Estimation of Space-Time Branching Process Models in Seismology Using an EM-Type Algorithm

Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branchi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 103; no. 482; pp. 614 - 624
Main Authors Veen, Alejandro, Schoenberg, Frederic P
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.06.2008
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1198/016214508000000148

Cover

Abstract Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we show how the epidemic-type aftershock sequence (ETAS) model can, in fact, be estimated this way, and we propose a computationally efficient procedure to maximize the expected complete data log-likelihood function. Using a space-time ETAS model, we demonstrate that this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed.
AbstractList Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we show how the epidemic-type aftershock sequence (ETAS) model can, in fact, be estimated this way, and we propose a computationally efficient procedure to maximize the expected complete data log-likelihood function. Using a space—time ETAS model, we demonstrate that this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed.
Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we show how the epidemic-type aftershock sequence (ETAS) model can, in fact, he estimated this way, and we propose a computationally efficient procedure to maximize the expected complete data log-likelihood function. Using a space-time ETAS model, we demonstrate that this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed. [PUBLICATION ABSTRACT]
Author Veen, Alejandro
Schoenberg, Frederic P
Author_xml – sequence: 1
  givenname: Alejandro
  surname: Veen
  fullname: Veen, Alejandro
– sequence: 2
  givenname: Frederic P
  surname: Schoenberg
  fullname: Schoenberg, Frederic P
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20528547$$DView record in Pascal Francis
BookMark eNp9kVFrFDEUhYNUcLv6BwQhKPo2mmSSSebBh1q2KrQodAviS8hmkm2WTLJNssj--2a6LULF5iWE-53DybnH4CjEYAB4jdFHjHvxCeGOYMqQQHcHU_EMzDBreUM4_XUEZhPQVKJ_AY5z3kwQF2IGfi9ycaMqLgYYLbzcKm2apRsN_JJU0NcurOHPFLXJGV7EwfgMXYCXxuUx-rjew6s8ISrAxUWz3G8NPPHrmFy5Hl-C51b5bF7d33NwdbZYnn5rzn98_X56ct5o1vHSWNy1mnDemkGsmGoZskL0A8VEYUOHvr4VMQqtBjsorltlKaGEEz0wrVbCtnPw4eC7TfFmZ3KRo8vaeK-Cibss267vKOpYBd8-Ajdxl0LNJmtLggnMugq9-y9EOUGUsJp1Dt7fUypr5e3Ulctym2qXaS8JYkQwOnHiwOkUc07GSu3KXdslKeclRnLan_x3f1VKHkkf3J8UvTmINrnE9DcPrw0gQev882Hugo1pVH9i8oMsau9jevhE-4T_LXjNuNY
CODEN JSTNAL
CitedBy_id crossref_primary_10_1002_env_2747
crossref_primary_10_1080_03610918_2024_2349174
crossref_primary_10_1080_10618600_2025_2450463
crossref_primary_10_1002_fut_21644
crossref_primary_10_1038_s43247_024_01460_1
crossref_primary_10_1029_2020GL091757
crossref_primary_10_1016_j_spasta_2015_06_004
crossref_primary_10_1007_s10940_020_09479_1
crossref_primary_10_1016_j_trc_2024_104868
crossref_primary_10_2139_ssrn_3040511
crossref_primary_10_1016_j_dss_2014_05_003
crossref_primary_10_1016_j_jtbi_2011_01_039
crossref_primary_10_1016_j_jbankfin_2015_03_003
crossref_primary_10_1080_10618600_2017_1341324
crossref_primary_10_1111_rssa_12919
crossref_primary_10_1785_0220220230
crossref_primary_10_1103_PhysRevE_88_062109
crossref_primary_10_1287_isre_2021_1020
crossref_primary_10_1109_ACCESS_2019_2900340
crossref_primary_10_1142_S0219024917500030
crossref_primary_10_1029_2023EA003367
crossref_primary_10_1038_s41467_023_37782_5
crossref_primary_10_1785_0120240233
crossref_primary_10_1016_j_spasta_2018_12_004
crossref_primary_10_1038_srep08417
crossref_primary_10_5351_KJAS_2023_36_4_309
crossref_primary_10_1007_s11222_022_10085_3
crossref_primary_10_1080_01621459_2022_2102019
crossref_primary_10_1016_j_csda_2011_01_022
crossref_primary_10_1080_1351847X_2020_1820356
crossref_primary_10_1016_j_csda_2013_08_015
crossref_primary_10_1007_s10463_019_00715_5
crossref_primary_10_1080_01621459_2011_641402
crossref_primary_10_1016_j_hal_2021_102149
crossref_primary_10_1002_sta4_87
crossref_primary_10_1214_17_STS629
crossref_primary_10_2139_ssrn_3817130
crossref_primary_10_1785_0220200231
crossref_primary_10_1007_s11222_021_10002_0
crossref_primary_10_1140_epjst_e2020_000259_3
crossref_primary_10_1103_PhysRevLett_126_128501
crossref_primary_10_1017_apr_2019_53
crossref_primary_10_1007_s10463_023_00894_2
crossref_primary_10_1007_s10940_012_9181_y
crossref_primary_10_1186_2190_8532_2_1
crossref_primary_10_1016_j_csda_2015_08_007
crossref_primary_10_1016_j_ijforecast_2021_07_001
crossref_primary_10_1080_14697688_2015_1032544
crossref_primary_10_1785_0120240007
crossref_primary_10_1080_01621459_2023_2257889
crossref_primary_10_1002_bimj_202000245
crossref_primary_10_5023_jappstat_53_77
crossref_primary_10_1214_20_AOAS1384
crossref_primary_10_1080_14697688_2021_1941212
crossref_primary_10_1016_j_cnsns_2024_108100
crossref_primary_10_1111_rssc_12277
crossref_primary_10_2139_ssrn_3848661
crossref_primary_10_1080_14697688_2018_1550266
crossref_primary_10_1785_0220220374
crossref_primary_10_1016_j_spasta_2023_100728
crossref_primary_10_1017_jpr_2021_35
crossref_primary_10_1080_10618600_2023_2253293
crossref_primary_10_2139_ssrn_2477432
crossref_primary_10_1007_s00477_020_01798_w
crossref_primary_10_1080_07350015_2021_2025065
crossref_primary_10_1007_s00477_014_0873_8
crossref_primary_10_1007_s11222_018_9845_z
crossref_primary_10_5194_nhess_25_991_2025
crossref_primary_10_1007_s11336_013_9329_1
crossref_primary_10_1111_jedm_12133
crossref_primary_10_1017_S0956792515000492
crossref_primary_10_1146_annurev_earth_040522_102129
crossref_primary_10_1029_2010JB007544
crossref_primary_10_1103_PhysRevE_108_015303
crossref_primary_10_1038_s41598_017_09962_z
crossref_primary_10_1007_s10651_023_00593_4
crossref_primary_10_6339_21_JDS1021
crossref_primary_10_1002_jgrb_50179
crossref_primary_10_1016_j_tecto_2022_229522
crossref_primary_10_1029_2022JB024380
crossref_primary_10_1287_msom_2020_0937
crossref_primary_10_1007_s10463_020_00780_1
crossref_primary_10_1142_S2382626615500057
crossref_primary_10_2139_ssrn_3239443
crossref_primary_10_2139_ssrn_3969208
crossref_primary_10_1029_2009JB006387
crossref_primary_10_1080_01621459_2015_1135802
crossref_primary_10_1017_apr_2021_35
crossref_primary_10_1007_s11222_023_10264_w
crossref_primary_10_1038_s41598_023_38033_9
crossref_primary_10_1007_s13253_024_00615_z
crossref_primary_10_1214_18_AOAS1134
crossref_primary_10_1016_j_knosys_2022_109740
crossref_primary_10_1007_s11009_011_9272_5
crossref_primary_10_1093_gji_ggac204
crossref_primary_10_1137_18M1226993
crossref_primary_10_1007_s41060_023_00443_3
crossref_primary_10_1080_01621459_2015_1077710
crossref_primary_10_1002_j_2333_8504_2013_tb02348_x
crossref_primary_10_1029_2021JB022379
crossref_primary_10_1111_coin_12496
crossref_primary_10_1002_2016JB013266
crossref_primary_10_1002_env_2798
crossref_primary_10_1007_s42081_019_00060_0
crossref_primary_10_1214_18_STS652
crossref_primary_10_1103_PhysRevResearch_2_043358
crossref_primary_10_1785_0220240170
crossref_primary_10_2139_ssrn_4174251
crossref_primary_10_1016_j_csda_2010_09_031
crossref_primary_10_2139_ssrn_2469697
crossref_primary_10_1007_s10260_020_00538_2
crossref_primary_10_1287_ijoc_2022_0351
crossref_primary_10_1214_25_BA1516
crossref_primary_10_1002_2014JB011456
crossref_primary_10_1214_21_AOAS1538
crossref_primary_10_1029_2009JB007119
crossref_primary_10_1214_24_AOAS1957
crossref_primary_10_1109_TITS_2021_3074932
crossref_primary_10_1214_21_AOAS1539
crossref_primary_10_1103_PhysRevE_101_043305
crossref_primary_10_2139_ssrn_3108653
crossref_primary_10_1016_j_csda_2015_01_015
crossref_primary_10_1029_2020JB020226
crossref_primary_10_1214_21_AOAS1554
crossref_primary_10_1098_rspa_2021_0195
crossref_primary_10_2139_ssrn_2371284
crossref_primary_10_1029_2023RG000823
crossref_primary_10_1038_ngeo2359
crossref_primary_10_1016_j_automatica_2019_108733
crossref_primary_10_1016_j_ijforecast_2018_01_006
crossref_primary_10_1080_03610918_2024_2417809
crossref_primary_10_1214_16_AOAS957
crossref_primary_10_26443_seismica_v3i2_1094
crossref_primary_10_1080_2330443X_2020_1859030
crossref_primary_10_3390_app13052814
crossref_primary_10_1007_s11222_024_10392_x
crossref_primary_10_3150_23_BEJ1631
crossref_primary_10_2139_ssrn_3470178
crossref_primary_10_1080_10485252_2018_1475663
crossref_primary_10_1016_j_epsl_2017_07_032
crossref_primary_10_1038_s41598_022_24080_1
crossref_primary_10_1093_gji_ggad074
crossref_primary_10_1016_j_gsf_2025_102016
crossref_primary_10_2139_ssrn_3375528
crossref_primary_10_1093_jrsssc_qlad085
crossref_primary_10_1214_13_AOAS647
crossref_primary_10_1080_1351847X_2020_1791925
crossref_primary_10_1214_20_AOAS1352
crossref_primary_10_1785_0220210127
crossref_primary_10_1002_2016JB012809
crossref_primary_10_1029_2018JB017118
crossref_primary_10_1017_S0956792521000048
crossref_primary_10_1080_14697688_2017_1403140
crossref_primary_10_1029_2018JB016668
crossref_primary_10_1109_TIT_2016_2568202
crossref_primary_10_1785_0120200198
crossref_primary_10_1016_j_ijforecast_2014_01_004
crossref_primary_10_1016_j_jcrimjus_2021_101848
crossref_primary_10_1029_2023JB028402
crossref_primary_10_1109_TSP_2020_3019329
crossref_primary_10_1002_env_2168
crossref_primary_10_1093_imamat_hxw025
Cites_doi 10.1093/biomet/62.2.269
10.2307/2288914
10.1016/S0031-9201(02)00214-5
10.1023/A:1003403601725
10.1785/gssrl.73.6.921
10.1029/93GL02142
10.1029/2003JB002879
ContentType Journal Article
Copyright American Statistical Association 2008
Copyright 2008 American Statistical Association
2008 INIST-CNRS
American Statistical Association. 2008
Copyright American Statistical Association Jun 2008
Copyright_xml – notice: American Statistical Association 2008
– notice: Copyright 2008 American Statistical Association
– notice: 2008 INIST-CNRS
– notice: American Statistical Association. 2008
– notice: Copyright American Statistical Association Jun 2008
DBID AAYXX
CITATION
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/016214508000000148
DatabaseName CrossRef
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Geology
Mathematics
EISSN 1537-274X
EndPage 624
ExternalDocumentID 1528209991
20528547
10_1198_016214508000000148
27640084
10710445
Genre Article
Feature
GeographicLocations United States--US
Southern California
GeographicLocations_xml – name: United States--US
– name: Southern California
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTCW
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SJN
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABRLO
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IQODW
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
S0X
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
8BJ
FQK
JBE
K9.
ID FETCH-LOGICAL-c567t-f163c2773ed8b5a350f889d412a1e4d950fa2ea0bdfda7c3af424272cd5cab8f3
ISSN 0162-1459
IngestDate Tue Oct 21 14:06:26 EDT 2025
Mon Oct 06 18:23:13 EDT 2025
Mon Oct 06 18:32:06 EDT 2025
Mon Jul 21 09:14:35 EDT 2025
Thu Apr 24 22:55:29 EDT 2025
Wed Oct 01 03:57:25 EDT 2025
Thu May 29 08:44:08 EDT 2025
Mon Oct 20 23:48:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 482
Keywords Expectation-maximization algorithm
Epidemic-type aftershock sequence model
Covering problem
Optimization method
Optimization
Hypothesis test
Statistical test
Branching process models
Earthquakes
Log likelihood
Incomplete information
Likelihood function
Mathematical programming
Epidemic
Maximization
Numerical model
Space time
Statistical method
Space-time point process models
Branching process
Numerical analysis
Point estimation
Point process
Maximum likelihood
Expectation
EM algorithm
Application
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-f163c2773ed8b5a350f889d412a1e4d950fa2ea0bdfda7c3af424272cd5cab8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
PQID 2472042577
PQPubID 41715
PageCount 11
ParticipantIDs proquest_miscellaneous_36964065
crossref_citationtrail_10_1198_016214508000000148
proquest_journals_2472042577
proquest_journals_274858156
pascalfrancis_primary_20528547
crossref_primary_10_1198_016214508000000148
informaworld_taylorfrancis_310_1198_016214508000000148
jstor_primary_27640084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2008
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_27
p_38
p_4
p_35
p_36
(p_26) 2002; 73
p_9
(p_37) 1993; 55
(p_50) 2004; 109
(p_51) 2005
References_xml – ident: p_4
  doi: 10.1093/biomet/62.2.269
– ident: p_35
  doi: 10.2307/2288914
– start-page: 275
  year: 2005
  ident: p_51
  publication-title: A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan
– ident: p_9
– ident: p_27
  doi: 10.1016/S0031-9201(02)00214-5
– volume: 55
  start-page: 249
  year: 1993
  ident: p_37
  publication-title: Bulletin of the International Statistical Institute
– ident: p_38
  doi: 10.1023/A:1003403601725
– volume: 73
  start-page: 921
  year: 2002
  ident: p_26
  publication-title: Seismological Research Letters
  doi: 10.1785/gssrl.73.6.921
– ident: p_36
  doi: 10.1029/93GL02142
– volume: 109
  start-page: B05301
  year: 2004
  ident: p_50
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2003JB002879
SSID ssj0000788
Score 2.4106815
Snippet Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 614
SubjectTerms Algorithms
Applications
Applications and Case Studies
Branching process models
Disease models
Earthquakes
Epidemic-type aftershock sequence model
Epidemiology
Estimate reliability
Estimating techniques
Estimation
Estimation bias
Exact sciences and technology
Expectation-maximization algorithm
General topics
Geology
Markov processes
Mathematics
Maximum likelihood
Maximum likelihood estimation
Maximum likelihood method
Modeling
Optimization
Parametric inference
Probability and statistics
Probability theory and stochastic processes
Regression analysis
Robustness (mathematics)
Sciences and techniques of general use
Seismicity
Seismology
Simulations
Space-time point process models
Spacetime
Statistical methods
Statistics
Stochastic processes
Title Estimation of Space-Time Branching Process Models in Seismology Using an EM-Type Algorithm
URI https://www.tandfonline.com/doi/abs/10.1198/016214508000000148
https://www.jstor.org/stable/27640084
https://www.proquest.com/docview/2472042577
https://www.proquest.com/docview/274858156
https://www.proquest.com/docview/36964065
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKENIuCAYTZWP4wE6TIY3t_DhW0DKhrRyWShWXyEkcVtSmW5sexn_Df8rzjyaNUirgErVxnKb5vtjvxe-9D6F3sJ8naSAIh5GPMO5kRKQyIV4SgBMUUsmkWtG9HnmXY_Zlwiedzq-tqKV1mbxPf-7MK_kfVGEf4KqyZP8B2eqksAM-A76wBYRh-1cYD-D5nFc23w24v5KonA5ADMDU75ZsIoDWPJvp2NcbOV3NTeUlEy8AT_jgmiiH9KI_-75YTsvb-R9s1q08FK38W-oyzztQVhJeVvK-P5M_hCqLUK_53C7quLLhUpWzUAH6jRcQQR0opSkTtbRAtgKS9CtLzyU9Zut-y80w6xPwhyeNcdihW4RjRpPIjqueyTRtj_ehyWHwVMF1Zfzq1QpTu7NZXHv0NR6Or67iaDCJmq3GF-Lge2pr-ZwO7-6JkiVTy_fn9JPhzSP02IWJQ6mDUGdUT_a-ljat_uQmLysMPrSvqmH7NCrjbqJhVWiuWAFuubmVLQtBmz3RM_TUYo_7hnzPUUcWR-jJZ60H_XCEDisSrF6gbzUf8SLHNR9xxUds-YgNH_G0wDUfseYjFgW2fMQVH1-i8XAQfbwkVruDpNzzS5KDnZ-6vk9lFiRcUO7kQRBmrOeKnmRZCN-FK4WTZHkm_JSKnIGx6LtpxlORBDk9RgfFopCvEM4F8z0uwHClCYOuiaqBmzMnFTLvZQ7rot7mrsapLWyv9FVmsXZwwyBuI9FFF1WfO1PWZe_R3jZYcakpbyGK6b6OxxrW6jeAQkxJWHTRWQPn-gCHq5xmv4tON8DHdsRZxS5TklIwyULzyY5mnwVcVX_qordVK8wWaglQFHKxhmv1QrgAj7_e2_8EHdYP-ik6KJdr-QZs7zI50-z_DSrw0-Y
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHOiF74rQ0vrADblkEzt2jgVttUB3L22likuwHRtWbLOoyV749czYyZalVQ9wS2I7iZPx5M1k5g0hb-C4MFZpJkDzMS7SmmnrDCuMAiOozB13-Ed3Oism5_zThbjo65y2fVgl2tA-EkUEXY2LG53RcYWX6h3AFCTYRrATvNNc3ScPBCB9LGGQp7NrVSxD4Unsz2BAOWTN3HqOjS_TBm_pEKuIgZO6hWfnY9GLG_o7fJSOH5Ovw3RiLMqPw1VnDu2vv5ge_2O-T8ijHrDSoyhhT8k91zwj24hRI8Xzc_JlDBsxA5IuPT0FK9wxTC2h73EC6OKifT4CxdJri5bOG3rq5u1l8OnTELZAdUPHU4Z2MT1afFtezbvvly_I-fH47MOE9SUbmBWF7JgHeGczKXNXKyN0LlKvVFnzUaZHjtcl7OvM6dTUvtbS5tpzwAgys7Ww2iif75CtZtm4l4R6zWUhNOCV3HAYapD61PPUaudHdcoTMhpeV2V7PnMsq7Gogl1TqurmY0vI2_WYn5HN487exZ9SUHXBh9K_-yq_a-BOkJf1NTJZcKxckJD9DQG67pAKTGWVCdkbJKrqlUlbZRwrCYFuhebdW5olVwJJfxJysG4FJYF_fnTjliu416KEGyjEq3-d0QF5ODmbnlQnH2efd8l2DJpBV9Qe2equVu41ILPO7IfV9xuMOyld
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkVAvlFdFaGl94IZcsokdO8cCuyqPrpBKpYpLZDs2rNhmqyZ76a_HYydbllY99JbEdmI74_HMeOYbgLf-OddGKso956OMpzVVxmpaaOmVoDK3zOKJ7vG0ODplX874WW9wa3u3StShXQSKCLwaF_dF7eICL-V7L6UgvjbKOsE4zeRDeFTgkRiGcKTTa04sQt5JrE99g3IImrn1HWsb0xps6eCqiH6TqvVT52LOixvsO-xJky2ohtFEV5Q_B8tOH5ir_4Ae7z_cp_CkF1fJYaSvZ_DANs9hEyXUCPD8An6O_UWMfyQLR068Dm4pBpaQD9h_NHCRPhqBYOK1eUtmDTmxs_Y8WPRJcFogqiHjY4paMTmc_1pczrrf5y_hdDL-8fGI9gkbqOGF6Kjzwp3JhMhtLTVXOU-dlGXNRpkaWVaX_l5lVqW6drUSJleOeQlBZKbmRmnp8m3YaBaNfQXEKSYKrry0kmvmm2oEPnUsNcq6UZ2yBEbD36pMj2aOSTXmVdBqSlndnLYE3q3aXEQsjztrF_8SQdUFC0r_66v8robbgVxW38hEwTBvQQJ7a_RzXSHlGMgqEtgdCKrqWUlbZQzzCHnO6ot3bikWTHKE_Elgf1XqWQSe-6jGLpa-r0XpO1Dw1_cd0T48_v5pUn37PP26A5vRYwbtULuw0V0u7RsvlnV6L6y9v7VTKAE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Space-Time+Branching+Process+Models+in+Seismology+Using+an+EM-Type+Algorithm&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Veen%2C+Alejandro&rft.au=Schoenberg%2C+Frederic+P&rft.date=2008-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=103&rft.issue=482&rft.spage=614&rft_id=info:doi/10.1198%2F016214508000000148&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1528209991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon