Enhancing Medical Image Classification with an Advanced Feature Selection Algorithm: A Novel Approach to Improving the Cuckoo Search Algorithm by Incorporating Caputo Fractional Order
Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with...
        Saved in:
      
    
          | Published in | Diagnostics (Basel) Vol. 14; no. 11; p. 1191 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        01.06.2024
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2075-4418 2075-4418  | 
| DOI | 10.3390/diagnostics14111191 | 
Cover
| Abstract | Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew’s correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology. | 
    
|---|---|
| AbstractList | Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew’s correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology. Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew's correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology.Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew's correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology.  | 
    
| Audience | Academic | 
    
| Author | Taresh, Mundher Mohammed Gao, Zhan Habeb, Abduljlil Abduljlil Ali Abduljlil Li, Jintang Zhu, Ningbo  | 
    
| AuthorAffiliation | 1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China; habebabduljlil@gmail.com (A.A.A.A.H.); jintangl@usc.edu (J.L.); quietwave@hnu.edu.cn (N.Z.) 3 Research Institute of Hunan University in Chongqing, Chongqing 400000, China 2 College of Engineering and Information Technology, Taiz University, Taiz, Yemen; mundhertaresh@taiz.edu.ye  | 
    
| AuthorAffiliation_xml | – name: 1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China; habebabduljlil@gmail.com (A.A.A.A.H.); jintangl@usc.edu (J.L.); quietwave@hnu.edu.cn (N.Z.) – name: 3 Research Institute of Hunan University in Chongqing, Chongqing 400000, China – name: 2 College of Engineering and Information Technology, Taiz University, Taiz, Yemen; mundhertaresh@taiz.edu.ye  | 
    
| Author_xml | – sequence: 1 givenname: Abduljlil Abduljlil Ali Abduljlil orcidid: 0009-0002-2826-3331 surname: Habeb fullname: Habeb, Abduljlil Abduljlil Ali Abduljlil – sequence: 2 givenname: Mundher Mohammed surname: Taresh fullname: Taresh, Mundher Mohammed – sequence: 3 givenname: Jintang surname: Li fullname: Li, Jintang – sequence: 4 givenname: Zhan orcidid: 0000-0003-1303-1351 surname: Gao fullname: Gao, Zhan – sequence: 5 givenname: Ningbo surname: Zhu fullname: Zhu, Ningbo  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38893717$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkt9u0zAUxiM0xMbYEyAhS9zspsOOk9rmBlXVCpUGuwCuoxPnJPVI7eAknfZkvB6n7RjbNAmci1jHv-87f-yXyYEPHpPkteBnUhr-rnLQ-NAPzvYiE7SMeJYcpVzlkywT-uDe_jA56fsrTssIqdP8RXIotTZSCXWU_Dr3K_DW-YZ9xspZaNlyDQ2yeQt972qKDC54du2GFQPPZtWGcKzYAmEYI7Kv2KLdIbO2CZGw9Xs2Y1_CBls267oYwK7YEMiW9pttomFF9qP9EQKpIdLxnZSVN2zpbYhdiJSY4Dl0I6kXEXZZqL7LWGF8lTyvoe3x5PZ_nHxfnH-bf5pcXH5czmcXE5tP1TBBtHWdlUANAw1Jl1yLClPUpZmW2mqcotRK1TrLwQDXRmS1FiCFVVlap0IeJ8u9bxXgquiiW0O8KQK4YhcIsSkg0i20WFRqmmdplStjKKVSINBojnWeykrLcuuV7b1G38HNNbTtnaHgxfZaiyeulWQf9rJuLNdYWfRDhPZBLQ9PvFsVTdgUJFdpyjU5nN46xPBzxH4o1q632LbgMYx9IbnimvPc5IS-fYRehTHS2LfUVEnNqa6_VAPUuPN1oMR2a1rMlFGGc2mmRJ09QdFX4dpZes-1o_gDwZv7nd61-Oe5EmD2gI2h7yPWhXXD7oGSs2v_MUb5SPs_w_8NoY4XNA | 
    
| CitedBy_id | crossref_primary_10_20517_jmi_2024_92 crossref_primary_10_20935_AcadMed7444  | 
    
| Cites_doi | 10.1016/j.ygeno.2020.05.017 10.1007/s00500-023-08449-6 10.3389/fphys.2023.1175881 10.1016/j.media.2019.101570 10.1186/s12938-019-0649-y 10.1053/j.tcam.2015.07.011 10.1101/2023.05.02.23289378 10.1080/00051144.2023.2251231 10.3390/a11030030 10.4258/hir.2018.24.1.53 10.1007/s13319-018-0198-3 10.1109/NABIC.2009.5393690 10.1016/j.ophtha.2014.09.030 10.3390/jimaging8020019 10.4018/978-1-6684-3947-0.ch013 10.1016/j.asoc.2017.02.034 10.1136/bjo.86.7.716 10.1016/j.bspc.2013.11.006 10.1186/s12938-020-00767-2 10.20944/preprints202311.0773.v1 10.3390/math10183291 10.4018/978-1-7998-8892-5.ch022 10.1109/ICMICA48462.2020.9242702 10.1109/4235.585893 10.1007/978-3-030-77967-2_10 10.1109/RBME.2010.2084567 10.1007/s11042-023-15175-6 10.1109/ICSCSS57650.2023.10169226 10.1016/j.inffus.2023.102059 10.1016/j.asoc.2022.109432 10.1007/s00521-013-1367-1 10.3390/electronics11111763 10.1016/j.engappai.2020.103662 10.5566/ias.2346 10.1007/s00366-011-0241-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024  | 
    
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/diagnostics14111191 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2075-4418 | 
    
| ExternalDocumentID | oai_doaj_org_article_d76542d5799f4b77a1e980ef523d83b1 10.3390/diagnostics14111191 PMC11172208 A797900396 38893717 10_3390_diagnostics14111191  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: Chongqing Natural Science Foundation grantid: CSTB2022NSCQ-MSX1175 – fundername: National Natural Science Foundation of China grantid: 62172152  | 
    
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c567t-eecff4ba388a1118b081de2e8b96b8c8e6e3877f845a9a08914f81a31c742f213 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2075-4418 | 
    
| IngestDate | Fri Oct 03 12:51:43 EDT 2025 Sun Oct 26 04:02:57 EDT 2025 Tue Sep 30 17:09:02 EDT 2025 Thu Oct 02 11:32:06 EDT 2025 Mon Jun 30 04:39:40 EDT 2025 Mon Oct 20 22:54:23 EDT 2025 Mon Oct 20 16:59:42 EDT 2025 Mon Jul 21 05:49:49 EDT 2025 Thu Oct 16 04:30:49 EDT 2025 Thu Apr 24 23:10:18 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | cuckoo search Caputo fractional order glaucoma feature selection  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c567t-eecff4ba388a1118b081de2e8b96b8c8e6e3877f845a9a08914f81a31c742f213 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0009-0002-2826-3331 0000-0003-1303-1351  | 
    
| OpenAccessLink | https://doaj.org/article/d76542d5799f4b77a1e980ef523d83b1 | 
    
| PMID | 38893717 | 
    
| PQID | 3067380141 | 
    
| PQPubID | 2032410 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d76542d5799f4b77a1e980ef523d83b1 unpaywall_primary_10_3390_diagnostics14111191 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11172208 proquest_miscellaneous_3070800595 proquest_journals_3067380141 gale_infotracmisc_A797900396 gale_infotracacademiconefile_A797900396 pubmed_primary_38893717 crossref_citationtrail_10_3390_diagnostics14111191 crossref_primary_10_3390_diagnostics14111191  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-06-01 | 
    
| PublicationDateYYYYMMDD | 2024-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Diagnostics (Basel) | 
    
| PublicationTitleAlternate | Diagnostics (Basel) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Zeebaree (ref_34) 2024; 102 Maggio (ref_1) 2015; 30 Sigut (ref_38) 2020; 39 Gandomi (ref_26) 2013; 29 Septiarini (ref_33) 2018; 24 ref_36 Orlando (ref_37) 2020; 59 ref_13 ref_35 ref_12 ref_11 ref_10 Kocur (ref_3) 2002; 86 Garvin (ref_5) 2010; 3 ref_30 Verma (ref_7) 2023; 12 ref_17 ref_39 ref_16 ref_15 Cortez (ref_41) 2023; 3 Selvakumar (ref_32) 2023; 64 Wolpert (ref_24) 1997; 1 Yousri (ref_31) 2020; 92 Zemmal (ref_18) 2018; 17 Pruthi (ref_22) 2018; 9 ref_25 ref_21 Yang (ref_27) 2014; 24 ref_42 Singh (ref_20) 2023; 82 ref_40 Balasubramanian (ref_19) 2022; 128 Noronha (ref_4) 2014; 10 Kishore (ref_14) 2020; 112 ref_9 Chan (ref_2) 2015; 122 ref_8 Singh (ref_23) 2024; 28 Shehab (ref_28) 2017; 61 (ref_29) 2021; 26 ref_6  | 
    
| References_xml | – volume: 112 start-page: 3089 year: 2020 ident: ref_14 article-title: Glaucoma classification based on intra-class and extra-class discriminative correlation and consensus ensemble classifier publication-title: Genomics doi: 10.1016/j.ygeno.2020.05.017 – volume: 28 start-page: 2431 year: 2024 ident: ref_23 article-title: Emperor penguin optimization algorithm and bacterial foraging optimization algorithm-based novel feature selection approach for glaucoma classification from fundus images publication-title: Soft Comput. doi: 10.1007/s00500-023-08449-6 – ident: ref_9 doi: 10.3389/fphys.2023.1175881 – volume: 59 start-page: 101570 year: 2020 ident: ref_37 article-title: REFUGE challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101570 – ident: ref_39 doi: 10.1186/s12938-019-0649-y – volume: 30 start-page: 86 year: 2015 ident: ref_1 article-title: Glaucomas publication-title: Top. Companion Anim. Med. doi: 10.1053/j.tcam.2015.07.011 – ident: ref_6 doi: 10.1101/2023.05.02.23289378 – volume: 12 start-page: 806 year: 2023 ident: ref_7 article-title: Machine learning classifiers for detection of glaucoma publication-title: Int. J. Artif. Intell. – volume: 64 start-page: 1148 year: 2023 ident: ref_32 article-title: Efficient diabetic retinopathy diagnosis through U-Net–KNN integration in retinal fundus images publication-title: Automatika doi: 10.1080/00051144.2023.2251231 – ident: ref_30 doi: 10.3390/a11030030 – volume: 24 start-page: 53 year: 2018 ident: ref_33 article-title: Automatic glaucoma detection method applying a statistical approach to fundus images publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2018.24.1.53 – volume: 9 start-page: 47 year: 2018 ident: ref_22 article-title: Metaheuristic techniques for detection of optic disc in retinal fundus images publication-title: 3D Res. doi: 10.1007/s13319-018-0198-3 – ident: ref_40 – ident: ref_25 doi: 10.1109/NABIC.2009.5393690 – volume: 17 start-page: 310 year: 2018 ident: ref_18 article-title: Robust feature selection algorithm based on transductive SVM wrapper and genetic algorithm: Application on computer-aided glaucoma classification publication-title: Int. J. Intell. Syst. Technol. Appl. – volume: 122 start-page: 494 year: 2015 ident: ref_2 article-title: Glaucoma and associated visual acuity and field loss significantly affect glaucoma-specific psychosocial functioning publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.09.030 – ident: ref_35 doi: 10.3390/jimaging8020019 – ident: ref_11 doi: 10.4018/978-1-6684-3947-0.ch013 – volume: 61 start-page: 1041 year: 2017 ident: ref_28 article-title: A survey on applications and variants of the cuckoo search algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.02.034 – volume: 86 start-page: 716 year: 2002 ident: ref_3 article-title: Visual impairment and blindness in Europe and their prevention publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.86.7.716 – volume: 10 start-page: 174 year: 2014 ident: ref_4 article-title: Automated classification of glaucoma stages using higher order cumulant features publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.11.006 – ident: ref_8 doi: 10.1186/s12938-020-00767-2 – ident: ref_21 doi: 10.20944/preprints202311.0773.v1 – ident: ref_42 doi: 10.3390/math10183291 – ident: ref_17 doi: 10.4018/978-1-7998-8892-5.ch022 – ident: ref_12 – ident: ref_16 doi: 10.1109/ICMICA48462.2020.9242702 – volume: 1 start-page: 67 year: 1997 ident: ref_24 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: ref_15 doi: 10.1007/978-3-030-77967-2_10 – volume: 3 start-page: 169 year: 2010 ident: ref_5 article-title: Retinal imaging and image analysis publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2010.2084567 – volume: 82 start-page: 42851 year: 2023 ident: ref_20 article-title: Nature-inspired computing and machine learning based classification approach for glaucoma in retinal fundus images publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15175-6 – ident: ref_10 doi: 10.1109/ICSCSS57650.2023.10169226 – volume: 26 start-page: 137 year: 2021 ident: ref_29 article-title: Cuckoo search algorithm: Review and its application publication-title: Tikrit J. Pure Sci. – volume: 102 start-page: 102059 year: 2024 ident: ref_34 article-title: Fundus-deepnet: Multi-label deep learning classification system for enhanced detection of multiple ocular diseases through data fusion of fundus images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102059 – ident: ref_36 – volume: 128 start-page: 109432 year: 2022 ident: ref_19 article-title: Correlation-based feature selection using bio-inspired algorithms and optimized KELM classifier for glaucoma diagnosis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109432 – volume: 3 start-page: 47 year: 2023 ident: ref_41 article-title: A Comparative Analysis of Glaucoma Feature Extraction and Classification Techniques in Fundus Images publication-title: J. Commun. Inf. Syst. – volume: 24 start-page: 169 year: 2014 ident: ref_27 article-title: Cuckoo search: Recent advances and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1367-1 – ident: ref_13 doi: 10.3390/electronics11111763 – volume: 92 start-page: 103662 year: 2020 ident: ref_31 article-title: Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103662 – volume: 39 start-page: 161 year: 2020 ident: ref_38 article-title: A unified retinal image database for assessing glaucoma using deep learning publication-title: Image Anal. Stereol. doi: 10.5566/ias.2346 – volume: 29 start-page: 17 year: 2013 ident: ref_26 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y  | 
    
| SSID | ssj0000913825 | 
    
| Score | 2.2875507 | 
    
| Snippet | Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 1191 | 
    
| SubjectTerms | Accuracy Algorithms Analysis Caputo fractional order Care and treatment Classification cuckoo search Datasets Diagnosis Feature selection Glaucoma Health aspects Hogs Machine learning Optic nerve Optimization algorithms Performance evaluation Retinal ganglion cells Visual acuity  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8SZQkJGQuBB1kzh-cAurrlokygEq9RY5ttNWbJPVsgH1l_H3mLHdsAEEHLjGM0o8Mx7P2JNvCHmBUbR1Kk-5KpqU6VykSmqecsaNmhmrXOurLY74wTF7e1KebLX6wpqwAA8cBLdnBbZUsqVQqmWNEDpzSs5cCwmUlUXjE5-ZVFvJlPfBCrH1ygAzVEBev2dD5RpiH2cM_YTKJluRR-z_1S9vbUw_F03eGLqVvvyql8utHWlxm9yKoSStwhTukGuuu0uuv4uX5ffIt_3uDNE0ulMar2Po4QW4D-obYWKJkNcKxaNYqjtaxXIAimHhsHb0g--RgyTV8rRfA9nFa1rRo_6Lg9dGMHK66el4MkEhnKTzwXzqexoKmX-w0uaSHiJqpkdORuK5Xg3AvViHnyvg-94jEOh9crzY_zg_SGOfhtSUXGxS50wLutGFlBoEKxsIM6zLnWwUb6SRjrtCCtFKVmqlQVkZa2Wmi8xAXt7mWfGA7HR95x4RqixvBG8hrplZJhQH3swYK5x2juWaJSS_UlltIog59tJY1pDMoJ7r3-g5Ia9GplXA8Pgz-Ru0hZEUAbj9AzDLOppl_TezTMhLtKQa3QR8oNHxbweYJgJu1ZVQAg-RFU_I7oQSlreZDl_ZYh3dy-ca87wCcX_gPc_HYeTEkrnO9QPSCMwGSlUm5GEw3XFKoCnEQRQJkROjnsx5OtKdn3nwcRCRyGHFJSQd7f9fpPr4f0j1CbmZQ1AZSvV2yc5mPbinEBRummd-_X8HNONjOg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwEviM8RGMhISLwQrfnyBxJCWdVqQ6IgYNLeIsd2WkSXlJKA9pfx73GXuNkCaOI1Piex73y-O59_R8hztKKNlaHPZJT7sQq5L4ViPouZlmNtpC3abIs5OzqJ354mpztkvr0Lg2mVW53YKmpTaYyRH6BpGyHUSfBm_c3HqlF4urotoaFcaQXzuoUYu0Z2Q0TGGpHdw-n8w8c-6oIomOATdfBDEfj7B6bLaENMZHh3gHhngy2qRfL_W19f2rD-TKa80ZRrdf5TrVaXdqrZbXLLmZg07WTiDtmx5V1y_Z07RL9Hfk3LJaJslAvqjmno8RmoFdoWyMTUoZZbFEO0VJU0dWkCFM3FZmPpp7Z2DpKkqwXMUb08e0VTOq9-WPisAymndUX7iAUFM5NOGv21qmiX4HzRlebn9BjRNFtEZSSeqHUDvWeb7tIF_N97BAi9T05m08-TI9_Vb_B1wnjtW6uLIs5VJISCiRU5mB_GhlbkkuVCC8tsJDgvRJwoqcZCBnEhAhUFGvz1IgyiB2RUVqV9SKg0LOesAHtnbGIuGfQNtDbcKmvjUMUeCbcsy7QDN8caG6sMnBzkc_YPPnvkZd9p3WF7XE1-iLLQkyIwd_ug2iwyt84zw7ECmEm4lDB0zlVgpRjbAvx9I6IcXvICJSlD9QE_qJW7BQHDRCCuLOWSY3BZMo_sDyhh2eth81YWM6d2vmcXi8Qjz_pm7ImpdKWtGqTh6CUkMvHIXie6_ZCAU4iPyD0iBkI9GPOwpfyybEHJYYp4GI6FR_xe_v9nVh9dPY7H5GYIZmSXnLdPRvWmsU_ADKzzp25t_wY7jWGn priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIuvB-BgoyExIWUxEn84BZWXbVILEiwUjlFjuO0qNtktU1A5Y_x95hJ3LApD5VrPJNk7PF4xh5_Q8hz9KILq5jPVZT7sWbCV1Jzn8fcqMAUypZdtsWc7y3itwfJgcPZxrswG-f3EYTjr4o-4Qwhi8MYpzfeVN_iCTjeE7K1mH9IP2P5OFj4fFjYZY8r9DfO0drTQfT_bog3VqKLWZLX2mqlz77p5XJjCZrd7O92n3bIhZh5crzTNvmO-X4B1_GS0t0iN5wrStNed26TK7a6Q66-c4ftd8mP3eoI0TiqQ-qOc-j-CZgf2hXSxBSjblQpbuVSXdHUpRNQdCvbtaUfuxo7SJIuD-s1kJ28pimd118tfNaBmdOmpsPOBgV3lE5bc1zXtE-E_sVK8zO6j6ibHfIyEk_1qgXu2bq_nAH_9x6BRO-RxWz303TPd3UefJNw0fjWmrKMcx1JqaEPZA5uSmGZlbniuTTSchtJIUoZJ1rpQKowLmWoo9BAXF-yMLpPJlVd2YeEqoLngpfgFwVFLBQH3tCYQlhtbcx07BF2rgGZcSDoWItjmUEwhEOS_WFIPPJyYFr1GCD_Jn-DqjWQIoB39wBGPnP2ICsEVgorEqEUiC6EDq2SgS0TFhUyyuElL1AxMzQz8INGu9sSICYCdmWpUAI3oRX3yPaIEsyDGTefq3bmzNNphnFihLhB8J1nQzNyYspdZesWaQRGE4lKPPKgnwmDSDBSiKMoPCJHc2Qk87il-nLUgZdDFwnGAukRf5hOl-nVR_9J_5hcZ-B_9ll922TSrFv7BPzHJn_q7MZPrZ1ycQ priority: 102 providerName: Unpaywall  | 
    
| Title | Enhancing Medical Image Classification with an Advanced Feature Selection Algorithm: A Novel Approach to Improving the Cuckoo Search Algorithm by Incorporating Caputo Fractional Order | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38893717 https://www.proquest.com/docview/3067380141 https://www.proquest.com/docview/3070800595 https://pubmed.ncbi.nlm.nih.gov/PMC11172208 https://doi.org/10.3390/diagnostics14111191 https://doaj.org/article/d76542d5799f4b77a1e980ef523d83b1  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELemTQK-IN5kjMpISHwh0Lz8QEIoq1ptSCsTUGl8ihzH6RBd0oUG6F_Gv8dd4oYFxsTX-Jzk7PM97PPvCHmKXnRmpO8yGaRuqHzuSqGYy0Km5VBn0uRNtsWUHczCtyfRyRbZVEW1A_j10tAO60nNqsWLH-frN7DgX2PECSH7y6xNSkNYYy9EFYC32XfAVEms5XBk_f1GNUuE3MO0Rh9MpQuugGiRiP71np61akD9_1bdF2zXn3mV1-tiqdbf1WJxwWhNbpGb1tukcSset8mWKe6Qa0f2PP0u-TkuThFwo5hTe2JDD89Aw9CmViZmETUTR3G3lqqCxjZjgKLnWFeGfmjK6CBJvJiXFZCdvaIxnZbfDHzW4pXTVUm7zQsKHicd1fpLWdI21_l3V5qu6SECazbgykg8Ussaek-q9v4F_N87xAq9R2aT8cfRgWtLObg6YnzlGqPzPExVIISCgRUpeCKZ8Y1IJUuFFoaZQHCeizBSUg2F9MJceCrwNITuue8F98l2URbmIaEyYylnObg-wyzkkkFfT-uMG2VM6KvQIf5myhJtcc6x3MYigXgH5zm5ZJ4d8rzrtGxhPq4m30dZ6EgRo7t5UFbzxC75JONYDCyLuJTAOufKM1IMTQ6hfyaCFF7yDCUpQdmGH9TKXogANhGTK4m55LjPLJlD9nqUoAF0v3kji8lmASUYCgYIDQTfedI1Y0_MqitMWSMNx4AhkpFDHrSi27EEM4VQidwhoifUPZ77LcXn0wafHIaI-_5QOMTt5P9_RnX3ajYfkRs-eJRtnt4e2V5VtXkMHuEqHZCd_fH0-P2g2VEZNGsens2mx_GnX5QwZpw | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8EBhgJxAvR8m0baUJdadWyrSDYpL0Fx3FaRJeUrmHqX8Ybfxt3iZstgCZe9lqf01zufL47n39HyAv0olMtPDsSfmIH0mO24DKyoyBSwlGp0FlVbTGKBkfB--PweI38Wt2FwbLKlU2sDHVaKMyRb6Nr6yPUift29t3GrlF4urpqoSFNa4V0p4IYMxc79vTyDEK4053hO5D3S8_r9w67A9t0GbBVGLGFrbXKsiCRPucSFj5PYJNMtad5IqKEK64j7XPGMh6EUkiHCzfIuCt9V0FUmXmuD8-9RjYCPxAQ_G3s9kYfPzVZHkTdhBishjvyfeFsp3UFHWIwAy8u4qu1tsSqc8Df-8OFDfLP4s3NMp_J5ZmcTi_sjP1b5KZxaWmn1sHbZE3nd8j1A3Nof5f87OUTRPXIx9QcC9HhCZgxWjXkxFKlSjsopoSpzGnHlCVQdE_Luaafq149SNKZjkEmi8nJG9qho-KHhr81oOh0UdAmQ0LBraXdUn0rCloXVJ9PpcmSDhG9s0JwRuKunJUwuz-vL3nA-31AQNJ75OhKJHmfrOdFrh8SKtIoYVEG_pWTBkxEMNdVKmVaah14MrCItxJZrAyYOvb0mMYQVKGc43_I2SKvm0mzGkvkcvJd1IWGFIHAqx-K-Tg2diVOGXYcS0MmBLDOmHS14I7OQs9PuZ_AQ16hJsVoruAFlTS3LoBNBP6KO0wwTGaLyCJbLUowM6o9vNLF2Ji50_h8UVrkeTOMM7F0L9dFiTQMo5JQhBZ5UKtuwxJICvEYmUV4S6lbPLdH8q-TCgQdPhHzPIdbxG70_3--6qPL-XhGNgeHB_vx_nC095jc8MCFrQsDt8j6Yl7qJ-CCLpKnZp1T8uWqTctv8tGekw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJg1eEP8JDDASiBei5r9tpAl1XauVQZmASXvLHMdpEV1Suoapn4zvwKfiLnGzBdDEy17jc5LLXX4-2-ffEfICo-hUC8-OhJ_YgfSYLbiM7CiIlHBUKnRWZVuMor3D4N1ReLRGfq3OwmBa5QoTK6BOC4Vr5B0MbX2kOnE7mUmLONgdvJ19t7GCFO60rsppSFNmId2u6MbMIY99vTyD6dzp9nAXbP_S8wb9L70921QcsFUYsYWttcqyIJE-5xJAgCcwYKba0zwRUcIV15H2OWMZD0IppMOFG2Tclb6rYIaZea4P971GNnDzC0BiY6c_OvjUrPggAyfMx2rqI98XTiets-mQjxn0cpFrrTU8VlUE_h4rLgyWfyZyXi_zmVyeyen0wig5uEVumvCWdmt_vE3WdH6HbH4wG_h3yc9-PkGGj3xMzRYRHZ4ApNGqOCemLVWeQnF5mMqcdk2KAsVQtZxr-rmq24Mi3ekYbLKYnLyhXToqfmh4rCFIp4uCNqslFEJc2ivVt6KgdXL1eVeaLOkQmTwrNmcU7slZCb0H8_rAB7zfRyQnvUcOr8SS98l6XuT6IaEijRIWZRBrOWnARAR9XaVSpqXWgScDi3grk8XKEKtjfY9pDBMstHP8Dztb5HXTaVbzilwuvoO-0IgiKXh1oZiPY4Mxccqw-lgaMiFAdcakqwV3dBZ6fsr9BG7yCj0pRuiCF1TSnMAANZEELO4ywXBhW0QW2WpJAuSodvPKF2MDeafx-Q9qkedNM_bENL5cFyXKMJyhhCK0yIPadRuVwFLIzcgswltO3dK53ZJ_nVSE6PCJmOc53CJ24___81UfXa7HM7IJEBO_H472H5MbHkSzdY7gFllfzEv9BKLRRfLU_OaUHF81svwGE2Kiwg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIuvB-BgoyExIWUxEn84BZWXbVILEiwUjlFjuO0qNtktU1A5Y_x95hJ3LApD5VrPJNk7PF4xh5_Q8hz9KILq5jPVZT7sWbCV1Jzn8fcqMAUypZdtsWc7y3itwfJgcPZxrswG-f3EYTjr4o-4Qwhi8MYpzfeVN_iCTjeE7K1mH9IP2P5OFj4fFjYZY8r9DfO0drTQfT_bog3VqKLWZLX2mqlz77p5XJjCZrd7O92n3bIhZh5crzTNvmO-X4B1_GS0t0iN5wrStNed26TK7a6Q66-c4ftd8mP3eoI0TiqQ-qOc-j-CZgf2hXSxBSjblQpbuVSXdHUpRNQdCvbtaUfuxo7SJIuD-s1kJ28pimd118tfNaBmdOmpsPOBgV3lE5bc1zXtE-E_sVK8zO6j6ibHfIyEk_1qgXu2bq_nAH_9x6BRO-RxWz303TPd3UefJNw0fjWmrKMcx1JqaEPZA5uSmGZlbniuTTSchtJIUoZJ1rpQKowLmWoo9BAXF-yMLpPJlVd2YeEqoLngpfgFwVFLBQH3tCYQlhtbcx07BF2rgGZcSDoWItjmUEwhEOS_WFIPPJyYFr1GCD_Jn-DqjWQIoB39wBGPnP2ICsEVgorEqEUiC6EDq2SgS0TFhUyyuElL1AxMzQz8INGu9sSICYCdmWpUAI3oRX3yPaIEsyDGTefq3bmzNNphnFihLhB8J1nQzNyYspdZesWaQRGE4lKPPKgnwmDSDBSiKMoPCJHc2Qk87il-nLUgZdDFwnGAukRf5hOl-nVR_9J_5hcZ-B_9ll922TSrFv7BPzHJn_q7MZPrZ1ycQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Medical+Image+Classification+with+an+Advanced+Feature+Selection+Algorithm%3A+A+Novel+Approach+to+Improving+the+Cuckoo+Search+Algorithm+by+Incorporating+Caputo+Fractional+Order&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Habeb%2C+Abduljlil+Abduljlil+Ali+Abduljlil&rft.au=Taresh%2C+Mundher+Mohammed&rft.au=Li%2C+Jintang&rft.au=Gao%2C+Zhan&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=11&rft_id=info:doi/10.3390%2Fdiagnostics14111191&rft.externalDocID=A797900396 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |