A test paper generation algorithm based on diseased enhanced genetic algorithm

With the continuous progress of society, tests, and exams appear more and more frequently in people's lives. Faced with the ever-increasing demand for test papers, efficient test paper generation algorithms have become more important. In this paper, we improved and proposed a Diseased Enhanced...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 9; no. 6; p. e17187
Main Authors Cui, JunChuan, Zhou, Ya, Huang, Guimin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2405-8440
2405-8440
DOI10.1016/j.heliyon.2023.e17187

Cover

Abstract With the continuous progress of society, tests, and exams appear more and more frequently in people's lives. Faced with the ever-increasing demand for test papers, efficient test paper generation algorithms have become more important. In this paper, we improved and proposed a Diseased Enhanced Genetic Algorithm (DEGA) based on the Genetic Algorithm (GA), and applied it to the test paper generation algorithm. I the crossover operator, the crossover probability that will change in different situations of the population is adopted. According to the characteristics of the test paper generation algorithm, we use the method based on the hamming distance to calculate the distance between individuals in the population. Aiming at the shortcoming that the mutation operator is too random, we designed and used a disease operator that includes three modules: natural disease, infection, and mutation. It effectively guarantees the distance between individuals in the population and improves the shortcoming that GA is easy to fall into a locally optimal solution. Finally, using the College English Test Band 4 (CET-4) questions from 2014 to 2021 as the data set, comparative experiments were carried out on the test paper generation algorithm based on Random Sampling Algorithm (RSA), GA, Enhanced Genetic Algorithm (EGA) and DEGA. The results show that when using the test paper generation algorithm based on DEGA, the generation of test papers is faster, the number of iterations is less, and the algorithm results are significantly better than other algorithms.
AbstractList With the continuous progress of society, tests, and exams appear more and more frequently in people's lives. Faced with the ever-increasing demand for test papers, efficient test paper generation algorithms have become more important. In this paper, we improved and proposed a Diseased Enhanced Genetic Algorithm (DEGA) based on the Genetic Algorithm (GA), and applied it to the test paper generation algorithm. I the crossover operator, the crossover probability that will change in different situations of the population is adopted. According to the characteristics of the test paper generation algorithm, we use the method based on the hamming distance to calculate the distance between individuals in the population. Aiming at the shortcoming that the mutation operator is too random, we designed and used a disease operator that includes three modules: natural disease, infection, and mutation. It effectively guarantees the distance between individuals in the population and improves the shortcoming that GA is easy to fall into a locally optimal solution. Finally, using the College English Test Band 4 (CET-4) questions from 2014 to 2021 as the data set, comparative experiments were carried out on the test paper generation algorithm based on Random Sampling Algorithm (RSA), GA, Enhanced Genetic Algorithm (EGA) and DEGA. The results show that when using the test paper generation algorithm based on DEGA, the generation of test papers is faster, the number of iterations is less, and the algorithm results are significantly better than other algorithms.
With the continuous progress of society, tests, and exams appear more and more frequently in people's lives. Faced with the ever-increasing demand for test papers, efficient test paper generation algorithms have become more important. In this paper, we improved and proposed a Diseased Enhanced Genetic Algorithm (DEGA) based on the Genetic Algorithm (GA), and applied it to the test paper generation algorithm. I the crossover operator, the crossover probability that will change in different situations of the population is adopted. According to the characteristics of the test paper generation algorithm, we use the method based on the hamming distance to calculate the distance between individuals in the population. Aiming at the shortcoming that the mutation operator is too random, we designed and used a disease operator that includes three modules: natural disease, infection, and mutation. It effectively guarantees the distance between individuals in the population and improves the shortcoming that GA is easy to fall into a locally optimal solution. Finally, using the College English Test Band 4 (CET-4) questions from 2014 to 2021 as the data set, comparative experiments were carried out on the test paper generation algorithm based on Random Sampling Algorithm (RSA), GA, Enhanced Genetic Algorithm (EGA) and DEGA. The results show that when using the test paper generation algorithm based on DEGA, the generation of test papers is faster, the number of iterations is less, and the algorithm results are significantly better than other algorithms.With the continuous progress of society, tests, and exams appear more and more frequently in people's lives. Faced with the ever-increasing demand for test papers, efficient test paper generation algorithms have become more important. In this paper, we improved and proposed a Diseased Enhanced Genetic Algorithm (DEGA) based on the Genetic Algorithm (GA), and applied it to the test paper generation algorithm. I the crossover operator, the crossover probability that will change in different situations of the population is adopted. According to the characteristics of the test paper generation algorithm, we use the method based on the hamming distance to calculate the distance between individuals in the population. Aiming at the shortcoming that the mutation operator is too random, we designed and used a disease operator that includes three modules: natural disease, infection, and mutation. It effectively guarantees the distance between individuals in the population and improves the shortcoming that GA is easy to fall into a locally optimal solution. Finally, using the College English Test Band 4 (CET-4) questions from 2014 to 2021 as the data set, comparative experiments were carried out on the test paper generation algorithm based on Random Sampling Algorithm (RSA), GA, Enhanced Genetic Algorithm (EGA) and DEGA. The results show that when using the test paper generation algorithm based on DEGA, the generation of test papers is faster, the number of iterations is less, and the algorithm results are significantly better than other algorithms.
ArticleNumber e17187
Author Zhou, Ya
Cui, JunChuan
Huang, Guimin
Author_xml – sequence: 1
  givenname: JunChuan
  surname: Cui
  fullname: Cui, JunChuan
  email: 1362368283@qq.com
– sequence: 2
  givenname: Ya
  surname: Zhou
  fullname: Zhou, Ya
  email: ccyzhou@guet.edu.cn
– sequence: 3
  givenname: Guimin
  surname: Huang
  fullname: Huang, Guimin
  email: sendhuang@126.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37484322$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1UREvpTwDlyGUXf8V2xAFVFR-VKrjA2XKcya5XXjvY2Vb773E2S2m5tCePxu88mnlnXqOTEAMg9JbgJcFEfNgs1-DdPoYlxZQtgUii5At0RjmuF4pzfPIgPkUXOW8wxqRWopHsFTplkivOKD1D3y-rEfJYDWaAVK0gQDKji6EyfhWTG9fbqjUZuqqkOpfhEENYm2BLMOlHZ_-J36CXvfEZLo7vOfr15fPPq2-Lmx9fr68ubxa2FnJcQCd73MimZ5K0jbSCEkNp36lGibaDWhHLO0aFxKIVHEMteK2stQJsb1rcsnN0PXO7aDZ6SG5r0l5H4_QhEdNKm1Q686AFoYq2LWcN5pw2puEdEQSMgl7gmrDCEjNrFwazvzPe3wMJ1pPfeqOPfuvJbz37XQo_zYXDrt1CZyGMyfhH3Tz-CW6tV_G2MJkgTOJCeH8kpPh7V_agty5b8N4EiLusGea4WCQb-qSUKk6KWPBpoHcP-7pv6O_Wi6CeBTbFnBP0zx7443911o2HcynjOf9cu6Acxq2DpLN1MN2RS2DHsjn3BOEP0Evumw
CitedBy_id crossref_primary_10_2478_amns_2024_3472
Cites_doi 10.1007/s13198-021-01319-0
10.1109/4235.996017
10.1016/j.cor.2021.105626
10.1007/s11721-007-0002-0
10.1080/00401706.2000.10486045
10.1016/j.cam.2017.04.036
10.1137/0201010
10.1016/j.procs.2018.04.230
10.1007/s12652-020-02759-5
10.1007/s11042-020-10139-6
10.1016/j.eswa.2018.12.020
10.1007/s12652-018-0814-3
10.1109/ACCESS.2023.3240467
10.1504/IJBIC.2020.106443
10.1016/j.asoc.2017.03.014
ContentType Journal Article
Copyright 2023 The Authors
2023 The Authors.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: 2023 The Authors.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.heliyon.2023.e17187
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals) eJournal Collection
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_61282bb43904429a94d161ea8ef60513
10.1016/j.heliyon.2023.e17187
PMC10361370
37484322
10_1016_j_heliyon_2023_e17187
S2405844023043955
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
AACTN
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c567t-ed7f0979f371b97c621a22fd8986bde581c4d326706b640e56458ccc6ecfab0b3
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Fri Oct 03 12:53:18 EDT 2025
Sun Oct 26 04:00:01 EDT 2025
Thu Aug 21 18:37:26 EDT 2025
Fri Aug 22 20:19:52 EDT 2025
Thu Oct 02 10:24:14 EDT 2025
Thu Apr 03 07:01:46 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Thu Oct 02 04:24:17 EDT 2025
Sat Oct 11 16:51:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Applications in subject areas
Improving classroom teaching
Distance education and online learning
Language English
License This is an open access article under the CC BY-NC-ND license.
2023 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-ed7f0979f371b97c621a22fd8986bde581c4d326706b640e56458ccc6ecfab0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/61282bb43904429a94d161ea8ef60513
PMID 37484322
PQID 2841403643
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_61282bb43904429a94d161ea8ef60513
unpaywall_primary_10_1016_j_heliyon_2023_e17187
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10361370
proquest_miscellaneous_3040371792
proquest_miscellaneous_2841403643
pubmed_primary_37484322
crossref_primary_10_1016_j_heliyon_2023_e17187
crossref_citationtrail_10_1016_j_heliyon_2023_e17187
elsevier_sciencedirect_doi_10_1016_j_heliyon_2023_e17187
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, He, Zhang (bib9) 2019; 121
Xu, Pei, Zhu (bib4) 2018; 131
Katoch, Chauhan, Kumar (bib7) 2021; 80
Fang, Lin, Winker, Zhang (bib19) 2000; 42
Goldberg, Lingle (bib8) 2014
Wang, Cheng, Ersoy, Zhang, Dai, Dong (bib12) 2018; 2018
Chou, Hsieh, Qiu (bib6) 2017; 56
Poli, Kennedy, Blackwell (bib2) 2007; 1
Behroozi, Hosseini, Sana (bib5) 2021; 12
Xiong, Huang (bib14) 2018
Zhang, Xing (bib18) 2022; 139
Sana, Ospina-Mateus, Arrieta, Chedid (bib11) 2019; 10
Li, Lei, Wan, Shu (bib16) 2020
Wang, Zhang, Bai, Mao (bib20) 2018; 329
Holland (bib3) 1992
Wang, Xu, Wang (bib13) 2023; 11
Tarjan (bib1) 1972; 1
Deb, Pratap, Agarwal, Meyarivan (bib10) 2002; 6
Zhang, Li, Yin (bib15) 2020; 15
Ospina-Mateus, Quintana Jimenez, Lopez-Valdes, Berrio Garcia, Barrero, Sana (bib17) 2021; 12
Chou (10.1016/j.heliyon.2023.e17187_bib6) 2017; 56
Tarjan (10.1016/j.heliyon.2023.e17187_bib1) 1972; 1
Katoch (10.1016/j.heliyon.2023.e17187_bib7) 2021; 80
Xiong (10.1016/j.heliyon.2023.e17187_bib14) 2018
Wang (10.1016/j.heliyon.2023.e17187_bib20) 2018; 329
Holland (10.1016/j.heliyon.2023.e17187_bib3) 1992
Behroozi (10.1016/j.heliyon.2023.e17187_bib5) 2021; 12
Li (10.1016/j.heliyon.2023.e17187_bib16) 2020
Xu (10.1016/j.heliyon.2023.e17187_bib4) 2018; 131
Wang (10.1016/j.heliyon.2023.e17187_bib13) 2023; 11
Zhang (10.1016/j.heliyon.2023.e17187_bib15) 2020; 15
Fang (10.1016/j.heliyon.2023.e17187_bib19) 2000; 42
Sana (10.1016/j.heliyon.2023.e17187_bib11) 2019; 10
Zhang (10.1016/j.heliyon.2023.e17187_bib18) 2022; 139
Zhang (10.1016/j.heliyon.2023.e17187_bib9) 2019; 121
Poli (10.1016/j.heliyon.2023.e17187_bib2) 2007; 1
Goldberg (10.1016/j.heliyon.2023.e17187_bib8) 2014
Ospina-Mateus (10.1016/j.heliyon.2023.e17187_bib17) 2021; 12
Deb (10.1016/j.heliyon.2023.e17187_bib10) 2002; 6
Wang (10.1016/j.heliyon.2023.e17187_bib12) 2018; 2018
References_xml – volume: 131
  start-page: 937
  year: 2018
  end-page: 945
  ident: bib4
  article-title: Application of a genetic algorithm with random crossover and dynamic mutation on the travelling salesman problem
  publication-title: Proc. Comput. Sci.
– volume: 15
  start-page: 113
  year: 2020
  end-page: 124
  ident: bib15
  article-title: An enhanced genetic algorithm for the distributed assembly permutation flowshop scheduling problem
  publication-title: Int. J. Bio-Inspired Comput.
– year: 1992
  ident: bib3
  article-title: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– volume: 12
  start-page: 1362
  year: 2021
  end-page: 1384
  ident: bib5
  article-title: Teaching–learning-based genetic algorithm (tlbga): an improved solution method for continuous optimization problems
  publication-title: Int. J. Syst. Assur. Eng. Manag.
– volume: 121
  start-page: 221
  year: 2019
  end-page: 232
  ident: bib9
  article-title: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoring
  publication-title: Expert Syst. Appl.
– start-page: 154
  year: 2014
  end-page: 159
  ident: bib8
  article-title: Alleles, loci, and the traveling salesman problem
  publication-title: Proceedings of the First International Conference on Genetic Algorithms and Their Applications
– volume: 11
  start-page: 10032
  year: 2023
  end-page: 10044
  ident: bib13
  article-title: An improved genetic algorithm for constrained optimization problems
  publication-title: IEEE Access
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib10
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
– volume: 56
  start-page: 298
  year: 2017
  end-page: 316
  ident: bib6
  article-title: Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction
  publication-title: Appl. Soft Comput.
– start-page: 416
  year: 2018
  end-page: 421
  ident: bib14
  article-title: Research on auto-generating test paper system based on lda and genetic algorithm
  publication-title: 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS)
– volume: 2018
  year: 2018
  ident: bib12
  article-title: Improvement analysis and application of real-coded genetic algorithm for solving constrained optimization problems
  publication-title: Math. Probl Eng.
– volume: 1
  start-page: 146
  year: 1972
  end-page: 160
  ident: bib1
  article-title: Depth-first search and linear graph algorithms
  publication-title: SIAM J. Comput.
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: bib2
  article-title: Particle swarm optimization
  publication-title: Swarm Intelligence
– volume: 42
  start-page: 237
  year: 2000
  end-page: 248
  ident: bib19
  article-title: Uniform design: theory and application
  publication-title: Technometrics
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: bib7
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tool. Appl.
– volume: 12
  start-page: 10051
  year: 2021
  end-page: 10072
  ident: bib17
  article-title: Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 329
  start-page: 307
  year: 2018
  end-page: 321
  ident: bib20
  article-title: A hybrid system with filter approach and multiple population genetic algorithm for feature selection in credit scoring
  publication-title: J. Comput. Appl. Math.
– start-page: 196
  year: 2020
  end-page: 198
  ident: bib16
  article-title: Research on intelligent volume algorithm based on improved genetic annealing algorithm
  publication-title: 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS)
– volume: 139
  year: 2022
  ident: bib18
  article-title: An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 10
  start-page: 2063
  year: 2019
  end-page: 2090
  ident: bib11
  article-title: Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 12
  start-page: 1362
  year: 2021
  ident: 10.1016/j.heliyon.2023.e17187_bib5
  article-title: Teaching–learning-based genetic algorithm (tlbga): an improved solution method for continuous optimization problems
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-021-01319-0
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.heliyon.2023.e17187_bib10
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 139
  year: 2022
  ident: 10.1016/j.heliyon.2023.e17187_bib18
  article-title: An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105626
– start-page: 416
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17187_bib14
  article-title: Research on auto-generating test paper system based on lda and genetic algorithm
– volume: 1
  start-page: 33
  year: 2007
  ident: 10.1016/j.heliyon.2023.e17187_bib2
  article-title: Particle swarm optimization
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-007-0002-0
– volume: 42
  start-page: 237
  year: 2000
  ident: 10.1016/j.heliyon.2023.e17187_bib19
  article-title: Uniform design: theory and application
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10486045
– start-page: 154
  year: 2014
  ident: 10.1016/j.heliyon.2023.e17187_bib8
  article-title: Alleles, loci, and the traveling salesman problem
– volume: 329
  start-page: 307
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17187_bib20
  article-title: A hybrid system with filter approach and multiple population genetic algorithm for feature selection in credit scoring
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.04.036
– volume: 1
  start-page: 146
  year: 1972
  ident: 10.1016/j.heliyon.2023.e17187_bib1
  article-title: Depth-first search and linear graph algorithms
  publication-title: SIAM J. Comput.
  doi: 10.1137/0201010
– volume: 131
  start-page: 937
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17187_bib4
  article-title: Application of a genetic algorithm with random crossover and dynamic mutation on the travelling salesman problem
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2018.04.230
– volume: 12
  start-page: 10051
  year: 2021
  ident: 10.1016/j.heliyon.2023.e17187_bib17
  article-title: Extraction of decision rules using genetic algorithms and simulated annealing for prediction of severity of traffic accidents by motorcyclists
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02759-5
– volume: 80
  start-page: 8091
  year: 2021
  ident: 10.1016/j.heliyon.2023.e17187_bib7
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-020-10139-6
– start-page: 196
  year: 2020
  ident: 10.1016/j.heliyon.2023.e17187_bib16
  article-title: Research on intelligent volume algorithm based on improved genetic annealing algorithm
– volume: 121
  start-page: 221
  year: 2019
  ident: 10.1016/j.heliyon.2023.e17187_bib9
  article-title: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.020
– year: 1992
  ident: 10.1016/j.heliyon.2023.e17187_bib3
– volume: 10
  start-page: 2063
  year: 2019
  ident: 10.1016/j.heliyon.2023.e17187_bib11
  article-title: Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-018-0814-3
– volume: 11
  start-page: 10032
  year: 2023
  ident: 10.1016/j.heliyon.2023.e17187_bib13
  article-title: An improved genetic algorithm for constrained optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3240467
– volume: 15
  start-page: 113
  year: 2020
  ident: 10.1016/j.heliyon.2023.e17187_bib15
  article-title: An enhanced genetic algorithm for the distributed assembly permutation flowshop scheduling problem
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2020.106443
– volume: 56
  start-page: 298
  year: 2017
  ident: 10.1016/j.heliyon.2023.e17187_bib6
  article-title: Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.014
– volume: 2018
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17187_bib12
  article-title: Improvement analysis and application of real-coded genetic algorithm for solving constrained optimization problems
  publication-title: Math. Probl Eng.
SSID ssj0001586973
Score 2.2382307
Snippet With the continuous progress of society, tests, and exams appear more and more frequently in people's lives. Faced with the ever-increasing demand for test...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e17187
SubjectTerms algorithms
Applications in subject areas
data collection
Distance education and online learning
Improving classroom teaching
mutation
probability
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bj5QwFIebdTZRX7xf8BZMfGWGS2nL42jcbEycGHWS9anpdWZWBDIyMetf7ymUWcnE7PoInALlHHo-4PArQm9ilVsBGB2JhJEIU6miwhoWCQLwiqnRWnYFsgtyusQfzvKzIzRMXOiqKt0b626M9tdu9gWyDuRJ7HAZ8meezxptb6BjkgN-T9DxcvFp_s1NIgdmkbO7_FNndj5dm3JzUTup0zSbmgTGYjrKQZ1U_ygVHaLmYcXkrV3ViItfoiz_Skcnd9Hn4aeevgrl-3TXyqn6fajxeP2e3kN3PJyG897uPjoy1QN086P__P4QLeYhkGkbNqIx23DVKVY7x4aiXNXbTbv-EbqsqENY5b_86NBU667KoLOHHV8aP0LLk_df351GfkKGSOWEtpHR1MYFLWxGE1lQRdJEpKnVrGBEapOzRGENPEhjIgmOjVOqYUopYpQVMpbZYzSp6so8RaF1QoRWWJZkFCugtExqASwFBGitJjRAeHARV16t3E2aUfKhLO2ce89y51neezZA032zppfruKrBW-f_vbFT2-5W1NsV927hQIEslRI8EmPI36LAGkDZCGYsPA0mWYDYED3cg0sPJLCrzVXHfz1EG4cb20WEqEy9-8mBG5yWIhDjv20gSpzkIi3SAD3pI3TfE6crhGG4hpMbxe6oq-Mt1WbdCYwncFjwSxyg2T7Mr3c5n_13i-fotlvqq-9eoEm73ZmXwHmtfOXv7D_XaFHd
  priority: 102
  providerName: Unpaywall
Title A test paper generation algorithm based on diseased enhanced genetic algorithm
URI https://dx.doi.org/10.1016/j.heliyon.2023.e17187
https://www.ncbi.nlm.nih.gov/pubmed/37484322
https://www.proquest.com/docview/2841403643
https://www.proquest.com/docview/3040371792
https://pubmed.ncbi.nlm.nih.gov/PMC10361370
http://www.cell.com/article/S2405844023043955/pdf
https://doaj.org/article/61282bb43904429a94d161ea8ef60513
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: KQ8
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DIK
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: AKRWK
  dateStart: 20150901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQkIAXxPgMbJOReE3rJI7tPJaJaUKi4oFK48ny59opS6uSCu2_5-ykXaMJlQdek7Md-853v-jOPyP0iZjSK4DRqcoESynXJq28E6liAF4pd9bqWCA7ZZcz-vWqvNq76ivUhHX0wN3CjSECi1xriJuEgu9UFbUAUpwSzgMSj_fV5kRUez9T3flgAYOF9DJErDIVlJL74zvjm9Hc1Yu7ZeA_zYuRy8BB80Fgivz9g_j0EH8-LKN8umlW6u63quu9GHXxAj3vwSWedJM6Ro9c8xI9-danz1-h6QQDsmzxSq3cGl9HxumgGKzq6-V60c5vcYhqFsOjPnNjsWvmsUogykPH98Kv0eziy4_zy7S_UCE1JeNt6iz3pOKVL3imK25Ynqk891ZUgmnrSpEZagHPccI0o8QFphlhjGHOeKWJLt6go2bZuHcI-0Ak6JUXWcGpAZRVaKsACwGC894yniC6XU1perbxcOlFLbdlZTeyV4IMSpCdEhI02jVbdXQbhxp8DqraCQe27PgAbEj2NiQP2VCCxFbRsgceHaCArhaHxv-4NQwJGzNkW1TjlptfEuJ-4EIExPd3mQJcKOiCV3mC3nbGtJtJ4AWi4G7h4wZmNpjq8E2zmEeC8AyGBb2QBI13Fvlvy_n-fyznB_QsdNkV1J2go3a9cacA3Vp9FnfpGXo8m36f_PwDbyFBHw
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bj5QwFIebdTZRX7xf8BZMfGWGS2nL42jcbEycGHWS9anpdWZWBDIyMetf7ymUWcnE7PoInALlHHo-4PArQm9ilVsBGB2JhJEIU6miwhoWCQLwiqnRWnYFsgtyusQfzvKzIzRMXOiqKt0b626M9tdu9gWyDuRJ7HAZ8meezxptb6BjkgN-T9DxcvFp_s1NIgdmkbO7_FNndj5dm3JzUTup0zSbmgTGYjrKQZ1U_ygVHaLmYcXkrV3ViItfoiz_Skcnd9Hn4aeevgrl-3TXyqn6fajxeP2e3kN3PJyG897uPjoy1QN086P__P4QLeYhkGkbNqIx23DVKVY7x4aiXNXbTbv-EbqsqENY5b_86NBU667KoLOHHV8aP0LLk_df351GfkKGSOWEtpHR1MYFLWxGE1lQRdJEpKnVrGBEapOzRGENPEhjIgmOjVOqYUopYpQVMpbZYzSp6so8RaF1QoRWWJZkFCugtExqASwFBGitJjRAeHARV16t3E2aUfKhLO2ce89y51neezZA032zppfruKrBW-f_vbFT2-5W1NsV927hQIEslRI8EmPI36LAGkDZCGYsPA0mWYDYED3cg0sPJLCrzVXHfz1EG4cb20WEqEy9-8mBG5yWIhDjv20gSpzkIi3SAD3pI3TfE6crhGG4hpMbxe6oq-Mt1WbdCYwncFjwSxyg2T7Mr3c5n_13i-fotlvqq-9eoEm73ZmXwHmtfOXv7D_XaFHd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+test+paper+generation+algorithm+based+on+diseased+enhanced+genetic+algorithm&rft.jtitle=Heliyon&rft.au=Cui%2C+JunChuan&rft.au=Zhou%2C+Ya&rft.au=Huang%2C+Guimin&rft.date=2023-06-01&rft.pub=Elsevier&rft.eissn=2405-8440&rft.volume=9&rft.issue=6&rft_id=info:doi/10.1016%2Fj.heliyon.2023.e17187&rft.externalDocID=PMC10361370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon