Artificial intelligence–enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia
Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant t...
Saved in:
| Published in | Cardiovascular digital health journal Vol. 4; no. 2; pp. 60 - 67 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.04.2023
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2666-6936 2666-6936 |
| DOI | 10.1016/j.cvdhj.2023.01.004 |
Cover
| Abstract | Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.
We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.
The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.
We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset. |
|---|---|
| AbstractList | Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.
We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.
The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.
We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset. BackgroundAccurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard. MethodsWe trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm. ResultsThe model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves. ConclusionWe describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset. Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.BackgroundAccurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard.We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.MethodsWe trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.ResultsThe model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.ConclusionWe describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset. |
| Author | Keene, Daniel Linton, Nicholas W.F. Sau, Arunashis Lim, Phang Boon Waks, Jonathan W. Koa-Wing, Michael Whinnett, Zachary I. Ibrahim, Safi Kanagaratnam, Prapa Ng, Fu Siong Kramer, Daniel B. Mandic, Danilo Qureshi, Norman Malcolme-Lawes, Louisa Lefroy, David C. Peters, Nicholas S. Varnava, Amanda |
| Author_xml | – sequence: 1 givenname: Arunashis orcidid: 0000-0002-0204-7078 surname: Sau fullname: Sau, Arunashis organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 2 givenname: Safi surname: Ibrahim fullname: Ibrahim, Safi organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 3 givenname: Daniel B. surname: Kramer fullname: Kramer, Daniel B. organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 4 givenname: Jonathan W. surname: Waks fullname: Waks, Jonathan W. organization: Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 5 givenname: Norman surname: Qureshi fullname: Qureshi, Norman organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 6 givenname: Michael surname: Koa-Wing fullname: Koa-Wing, Michael organization: Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom – sequence: 7 givenname: Daniel surname: Keene fullname: Keene, Daniel organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 8 givenname: Louisa surname: Malcolme-Lawes fullname: Malcolme-Lawes, Louisa organization: Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom – sequence: 9 givenname: David C. surname: Lefroy fullname: Lefroy, David C. organization: Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom – sequence: 10 givenname: Nicholas W.F. surname: Linton fullname: Linton, Nicholas W.F. organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 11 givenname: Phang Boon surname: Lim fullname: Lim, Phang Boon organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 12 givenname: Amanda surname: Varnava fullname: Varnava, Amanda organization: Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom – sequence: 13 givenname: Zachary I. surname: Whinnett fullname: Whinnett, Zachary I. organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 14 givenname: Prapa surname: Kanagaratnam fullname: Kanagaratnam, Prapa organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 15 givenname: Danilo surname: Mandic fullname: Mandic, Danilo organization: Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom – sequence: 16 givenname: Nicholas S. surname: Peters fullname: Peters, Nicholas S. organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom – sequence: 17 givenname: Fu Siong surname: Ng fullname: Ng, Fu Siong email: f.ng@imperial.ac.uk organization: National Heart and Lung Institute, Imperial College London, London, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37101944$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstuEzEUHaEiWkq_AAnNkk2CXzOTEQJUVbykSiyAteWx7yQ3OHawPUHZ8Q-s-Tm-BE9SoBRQWNmWz0P33HO3OHLeQVHcp2RKCa0fLad6YxbLKSOMTwmdEiJuFSesrutJ3fL66Nr9uDiLcUkIYRXltOF3imPeZJFWiJPi63lI2KNGZUt0CazFOTgN3z5_Aac6C6YECzoFr1Uw6OdBrcrkS4MxoZsPGBelSgH9Blw-9GBVKANMxpdyqUxKL7Y7qir74Fd_gp032fvvlHvF7V7ZCGdX52nx_sXzdxevJpdvXr6-OL-c6Kpu0kTPqGIGBIhOd92s7TlhM1U1IAhvDG8VMGhNXZuurthMa9E2rOkFaxlrBKsqflqIve7g1mr7SVkr1wFXKmwlJXIMXC7lLnA5Bi4JlTnwTHu2p62HbgVG7yb4RfUK5e8_Dhdy7jejIuMVabLCwyuF4D8OEJNcYdR5C8qBH6JkM1K3rSAtzdAH181-uvzYZQa0e4AOPsYAvdSYVEI_eqM9MAm_wf2_-Z_sWZB3s0EIMmoc22Mw5M5I4_EA_-kNvrboUCv7AbYQl34ILq9dUhmZJPLtWOmx0YznNpNqzOTxvwUO2n8HVisM7Q |
| CitedBy_id | crossref_primary_10_3389_fcvm_2023_1258167 crossref_primary_10_3390_jpm14060656 crossref_primary_10_1016_j_amjcard_2023_08_084 crossref_primary_10_32604_cmc_2023_042627 crossref_primary_10_1093_ehjdh_ztaf011 crossref_primary_10_1111_pace_14995 crossref_primary_10_1016_S2589_7500_24_00172_9 |
| Cites_doi | 10.1016/j.arcmed.2016.09.003 10.1038/s41591-018-0268-3 10.1016/S0002-9149(03)00153-X 10.1016/0735-1097(93)90720-L 10.1093/ehjdh/ztac042 10.1109/JBHI.2015.2478076 10.1093/eurheartj/ehz467 10.1186/s12872-020-01344-0 10.1136/heartjnl-2020-318686 10.1007/s10554-018-1449-3 10.1007/s10840-012-9696-z 10.1038/s41569-020-00503-2 10.1016/j.amjcard.2004.12.020 10.1053/eupc.2002.0280 10.1016/j.jacc.2003.08.013 10.1016/0002-9149(89)90865-5 10.1038/s41467-020-15432-4 10.1016/S2589-7500(20)30107-2 10.1016/S0735-1097(96)00490-1 10.1016/j.ijcard.2014.10.043 10.1111/j.1368-5031.2006.00839.x 10.1161/01.CIR.82.2.407 10.1038/s41591-018-0240-2 10.1093/ehjdh/ztab025 10.1093/europace/eup130 10.1093/europace/euaa377 |
| ContentType | Journal Article |
| Copyright | 2023 Heart Rhythm Society Heart Rhythm Society 2023 Heart. 2023 Heart. 2023 Heart Rhythm Society |
| Copyright_xml | – notice: 2023 Heart Rhythm Society – notice: Heart Rhythm Society – notice: 2023 Heart. – notice: 2023 Heart. 2023 Heart Rhythm Society |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.cvdhj.2023.01.004 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2666-6936 |
| EndPage | 67 |
| ExternalDocumentID | 10.1016/j.cvdhj.2023.01.004 PMC10123507 37101944 10_1016_j_cvdhj_2023_01_004 S2666693623000051 1_s2_0_S2666693623000051 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: British Heart Foundation grantid: FS/CRTF/21/24183 – fundername: British Heart Foundation grantid: RG/F/22/110078 |
| GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 RPM Z5R AAHOK AFCTW 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c567t-c81a2de4e4bcbb89f3028a57e4037d39ae2e9d66db6528cc49727f42922742553 |
| IEDL.DBID | UNPAY |
| ISSN | 2666-6936 |
| IngestDate | Sun Oct 26 04:00:53 EDT 2025 Thu Aug 21 18:38:14 EDT 2025 Thu Sep 04 16:09:39 EDT 2025 Mon Jul 21 06:06:59 EDT 2025 Wed Oct 01 02:20:11 EDT 2025 Thu Apr 24 23:03:45 EDT 2025 Thu Jul 20 20:08:59 EDT 2023 Tue Feb 25 20:10:50 EST 2025 Tue Aug 26 16:32:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Atrioventricular nodal re-entrant tachycardia Electrocardiogram Machine learning Atrioventricular re-entrant tachycardia Artificial intelligence Ablation Electrophysiology study |
| Language | English |
| License | This is an open access article under the CC BY license. 2023 Heart. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-c81a2de4e4bcbb89f3028a57e4037d39ae2e9d66db6528cc49727f42922742553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0204-7078 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.cvdigitalhealthjournal.com/article/S2666693623000051/pdf |
| PMID | 37101944 |
| PQID | 2806994091 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_cvdhj_2023_01_004 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10123507 proquest_miscellaneous_2806994091 pubmed_primary_37101944 crossref_citationtrail_10_1016_j_cvdhj_2023_01_004 crossref_primary_10_1016_j_cvdhj_2023_01_004 elsevier_sciencedirect_doi_10_1016_j_cvdhj_2023_01_004 elsevier_clinicalkeyesjournals_1_s2_0_S2666693623000051 elsevier_clinicalkey_doi_10_1016_j_cvdhj_2023_01_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cardiovascular digital health journal |
| PublicationTitleAlternate | Cardiovasc Digit Health J |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Huycke, Lai, Nguyen, Keung, Sung (bib10) 1989; 64 Sau, Ibrahim, Ahmed (bib21) 2022; 3 Howard, Francis (bib20) 2022; 108 Tai, Chen, Chiang (bib8) 1997; 29 Howard JP. Custom Digital ECG Segmentation Software Github2020. Siontis, Noseworthy, Attia, Friedman (bib26) 2021; 18 Brugada, Katritsis, Arbelo (bib1) 2020; 41 Dengke, Lan, Xiangli, Shubin (bib29) 2019; 35 Zhu, Cheng, Yin (bib16) 2020; 2 Ma, Qiu, Yang, Tang (bib31) 2015; 10 Jaeggi, Gilljam, Bauersfeld, Chiu, Gow (bib5) 2003; 91 Kuck, Friday, Kunze, Schlüter, Lazzara, Jackman (bib28) 1990; 82 Perlman, Katz, Amit, Zigel (bib25) 2016; 20 Ribeiro, Singh, Guestrin (bib24) 2016 Ribeiro, Ribeiro, Paixao (bib14) 2020; 11 Zhong, Guo, Hou, Chen, Wang, Zhang (bib7) 2006; 60 Shurrab, Szili-Torok, Akca (bib13) 2015; 179 Kubota Y. tf-keras-vis 2020. Arya, Kottkamp, Piorkowski (bib2) 2005; 95 Chen, Wang, Proietti (bib30) 2020; 20 Somani, Russak, Richter (bib17) 2021; 23 Katritsis, Zografos, Katritsis (bib27) 2017; 19 Maury (bib6) 2003; 5 Laish-Farkash, Shurrab, Singh (bib12) 2012; 35 Di Toro, Hadid, Lopez, Fuselli, Luis, Labadet (bib3) 2009; 11 Jo, Kwon, Jeon (bib18) 2021; 2 Blomström-Lundqvist, Scheinman, Aliot (bib11) 2003; 42 Attia, Kapa, Lopez-Jimenez (bib22) 2019; 25 Filgueiras Medeiros, Nardo-Botelho, Felix-Bernardes (bib4) 2016; 47 Hannun, Rajpurkar, Haghpanahi (bib15) 2019; 25 Kalbfleisch, El-Atassi, Calkins, Langberg, Morady (bib9) 1993; 21 Ribeiro (10.1016/j.cvdhj.2023.01.004_bib14) 2020; 11 Somani (10.1016/j.cvdhj.2023.01.004_bib17) 2021; 23 Huycke (10.1016/j.cvdhj.2023.01.004_bib10) 1989; 64 Chen (10.1016/j.cvdhj.2023.01.004_bib30) 2020; 20 Kalbfleisch (10.1016/j.cvdhj.2023.01.004_bib9) 1993; 21 10.1016/j.cvdhj.2023.01.004_bib19 Arya (10.1016/j.cvdhj.2023.01.004_bib2) 2005; 95 Howard (10.1016/j.cvdhj.2023.01.004_bib20) 2022; 108 Katritsis (10.1016/j.cvdhj.2023.01.004_bib27) 2017; 19 Hannun (10.1016/j.cvdhj.2023.01.004_bib15) 2019; 25 Kuck (10.1016/j.cvdhj.2023.01.004_bib28) 1990; 82 Zhu (10.1016/j.cvdhj.2023.01.004_bib16) 2020; 2 Dengke (10.1016/j.cvdhj.2023.01.004_bib29) 2019; 35 Jo (10.1016/j.cvdhj.2023.01.004_bib18) 2021; 2 Tai (10.1016/j.cvdhj.2023.01.004_bib8) 1997; 29 10.1016/j.cvdhj.2023.01.004_bib23 Sau (10.1016/j.cvdhj.2023.01.004_bib21) 2022; 3 Shurrab (10.1016/j.cvdhj.2023.01.004_bib13) 2015; 179 Attia (10.1016/j.cvdhj.2023.01.004_bib22) 2019; 25 Di Toro (10.1016/j.cvdhj.2023.01.004_bib3) 2009; 11 Jaeggi (10.1016/j.cvdhj.2023.01.004_bib5) 2003; 91 Zhong (10.1016/j.cvdhj.2023.01.004_bib7) 2006; 60 Perlman (10.1016/j.cvdhj.2023.01.004_bib25) 2016; 20 Blomström-Lundqvist (10.1016/j.cvdhj.2023.01.004_bib11) 2003; 42 Ribeiro (10.1016/j.cvdhj.2023.01.004_bib24) 2016 Maury (10.1016/j.cvdhj.2023.01.004_bib6) 2003; 5 Siontis (10.1016/j.cvdhj.2023.01.004_bib26) 2021; 18 Brugada (10.1016/j.cvdhj.2023.01.004_bib1) 2020; 41 Filgueiras Medeiros (10.1016/j.cvdhj.2023.01.004_bib4) 2016; 47 Laish-Farkash (10.1016/j.cvdhj.2023.01.004_bib12) 2012; 35 Ma (10.1016/j.cvdhj.2023.01.004_bib31) 2015; 10 |
| References_xml | – volume: 29 start-page: 394 year: 1997 end-page: 402 ident: bib8 article-title: A new electrocardiographic algorithm using retrograde P waves for differentiating atrioventricular node reentrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway publication-title: J Am Coll Cardiol – volume: 35 start-page: 387 year: 2019 end-page: 392 ident: bib29 article-title: Treatment of left accessory cardiac pathway conduction disorders using radiofrequency catheter ablation under the guidance of the Ensite NavX 3D mapping system: a retrospective study publication-title: Int J Cardiovasc Imaging – volume: 42 start-page: 1493 year: 2003 end-page: 1531 ident: bib11 article-title: ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias—executive summary: a report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to develop guidelines for the management of patients with supraventricular arrhythmias) developed in collaboration with NASPE-Heart Rhythm Society publication-title: J Am Coll Cardiol – volume: 25 start-page: 65 year: 2019 end-page: 69 ident: bib15 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat Med – volume: 23 start-page: 1179 year: 2021 end-page: 1191 ident: bib17 article-title: Deep learning and the electrocardiogram: review of the current state-of-the-art publication-title: Europace – volume: 95 start-page: 875 year: 2005 end-page: 878 ident: bib2 article-title: Differentiating atrioventricular nodal reentrant tachycardia from tachycardia via concealed accessory pathway publication-title: Am J Cardiol – volume: 91 start-page: 1084 year: 2003 end-page: 1089 ident: bib5 article-title: Electrocardiographic differentiation of typical atrioventricular node reentrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway in children publication-title: Am J Cardiol – volume: 18 start-page: 465 year: 2021 end-page: 478 ident: bib26 article-title: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management publication-title: Nat Rev Cardiol – volume: 11 start-page: 944 year: 2009 end-page: 948 ident: bib3 article-title: Utility of the aVL lead in the electrocardiographic diagnosis of atrioventricular node re-entrant tachycardia publication-title: Europace – volume: 60 start-page: 1371 year: 2006 end-page: 1377 ident: bib7 article-title: A modified electrocardiographic algorithm for differentiating typical atrioventricular node re-entrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway publication-title: Int J Clin Pract – volume: 2 start-page: 290 year: 2021 end-page: 298 ident: bib18 article-title: Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm publication-title: Eur Heart J Digit Health – volume: 108 start-page: 973 year: 2022 end-page: 981 ident: bib20 article-title: Machine learning with convolutional neural networks for clinical cardiologists publication-title: Heart – volume: 25 start-page: 70 year: 2019 end-page: 74 ident: bib22 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram publication-title: Nat Med – volume: 10 year: 2015 ident: bib31 article-title: Catheter ablation of right-sided accessory pathways in adults using the three-dimensional mapping system: a randomized comparison to the conventional approach publication-title: PLoS One – volume: 179 start-page: 417 year: 2015 end-page: 420 ident: bib13 article-title: Empiric slow pathway ablation in non-inducible supraventricular tachycardia publication-title: Int J Cardiol – volume: 64 start-page: 1131 year: 1989 end-page: 1137 ident: bib10 article-title: Role of intravenous isoproterenol in the electrophysiologic induction of atrioventricular node reentrant tachycardia in patients with dual atrioventricular node pathways publication-title: Am J Cardiol – volume: 20 start-page: 1513 year: 2016 end-page: 1520 ident: bib25 article-title: Supraventricular tachycardia classification in the 12-lead ECG using atrial waves detection and a clinically based tree scheme publication-title: IEEE J Biomed Health Inform – volume: 47 start-page: 394 year: 2016 end-page: 400 ident: bib4 article-title: Diagnostic accuracy of several electrocardiographic criteria for the prediction of atrioventricular nodal reentrant tachycardia publication-title: Arch Med Res – volume: 82 start-page: 407 year: 1990 end-page: 417 ident: bib28 article-title: Sites of conduction block in accessory atrioventricular pathways. Basis for concealed accessory pathways publication-title: Circulation – reference: Howard JP. Custom Digital ECG Segmentation Software Github2020. – volume: 41 start-page: 655 year: 2020 end-page: 720 ident: bib1 article-title: 2019 ESC Guidelines for the management of patients with supraventricular tachycardia. The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC) publication-title: Eur Heart J – year: 2016 ident: bib24 article-title: “Why should I trust you?”: explaining the predictions of any classifier publication-title: KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 35 start-page: 183 year: 2012 end-page: 187 ident: bib12 article-title: Approaches to empiric ablation of slow pathway: results from the Canadian EP web survey publication-title: J Interv Card Electrophysiol – volume: 2 start-page: e348 year: 2020 end-page: e357 ident: bib16 article-title: Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study publication-title: Lancet Digit Health – volume: 5 start-page: 57 year: 2003 end-page: 64 ident: bib6 article-title: Distinction between atrioventricular reciprocating tachycardia and atrioventricular node re-entrant tachycardia in the adult population based on P wave location Should we reconsider the value of some ECG criteria according to gender and age? publication-title: Europace – volume: 11 start-page: 1760 year: 2020 ident: bib14 article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network publication-title: Nat Commun – reference: Kubota Y. tf-keras-vis 2020. – volume: 20 start-page: 48 year: 2020 ident: bib30 article-title: Zero-fluoroscopy approach for ablation of supraventricular tachycardia using the Ensite NavX system: a multicenter experience publication-title: BMC Cardiovasc Disord – volume: 21 start-page: 85 year: 1993 end-page: 89 ident: bib9 article-title: Differentiation of paroxysmal narrow QRS complex tachycardias using the 12-lead electrocardiogram publication-title: J Am Coll Cardiol – volume: 3 start-page: 405 year: 2022 end-page: 414 ident: bib21 article-title: Artificial intelligence-enabled electrocardiogram to distinguish cavotricuspid isthmus dependence from other atrial tachycardia mechanisms publication-title: Eur Heart J Digit Health – volume: 19 start-page: 602 year: 2017 end-page: 606 ident: bib27 article-title: Catheter ablation vs. antiarrhythmic drug therapy in patients with symptomatic atrioventricular nodal re-entrant tachycardia: a randomized, controlled trial publication-title: Europace – volume: 47 start-page: 394 year: 2016 ident: 10.1016/j.cvdhj.2023.01.004_bib4 article-title: Diagnostic accuracy of several electrocardiographic criteria for the prediction of atrioventricular nodal reentrant tachycardia publication-title: Arch Med Res doi: 10.1016/j.arcmed.2016.09.003 – volume: 25 start-page: 65 year: 2019 ident: 10.1016/j.cvdhj.2023.01.004_bib15 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat Med doi: 10.1038/s41591-018-0268-3 – volume: 91 start-page: 1084 year: 2003 ident: 10.1016/j.cvdhj.2023.01.004_bib5 article-title: Electrocardiographic differentiation of typical atrioventricular node reentrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway in children publication-title: Am J Cardiol doi: 10.1016/S0002-9149(03)00153-X – volume: 21 start-page: 85 year: 1993 ident: 10.1016/j.cvdhj.2023.01.004_bib9 article-title: Differentiation of paroxysmal narrow QRS complex tachycardias using the 12-lead electrocardiogram publication-title: J Am Coll Cardiol doi: 10.1016/0735-1097(93)90720-L – volume: 3 start-page: 405 year: 2022 ident: 10.1016/j.cvdhj.2023.01.004_bib21 article-title: Artificial intelligence-enabled electrocardiogram to distinguish cavotricuspid isthmus dependence from other atrial tachycardia mechanisms publication-title: Eur Heart J Digit Health doi: 10.1093/ehjdh/ztac042 – volume: 20 start-page: 1513 year: 2016 ident: 10.1016/j.cvdhj.2023.01.004_bib25 article-title: Supraventricular tachycardia classification in the 12-lead ECG using atrial waves detection and a clinically based tree scheme publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2478076 – volume: 10 year: 2015 ident: 10.1016/j.cvdhj.2023.01.004_bib31 article-title: Catheter ablation of right-sided accessory pathways in adults using the three-dimensional mapping system: a randomized comparison to the conventional approach publication-title: PLoS One – volume: 41 start-page: 655 year: 2020 ident: 10.1016/j.cvdhj.2023.01.004_bib1 article-title: 2019 ESC Guidelines for the management of patients with supraventricular tachycardia. The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC) publication-title: Eur Heart J doi: 10.1093/eurheartj/ehz467 – ident: 10.1016/j.cvdhj.2023.01.004_bib23 – volume: 20 start-page: 48 year: 2020 ident: 10.1016/j.cvdhj.2023.01.004_bib30 article-title: Zero-fluoroscopy approach for ablation of supraventricular tachycardia using the Ensite NavX system: a multicenter experience publication-title: BMC Cardiovasc Disord doi: 10.1186/s12872-020-01344-0 – ident: 10.1016/j.cvdhj.2023.01.004_bib19 – volume: 108 start-page: 973 year: 2022 ident: 10.1016/j.cvdhj.2023.01.004_bib20 article-title: Machine learning with convolutional neural networks for clinical cardiologists publication-title: Heart doi: 10.1136/heartjnl-2020-318686 – volume: 35 start-page: 387 year: 2019 ident: 10.1016/j.cvdhj.2023.01.004_bib29 article-title: Treatment of left accessory cardiac pathway conduction disorders using radiofrequency catheter ablation under the guidance of the Ensite NavX 3D mapping system: a retrospective study publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-018-1449-3 – volume: 35 start-page: 183 year: 2012 ident: 10.1016/j.cvdhj.2023.01.004_bib12 article-title: Approaches to empiric ablation of slow pathway: results from the Canadian EP web survey publication-title: J Interv Card Electrophysiol doi: 10.1007/s10840-012-9696-z – year: 2016 ident: 10.1016/j.cvdhj.2023.01.004_bib24 article-title: “Why should I trust you?”: explaining the predictions of any classifier – volume: 18 start-page: 465 year: 2021 ident: 10.1016/j.cvdhj.2023.01.004_bib26 article-title: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management publication-title: Nat Rev Cardiol doi: 10.1038/s41569-020-00503-2 – volume: 95 start-page: 875 year: 2005 ident: 10.1016/j.cvdhj.2023.01.004_bib2 article-title: Differentiating atrioventricular nodal reentrant tachycardia from tachycardia via concealed accessory pathway publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2004.12.020 – volume: 19 start-page: 602 year: 2017 ident: 10.1016/j.cvdhj.2023.01.004_bib27 article-title: Catheter ablation vs. antiarrhythmic drug therapy in patients with symptomatic atrioventricular nodal re-entrant tachycardia: a randomized, controlled trial publication-title: Europace – volume: 5 start-page: 57 year: 2003 ident: 10.1016/j.cvdhj.2023.01.004_bib6 article-title: Distinction between atrioventricular reciprocating tachycardia and atrioventricular node re-entrant tachycardia in the adult population based on P wave location Should we reconsider the value of some ECG criteria according to gender and age? publication-title: Europace doi: 10.1053/eupc.2002.0280 – volume: 42 start-page: 1493 year: 2003 ident: 10.1016/j.cvdhj.2023.01.004_bib11 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2003.08.013 – volume: 64 start-page: 1131 year: 1989 ident: 10.1016/j.cvdhj.2023.01.004_bib10 article-title: Role of intravenous isoproterenol in the electrophysiologic induction of atrioventricular node reentrant tachycardia in patients with dual atrioventricular node pathways publication-title: Am J Cardiol doi: 10.1016/0002-9149(89)90865-5 – volume: 11 start-page: 1760 year: 2020 ident: 10.1016/j.cvdhj.2023.01.004_bib14 article-title: Automatic diagnosis of the 12-lead ECG using a deep neural network publication-title: Nat Commun doi: 10.1038/s41467-020-15432-4 – volume: 2 start-page: e348 year: 2020 ident: 10.1016/j.cvdhj.2023.01.004_bib16 article-title: Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30107-2 – volume: 29 start-page: 394 year: 1997 ident: 10.1016/j.cvdhj.2023.01.004_bib8 article-title: A new electrocardiographic algorithm using retrograde P waves for differentiating atrioventricular node reentrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(96)00490-1 – volume: 179 start-page: 417 year: 2015 ident: 10.1016/j.cvdhj.2023.01.004_bib13 article-title: Empiric slow pathway ablation in non-inducible supraventricular tachycardia publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2014.10.043 – volume: 60 start-page: 1371 year: 2006 ident: 10.1016/j.cvdhj.2023.01.004_bib7 article-title: A modified electrocardiographic algorithm for differentiating typical atrioventricular node re-entrant tachycardia from atrioventricular reciprocating tachycardia mediated by concealed accessory pathway publication-title: Int J Clin Pract doi: 10.1111/j.1368-5031.2006.00839.x – volume: 82 start-page: 407 year: 1990 ident: 10.1016/j.cvdhj.2023.01.004_bib28 article-title: Sites of conduction block in accessory atrioventricular pathways. Basis for concealed accessory pathways publication-title: Circulation doi: 10.1161/01.CIR.82.2.407 – volume: 25 start-page: 70 year: 2019 ident: 10.1016/j.cvdhj.2023.01.004_bib22 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram publication-title: Nat Med doi: 10.1038/s41591-018-0240-2 – volume: 2 start-page: 290 year: 2021 ident: 10.1016/j.cvdhj.2023.01.004_bib18 article-title: Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm publication-title: Eur Heart J Digit Health doi: 10.1093/ehjdh/ztab025 – volume: 11 start-page: 944 year: 2009 ident: 10.1016/j.cvdhj.2023.01.004_bib3 article-title: Utility of the aVL lead in the electrocardiographic diagnosis of atrioventricular node re-entrant tachycardia publication-title: Europace doi: 10.1093/europace/eup130 – volume: 23 start-page: 1179 year: 2021 ident: 10.1016/j.cvdhj.2023.01.004_bib17 article-title: Deep learning and the electrocardiogram: review of the current state-of-the-art publication-title: Europace doi: 10.1093/europace/euaa377 |
| SSID | ssj0002513173 |
| Score | 2.3003454 |
| Snippet | Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a... BackgroundAccurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 60 |
| SubjectTerms | Ablation Artificial intelligence Atrioventricular nodal re-entrant tachycardia Atrioventricular re-entrant tachycardia Electrocardiogram Electrophysiology study Machine learning Original |
| Title | Artificial intelligence–enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2666693623000051 https://www.clinicalkey.es/playcontent/1-s2.0-S2666693623000051 https://dx.doi.org/10.1016/j.cvdhj.2023.01.004 https://www.ncbi.nlm.nih.gov/pubmed/37101944 https://www.proquest.com/docview/2806994091 https://pubmed.ncbi.nlm.nih.gov/PMC10123507 http://www.cvdigitalhealthjournal.com/article/S2666693623000051/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-6936 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0002513173 issn: 2666-6936 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-6936 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513173 issn: 2666-6936 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2666-6936 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513173 issn: 2666-6936 databaseCode: AKRWK dateStart: 20200701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2666-6936 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513173 issn: 2666-6936 databaseCode: RPM dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVgIuvB_LYxUkjmTrJHayPlaIqkJqhQQrlZPlV7rbrpLVJgGVE_-BM3-OX4LHcaJWWRUQx1VmZMUZj7-1Z74Podci0dLoJA-xBgkzGkm75nIggoyp0lmGpePSOzpOD-fk_Qk92UGdSidUVaovenkKihltJ6CfU5e1_WzufbTbSpoym3wT7FDI3lrnN9BuSi0gH6Hd-fGH_c8gK2etQrDr-IZcZZcdYHE2Bd1wx9jpNdq27ElDzDksnbzVFGtx8VWsVpf2pYO7SHfdPW05yvm0qeVUfRuSPf7PK99DdzxuDfZbu_toxxQP0M0jfzP_EP2EJy0bRbC8RPP56_sP49qzdOAVd5SrgIWisKAuAw05pjhtltUiALWAEuov3aGk2AQbE7oJKOqgFmpx4VxFAC0xQ-Oi1Hbs7S6P0Pzg3ae3h6GXfggVTbM6VLNIxNoQQ6SScsbyxOIgQTNDcJLphAkTG6bTVMuUxjOlCLM4LAfpLbh6pjR5jEZFWZinKABGQSxkauz_ZZIxw4Sk0uIigmVsJCZjFHcfnyvPiw7yHCveFcCdcRcxHCKG44hjcHrTO61bWpDrzUkXVbzreLU5mttt63q3bJubqXyAVDziVcwxHwTHGKW9p4dSLUT685CvuqDnNtHA7ZEoTNlUHK7gGSMWX47Rk3YR9K-eWJwaMWK9Z1eWR28AJOZXnxTLhSMzj1y3Ns7GKOxX0t9M6bN_tH-ObsOvtujqBRrVm8a8tHiylhN3DjNxB30Tnzt-A3uyfiw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVgIuvB_LS0biSLZOYjubY4WoKqRWSLBSOVl-bXfLKlltElA58R848-f4JXgcJ2qVVQFxjDIjK854_CWe-T6EXsnUKGvSeUQMSJixWLk1NwciyIRpk2VEeS69o2N-OKPvTtjJDupUOqGqUn8xy1NQzGg7AcOc-qwdZnPvg9tWOM9d8k2JRyF7azO_hnY5c4B8hHZnx-_3P4GsnLOKwK7jG_KVXW6AxdkEdMM9Y2fQaNuyJw0x57B08kZTrOX5V7laXdiXDm4j03X3tOUonydNrSb625Ds8X8e-Q66FXAr3m_t7qIdW9xD14_Cyfx99BPutGwUeHmB5vPX9x_Wt2cZHBR3tK-AhaIwXJfYQI4pTptltcCgFlBC_aX_KSk3eGMjPwFFjWupF-feVWJoiRkaF6VxY293eYBmB28_vjmMgvRDpBnP6khPY5kYSy1VWqlpPk8dDpIss5SkmUlzaRObG86N4iyZak1zh8PmIL0FR8-MpQ_RqCgL-xhhYBQkUnHrvpdplttcKqYcLqJEJVYROkZJ9_KFDrzoIM-xEl0B3JnwESMgYgSJBQGn173TuqUFudqcdlEluo5Xl6OF27audsu2udkqBEglYlElgohBcIwR7z0DlGoh0p-HfNkFvXCJBk6PZGHLphJwBJ_n1OHLMXrULoL-0VOHU-OcOu_ppeXRGwCJ-eU7xXLhycxj361NsjGK-pX0N1P65B_tn6KbcNUWXT1Do3rT2OcOT9bqRcgXvwGi0Hwn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enabled+electrocardiogram+to+distinguish+atrioventricular+re-entrant+tachycardia+from+atrioventricular+nodal+re-entrant+tachycardia&rft.jtitle=Cardiovascular+digital+health+journal&rft.au=Sau%2C+Arunashis&rft.au=Ibrahim%2C+Safi&rft.au=Kramer%2C+Daniel+B&rft.au=Waks%2C+Jonathan+W&rft.date=2023-04-01&rft.issn=2666-6936&rft.eissn=2666-6936&rft.volume=4&rft.issue=2&rft.spage=60&rft_id=info:doi/10.1016%2Fj.cvdhj.2023.01.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-6936&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-6936&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-6936&client=summon |