Estimation of Space-Time Branching Process Models in Seismology Using an EM-Type Algorithm
Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branchi...
Saved in:
| Published in | Journal of the American Statistical Association Vol. 103; no. 482; pp. 614 - 624 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria, VA
Taylor & Francis
01.06.2008
American Statistical Association Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-1459 1537-274X |
| DOI | 10.1198/016214508000000148 |
Cover
| Abstract | Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we show how the epidemic-type aftershock sequence (ETAS) model can, in fact, be estimated this way, and we propose a computationally efficient procedure to maximize the expected complete data log-likelihood function. Using a space-time ETAS model, we demonstrate that this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed. |
|---|---|
| AbstractList | Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we show how the epidemic-type aftershock sequence (ETAS) model can, in fact, be estimated this way, and we propose a computationally efficient procedure to maximize the expected complete data log-likelihood function. Using a space—time ETAS model, we demonstrate that this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed. Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we show how the epidemic-type aftershock sequence (ETAS) model can, in fact, he estimated this way, and we propose a computationally efficient procedure to maximize the expected complete data log-likelihood function. Using a space-time ETAS model, we demonstrate that this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed. [PUBLICATION ABSTRACT] |
| Author | Veen, Alejandro Schoenberg, Frederic P |
| Author_xml | – sequence: 1 givenname: Alejandro surname: Veen fullname: Veen, Alejandro – sequence: 2 givenname: Frederic P surname: Schoenberg fullname: Schoenberg, Frederic P |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20528547$$DView record in Pascal Francis |
| BookMark | eNp9kVFrFDEUhYNUcLv6BwQhKPo2mmSSSebBh1q2KrQodAviS8hmkm2WTLJNssj--2a6LULF5iWE-53DybnH4CjEYAB4jdFHjHvxCeGOYMqQQHcHU_EMzDBreUM4_XUEZhPQVKJ_AY5z3kwQF2IGfi9ycaMqLgYYLbzcKm2apRsN_JJU0NcurOHPFLXJGV7EwfgMXYCXxuUx-rjew6s8ISrAxUWz3G8NPPHrmFy5Hl-C51b5bF7d33NwdbZYnn5rzn98_X56ct5o1vHSWNy1mnDemkGsmGoZskL0A8VEYUOHvr4VMQqtBjsorltlKaGEEz0wrVbCtnPw4eC7TfFmZ3KRo8vaeK-Cibss267vKOpYBd8-Ajdxl0LNJmtLggnMugq9-y9EOUGUsJp1Dt7fUypr5e3Ulctym2qXaS8JYkQwOnHiwOkUc07GSu3KXdslKeclRnLan_x3f1VKHkkf3J8UvTmINrnE9DcPrw0gQev882Hugo1pVH9i8oMsau9jevhE-4T_LXjNuNY |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1002_env_2747 crossref_primary_10_1080_03610918_2024_2349174 crossref_primary_10_1080_10618600_2025_2450463 crossref_primary_10_1002_fut_21644 crossref_primary_10_1038_s43247_024_01460_1 crossref_primary_10_1029_2020GL091757 crossref_primary_10_1016_j_spasta_2015_06_004 crossref_primary_10_1007_s10940_020_09479_1 crossref_primary_10_1016_j_trc_2024_104868 crossref_primary_10_2139_ssrn_3040511 crossref_primary_10_1016_j_dss_2014_05_003 crossref_primary_10_1016_j_jtbi_2011_01_039 crossref_primary_10_1016_j_jbankfin_2015_03_003 crossref_primary_10_1080_10618600_2017_1341324 crossref_primary_10_1111_rssa_12919 crossref_primary_10_1785_0220220230 crossref_primary_10_1103_PhysRevE_88_062109 crossref_primary_10_1287_isre_2021_1020 crossref_primary_10_1109_ACCESS_2019_2900340 crossref_primary_10_1142_S0219024917500030 crossref_primary_10_1029_2023EA003367 crossref_primary_10_1038_s41467_023_37782_5 crossref_primary_10_1785_0120240233 crossref_primary_10_1016_j_spasta_2018_12_004 crossref_primary_10_1038_srep08417 crossref_primary_10_5351_KJAS_2023_36_4_309 crossref_primary_10_1007_s11222_022_10085_3 crossref_primary_10_1080_01621459_2022_2102019 crossref_primary_10_1016_j_csda_2011_01_022 crossref_primary_10_1080_1351847X_2020_1820356 crossref_primary_10_1016_j_csda_2013_08_015 crossref_primary_10_1007_s10463_019_00715_5 crossref_primary_10_1080_01621459_2011_641402 crossref_primary_10_1016_j_hal_2021_102149 crossref_primary_10_1002_sta4_87 crossref_primary_10_1214_17_STS629 crossref_primary_10_2139_ssrn_3817130 crossref_primary_10_1785_0220200231 crossref_primary_10_1007_s11222_021_10002_0 crossref_primary_10_1140_epjst_e2020_000259_3 crossref_primary_10_1103_PhysRevLett_126_128501 crossref_primary_10_1017_apr_2019_53 crossref_primary_10_1007_s10463_023_00894_2 crossref_primary_10_1007_s10940_012_9181_y crossref_primary_10_1186_2190_8532_2_1 crossref_primary_10_1016_j_csda_2015_08_007 crossref_primary_10_1016_j_ijforecast_2021_07_001 crossref_primary_10_1080_14697688_2015_1032544 crossref_primary_10_1785_0120240007 crossref_primary_10_1080_01621459_2023_2257889 crossref_primary_10_1002_bimj_202000245 crossref_primary_10_5023_jappstat_53_77 crossref_primary_10_1214_20_AOAS1384 crossref_primary_10_1080_14697688_2021_1941212 crossref_primary_10_1016_j_cnsns_2024_108100 crossref_primary_10_1111_rssc_12277 crossref_primary_10_2139_ssrn_3848661 crossref_primary_10_1080_14697688_2018_1550266 crossref_primary_10_1785_0220220374 crossref_primary_10_1016_j_spasta_2023_100728 crossref_primary_10_1017_jpr_2021_35 crossref_primary_10_1080_10618600_2023_2253293 crossref_primary_10_2139_ssrn_2477432 crossref_primary_10_1007_s00477_020_01798_w crossref_primary_10_1080_07350015_2021_2025065 crossref_primary_10_1007_s00477_014_0873_8 crossref_primary_10_1007_s11222_018_9845_z crossref_primary_10_5194_nhess_25_991_2025 crossref_primary_10_1007_s11336_013_9329_1 crossref_primary_10_1111_jedm_12133 crossref_primary_10_1017_S0956792515000492 crossref_primary_10_1146_annurev_earth_040522_102129 crossref_primary_10_1029_2010JB007544 crossref_primary_10_1103_PhysRevE_108_015303 crossref_primary_10_1038_s41598_017_09962_z crossref_primary_10_1007_s10651_023_00593_4 crossref_primary_10_6339_21_JDS1021 crossref_primary_10_1002_jgrb_50179 crossref_primary_10_1016_j_tecto_2022_229522 crossref_primary_10_1029_2022JB024380 crossref_primary_10_1287_msom_2020_0937 crossref_primary_10_1007_s10463_020_00780_1 crossref_primary_10_1142_S2382626615500057 crossref_primary_10_2139_ssrn_3239443 crossref_primary_10_2139_ssrn_3969208 crossref_primary_10_1029_2009JB006387 crossref_primary_10_1080_01621459_2015_1135802 crossref_primary_10_1017_apr_2021_35 crossref_primary_10_1007_s11222_023_10264_w crossref_primary_10_1038_s41598_023_38033_9 crossref_primary_10_1007_s13253_024_00615_z crossref_primary_10_1214_18_AOAS1134 crossref_primary_10_1016_j_knosys_2022_109740 crossref_primary_10_1007_s11009_011_9272_5 crossref_primary_10_1093_gji_ggac204 crossref_primary_10_1137_18M1226993 crossref_primary_10_1007_s41060_023_00443_3 crossref_primary_10_1080_01621459_2015_1077710 crossref_primary_10_1002_j_2333_8504_2013_tb02348_x crossref_primary_10_1029_2021JB022379 crossref_primary_10_1111_coin_12496 crossref_primary_10_1002_2016JB013266 crossref_primary_10_1002_env_2798 crossref_primary_10_1007_s42081_019_00060_0 crossref_primary_10_1214_18_STS652 crossref_primary_10_1103_PhysRevResearch_2_043358 crossref_primary_10_1785_0220240170 crossref_primary_10_2139_ssrn_4174251 crossref_primary_10_1016_j_csda_2010_09_031 crossref_primary_10_2139_ssrn_2469697 crossref_primary_10_1007_s10260_020_00538_2 crossref_primary_10_1287_ijoc_2022_0351 crossref_primary_10_1214_25_BA1516 crossref_primary_10_1002_2014JB011456 crossref_primary_10_1214_21_AOAS1538 crossref_primary_10_1029_2009JB007119 crossref_primary_10_1214_24_AOAS1957 crossref_primary_10_1109_TITS_2021_3074932 crossref_primary_10_1214_21_AOAS1539 crossref_primary_10_1103_PhysRevE_101_043305 crossref_primary_10_2139_ssrn_3108653 crossref_primary_10_1016_j_csda_2015_01_015 crossref_primary_10_1029_2020JB020226 crossref_primary_10_1214_21_AOAS1554 crossref_primary_10_1098_rspa_2021_0195 crossref_primary_10_2139_ssrn_2371284 crossref_primary_10_1029_2023RG000823 crossref_primary_10_1038_ngeo2359 crossref_primary_10_1016_j_automatica_2019_108733 crossref_primary_10_1016_j_ijforecast_2018_01_006 crossref_primary_10_1080_03610918_2024_2417809 crossref_primary_10_1214_16_AOAS957 crossref_primary_10_26443_seismica_v3i2_1094 crossref_primary_10_1080_2330443X_2020_1859030 crossref_primary_10_3390_app13052814 crossref_primary_10_1007_s11222_024_10392_x crossref_primary_10_3150_23_BEJ1631 crossref_primary_10_2139_ssrn_3470178 crossref_primary_10_1080_10485252_2018_1475663 crossref_primary_10_1016_j_epsl_2017_07_032 crossref_primary_10_1038_s41598_022_24080_1 crossref_primary_10_1093_gji_ggad074 crossref_primary_10_1016_j_gsf_2025_102016 crossref_primary_10_2139_ssrn_3375528 crossref_primary_10_1093_jrsssc_qlad085 crossref_primary_10_1214_13_AOAS647 crossref_primary_10_1080_1351847X_2020_1791925 crossref_primary_10_1214_20_AOAS1352 crossref_primary_10_1785_0220210127 crossref_primary_10_1002_2016JB012809 crossref_primary_10_1029_2018JB017118 crossref_primary_10_1017_S0956792521000048 crossref_primary_10_1080_14697688_2017_1403140 crossref_primary_10_1029_2018JB016668 crossref_primary_10_1109_TIT_2016_2568202 crossref_primary_10_1785_0120200198 crossref_primary_10_1016_j_ijforecast_2014_01_004 crossref_primary_10_1016_j_jcrimjus_2021_101848 crossref_primary_10_1029_2023JB028402 crossref_primary_10_1109_TSP_2020_3019329 crossref_primary_10_1002_env_2168 crossref_primary_10_1093_imamat_hxw025 |
| Cites_doi | 10.1093/biomet/62.2.269 10.2307/2288914 10.1016/S0031-9201(02)00214-5 10.1023/A:1003403601725 10.1785/gssrl.73.6.921 10.1029/93GL02142 10.1029/2003JB002879 |
| ContentType | Journal Article |
| Copyright | American Statistical Association 2008 Copyright 2008 American Statistical Association 2008 INIST-CNRS American Statistical Association. 2008 Copyright American Statistical Association Jun 2008 |
| Copyright_xml | – notice: American Statistical Association 2008 – notice: Copyright 2008 American Statistical Association – notice: 2008 INIST-CNRS – notice: American Statistical Association. 2008 – notice: Copyright American Statistical Association Jun 2008 |
| DBID | AAYXX CITATION IQODW 8BJ FQK JBE K9. |
| DOI | 10.1198/016214508000000148 |
| DatabaseName | CrossRef Pascal-Francis International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Geology Mathematics |
| EISSN | 1537-274X |
| EndPage | 624 |
| ExternalDocumentID | 1528209991 20528547 10_1198_016214508000000148 27640084 10710445 |
| Genre | Article Feature |
| GeographicLocations | United States--US Southern California |
| GeographicLocations_xml | – name: United States--US – name: Southern California |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTCW ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGCQS AGDLA AGLNM AGMYJ AHDZW AIHAF AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FEDTE FJW FVMVE GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LU7 M4Z MS~ MVM MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T SA0 SJN SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM YYP ZGOLN ~S~ ADYSH AFSUE ALIPV AMPGV AAYXX CITATION .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAAVZ AAFWJ AAIKQ AAKBW ABEFU ABJCF ABRLO ABUWG ACAGQ ACGEE ADBBV ADXHL AEUMN AFKRA AFQQW AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMVHM AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DWIFK DWQXO E.L FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IQODW IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S NHB NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL S0X TAQ TFMCV UB9 UKHRP UQL VH1 VOH WHG YXB ZCG ZGI ZUP ZXP 8BJ FQK JBE K9. |
| ID | FETCH-LOGICAL-c567t-f163c2773ed8b5a350f889d412a1e4d950fa2ea0bdfda7c3af424272cd5cab8f3 |
| ISSN | 0162-1459 |
| IngestDate | Tue Oct 21 14:06:26 EDT 2025 Mon Oct 06 18:23:13 EDT 2025 Mon Oct 06 18:32:06 EDT 2025 Mon Jul 21 09:14:35 EDT 2025 Thu Apr 24 22:55:29 EDT 2025 Wed Oct 01 03:57:25 EDT 2025 Thu May 29 08:44:08 EDT 2025 Mon Oct 20 23:48:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 482 |
| Keywords | Expectation-maximization algorithm Epidemic-type aftershock sequence model Covering problem Optimization method Optimization Hypothesis test Statistical test Branching process models Earthquakes Log likelihood Incomplete information Likelihood function Mathematical programming Epidemic Maximization Numerical model Space time Statistical method Space-time point process models Branching process Numerical analysis Point estimation Point process Maximum likelihood Expectation EM algorithm Application |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c567t-f163c2773ed8b5a350f889d412a1e4d950fa2ea0bdfda7c3af424272cd5cab8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Feature-1 ObjectType-Article-2 content type line 23 |
| PQID | 2472042577 |
| PQPubID | 41715 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_36964065 crossref_citationtrail_10_1198_016214508000000148 proquest_journals_2472042577 proquest_journals_274858156 pascalfrancis_primary_20528547 crossref_primary_10_1198_016214508000000148 informaworld_taylorfrancis_310_1198_016214508000000148 jstor_primary_27640084 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-06-01 |
| PublicationDateYYYYMMDD | 2008-06-01 |
| PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Alexandria, VA |
| PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2008 |
| Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
| References | p_27 p_38 p_4 p_35 p_36 (p_26) 2002; 73 p_9 (p_37) 1993; 55 (p_50) 2004; 109 (p_51) 2005 |
| References_xml | – ident: p_4 doi: 10.1093/biomet/62.2.269 – ident: p_35 doi: 10.2307/2288914 – start-page: 275 year: 2005 ident: p_51 publication-title: A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan – ident: p_9 – ident: p_27 doi: 10.1016/S0031-9201(02)00214-5 – volume: 55 start-page: 249 year: 1993 ident: p_37 publication-title: Bulletin of the International Statistical Institute – ident: p_38 doi: 10.1023/A:1003403601725 – volume: 73 start-page: 921 year: 2002 ident: p_26 publication-title: Seismological Research Letters doi: 10.1785/gssrl.73.6.921 – ident: p_36 doi: 10.1029/93GL02142 – volume: 109 start-page: B05301 year: 2004 ident: p_50 publication-title: Journal of Geophysical Research doi: 10.1029/2003JB002879 |
| SSID | ssj0000788 |
| Score | 2.4106815 |
| Snippet | Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore... |
| SourceID | proquest pascalfrancis crossref jstor informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 614 |
| SubjectTerms | Algorithms Applications Applications and Case Studies Branching process models Disease models Earthquakes Epidemic-type aftershock sequence model Epidemiology Estimate reliability Estimating techniques Estimation Estimation bias Exact sciences and technology Expectation-maximization algorithm General topics Geology Markov processes Mathematics Maximum likelihood Maximum likelihood estimation Maximum likelihood method Modeling Optimization Parametric inference Probability and statistics Probability theory and stochastic processes Regression analysis Robustness (mathematics) Sciences and techniques of general use Seismicity Seismology Simulations Space-time point process models Spacetime Statistical methods Statistics Stochastic processes |
| Title | Estimation of Space-Time Branching Process Models in Seismology Using an EM-Type Algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1198/016214508000000148 https://www.jstor.org/stable/27640084 https://www.proquest.com/docview/2472042577 https://www.proquest.com/docview/274858156 https://www.proquest.com/docview/36964065 |
| Volume | 103 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKENIuCAYTZWP4wE6TIY3t_DhW0DKhrRyWShWXyEkcVtSmW5sexn_Df8rzjyaNUirgErVxnKb5vtjvxe-9D6F3sJ8naSAIh5GPMO5kRKQyIV4SgBMUUsmkWtG9HnmXY_Zlwiedzq-tqKV1mbxPf-7MK_kfVGEf4KqyZP8B2eqksAM-A76wBYRh-1cYD-D5nFc23w24v5KonA5ADMDU75ZsIoDWPJvp2NcbOV3NTeUlEy8AT_jgmiiH9KI_-75YTsvb-R9s1q08FK38W-oyzztQVhJeVvK-P5M_hCqLUK_53C7quLLhUpWzUAH6jRcQQR0opSkTtbRAtgKS9CtLzyU9Zut-y80w6xPwhyeNcdihW4RjRpPIjqueyTRtj_ehyWHwVMF1Zfzq1QpTu7NZXHv0NR6Or67iaDCJmq3GF-Lge2pr-ZwO7-6JkiVTy_fn9JPhzSP02IWJQ6mDUGdUT_a-ljat_uQmLysMPrSvqmH7NCrjbqJhVWiuWAFuubmVLQtBmz3RM_TUYo_7hnzPUUcWR-jJZ60H_XCEDisSrF6gbzUf8SLHNR9xxUds-YgNH_G0wDUfseYjFgW2fMQVH1-i8XAQfbwkVruDpNzzS5KDnZ-6vk9lFiRcUO7kQRBmrOeKnmRZCN-FK4WTZHkm_JSKnIGx6LtpxlORBDk9RgfFopCvEM4F8z0uwHClCYOuiaqBmzMnFTLvZQ7rot7mrsapLWyv9FVmsXZwwyBuI9FFF1WfO1PWZe_R3jZYcakpbyGK6b6OxxrW6jeAQkxJWHTRWQPn-gCHq5xmv4tON8DHdsRZxS5TklIwyULzyY5mnwVcVX_qordVK8wWaglQFHKxhmv1QrgAj7_e2_8EHdYP-ik6KJdr-QZs7zI50-z_DSrw0-Y |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHOiF74rQ0vrADblkEzt2jgVttUB3L22likuwHRtWbLOoyV749czYyZalVQ9wS2I7iZPx5M1k5g0hb-C4MFZpJkDzMS7SmmnrDCuMAiOozB13-Ed3Oism5_zThbjo65y2fVgl2tA-EkUEXY2LG53RcYWX6h3AFCTYRrATvNNc3ScPBCB9LGGQp7NrVSxD4Unsz2BAOWTN3HqOjS_TBm_pEKuIgZO6hWfnY9GLG_o7fJSOH5Ovw3RiLMqPw1VnDu2vv5ge_2O-T8ijHrDSoyhhT8k91zwj24hRI8Xzc_JlDBsxA5IuPT0FK9wxTC2h73EC6OKifT4CxdJri5bOG3rq5u1l8OnTELZAdUPHU4Z2MT1afFtezbvvly_I-fH47MOE9SUbmBWF7JgHeGczKXNXKyN0LlKvVFnzUaZHjtcl7OvM6dTUvtbS5tpzwAgys7Ww2iif75CtZtm4l4R6zWUhNOCV3HAYapD61PPUaudHdcoTMhpeV2V7PnMsq7Gogl1TqurmY0vI2_WYn5HN487exZ9SUHXBh9K_-yq_a-BOkJf1NTJZcKxckJD9DQG67pAKTGWVCdkbJKrqlUlbZRwrCYFuhebdW5olVwJJfxJysG4FJYF_fnTjliu416KEGyjEq3-d0QF5ODmbnlQnH2efd8l2DJpBV9Qe2equVu41ILPO7IfV9xuMOyld |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkVAvlFdFaGl94IZcsokdO8cCuyqPrpBKpYpLZDs2rNhmqyZ76a_HYydbllY99JbEdmI74_HMeOYbgLf-OddGKso956OMpzVVxmpaaOmVoDK3zOKJ7vG0ODplX874WW9wa3u3StShXQSKCLwaF_dF7eICL-V7L6UgvjbKOsE4zeRDeFTgkRiGcKTTa04sQt5JrE99g3IImrn1HWsb0xps6eCqiH6TqvVT52LOixvsO-xJky2ohtFEV5Q_B8tOH5ir_4Ae7z_cp_CkF1fJYaSvZ_DANs9hEyXUCPD8An6O_UWMfyQLR068Dm4pBpaQD9h_NHCRPhqBYOK1eUtmDTmxs_Y8WPRJcFogqiHjY4paMTmc_1pczrrf5y_hdDL-8fGI9gkbqOGF6Kjzwp3JhMhtLTVXOU-dlGXNRpkaWVaX_l5lVqW6drUSJleOeQlBZKbmRmnp8m3YaBaNfQXEKSYKrry0kmvmm2oEPnUsNcq6UZ2yBEbD36pMj2aOSTXmVdBqSlndnLYE3q3aXEQsjztrF_8SQdUFC0r_66v8robbgVxW38hEwTBvQQJ7a_RzXSHlGMgqEtgdCKrqWUlbZQzzCHnO6ot3bikWTHKE_Elgf1XqWQSe-6jGLpa-r0XpO1Dw1_cd0T48_v5pUn37PP26A5vRYwbtULuw0V0u7RsvlnV6L6y9v7VTKAE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Space-Time+Branching+Process+Models+in+Seismology+Using+an+EM-Type+Algorithm&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Veen%2C+Alejandro&rft.au=Schoenberg%2C+Frederic+P&rft.date=2008-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=103&rft.issue=482&rft.spage=614&rft_id=info:doi/10.1198%2F016214508000000148&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1528209991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |