3_3_5_2
  doi: 10.1016/j.bbrc.2006.10.093
– ident: e_1_3_3_59_2
  doi: 10.1074/jbc.M110.125039
– ident: e_1_3_3_61_2
  doi: 10.1074/jbc.M111.311977
– ident: e_1_3_3_42_2
  doi: 10.1074/jbc.M809462200
– ident: e_1_3_3_3_2
  doi: 10.1111/j.1468-1331.2008.02195.x
– ident: e_1_3_3_47_2
  doi: 10.1016/S1050-3862(96)00167-2
– ident: e_1_3_3_58_2
  doi: 10.1242/jcs.051672
– ident: e_1_3_3_35_2
  doi: 10.1172/JCI59130
– ident: e_1_3_3_62_2
  doi: 10.1074/jbc.M701465200
– ident: e_1_3_3_17_2
  doi: 10.1093/nar/gkp342
– ident: e_1_3_3_25_2
  doi: 10.1073/pnas.1003459107
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.0802082105
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1154584
– ident: e_1_3_3_32_2
  doi: 10.1093/brain/awr159
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1134108
– ident: e_1_3_3_37_2
  doi: 10.2353/ajpath.2008.080003
– ident: e_1_3_3_52_2
  doi: 10.1371/journal.pcbi.0020004
– ident: e_1_3_3_24_2
  doi: 10.1084/jem.20092164
– ident: e_1_3_3_54_2
  doi: 10.1097/01.jnen.0000171647.09589.07
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.0912417107
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1440-1789.2009.01089.x
– ident: e_1_3_3_50_2
  doi: 10.1073/pnas.0805422105
– ident: e_1_3_3_9_2
  doi: 10.1126/science.1165942
– ident: e_1_3_3_18_2
  doi: 10.1074/jbc.M505557200
– ident: e_1_3_3_44_2
  doi: 10.1371/journal.pone.0012247
SSID ssj0009580
Score 2.575689
Snippet Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis...
Mutations in the RNA binding protein TDP-43 cause amyotrophic lateral sclerosis and frontotemporal dementia. Through expressing disease-causing mutants in mice...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E736
SubjectTerms alternative splicing
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - physiopathology
Animals
Binding sites
Biological Sciences
cell death
Cell Nucleus - metabolism
death
Deoxyribonucleic acid
DNA
DNA-binding proteins
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
exons
humans
Mice
Mice, Transgenic
microarray technology
motor neurons
Mutants
Mutation
Neurons
PNAS Plus
Proteins
Real-Time Polymerase Chain Reaction
RNA
RNA Splicing
Rodents
Ubiquitination
Title ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43
URI http://www.pnas.org/content/110/8/E736.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23382207
https://www.proquest.com/docview/1291883107
https://www.proquest.com/docview/1312173794
https://www.proquest.com/docview/1803116389
https://pubmed.ncbi.nlm.nih.gov/PMC3581922
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6y4ULYnltYUFG4rAocmmejo_V0lWFSqloK_UW5eG0lbrJqk058Bv4T_w1ZhwnTZeCFi5RlDhjS_PFMx6PvyHknQUwcr3YZbJrxswJXcl8kUbMFNKL0aIJVYvg88gbzJxPc3feav1sZC3tiqgTfz96ruR_tArPQK94SvYfNFsLhQdwD_qFK2gYrvfScW84YbgDC07j9OOYObZxsyt0btutonKVRhjJDdijwvg66hlb3K2ujiUq6g2G2dSFAQrLN4Yit8yqTRsVo8W05XABi_KF9i03xhrsapn_EWPNCd1108sd11ZxW-UgjKqgY29_hEXPK1uDGePRviByb5PpUtb9b1J5wfWroa7AMlnucna1XO3PsQ12cl3GiFXeGh6cNxqskguw_gwZE9GuqODwOi9W60Q2ox5YgcJiem4tJ2rwc5jnlKVGO_LIs2p211mzJYz9xlzdLw89_G5EYNbDysdZuO2YGCADsVrIAV336EtwPRsOg2l_Pj0hDywOzlsVLqpZn_2SDkMPrOKW4vaHO-IP3KKTNMyRbBeaHFv43M3fbThE08fkkV7J0F4JyzPSktkTclbplF5qQvP3T8mPPU5pCRZa45RqnNIKpxRwSiucUsApbeCUKpzSEqdU45RqnNIGTim0QpzSPKUap7rrZ2R23Z9eDZiuAsJi1-MFS103CZGXzU1iJ3E4EgAmdhKLrh2nqRnBXcy5sByXhza4w64QqbAiLxXdkEsrtZ-T0yzP5DmhrjATz-d-4nQjkCGEFF4aeo4UrnREytukUykhiDVFPlZqWQcqVYPbAaok2GutTS7rD25Ldpg_Nz0HrQbhAmx3MJtYyOyISda-77TJC9W4lgAi_ADh2SYXlfYDPe-gTAFfwbIMxvu2fg1WAbf6wkzmO2hjm5bJbTC2f2njg0HH5ZjAAShA1UOwbBtWDtgDP4Ba3QBZ6Q_fZKulYqdHQkVhWS_vMbZX5OH-374gp8VmJ1-Dj19Eb9R_9AvQ7vyz
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALS-linked+TDP-43+mutations+produce+aberrant+RNA+splicing+and+adult-onset+motor+neuron+disease+without+aggregation+or+loss+of+nuclear+TDP-43&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Arnold%2C+Eveline+S&rft.au=Ling%2C+Shuo-Chien&rft.au=Huelga%2C+Stephanie+C&rft.au=Lagier-Tourenne%2C+Clotilde&rft.date=2013-02-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=110&rft.issue=8&rft.spage=E736&rft_id=info:doi/10.1073%2Fpnas.1222809110&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F8.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F8.cover.gif