Enhancing Medical Image Classification with an Advanced Feature Selection Algorithm: A Novel Approach to Improving the Cuckoo Search Algorithm by Incorporating Caputo Fractional Order

Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 14; no. 11; p. 1191
Main Authors Habeb, Abduljlil Abduljlil Ali Abduljlil, Taresh, Mundher Mohammed, Li, Jintang, Gao, Zhan, Zhu, Ningbo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.06.2024
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics14111191

Cover

Abstract Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew’s correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology.
AbstractList Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew’s correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology.
Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew's correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology.Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew's correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology.
Audience Academic
Author Taresh, Mundher Mohammed
Gao, Zhan
Habeb, Abduljlil Abduljlil Ali Abduljlil
Li, Jintang
Zhu, Ningbo
AuthorAffiliation 1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China; habebabduljlil@gmail.com (A.A.A.A.H.); jintangl@usc.edu (J.L.); quietwave@hnu.edu.cn (N.Z.)
3 Research Institute of Hunan University in Chongqing, Chongqing 400000, China
2 College of Engineering and Information Technology, Taiz University, Taiz, Yemen; mundhertaresh@taiz.edu.ye
AuthorAffiliation_xml – name: 1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China; habebabduljlil@gmail.com (A.A.A.A.H.); jintangl@usc.edu (J.L.); quietwave@hnu.edu.cn (N.Z.)
– name: 3 Research Institute of Hunan University in Chongqing, Chongqing 400000, China
– name: 2 College of Engineering and Information Technology, Taiz University, Taiz, Yemen; mundhertaresh@taiz.edu.ye
Author_xml – sequence: 1
  givenname: Abduljlil Abduljlil Ali Abduljlil
  orcidid: 0009-0002-2826-3331
  surname: Habeb
  fullname: Habeb, Abduljlil Abduljlil Ali Abduljlil
– sequence: 2
  givenname: Mundher Mohammed
  surname: Taresh
  fullname: Taresh, Mundher Mohammed
– sequence: 3
  givenname: Jintang
  surname: Li
  fullname: Li, Jintang
– sequence: 4
  givenname: Zhan
  orcidid: 0000-0003-1303-1351
  surname: Gao
  fullname: Gao, Zhan
– sequence: 5
  givenname: Ningbo
  surname: Zhu
  fullname: Zhu, Ningbo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38893717$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9u0zAUxiM0xMbYEyAhS9zspsOOk9rmBlXVCpUGuwCuoxPnJPVI7eAknfZkvB6n7RjbNAmci1jHv-87f-yXyYEPHpPkteBnUhr-rnLQ-NAPzvYiE7SMeJYcpVzlkywT-uDe_jA56fsrTssIqdP8RXIotTZSCXWU_Dr3K_DW-YZ9xspZaNlyDQ2yeQt972qKDC54du2GFQPPZtWGcKzYAmEYI7Kv2KLdIbO2CZGw9Xs2Y1_CBls267oYwK7YEMiW9pttomFF9qP9EQKpIdLxnZSVN2zpbYhdiJSY4Dl0I6kXEXZZqL7LWGF8lTyvoe3x5PZ_nHxfnH-bf5pcXH5czmcXE5tP1TBBtHWdlUANAw1Jl1yLClPUpZmW2mqcotRK1TrLwQDXRmS1FiCFVVlap0IeJ8u9bxXgquiiW0O8KQK4YhcIsSkg0i20WFRqmmdplStjKKVSINBojnWeykrLcuuV7b1G38HNNbTtnaHgxfZaiyeulWQf9rJuLNdYWfRDhPZBLQ9PvFsVTdgUJFdpyjU5nN46xPBzxH4o1q632LbgMYx9IbnimvPc5IS-fYRehTHS2LfUVEnNqa6_VAPUuPN1oMR2a1rMlFGGc2mmRJ09QdFX4dpZes-1o_gDwZv7nd61-Oe5EmD2gI2h7yPWhXXD7oGSs2v_MUb5SPs_w_8NoY4XNA
CitedBy_id crossref_primary_10_20517_jmi_2024_92
crossref_primary_10_20935_AcadMed7444
Cites_doi 10.1016/j.ygeno.2020.05.017
10.1007/s00500-023-08449-6
10.3389/fphys.2023.1175881
10.1016/j.media.2019.101570
10.1186/s12938-019-0649-y
10.1053/j.tcam.2015.07.011
10.1101/2023.05.02.23289378
10.1080/00051144.2023.2251231
10.3390/a11030030
10.4258/hir.2018.24.1.53
10.1007/s13319-018-0198-3
10.1109/NABIC.2009.5393690
10.1016/j.ophtha.2014.09.030
10.3390/jimaging8020019
10.4018/978-1-6684-3947-0.ch013
10.1016/j.asoc.2017.02.034
10.1136/bjo.86.7.716
10.1016/j.bspc.2013.11.006
10.1186/s12938-020-00767-2
10.20944/preprints202311.0773.v1
10.3390/math10183291
10.4018/978-1-7998-8892-5.ch022
10.1109/ICMICA48462.2020.9242702
10.1109/4235.585893
10.1007/978-3-030-77967-2_10
10.1109/RBME.2010.2084567
10.1007/s11042-023-15175-6
10.1109/ICSCSS57650.2023.10169226
10.1016/j.inffus.2023.102059
10.1016/j.asoc.2022.109432
10.1007/s00521-013-1367-1
10.3390/electronics11111763
10.1016/j.engappai.2020.103662
10.5566/ias.2346
10.1007/s00366-011-0241-y
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics14111191
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_d76542d5799f4b77a1e980ef523d83b1
10.3390/diagnostics14111191
PMC11172208
A797900396
38893717
10_3390_diagnostics14111191
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Chongqing Natural Science Foundation
  grantid: CSTB2022NSCQ-MSX1175
– fundername: National Natural Science Foundation of China
  grantid: 62172152
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c567t-eecff4ba388a1118b081de2e8b96b8c8e6e3877f845a9a08914f81a31c742f213
IEDL.DBID M48
ISSN 2075-4418
IngestDate Fri Oct 03 12:51:43 EDT 2025
Sun Oct 26 04:02:57 EDT 2025
Tue Sep 30 17:09:02 EDT 2025
Thu Oct 02 11:32:06 EDT 2025
Mon Jun 30 04:39:40 EDT 2025
Mon Oct 20 22:54:23 EDT 2025
Mon Oct 20 16:59:42 EDT 2025
Mon Jul 21 05:49:49 EDT 2025
Thu Oct 16 04:30:49 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords cuckoo search
Caputo fractional order
glaucoma
feature selection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-eecff4ba388a1118b081de2e8b96b8c8e6e3877f845a9a08914f81a31c742f213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-2826-3331
0000-0003-1303-1351
OpenAccessLink https://doaj.org/article/d76542d5799f4b77a1e980ef523d83b1
PMID 38893717
PQID 3067380141
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_d76542d5799f4b77a1e980ef523d83b1
unpaywall_primary_10_3390_diagnostics14111191
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11172208
proquest_miscellaneous_3070800595
proquest_journals_3067380141
gale_infotracmisc_A797900396
gale_infotracacademiconefile_A797900396
pubmed_primary_38893717
crossref_citationtrail_10_3390_diagnostics14111191
crossref_primary_10_3390_diagnostics14111191
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zeebaree (ref_34) 2024; 102
Maggio (ref_1) 2015; 30
Sigut (ref_38) 2020; 39
Gandomi (ref_26) 2013; 29
Septiarini (ref_33) 2018; 24
ref_36
Orlando (ref_37) 2020; 59
ref_13
ref_35
ref_12
ref_11
ref_10
Kocur (ref_3) 2002; 86
Garvin (ref_5) 2010; 3
ref_30
Verma (ref_7) 2023; 12
ref_17
ref_39
ref_16
ref_15
Cortez (ref_41) 2023; 3
Selvakumar (ref_32) 2023; 64
Wolpert (ref_24) 1997; 1
Yousri (ref_31) 2020; 92
Zemmal (ref_18) 2018; 17
Pruthi (ref_22) 2018; 9
ref_25
ref_21
Yang (ref_27) 2014; 24
ref_42
Singh (ref_20) 2023; 82
ref_40
Balasubramanian (ref_19) 2022; 128
Noronha (ref_4) 2014; 10
Kishore (ref_14) 2020; 112
ref_9
Chan (ref_2) 2015; 122
ref_8
Singh (ref_23) 2024; 28
Shehab (ref_28) 2017; 61
(ref_29) 2021; 26
ref_6
References_xml – volume: 112
  start-page: 3089
  year: 2020
  ident: ref_14
  article-title: Glaucoma classification based on intra-class and extra-class discriminative correlation and consensus ensemble classifier
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.05.017
– volume: 28
  start-page: 2431
  year: 2024
  ident: ref_23
  article-title: Emperor penguin optimization algorithm and bacterial foraging optimization algorithm-based novel feature selection approach for glaucoma classification from fundus images
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-08449-6
– ident: ref_9
  doi: 10.3389/fphys.2023.1175881
– volume: 59
  start-page: 101570
  year: 2020
  ident: ref_37
  article-title: REFUGE challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101570
– ident: ref_39
  doi: 10.1186/s12938-019-0649-y
– volume: 30
  start-page: 86
  year: 2015
  ident: ref_1
  article-title: Glaucomas
  publication-title: Top. Companion Anim. Med.
  doi: 10.1053/j.tcam.2015.07.011
– ident: ref_6
  doi: 10.1101/2023.05.02.23289378
– volume: 12
  start-page: 806
  year: 2023
  ident: ref_7
  article-title: Machine learning classifiers for detection of glaucoma
  publication-title: Int. J. Artif. Intell.
– volume: 64
  start-page: 1148
  year: 2023
  ident: ref_32
  article-title: Efficient diabetic retinopathy diagnosis through U-Net–KNN integration in retinal fundus images
  publication-title: Automatika
  doi: 10.1080/00051144.2023.2251231
– ident: ref_30
  doi: 10.3390/a11030030
– volume: 24
  start-page: 53
  year: 2018
  ident: ref_33
  article-title: Automatic glaucoma detection method applying a statistical approach to fundus images
  publication-title: Healthc. Inform. Res.
  doi: 10.4258/hir.2018.24.1.53
– volume: 9
  start-page: 47
  year: 2018
  ident: ref_22
  article-title: Metaheuristic techniques for detection of optic disc in retinal fundus images
  publication-title: 3D Res.
  doi: 10.1007/s13319-018-0198-3
– ident: ref_40
– ident: ref_25
  doi: 10.1109/NABIC.2009.5393690
– volume: 17
  start-page: 310
  year: 2018
  ident: ref_18
  article-title: Robust feature selection algorithm based on transductive SVM wrapper and genetic algorithm: Application on computer-aided glaucoma classification
  publication-title: Int. J. Intell. Syst. Technol. Appl.
– volume: 122
  start-page: 494
  year: 2015
  ident: ref_2
  article-title: Glaucoma and associated visual acuity and field loss significantly affect glaucoma-specific psychosocial functioning
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.09.030
– ident: ref_35
  doi: 10.3390/jimaging8020019
– ident: ref_11
  doi: 10.4018/978-1-6684-3947-0.ch013
– volume: 61
  start-page: 1041
  year: 2017
  ident: ref_28
  article-title: A survey on applications and variants of the cuckoo search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.02.034
– volume: 86
  start-page: 716
  year: 2002
  ident: ref_3
  article-title: Visual impairment and blindness in Europe and their prevention
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.86.7.716
– volume: 10
  start-page: 174
  year: 2014
  ident: ref_4
  article-title: Automated classification of glaucoma stages using higher order cumulant features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.11.006
– ident: ref_8
  doi: 10.1186/s12938-020-00767-2
– ident: ref_21
  doi: 10.20944/preprints202311.0773.v1
– ident: ref_42
  doi: 10.3390/math10183291
– ident: ref_17
  doi: 10.4018/978-1-7998-8892-5.ch022
– ident: ref_12
– ident: ref_16
  doi: 10.1109/ICMICA48462.2020.9242702
– volume: 1
  start-page: 67
  year: 1997
  ident: ref_24
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: ref_15
  doi: 10.1007/978-3-030-77967-2_10
– volume: 3
  start-page: 169
  year: 2010
  ident: ref_5
  article-title: Retinal imaging and image analysis
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2084567
– volume: 82
  start-page: 42851
  year: 2023
  ident: ref_20
  article-title: Nature-inspired computing and machine learning based classification approach for glaucoma in retinal fundus images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15175-6
– ident: ref_10
  doi: 10.1109/ICSCSS57650.2023.10169226
– volume: 26
  start-page: 137
  year: 2021
  ident: ref_29
  article-title: Cuckoo search algorithm: Review and its application
  publication-title: Tikrit J. Pure Sci.
– volume: 102
  start-page: 102059
  year: 2024
  ident: ref_34
  article-title: Fundus-deepnet: Multi-label deep learning classification system for enhanced detection of multiple ocular diseases through data fusion of fundus images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102059
– ident: ref_36
– volume: 128
  start-page: 109432
  year: 2022
  ident: ref_19
  article-title: Correlation-based feature selection using bio-inspired algorithms and optimized KELM classifier for glaucoma diagnosis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109432
– volume: 3
  start-page: 47
  year: 2023
  ident: ref_41
  article-title: A Comparative Analysis of Glaucoma Feature Extraction and Classification Techniques in Fundus Images
  publication-title: J. Commun. Inf. Syst.
– volume: 24
  start-page: 169
  year: 2014
  ident: ref_27
  article-title: Cuckoo search: Recent advances and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1367-1
– ident: ref_13
  doi: 10.3390/electronics11111763
– volume: 92
  start-page: 103662
  year: 2020
  ident: ref_31
  article-title: Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103662
– volume: 39
  start-page: 161
  year: 2020
  ident: ref_38
  article-title: A unified retinal image database for assessing glaucoma using deep learning
  publication-title: Image Anal. Stereol.
  doi: 10.5566/ias.2346
– volume: 29
  start-page: 17
  year: 2013
  ident: ref_26
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
SSID ssj0000913825
Score 2.2875507
Snippet Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1191
SubjectTerms Accuracy
Algorithms
Analysis
Caputo fractional order
Care and treatment
Classification
cuckoo search
Datasets
Diagnosis
Feature selection
Glaucoma
Health aspects
Hogs
Machine learning
Optic nerve
Optimization algorithms
Performance evaluation
Retinal ganglion cells
Visual acuity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8SZQkJGQuBB1kzh-cAurrlokygEq9RY5ttNWbJPVsgH1l_H3mLHdsAEEHLjGM0o8Mx7P2JNvCHmBUbR1Kk-5KpqU6VykSmqecsaNmhmrXOurLY74wTF7e1KebLX6wpqwAA8cBLdnBbZUsqVQqmWNEDpzSs5cCwmUlUXjE5-ZVFvJlPfBCrH1ygAzVEBev2dD5RpiH2cM_YTKJluRR-z_1S9vbUw_F03eGLqVvvyql8utHWlxm9yKoSStwhTukGuuu0uuv4uX5ffIt_3uDNE0ulMar2Po4QW4D-obYWKJkNcKxaNYqjtaxXIAimHhsHb0g--RgyTV8rRfA9nFa1rRo_6Lg9dGMHK66el4MkEhnKTzwXzqexoKmX-w0uaSHiJqpkdORuK5Xg3AvViHnyvg-94jEOh9crzY_zg_SGOfhtSUXGxS50wLutGFlBoEKxsIM6zLnWwUb6SRjrtCCtFKVmqlQVkZa2Wmi8xAXt7mWfGA7HR95x4RqixvBG8hrplZJhQH3swYK5x2juWaJSS_UlltIog59tJY1pDMoJ7r3-g5Ia9GplXA8Pgz-Ru0hZEUAbj9AzDLOppl_TezTMhLtKQa3QR8oNHxbweYJgJu1ZVQAg-RFU_I7oQSlreZDl_ZYh3dy-ca87wCcX_gPc_HYeTEkrnO9QPSCMwGSlUm5GEw3XFKoCnEQRQJkROjnsx5OtKdn3nwcRCRyGHFJSQd7f9fpPr4f0j1CbmZQ1AZSvV2yc5mPbinEBRummd-_X8HNONjOg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwEviM8RGMhISLwQrfnyBxJCWdVqQ6IgYNLeIsd2WkSXlJKA9pfx73GXuNkCaOI1Piex73y-O59_R8hztKKNlaHPZJT7sQq5L4ViPouZlmNtpC3abIs5OzqJ354mpztkvr0Lg2mVW53YKmpTaYyRH6BpGyHUSfBm_c3HqlF4urotoaFcaQXzuoUYu0Z2Q0TGGpHdw-n8w8c-6oIomOATdfBDEfj7B6bLaENMZHh3gHhngy2qRfL_W19f2rD-TKa80ZRrdf5TrVaXdqrZbXLLmZg07WTiDtmx5V1y_Z07RL9Hfk3LJaJslAvqjmno8RmoFdoWyMTUoZZbFEO0VJU0dWkCFM3FZmPpp7Z2DpKkqwXMUb08e0VTOq9-WPisAymndUX7iAUFM5NOGv21qmiX4HzRlebn9BjRNFtEZSSeqHUDvWeb7tIF_N97BAi9T05m08-TI9_Vb_B1wnjtW6uLIs5VJISCiRU5mB_GhlbkkuVCC8tsJDgvRJwoqcZCBnEhAhUFGvz1IgyiB2RUVqV9SKg0LOesAHtnbGIuGfQNtDbcKmvjUMUeCbcsy7QDN8caG6sMnBzkc_YPPnvkZd9p3WF7XE1-iLLQkyIwd_ug2iwyt84zw7ECmEm4lDB0zlVgpRjbAvx9I6IcXvICJSlD9QE_qJW7BQHDRCCuLOWSY3BZMo_sDyhh2eth81YWM6d2vmcXi8Qjz_pm7ImpdKWtGqTh6CUkMvHIXie6_ZCAU4iPyD0iBkI9GPOwpfyybEHJYYp4GI6FR_xe_v9nVh9dPY7H5GYIZmSXnLdPRvWmsU_ADKzzp25t_wY7jWGn
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIuvB-BgoyExIWUxEn84BZWXbVILEiwUjlFjuO0qNtktU1A5Y_x95hJ3LApD5VrPJNk7PF4xh5_Q8hz9KILq5jPVZT7sWbCV1Jzn8fcqMAUypZdtsWc7y3itwfJgcPZxrswG-f3EYTjr4o-4Qwhi8MYpzfeVN_iCTjeE7K1mH9IP2P5OFj4fFjYZY8r9DfO0drTQfT_bog3VqKLWZLX2mqlz77p5XJjCZrd7O92n3bIhZh5crzTNvmO-X4B1_GS0t0iN5wrStNed26TK7a6Q66-c4ftd8mP3eoI0TiqQ-qOc-j-CZgf2hXSxBSjblQpbuVSXdHUpRNQdCvbtaUfuxo7SJIuD-s1kJ28pimd118tfNaBmdOmpsPOBgV3lE5bc1zXtE-E_sVK8zO6j6ibHfIyEk_1qgXu2bq_nAH_9x6BRO-RxWz303TPd3UefJNw0fjWmrKMcx1JqaEPZA5uSmGZlbniuTTSchtJIUoZJ1rpQKowLmWoo9BAXF-yMLpPJlVd2YeEqoLngpfgFwVFLBQH3tCYQlhtbcx07BF2rgGZcSDoWItjmUEwhEOS_WFIPPJyYFr1GCD_Jn-DqjWQIoB39wBGPnP2ICsEVgorEqEUiC6EDq2SgS0TFhUyyuElL1AxMzQz8INGu9sSICYCdmWpUAI3oRX3yPaIEsyDGTefq3bmzNNphnFihLhB8J1nQzNyYspdZesWaQRGE4lKPPKgnwmDSDBSiKMoPCJHc2Qk87il-nLUgZdDFwnGAukRf5hOl-nVR_9J_5hcZ-B_9ll922TSrFv7BPzHJn_q7MZPrZ1ycQ
  priority: 102
  providerName: Unpaywall
Title Enhancing Medical Image Classification with an Advanced Feature Selection Algorithm: A Novel Approach to Improving the Cuckoo Search Algorithm by Incorporating Caputo Fractional Order
URI https://www.ncbi.nlm.nih.gov/pubmed/38893717
https://www.proquest.com/docview/3067380141
https://www.proquest.com/docview/3070800595
https://pubmed.ncbi.nlm.nih.gov/PMC11172208
https://doi.org/10.3390/diagnostics14111191
https://doaj.org/article/d76542d5799f4b77a1e980ef523d83b1
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELemTQK-IN5kjMpISHwh0Lz8QEIoq1ptSCsTUGl8ihzH6RBd0oUG6F_Gv8dd4oYFxsTX-Jzk7PM97PPvCHmKXnRmpO8yGaRuqHzuSqGYy0Km5VBn0uRNtsWUHczCtyfRyRbZVEW1A_j10tAO60nNqsWLH-frN7DgX2PECSH7y6xNSkNYYy9EFYC32XfAVEms5XBk_f1GNUuE3MO0Rh9MpQuugGiRiP71np61akD9_1bdF2zXn3mV1-tiqdbf1WJxwWhNbpGb1tukcSset8mWKe6Qa0f2PP0u-TkuThFwo5hTe2JDD89Aw9CmViZmETUTR3G3lqqCxjZjgKLnWFeGfmjK6CBJvJiXFZCdvaIxnZbfDHzW4pXTVUm7zQsKHicd1fpLWdI21_l3V5qu6SECazbgykg8Ussaek-q9v4F_N87xAq9R2aT8cfRgWtLObg6YnzlGqPzPExVIISCgRUpeCKZ8Y1IJUuFFoaZQHCeizBSUg2F9MJceCrwNITuue8F98l2URbmIaEyYylnObg-wyzkkkFfT-uMG2VM6KvQIf5myhJtcc6x3MYigXgH5zm5ZJ4d8rzrtGxhPq4m30dZ6EgRo7t5UFbzxC75JONYDCyLuJTAOufKM1IMTQ6hfyaCFF7yDCUpQdmGH9TKXogANhGTK4m55LjPLJlD9nqUoAF0v3kji8lmASUYCgYIDQTfedI1Y0_MqitMWSMNx4AhkpFDHrSi27EEM4VQidwhoifUPZ77LcXn0wafHIaI-_5QOMTt5P9_RnX3ajYfkRs-eJRtnt4e2V5VtXkMHuEqHZCd_fH0-P2g2VEZNGsens2mx_GnX5QwZpw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8EBhgJxAvR8m0baUJdadWyrSDYpL0Fx3FaRJeUrmHqX8Ybfxt3iZstgCZe9lqf01zufL47n39HyAv0olMtPDsSfmIH0mO24DKyoyBSwlGp0FlVbTGKBkfB--PweI38Wt2FwbLKlU2sDHVaKMyRb6Nr6yPUift29t3GrlF4urpqoSFNa4V0p4IYMxc79vTyDEK4053hO5D3S8_r9w67A9t0GbBVGLGFrbXKsiCRPucSFj5PYJNMtad5IqKEK64j7XPGMh6EUkiHCzfIuCt9V0FUmXmuD8-9RjYCPxAQ_G3s9kYfPzVZHkTdhBishjvyfeFsp3UFHWIwAy8u4qu1tsSqc8Df-8OFDfLP4s3NMp_J5ZmcTi_sjP1b5KZxaWmn1sHbZE3nd8j1A3Nof5f87OUTRPXIx9QcC9HhCZgxWjXkxFKlSjsopoSpzGnHlCVQdE_Luaafq149SNKZjkEmi8nJG9qho-KHhr81oOh0UdAmQ0LBraXdUn0rCloXVJ9PpcmSDhG9s0JwRuKunJUwuz-vL3nA-31AQNJ75OhKJHmfrOdFrh8SKtIoYVEG_pWTBkxEMNdVKmVaah14MrCItxJZrAyYOvb0mMYQVKGc43_I2SKvm0mzGkvkcvJd1IWGFIHAqx-K-Tg2diVOGXYcS0MmBLDOmHS14I7OQs9PuZ_AQ16hJsVoruAFlTS3LoBNBP6KO0wwTGaLyCJbLUowM6o9vNLF2Ji50_h8UVrkeTOMM7F0L9dFiTQMo5JQhBZ5UKtuwxJICvEYmUV4S6lbPLdH8q-TCgQdPhHzPIdbxG70_3--6qPL-XhGNgeHB_vx_nC095jc8MCFrQsDt8j6Yl7qJ-CCLpKnZp1T8uWqTctv8tGekw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJg1eEP8JDDASiBei5r9tpAl1XauVQZmASXvLHMdpEV1Suoapn4zvwKfiLnGzBdDEy17jc5LLXX4-2-ffEfICo-hUC8-OhJ_YgfSYLbiM7CiIlHBUKnRWZVuMor3D4N1ReLRGfq3OwmBa5QoTK6BOC4Vr5B0MbX2kOnE7mUmLONgdvJ19t7GCFO60rsppSFNmId2u6MbMIY99vTyD6dzp9nAXbP_S8wb9L70921QcsFUYsYWttcqyIJE-5xJAgCcwYKba0zwRUcIV15H2OWMZD0IppMOFG2Tclb6rYIaZea4P971GNnDzC0BiY6c_OvjUrPggAyfMx2rqI98XTiets-mQjxn0cpFrrTU8VlUE_h4rLgyWfyZyXi_zmVyeyen0wig5uEVumvCWdmt_vE3WdH6HbH4wG_h3yc9-PkGGj3xMzRYRHZ4ApNGqOCemLVWeQnF5mMqcdk2KAsVQtZxr-rmq24Mi3ekYbLKYnLyhXToqfmh4rCFIp4uCNqslFEJc2ivVt6KgdXL1eVeaLOkQmTwrNmcU7slZCb0H8_rAB7zfRyQnvUcOr8SS98l6XuT6IaEijRIWZRBrOWnARAR9XaVSpqXWgScDi3grk8XKEKtjfY9pDBMstHP8Dztb5HXTaVbzilwuvoO-0IgiKXh1oZiPY4Mxccqw-lgaMiFAdcakqwV3dBZ6fsr9BG7yCj0pRuiCF1TSnMAANZEELO4ywXBhW0QW2WpJAuSodvPKF2MDeafx-Q9qkedNM_bENL5cFyXKMJyhhCK0yIPadRuVwFLIzcgswltO3dK53ZJ_nVSE6PCJmOc53CJ24___81UfXa7HM7IJEBO_H472H5MbHkSzdY7gFllfzEv9BKLRRfLU_OaUHF81svwGE2Kiwg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIuvB-BgoyExIWUxEn84BZWXbVILEiwUjlFjuO0qNtktU1A5Y_x95hJ3LApD5VrPJNk7PF4xh5_Q8hz9KILq5jPVZT7sWbCV1Jzn8fcqMAUypZdtsWc7y3itwfJgcPZxrswG-f3EYTjr4o-4Qwhi8MYpzfeVN_iCTjeE7K1mH9IP2P5OFj4fFjYZY8r9DfO0drTQfT_bog3VqKLWZLX2mqlz77p5XJjCZrd7O92n3bIhZh5crzTNvmO-X4B1_GS0t0iN5wrStNed26TK7a6Q66-c4ftd8mP3eoI0TiqQ-qOc-j-CZgf2hXSxBSjblQpbuVSXdHUpRNQdCvbtaUfuxo7SJIuD-s1kJ28pimd118tfNaBmdOmpsPOBgV3lE5bc1zXtE-E_sVK8zO6j6ibHfIyEk_1qgXu2bq_nAH_9x6BRO-RxWz303TPd3UefJNw0fjWmrKMcx1JqaEPZA5uSmGZlbniuTTSchtJIUoZJ1rpQKowLmWoo9BAXF-yMLpPJlVd2YeEqoLngpfgFwVFLBQH3tCYQlhtbcx07BF2rgGZcSDoWItjmUEwhEOS_WFIPPJyYFr1GCD_Jn-DqjWQIoB39wBGPnP2ICsEVgorEqEUiC6EDq2SgS0TFhUyyuElL1AxMzQz8INGu9sSICYCdmWpUAI3oRX3yPaIEsyDGTefq3bmzNNphnFihLhB8J1nQzNyYspdZesWaQRGE4lKPPKgnwmDSDBSiKMoPCJHc2Qk87il-nLUgZdDFwnGAukRf5hOl-nVR_9J_5hcZ-B_9ll922TSrFv7BPzHJn_q7MZPrZ1ycQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Medical+Image+Classification+with+an+Advanced+Feature+Selection+Algorithm%3A+A+Novel+Approach+to+Improving+the+Cuckoo+Search+Algorithm+by+Incorporating+Caputo+Fractional+Order&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Habeb%2C+Abduljlil+Abduljlil+Ali+Abduljlil&rft.au=Taresh%2C+Mundher+Mohammed&rft.au=Li%2C+Jintang&rft.au=Gao%2C+Zhan&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=11&rft_id=info:doi/10.3390%2Fdiagnostics14111191&rft.externalDocID=A797900396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon