Artificial intelligence–enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia

Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant t...

Full description

Saved in:
Bibliographic Details
Published inCardiovascular digital health journal Vol. 4; no. 2; pp. 60 - 67
Main Authors Sau, Arunashis, Ibrahim, Safi, Kramer, Daniel B., Waks, Jonathan W., Qureshi, Norman, Koa-Wing, Michael, Keene, Daniel, Malcolme-Lawes, Louisa, Lefroy, David C., Linton, Nicholas W.F., Lim, Phang Boon, Varnava, Amanda, Whinnett, Zachary I., Kanagaratnam, Prapa, Mandic, Danilo, Peters, Nicholas S., Ng, Fu Siong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2666-6936
2666-6936
DOI10.1016/j.cvdhj.2023.01.004

Cover

Abstract Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard. We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm. The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves. We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.
AbstractList Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard. We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm. The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves. We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.
BackgroundAccurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard. MethodsWe trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm. ResultsThe model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves. ConclusionWe describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.
Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.BackgroundAccurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.MethodsWe trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.ResultsThe model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.ConclusionWe describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.
Author Keene, Daniel
Linton, Nicholas W.F.
Sau, Arunashis
Lim, Phang Boon
Waks, Jonathan W.
Koa-Wing, Michael
Whinnett, Zachary I.
Ibrahim, Safi
Kanagaratnam, Prapa
Ng, Fu Siong
Kramer, Daniel B.
Mandic, Danilo
Qureshi, Norman
Malcolme-Lawes, Louisa
Lefroy, David C.
Peters, Nicholas S.
Varnava, Amanda
Author_xml – sequence: 1
  givenname: Arunashis
  orcidid: 0000-0002-0204-7078
  surname: Sau
  fullname: Sau, Arunashis
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 2
  givenname: Safi
  surname: Ibrahim
  fullname: Ibrahim, Safi
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 3
  givenname: Daniel B.
  surname: Kramer
  fullname: Kramer, Daniel B.
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 4
  givenname: Jonathan W.
  surname: Waks
  fullname: Waks, Jonathan W.
  organization: Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 5
  givenname: Norman
  surname: Qureshi
  fullname: Qureshi, Norman
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 6
  givenname: Michael
  surname: Koa-Wing
  fullname: Koa-Wing, Michael
  organization: Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom
– sequence: 7
  givenname: Daniel
  surname: Keene
  fullname: Keene, Daniel
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 8
  givenname: Louisa
  surname: Malcolme-Lawes
  fullname: Malcolme-Lawes, Louisa
  organization: Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom
– sequence: 9
  givenname: David C.
  surname: Lefroy
  fullname: Lefroy, David C.
  organization: Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom
– sequence: 10
  givenname: Nicholas W.F.
  surname: Linton
  fullname: Linton, Nicholas W.F.
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 11
  givenname: Phang Boon
  surname: Lim
  fullname: Lim, Phang Boon
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 12
  givenname: Amanda
  surname: Varnava
  fullname: Varnava, Amanda
  organization: Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom
– sequence: 13
  givenname: Zachary I.
  surname: Whinnett
  fullname: Whinnett, Zachary I.
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 14
  givenname: Prapa
  surname: Kanagaratnam
  fullname: Kanagaratnam, Prapa
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 15
  givenname: Danilo
  surname: Mandic
  fullname: Mandic, Danilo
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
– sequence: 16
  givenname: Nicholas S.
  surname: Peters
  fullname: Peters, Nicholas S.
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
– sequence: 17
  givenname: Fu Siong
  surname: Ng
  fullname: Ng, Fu Siong
  email: f.ng@imperial.ac.uk
  organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37101944$$D View this record in MEDLINE/PubMed
BookMark eNqNUstuEzEUHaEiWkq_AAnNkk2CXzOTEQJUVbykSiyAteWx7yQ3OHawPUHZ8Q-s-Tm-BE9SoBRQWNmWz0P33HO3OHLeQVHcp2RKCa0fLad6YxbLKSOMTwmdEiJuFSesrutJ3fL66Nr9uDiLcUkIYRXltOF3imPeZJFWiJPi63lI2KNGZUt0CazFOTgN3z5_Aac6C6YECzoFr1Uw6OdBrcrkS4MxoZsPGBelSgH9Blw-9GBVKANMxpdyqUxKL7Y7qir74Fd_gp032fvvlHvF7V7ZCGdX52nx_sXzdxevJpdvXr6-OL-c6Kpu0kTPqGIGBIhOd92s7TlhM1U1IAhvDG8VMGhNXZuurthMa9E2rOkFaxlrBKsqflqIve7g1mr7SVkr1wFXKmwlJXIMXC7lLnA5Bi4JlTnwTHu2p62HbgVG7yb4RfUK5e8_Dhdy7jejIuMVabLCwyuF4D8OEJNcYdR5C8qBH6JkM1K3rSAtzdAH181-uvzYZQa0e4AOPsYAvdSYVEI_eqM9MAm_wf2_-Z_sWZB3s0EIMmoc22Mw5M5I4_EA_-kNvrboUCv7AbYQl34ILq9dUhmZJPLtWOmx0YznNpNqzOTxvwUO2n8HVisM7Q
CitedBy_id crossref_primary_10_3389_fcvm_2023_1258167
crossref_primary_10_3390_jpm14060656
crossref_primary_10_1016_j_amjcard_2023_08_084
crossref_primary_10_32604_cmc_2023_042627
crossref_primary_10_1093_ehjdh_ztaf011
crossref_primary_10_1111_pace_14995
crossref_primary_10_1016_S2589_7500_24_00172_9
Cites_doi 10.1016/j.arcmed.2016.09.003
10.1038/s41591-018-0268-3
10.1016/S0002-9149(03)00153-X
10.1016/0735-1097(93)90720-L
10.1093/ehjdh/ztac042
10.1109/JBHI.2015.2478076
10.1093/eurheartj/ehz467
10.1186/s12872-020-01344-0
10.1136/heartjnl-2020-318686
10.1007/s10554-018-1449-3
10.1007/s10840-012-9696-z
10.1038/s41569-020-00503-2
10.1016/j.amjcard.2004.12.020
10.1053/eupc.2002.0280
10.1016/j.jacc.2003.08.013
10.1016/0002-9149(89)90865-5
10.1038/s41467-020-15432-4
10.1016/S2589-7500(20)30107-2
10.1016/S0735-1097(96)00490-1
10.1016/j.ijcard.2014.10.043
10.1111/j.1368-5031.2006.00839.x
10.1161/01.CIR.82.2.407
10.1038/s41591-018-0240-2
10.1093/ehjdh/ztab025
10.1093/europace/eup130
10.1093/europace/euaa377
ContentType Journal Article
Copyright 2023 Heart Rhythm Society
Heart Rhythm Society
2023 Heart.
2023 Heart. 2023 Heart Rhythm Society
Copyright_xml – notice: 2023 Heart Rhythm Society
– notice: Heart Rhythm Society
– notice: 2023 Heart.
– notice: 2023 Heart. 2023 Heart Rhythm Society
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.cvdhj.2023.01.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-6936
EndPage 67
ExternalDocumentID 10.1016/j.cvdhj.2023.01.004
PMC10123507
37101944
10_1016_j_cvdhj_2023_01_004
S2666693623000051
1_s2_0_S2666693623000051
Genre Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: FS/CRTF/21/24183
– fundername: British Heart Foundation
  grantid: RG/F/22/110078
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
RPM
Z5R
AAHOK
AFCTW
6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c567t-c81a2de4e4bcbb89f3028a57e4037d39ae2e9d66db6528cc49727f42922742553
IEDL.DBID UNPAY
ISSN 2666-6936
IngestDate Sun Oct 26 04:00:53 EDT 2025
Thu Aug 21 18:38:14 EDT 2025
Thu Sep 04 16:09:39 EDT 2025
Mon Jul 21 06:06:59 EDT 2025
Wed Oct 01 02:20:11 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Thu Jul 20 20:08:59 EDT 2023
Tue Feb 25 20:10:50 EST 2025
Tue Aug 26 16:32:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Atrioventricular nodal re-entrant tachycardia
Electrocardiogram
Machine learning
Atrioventricular re-entrant tachycardia
Artificial intelligence
Ablation
Electrophysiology study
Language English
License This is an open access article under the CC BY license.
2023 Heart.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-c81a2de4e4bcbb89f3028a57e4037d39ae2e9d66db6528cc49727f42922742553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0204-7078
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.cvdigitalhealthjournal.com/article/S2666693623000051/pdf
PMID 37101944
PQID 2806994091
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_cvdhj_2023_01_004
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123507
proquest_miscellaneous_2806994091
pubmed_primary_37101944
crossref_citationtrail_10_1016_j_cvdhj_2023_01_004
crossref_primary_10_1016_j_cvdhj_2023_01_004
elsevier_sciencedirect_doi_10_1016_j_cvdhj_2023_01_004
elsevier_clinicalkeyesjournals_1_s2_0_S2666693623000051
elsevier_clinicalkey_doi_10_1016_j_cvdhj_2023_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cardiovascular digital health journal
PublicationTitleAlternate Cardiovasc Digit Health J
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Huycke, Lai, Nguyen, Keung, Sung (bib10) 1989; 64
Sau, Ibrahim, Ahmed (bib21) 2022; 3
Howard, Francis (bib20) 2022; 108
Tai, Chen, Chiang (bib8) 1997; 29
Howard JP. Custom Digital ECG Segmentation Software Github2020.
Siontis, Noseworthy, Attia, Friedman (bib26) 2021; 18
Brugada, Katritsis, Arbelo (bib1) 2020; 41
Dengke, Lan, Xiangli, Shubin (bib29) 2019; 35
Zhu, Cheng, Yin (bib16) 2020; 2
Ma, Qiu, Yang, Tang (bib31) 2015; 10
Jaeggi, Gilljam, Bauersfeld, Chiu, Gow (bib5) 2003; 91
Kuck, Friday, Kunze, Schlüter, Lazzara, Jackman (bib28) 1990; 82
Perlman, Katz, Amit, Zigel (bib25) 2016; 20
Ribeiro, Singh, Guestrin (bib24) 2016
Ribeiro, Ribeiro, Paixao (bib14) 2020; 11
Zhong, Guo, Hou, Chen, Wang, Zhang (bib7) 2006; 60
Shurrab, Szili-Torok, Akca (bib13) 2015; 179
Kubota Y. tf-keras-vis 2020.
Arya, Kottkamp, Piorkowski (bib2) 2005; 95
Chen, Wang, Proietti (bib30) 2020; 20
Somani, Russak, Richter (bib17) 2021; 23
Katritsis, Zografos, Katritsis (bib27) 2017; 19
Maury (bib6) 2003; 5
Laish-Farkash, Shurrab, Singh (bib12) 2012; 35
Di Toro, Hadid, Lopez, Fuselli, Luis, Labadet (bib3) 2009; 11
Jo, Kwon, Jeon (bib18) 2021; 2
Blomström-Lundqvist, Scheinman, Aliot (bib11) 2003; 42
Attia, Kapa, Lopez-Jimenez (bib22) 2019; 25
Filgueiras Medeiros, Nardo-Botelho, Felix-Bernardes (bib4) 2016; 47
Hannun, Rajpurkar, Haghpanahi (bib15) 2019; 25
Kalbfleisch, El-Atassi, Calkins, Langberg, Morady (bib9) 1993; 21
Ribeiro (10.1016/j.cvdhj.2023.01.004_bib14) 2020; 11
Somani (10.1016/j.cvdhj.2023.01.004_bib17) 2021; 23
Huycke (10.1016/j.cvdhj.2023.01.004_bib10) 1989; 64
Chen (10.1016/j.cvdhj.2023.01.004_bib30) 2020; 20
Kalbfleisch (10.1016/j.cvdhj.2023.01.004_bib9) 1993; 21
10.1016/j.cvdhj.2023.01.004_bib19
Arya (10.1016/j.cvdhj.2023.01.004_bib2) 2005; 95
Howard (10.1016/j.cvdhj.2023.01.004_bib20) 2022; 108
Katritsis (10.1016/j.cvdhj.2023.01.004_bib27) 2017; 19
Hannun (10.1016/j.cvdhj.2023.01.004_bib15) 2019; 25
Kuck (10.1016/j.cvdhj.2023.01.004_bib28) 1990; 82
Zhu (10.1016/j.cvdhj.2023.01.004_bib16) 2020; 2
Dengke (10.1016/j.cvdhj.2023.01.004_bib29) 2019; 35
Jo (10.1016/j.cvdhj.2023.01.004_bib18) 2021; 2
Tai (10.1016/j.cvdhj.2023.01.004_bib8) 1997; 29
10.1016/j.cvdhj.2023.01.004_bib23
Sau (10.1016/j.cvdhj.2023.01.004_bib21) 2022; 3
Shurrab (10.1016/j.cvdhj.2023.01.004_bib13) 2015; 179
Attia (10.1016/j.cvdhj.2023.01.004_bib22) 2019; 25
Di Toro (10.1016/j.cvdhj.2023.01.004_bib3) 2009; 11
Jaeggi (10.1016/j.cvdhj.2023.01.004_bib5) 2003; 91
Zhong (10.1016/j.cvdhj.2023.01.004_bib7) 2006; 60
Perlman (10.1016/j.cvdhj.2023.01.004_bib25) 2016; 20
Blomström-Lundqvist (10.1016/j.cvdhj.2023.01.004_bib11) 2003; 42
Ribeiro (10.1016/j.cvdhj.2023.01.004_bib24) 2016
Maury (10.1016/j.cvdhj.2023.01.004_bib6) 2003; 5
Siontis (10.1016/j.cvdhj.2023.01.004_bib26) 2021; 18
Brugada (10.1016/j.cvdhj.2023.01.004_bib1) 2020; 41
Filgueiras Medeiros (10.1016/j.cvdhj.2023.01.004_bib4) 2016; 47
Laish-Farkash (10.1016/j.cvdhj.2023.01.004_bib12) 2012; 35
Ma (10.1016/j.cvdhj.2023.01.004_bib31) 2015; 10
References_xml – volume: 29
  start-page: 394
  year: 1997
  end-page: 402
  ident: bib8
  article-title: A new electrocardiographic algorithm using retrograde P waves for differentiating atrioventricular node reentrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway
  publication-title: J Am Coll Cardiol
– volume: 35
  start-page: 387
  year: 2019
  end-page: 392
  ident: bib29
  article-title: Treatment of left accessory cardiac pathway conduction disorders using radiofrequency catheter ablation under the guidance of the Ensite NavX 3D mapping system: a retrospective study
  publication-title: Int J Cardiovasc Imaging
– volume: 42
  start-page: 1493
  year: 2003
  end-page: 1531
  ident: bib11
  article-title: ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias—executive summary: a report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to develop guidelines for the management of patients with supraventricular arrhythmias) developed in collaboration with NASPE-Heart Rhythm Society
  publication-title: J Am Coll Cardiol
– volume: 25
  start-page: 65
  year: 2019
  end-page: 69
  ident: bib15
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat Med
– volume: 23
  start-page: 1179
  year: 2021
  end-page: 1191
  ident: bib17
  article-title: Deep learning and the electrocardiogram: review of the current state-of-the-art
  publication-title: Europace
– volume: 95
  start-page: 875
  year: 2005
  end-page: 878
  ident: bib2
  article-title: Differentiating atrioventricular nodal reentrant tachycardia from tachycardia via concealed accessory pathway
  publication-title: Am J Cardiol
– volume: 91
  start-page: 1084
  year: 2003
  end-page: 1089
  ident: bib5
  article-title: Electrocardiographic differentiation of typical atrioventricular node reentrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway in children
  publication-title: Am J Cardiol
– volume: 18
  start-page: 465
  year: 2021
  end-page: 478
  ident: bib26
  article-title: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
  publication-title: Nat Rev Cardiol
– volume: 11
  start-page: 944
  year: 2009
  end-page: 948
  ident: bib3
  article-title: Utility of the aVL lead in the electrocardiographic diagnosis of atrioventricular node re-entrant tachycardia
  publication-title: Europace
– volume: 60
  start-page: 1371
  year: 2006
  end-page: 1377
  ident: bib7
  article-title: A modified electrocardiographic algorithm for differentiating typical atrioventricular node re-entrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway
  publication-title: Int J Clin Pract
– volume: 2
  start-page: 290
  year: 2021
  end-page: 298
  ident: bib18
  article-title: Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm
  publication-title: Eur Heart J Digit Health
– volume: 108
  start-page: 973
  year: 2022
  end-page: 981
  ident: bib20
  article-title: Machine learning with convolutional neural networks for clinical cardiologists
  publication-title: Heart
– volume: 25
  start-page: 70
  year: 2019
  end-page: 74
  ident: bib22
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
  publication-title: Nat Med
– volume: 10
  year: 2015
  ident: bib31
  article-title: Catheter ablation of right-sided accessory pathways in adults using the three-dimensional mapping system: a randomized comparison to the conventional approach
  publication-title: PLoS One
– volume: 179
  start-page: 417
  year: 2015
  end-page: 420
  ident: bib13
  article-title: Empiric slow pathway ablation in non-inducible supraventricular tachycardia
  publication-title: Int J Cardiol
– volume: 64
  start-page: 1131
  year: 1989
  end-page: 1137
  ident: bib10
  article-title: Role of intravenous isoproterenol in the electrophysiologic induction of atrioventricular node reentrant tachycardia in patients with dual atrioventricular node pathways
  publication-title: Am J Cardiol
– volume: 20
  start-page: 1513
  year: 2016
  end-page: 1520
  ident: bib25
  article-title: Supraventricular tachycardia classification in the 12-lead ECG using atrial waves detection and a clinically based tree scheme
  publication-title: IEEE J Biomed Health Inform
– volume: 47
  start-page: 394
  year: 2016
  end-page: 400
  ident: bib4
  article-title: Diagnostic accuracy of several electrocardiographic criteria for the prediction of atrioventricular nodal reentrant tachycardia
  publication-title: Arch Med Res
– volume: 82
  start-page: 407
  year: 1990
  end-page: 417
  ident: bib28
  article-title: Sites of conduction block in accessory atrioventricular pathways. Basis for concealed accessory pathways
  publication-title: Circulation
– reference: Howard JP. Custom Digital ECG Segmentation Software Github2020.
– volume: 41
  start-page: 655
  year: 2020
  end-page: 720
  ident: bib1
  article-title: 2019 ESC Guidelines for the management of patients with supraventricular tachycardia. The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC)
  publication-title: Eur Heart J
– year: 2016
  ident: bib24
  article-title: “Why should I trust you?”: explaining the predictions of any classifier
  publication-title: KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 35
  start-page: 183
  year: 2012
  end-page: 187
  ident: bib12
  article-title: Approaches to empiric ablation of slow pathway: results from the Canadian EP web survey
  publication-title: J Interv Card Electrophysiol
– volume: 2
  start-page: e348
  year: 2020
  end-page: e357
  ident: bib16
  article-title: Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study
  publication-title: Lancet Digit Health
– volume: 5
  start-page: 57
  year: 2003
  end-page: 64
  ident: bib6
  article-title: Distinction between atrioventricular reciprocating tachycardia and atrioventricular node re-entrant tachycardia in the adult population based on P wave location Should we reconsider the value of some ECG criteria according to gender and age?
  publication-title: Europace
– volume: 11
  start-page: 1760
  year: 2020
  ident: bib14
  article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network
  publication-title: Nat Commun
– reference: Kubota Y. tf-keras-vis 2020.
– volume: 20
  start-page: 48
  year: 2020
  ident: bib30
  article-title: Zero-fluoroscopy approach for ablation of supraventricular tachycardia using the Ensite NavX system: a multicenter experience
  publication-title: BMC Cardiovasc Disord
– volume: 21
  start-page: 85
  year: 1993
  end-page: 89
  ident: bib9
  article-title: Differentiation of paroxysmal narrow QRS complex tachycardias using the 12-lead electrocardiogram
  publication-title: J Am Coll Cardiol
– volume: 3
  start-page: 405
  year: 2022
  end-page: 414
  ident: bib21
  article-title: Artificial intelligence-enabled electrocardiogram to distinguish cavotricuspid isthmus dependence from other atrial tachycardia mechanisms
  publication-title: Eur Heart J Digit Health
– volume: 19
  start-page: 602
  year: 2017
  end-page: 606
  ident: bib27
  article-title: Catheter ablation vs. antiarrhythmic drug therapy in patients with symptomatic atrioventricular nodal re-entrant tachycardia: a randomized, controlled trial
  publication-title: Europace
– volume: 47
  start-page: 394
  year: 2016
  ident: 10.1016/j.cvdhj.2023.01.004_bib4
  article-title: Diagnostic accuracy of several electrocardiographic criteria for the prediction of atrioventricular nodal reentrant tachycardia
  publication-title: Arch Med Res
  doi: 10.1016/j.arcmed.2016.09.003
– volume: 25
  start-page: 65
  year: 2019
  ident: 10.1016/j.cvdhj.2023.01.004_bib15
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0268-3
– volume: 91
  start-page: 1084
  year: 2003
  ident: 10.1016/j.cvdhj.2023.01.004_bib5
  article-title: Electrocardiographic differentiation of typical atrioventricular node reentrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway in children
  publication-title: Am J Cardiol
  doi: 10.1016/S0002-9149(03)00153-X
– volume: 21
  start-page: 85
  year: 1993
  ident: 10.1016/j.cvdhj.2023.01.004_bib9
  article-title: Differentiation of paroxysmal narrow QRS complex tachycardias using the 12-lead electrocardiogram
  publication-title: J Am Coll Cardiol
  doi: 10.1016/0735-1097(93)90720-L
– volume: 3
  start-page: 405
  year: 2022
  ident: 10.1016/j.cvdhj.2023.01.004_bib21
  article-title: Artificial intelligence-enabled electrocardiogram to distinguish cavotricuspid isthmus dependence from other atrial tachycardia mechanisms
  publication-title: Eur Heart J Digit Health
  doi: 10.1093/ehjdh/ztac042
– volume: 20
  start-page: 1513
  year: 2016
  ident: 10.1016/j.cvdhj.2023.01.004_bib25
  article-title: Supraventricular tachycardia classification in the 12-lead ECG using atrial waves detection and a clinically based tree scheme
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2478076
– volume: 10
  year: 2015
  ident: 10.1016/j.cvdhj.2023.01.004_bib31
  article-title: Catheter ablation of right-sided accessory pathways in adults using the three-dimensional mapping system: a randomized comparison to the conventional approach
  publication-title: PLoS One
– volume: 41
  start-page: 655
  year: 2020
  ident: 10.1016/j.cvdhj.2023.01.004_bib1
  article-title: 2019 ESC Guidelines for the management of patients with supraventricular tachycardia. The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC)
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehz467
– ident: 10.1016/j.cvdhj.2023.01.004_bib23
– volume: 20
  start-page: 48
  year: 2020
  ident: 10.1016/j.cvdhj.2023.01.004_bib30
  article-title: Zero-fluoroscopy approach for ablation of supraventricular tachycardia using the Ensite NavX system: a multicenter experience
  publication-title: BMC Cardiovasc Disord
  doi: 10.1186/s12872-020-01344-0
– ident: 10.1016/j.cvdhj.2023.01.004_bib19
– volume: 108
  start-page: 973
  year: 2022
  ident: 10.1016/j.cvdhj.2023.01.004_bib20
  article-title: Machine learning with convolutional neural networks for clinical cardiologists
  publication-title: Heart
  doi: 10.1136/heartjnl-2020-318686
– volume: 35
  start-page: 387
  year: 2019
  ident: 10.1016/j.cvdhj.2023.01.004_bib29
  article-title: Treatment of left accessory cardiac pathway conduction disorders using radiofrequency catheter ablation under the guidance of the Ensite NavX 3D mapping system: a retrospective study
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-018-1449-3
– volume: 35
  start-page: 183
  year: 2012
  ident: 10.1016/j.cvdhj.2023.01.004_bib12
  article-title: Approaches to empiric ablation of slow pathway: results from the Canadian EP web survey
  publication-title: J Interv Card Electrophysiol
  doi: 10.1007/s10840-012-9696-z
– year: 2016
  ident: 10.1016/j.cvdhj.2023.01.004_bib24
  article-title: “Why should I trust you?”: explaining the predictions of any classifier
– volume: 18
  start-page: 465
  year: 2021
  ident: 10.1016/j.cvdhj.2023.01.004_bib26
  article-title: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-020-00503-2
– volume: 95
  start-page: 875
  year: 2005
  ident: 10.1016/j.cvdhj.2023.01.004_bib2
  article-title: Differentiating atrioventricular nodal reentrant tachycardia from tachycardia via concealed accessory pathway
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2004.12.020
– volume: 19
  start-page: 602
  year: 2017
  ident: 10.1016/j.cvdhj.2023.01.004_bib27
  article-title: Catheter ablation vs. antiarrhythmic drug therapy in patients with symptomatic atrioventricular nodal re-entrant tachycardia: a randomized, controlled trial
  publication-title: Europace
– volume: 5
  start-page: 57
  year: 2003
  ident: 10.1016/j.cvdhj.2023.01.004_bib6
  article-title: Distinction between atrioventricular reciprocating tachycardia and atrioventricular node re-entrant tachycardia in the adult population based on P wave location Should we reconsider the value of some ECG criteria according to gender and age?
  publication-title: Europace
  doi: 10.1053/eupc.2002.0280
– volume: 42
  start-page: 1493
  year: 2003
  ident: 10.1016/j.cvdhj.2023.01.004_bib11
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2003.08.013
– volume: 64
  start-page: 1131
  year: 1989
  ident: 10.1016/j.cvdhj.2023.01.004_bib10
  article-title: Role of intravenous isoproterenol in the electrophysiologic induction of atrioventricular node reentrant tachycardia in patients with dual atrioventricular node pathways
  publication-title: Am J Cardiol
  doi: 10.1016/0002-9149(89)90865-5
– volume: 11
  start-page: 1760
  year: 2020
  ident: 10.1016/j.cvdhj.2023.01.004_bib14
  article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15432-4
– volume: 2
  start-page: e348
  year: 2020
  ident: 10.1016/j.cvdhj.2023.01.004_bib16
  article-title: Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30107-2
– volume: 29
  start-page: 394
  year: 1997
  ident: 10.1016/j.cvdhj.2023.01.004_bib8
  article-title: A new electrocardiographic algorithm using retrograde P waves for differentiating atrioventricular node reentrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(96)00490-1
– volume: 179
  start-page: 417
  year: 2015
  ident: 10.1016/j.cvdhj.2023.01.004_bib13
  article-title: Empiric slow pathway ablation in non-inducible supraventricular tachycardia
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2014.10.043
– volume: 60
  start-page: 1371
  year: 2006
  ident: 10.1016/j.cvdhj.2023.01.004_bib7
  article-title: A modified electrocardiographic algorithm for differentiating typical atrioventricular node re-entrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway
  publication-title: Int J Clin Pract
  doi: 10.1111/j.1368-5031.2006.00839.x
– volume: 82
  start-page: 407
  year: 1990
  ident: 10.1016/j.cvdhj.2023.01.004_bib28
  article-title: Sites of conduction block in accessory atrioventricular pathways. Basis for concealed accessory pathways
  publication-title: Circulation
  doi: 10.1161/01.CIR.82.2.407
– volume: 25
  start-page: 70
  year: 2019
  ident: 10.1016/j.cvdhj.2023.01.004_bib22
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0240-2
– volume: 2
  start-page: 290
  year: 2021
  ident: 10.1016/j.cvdhj.2023.01.004_bib18
  article-title: Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm
  publication-title: Eur Heart J Digit Health
  doi: 10.1093/ehjdh/ztab025
– volume: 11
  start-page: 944
  year: 2009
  ident: 10.1016/j.cvdhj.2023.01.004_bib3
  article-title: Utility of the aVL lead in the electrocardiographic diagnosis of atrioventricular node re-entrant tachycardia
  publication-title: Europace
  doi: 10.1093/europace/eup130
– volume: 23
  start-page: 1179
  year: 2021
  ident: 10.1016/j.cvdhj.2023.01.004_bib17
  article-title: Deep learning and the electrocardiogram: review of the current state-of-the-art
  publication-title: Europace
  doi: 10.1093/europace/euaa377
SSID ssj0002513173
Score 2.3003454
Snippet Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a...
BackgroundAccurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 60
SubjectTerms Ablation
Artificial intelligence
Atrioventricular nodal re-entrant tachycardia
Atrioventricular re-entrant tachycardia
Electrocardiogram
Electrophysiology study
Machine learning
Original
Title Artificial intelligence–enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666693623000051
https://www.clinicalkey.es/playcontent/1-s2.0-S2666693623000051
https://dx.doi.org/10.1016/j.cvdhj.2023.01.004
https://www.ncbi.nlm.nih.gov/pubmed/37101944
https://www.proquest.com/docview/2806994091
https://pubmed.ncbi.nlm.nih.gov/PMC10123507
http://www.cvdigitalhealthjournal.com/article/S2666693623000051/pdf
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-6936
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0002513173
  issn: 2666-6936
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-6936
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513173
  issn: 2666-6936
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2666-6936
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513173
  issn: 2666-6936
  databaseCode: AKRWK
  dateStart: 20200701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2666-6936
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513173
  issn: 2666-6936
  databaseCode: RPM
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVgIuvB_LYxUkjmTrJHayPlaIqkJqhQQrlZPlV7rbrpLVJgGVE_-BM3-OX4LHcaJWWRUQx1VmZMUZj7-1Z74Podci0dLoJA-xBgkzGkm75nIggoyp0lmGpePSOzpOD-fk_Qk92UGdSidUVaovenkKihltJ6CfU5e1_WzufbTbSpoym3wT7FDI3lrnN9BuSi0gH6Hd-fGH_c8gK2etQrDr-IZcZZcdYHE2Bd1wx9jpNdq27ElDzDksnbzVFGtx8VWsVpf2pYO7SHfdPW05yvm0qeVUfRuSPf7PK99DdzxuDfZbu_toxxQP0M0jfzP_EP2EJy0bRbC8RPP56_sP49qzdOAVd5SrgIWisKAuAw05pjhtltUiALWAEuov3aGk2AQbE7oJKOqgFmpx4VxFAC0xQ-Oi1Hbs7S6P0Pzg3ae3h6GXfggVTbM6VLNIxNoQQ6SScsbyxOIgQTNDcJLphAkTG6bTVMuUxjOlCLM4LAfpLbh6pjR5jEZFWZinKABGQSxkauz_ZZIxw4Sk0uIigmVsJCZjFHcfnyvPiw7yHCveFcCdcRcxHCKG44hjcHrTO61bWpDrzUkXVbzreLU5mttt63q3bJubqXyAVDziVcwxHwTHGKW9p4dSLUT685CvuqDnNtHA7ZEoTNlUHK7gGSMWX47Rk3YR9K-eWJwaMWK9Z1eWR28AJOZXnxTLhSMzj1y3Ns7GKOxX0t9M6bN_tH-ObsOvtujqBRrVm8a8tHiylhN3DjNxB30Tnzt-A3uyfiw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVgIuvB_LS0biSLZOYjubY4WoKqRWSLBSOVl-bXfLKlltElA58R848-f4JXgcJ2qVVQFxjDIjK854_CWe-T6EXsnUKGvSeUQMSJixWLk1NwciyIRpk2VEeS69o2N-OKPvTtjJDupUOqGqUn8xy1NQzGg7AcOc-qwdZnPvg9tWOM9d8k2JRyF7azO_hnY5c4B8hHZnx-_3P4GsnLOKwK7jG_KVXW6AxdkEdMM9Y2fQaNuyJw0x57B08kZTrOX5V7laXdiXDm4j03X3tOUonydNrSb625Ds8X8e-Q66FXAr3m_t7qIdW9xD14_Cyfx99BPutGwUeHmB5vPX9x_Wt2cZHBR3tK-AhaIwXJfYQI4pTptltcCgFlBC_aX_KSk3eGMjPwFFjWupF-feVWJoiRkaF6VxY293eYBmB28_vjmMgvRDpBnP6khPY5kYSy1VWqlpPk8dDpIss5SkmUlzaRObG86N4iyZak1zh8PmIL0FR8-MpQ_RqCgL-xhhYBQkUnHrvpdplttcKqYcLqJEJVYROkZJ9_KFDrzoIM-xEl0B3JnwESMgYgSJBQGn173TuqUFudqcdlEluo5Xl6OF27audsu2udkqBEglYlElgohBcIwR7z0DlGoh0p-HfNkFvXCJBk6PZGHLphJwBJ_n1OHLMXrULoL-0VOHU-OcOu_ppeXRGwCJ-eU7xXLhycxj361NsjGK-pX0N1P65B_tn6KbcNUWXT1Do3rT2OcOT9bqRcgXvwGi0Hwn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enabled+electrocardiogram+to+distinguish+atrioventricular+re-entrant+tachycardia+from+atrioventricular+nodal+re-entrant+tachycardia&rft.jtitle=Cardiovascular+digital+health+journal&rft.au=Sau%2C+Arunashis&rft.au=Ibrahim%2C+Safi&rft.au=Kramer%2C+Daniel+B&rft.au=Waks%2C+Jonathan+W&rft.date=2023-04-01&rft.issn=2666-6936&rft.eissn=2666-6936&rft.volume=4&rft.issue=2&rft.spage=60&rft_id=info:doi/10.1016%2Fj.cvdhj.2023.01.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-6936&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-6936&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-6936&client=summon