Autonomous Evolution of Topographic Regularities in Artificial Neural Networks

Looking to nature as inspiration, for at least the past 25 years, researchers in the field of (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological b...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 22; no. 7; pp. 1860 - 1898
Main Authors Gauci, Jason, Stanley, Kenneth O.
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.07.2010
MIT Press Journals, The
Subjects
Online AccessGet full text
ISSN0899-7667
1530-888X
1530-888X
DOI10.1162/neco.2010.06-09-1042

Cover

Abstract Looking to nature as inspiration, for at least the past 25 years, researchers in the field of (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.
AbstractList Looking to nature as inspiration, for at least the past 25 years, researchers in the field of (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.
Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general. [PUBLICATION ABSTRACT]
Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.
Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.
Author Stanley, Kenneth O.
Gauci, Jason
Author_xml – sequence: 1
  givenname: Jason
  surname: Gauci
  fullname: Gauci, Jason
  email: jgauci@eecs.ucf.edu
– sequence: 2
  givenname: Kenneth O.
  surname: Stanley
  fullname: Stanley, Kenneth O.
  email: kstanley@eecs.ucf.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22878718$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20235822$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1r1UAQxRep2NvqfyASBOlT6uxs9su3S2mtUCpIBd-WzWZTt-Zm425S0b_exHv9oKh9GgZ-5wxnzgHZ62PvCXlK4ZhSgS977-IxwryCKEGXFCp8QFaUMyiVUh_2yAqU1qUUQu6Tg5xvAEBQ4I_IPgIyrhBX5HI9jbGPmzjl4vQ2dtMYYl_EtriKQ7xOdvgYXPHOX0-dTWEMPhehL9ZpDG1wwXbFpZ_SjzF-ielTfkwetrbL_sluHpL3Z6dXJ-flxdvXb07WF6XjQo6lxbYBxkFah6xhjce6Qaw5-NbW3tba2rbxXiiUqDX1DTaqclxJL2uhG8EOydHWd0jx8-TzaDYhO991tvdzFCN5pbQQHO8nGaOg5qfN5PM75E2cUj_HMExwzjXoBXq2g6Z64xszpLCx6av5-dEZeLEDbHa2a5PtXci_OVRSSapmrtpyLsWck29_IRTMUrBZCjZLwQaEAW2WgmfZqzsyF0a7lDYmG7r7xOdb8Sb8EW5BbxGDNAywkmLJQmeXRfYtDP-ygr9Y_ff6d-J80bs
CODEN NEUCEB
CitedBy_id crossref_primary_10_1162_ARTL_a_00150
crossref_primary_10_1016_j_artmed_2013_07_002
crossref_primary_10_1109_LRA_2017_2716418
crossref_primary_10_4236_jilsa_2011_31005
crossref_primary_10_1016_j_ins_2015_03_046
crossref_primary_10_2139_ssrn_4104972
crossref_primary_10_1162_ARTL_a_00071
crossref_primary_10_1007_s12065_012_0086_3
crossref_primary_10_3390_rs13061082
crossref_primary_10_1007_s12065_011_0066_z
crossref_primary_10_1007_s12065_020_00500_x
crossref_primary_10_1109_ACCESS_2019_2944545
crossref_primary_10_1162_ARTL_a_00185
crossref_primary_10_1038_s41598_017_16548_2
crossref_primary_10_1038_s42256_018_0006_z
crossref_primary_10_1016_j_neucom_2018_05_124
crossref_primary_10_1162_artl_a_00301
crossref_primary_10_1109_TCIAIG_2015_2494596
crossref_primary_10_3389_fncom_2017_00112
crossref_primary_10_1371_journal_pcbi_1003399
crossref_primary_10_1016_j_neucom_2017_02_090
crossref_primary_10_1007_s12065_023_00860_0
crossref_primary_10_1109_TNS_2016_2543203
crossref_primary_10_1007_s10462_021_10049_5
crossref_primary_10_1109_TEVC_2010_2104157
crossref_primary_10_1177_1059712313487390
crossref_primary_10_1371_journal_pone_0174635
crossref_primary_10_1016_j_eswa_2016_03_012
crossref_primary_10_3233_HIS_170244
crossref_primary_10_1016_j_neucom_2012_07_010
Cites_doi 10.1162/106454602320991837
10.1109/3477.499791
10.1007/BF00187293
10.1109/CEC.2002.1004528
10.1162/106365602320169811
10.1162/106454603322221487
10.1007/s10710-007-9028-8
10.1162/106454601317297022
10.1613/jair.368
10.1007/978-3-7091-7533-0_5
10.1016/0004-3702(75)90019-3
10.1109/ICEC.1994.350019
10.1177/105971239200100105
10.1007/s00422-003-0435-5
10.1109/CEC.2001.934446
10.1002/cplx.10047
10.1109/IJCNN.1991.155366
10.1113/jphysiol.1968.sp008455
10.1016/j.nurt.2007.04.009
10.1023/A:1008272615525
10.1016/S1364-6613(99)01440-0
10.1109/ICNN.1993.298673
10.1109/IJCNN.1991.155416
10.1109/TEVC.2005.856210
10.1109/4235.942536
10.1080/095400998116404
10.1109/5.784219
10.1177/105971239400300202
10.1109/JPROC.2004.837633
10.1023/A:1012459627968
10.1073/pnas.90.7.3098
10.1145/1569901.1569995
10.1109/TEVC.2006.886801
10.1109/CEC.2009.4983289
10.1613/jair.1338
10.1006/nimg.1998.0332
10.1007/978-3-540-87700-4_36
10.1038/35023115
10.7551/mitpress/1429.003.0019
10.1162/106454600568834
10.1113/jphysiol.1962.sp006837
10.1177/105971239700500305
10.1146/annurev.neuro.27.070203.144226
10.1016/j.neucom.2005.12.090
10.1007/BF02458823
10.1103/PhysRevLett.102.152001
10.1109/CEC.2002.1004508
10.1162/artl.1994.1.4.353
10.1098/rstb.1952.0012
10.1098/rstb.1977.0050
10.1038/379725a0
10.1145/1569901.1569923
10.1162/artl.2009.15.2.15202
10.1109/72.265960
10.1007/978-0-585-33656-5_3
10.1016/S0893-6080(00)00032-0
10.1007/s12065-007-0002-4
10.1007/978-3-540-24855-2_60
10.1007/PL00007988
10.1093/mind/XCV.379.279
10.1088/0954-898X/7/2/002
10.1007/BF00199581
10.1016/B978-155860783-5/50016-7
10.1145/1276958.1277155
10.1145/1068009.1068340
10.1007/3-540-06867-8_3
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright MIT Press Journals Jul 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright MIT Press Journals Jul 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7TK
DOI 10.1162/neco.2010.06-09-1042
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
MEDLINE - Academic
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISSN 1530-888X
EndPage 1898
ExternalDocumentID 2051487151
20235822
22878718
10_1162_neco_2010_06_09_1042
neco.2010.06-09-1042.pdf
Genre Journal Article
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
6IK
AAJGR
AALMD
ABDBF
ABDNZ
ABIVO
ABJNI
ABMYL
ACGFO
ADIYS
AEGXH
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
COF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
41~
53G
AAFWJ
AAYXX
ABAZT
ABEFU
ABVLG
ACUHS
ACYGS
ADMLS
AMVHM
CITATION
H~9
AEILP
IQODW
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7TK
ID FETCH-LOGICAL-c567t-a2fd03507ac23d3de2bd22b50efabeab9aafdee68272991ed2d84c587e7b69d63
ISSN 0899-7667
1530-888X
IngestDate Thu Sep 04 16:17:31 EDT 2025
Fri Sep 05 12:18:47 EDT 2025
Mon Jun 30 06:54:07 EDT 2025
Thu Apr 03 06:55:00 EDT 2025
Mon Jul 21 09:16:58 EDT 2025
Wed Oct 01 02:03:06 EDT 2025
Thu Apr 24 22:59:32 EDT 2025
Mon Mar 11 05:41:05 EDT 2024
Tue Mar 01 17:17:36 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Brain
Neural computation
Correlation
Evolutionary algorithm
Neural network
Topology
Topographic map
General study
Geometry
Relevance
Neuron
Correlation analysis
Graph connectivity
Experimental design
Hypercube
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-a2fd03507ac23d3de2bd22b50efabeab9aafdee68272991ed2d84c587e7b69d63
Notes July, 2010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20235822
PQID 365559090
PQPubID 37252
PageCount 39
ParticipantIDs mit_journals_necov22i7_302476_2021_11_09_zip_neco_2010_06_09_1042
proquest_journals_365559090
pascalfrancis_primary_22878718
proquest_miscellaneous_754896652
crossref_primary_10_1162_neco_2010_06_09_1042
crossref_citationtrail_10_1162_neco_2010_06_09_1042
proquest_miscellaneous_733108530
pubmed_primary_20235822
mit_journals_10_1162_neco_2010_06_09_1042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: Cambridge, MA
– name: United States
– name: Cambridge
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2010
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References B20
B66
B67
Zhang B.-T. (B97) 1993; 7
B68
Eggenberger P. (B23) 1997
B25
B69
B26
B27
B28
Stanley K. O. (B83) 2002
Miikkulainen R. (B63) 1989
Russell S. (B72) 1995
Whiteson S. (B92) 2003
B70
B71
B73
B30
B31
B75
B32
B33
B77
B35
B79
B38
Gauci J. (B34) 2007
Hubel D. H. (B44) 1988
Gomez F. (B36) 2008; 9
Togelius J. (B89) 2005
B1
B2
B3
Dellaert F. (B22) 1994
B4
Whitley D. (B93) 1995
B5
Taylor M. E. (B88) 2006
B7
B8
Gruau F. (B39) 1996
B9
B80
B81
B82
B84
B41
B85
B42
B86
D'Ambrosio D. B. (B21) 2008
B43
B87
B45
B46
McClelland J. L. (B60) 1986; 1
B47
Bentley P. J. (B10) 1999
B48
B49
Kitano H. (B51) 1990; 4
Bednar J. A. (B6) 2002
Fogel D. (B29) 1992
Harp S. A. (B40) 1989
B90
Montana D. J. (B65) 1989
B91
B94
B95
B52
B96
B54
B11
B55
B12
B56
B13
B57
B14
Goodhill G. J. (B37) 2002; 1
B58
B15
B59
B16
B17
Kohonen T. (B53) 1981
B18
Stanley K. O. (B78) 2005
B19
Kandel E. R. (B50) 2000
McHale G. (B61) 2004
Miller G. F. (B64) 1989
Miikkulainen R. (B62) 2005
Srinivas M. (B76) 1991; 3
Soltoggio A. (B74) 2008
References_xml – ident: B43
  doi: 10.1162/106454602320991837
– volume-title: Computational maps in the visual cortex
  year: 2005
  ident: B62
– ident: B26
  doi: 10.1109/3477.499791
– ident: B56
  doi: 10.1007/BF00187293
– ident: B11
  doi: 10.1109/CEC.2002.1004528
– ident: B84
  doi: 10.1162/106365602320169811
– ident: B85
  doi: 10.1162/106454603322221487
– ident: B77
  doi: 10.1007/s10710-007-9028-8
– start-page: 37
  volume-title: Proceedings of the IEEE Symposium on Computational Intelligence and Games
  year: 2005
  ident: B89
– ident: B54
  doi: 10.1162/106454601317297022
– ident: B68
  doi: 10.1613/jair.368
– ident: B12
  doi: 10.1007/978-3-7091-7533-0_5
– volume-title: Eye, brain, and vision
  year: 1988
  ident: B44
– ident: B52
  doi: 10.1016/0004-3702(75)90019-3
– start-page: 205
  volume-title: Proceedings of the Fourth European Conference on Artificial Life
  year: 1997
  ident: B23
– start-page: 214
  volume-title: Proceedings of the 2nd Scandinavian Conference on Image Analysis
  year: 1981
  ident: B53
– ident: B2
  doi: 10.1109/ICEC.1994.350019
– ident: B9
  doi: 10.1177/105971239200100105
– ident: B15
  doi: 10.1007/s00422-003-0435-5
– start-page: 762
  volume-title: Proceedings of the 11th International Joint Conference on Artificial Intelligence
  year: 1989
  ident: B65
– ident: B42
  doi: 10.1109/CEC.2001.934446
– ident: B75
  doi: 10.1002/cplx.10047
– start-page: 347
  volume-title: Proceedings of the 1988 Connectionist Models Summer School
  year: 1989
  ident: B63
– start-page: 379
  volume-title: Proceedings of the Third International Conference on Genetic Algorithms
  year: 1989
  ident: B64
– year: 2007
  ident: B34
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– volume: 4
  start-page: 461
  year: 1990
  ident: B51
  publication-title: Complex Systems
– ident: B55
  doi: 10.1109/IJCNN.1991.155366
– ident: B46
  doi: 10.1113/jphysiol.1968.sp008455
– ident: B71
  doi: 10.1016/j.nurt.2007.04.009
– volume-title: Artificial intelligence: A modern approach
  year: 1995
  ident: B72
– ident: B69
  doi: 10.1023/A:1008272615525
– ident: B8
  doi: 10.1016/S1364-6613(99)01440-0
– start-page: 1321
  year: 2006
  ident: B88
  publication-title: GECCO 2006: Proceedings of the Genetic and Evolutionary Computation Conference
– ident: B30
  doi: 10.1109/ICNN.1993.298673
– ident: B94
  doi: 10.1109/IJCNN.1991.155416
– ident: B79
  doi: 10.1109/TEVC.2005.856210
– start-page: 356
  volume-title: Proceedings of the Genetic and Evolutionary Computation Conference
  year: 2003
  ident: B92
– ident: B13
  doi: 10.1109/4235.942536
– ident: B48
  doi: 10.1080/095400998116404
– ident: B96
  doi: 10.1109/5.784219
– volume-title: Principles of neural science
  year: 2000
  ident: B50
– volume-title: Proceedings of the Genetic and Evolutionary Computation Conference
  year: 2002
  ident: B83
– ident: B38
  doi: 10.1177/105971239400300202
– ident: B33
  doi: 10.1109/JPROC.2004.837633
– start-page: 569
  year: 2008
  ident: B74
  publication-title: Artificial Life, 11
– ident: B28
  doi: 10.1023/A:1012459627968
– ident: B95
  doi: 10.1073/pnas.90.7.3098
– ident: B19
  doi: 10.1145/1569901.1569995
– volume-title: Co-evolving body and brain in autonomous agents using a developmental model
  year: 1994
  ident: B22
– ident: B59
  doi: 10.1109/TEVC.2006.886801
– ident: B17
  doi: 10.1109/CEC.2009.4983289
– ident: B86
  doi: 10.1613/jair.1338
– volume: 9
  start-page: 937
  year: 2008
  ident: B36
  publication-title: J. Mach. Learn. Res.
– start-page: 360
  volume-title: Proceedings of the Third International Conference on Genetic Algorithms
  year: 1989
  ident: B40
– ident: B67
  doi: 10.1006/nimg.1998.0332
– ident: B18
  doi: 10.1007/978-3-540-87700-4_36
– ident: B58
  doi: 10.1038/35023115
– start-page: 106
  volume-title: Artificial life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Artificial Life
  year: 2004
  ident: B61
  doi: 10.7551/mitpress/1429.003.0019
– year: 2008
  ident: B21
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– start-page: 203
  volume-title: Genetic algorithms in engineering and computer science
  year: 1995
  ident: B93
– ident: B5
  doi: 10.1162/106454600568834
– ident: B45
  doi: 10.1113/jphysiol.1962.sp006837
– ident: B35
  doi: 10.1177/105971239700500305
– ident: B14
  doi: 10.1146/annurev.neuro.27.070203.144226
– ident: B7
  doi: 10.1016/j.neucom.2005.12.090
– volume: 1
  start-page: 845
  volume-title: Encyclopedia of cognitive science
  year: 2002
  ident: B37
– ident: B49
  doi: 10.1007/BF02458823
– ident: B1
  doi: 10.1103/PhysRevLett.102.152001
– year: 1992
  ident: B29
  publication-title: Evolving artificial intelligence
– ident: B82
  doi: 10.1109/CEC.2002.1004508
– ident: B73
  doi: 10.1162/artl.1994.1.4.353
– volume: 7
  start-page: 199
  year: 1993
  ident: B97
  publication-title: Complex Systems
– ident: B90
  doi: 10.1098/rstb.1952.0012
– ident: B47
  doi: 10.1098/rstb.1977.0050
– ident: B91
  doi: 10.1038/379725a0
– ident: B70
  doi: 10.1145/1569901.1569923
– start-page: 44–46
  year: 2002
  ident: B6
  publication-title: Neurocomputing
– ident: B80
  doi: 10.1162/artl.2009.15.2.15202
– ident: B4
  doi: 10.1109/72.265960
– start-page: 35
  volume-title: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999)
  year: 1999
  ident: B10
– start-page: 81
  volume-title: Genetic programming 1996: Proceedings of the First Annual Conference
  year: 1996
  ident: B39
– volume: 1
  start-page: 3
  volume-title: Parallel distributed processing: Explorations in the microstructure of cognition
  year: 1986
  ident: B60
– volume: 3
  start-page: 2331
  year: 1991
  ident: B76
  publication-title: IEEE International Joint Conference on Neural Networks
– ident: B66
  doi: 10.1007/978-0-585-33656-5_3
– volume-title: Proceedings of the IEEE 2005 Symposium on Computational Intelligence and Games
  year: 2005
  ident: B78
– ident: B27
  doi: 10.1016/S0893-6080(00)00032-0
– ident: B25
  doi: 10.1007/s12065-007-0002-4
– ident: B41
  doi: 10.1007/978-3-540-24855-2_60
– ident: B3
  doi: 10.1007/PL00007988
– ident: B16
  doi: 10.1093/mind/XCV.379.279
– ident: B87
  doi: 10.1088/0954-898X/7/2/002
– ident: B32
  doi: 10.1007/BF00199581
– ident: B31
  doi: 10.1016/B978-155860783-5/50016-7
– ident: B20
  doi: 10.1145/1276958.1277155
– ident: B81
  doi: 10.1145/1068009.1068340
– ident: B57
  doi: 10.1007/3-540-06867-8_3
SSID ssj0006105
Score 2.3575628
Snippet Looking to nature as inspiration, for at least the past 25 years, researchers in the field of (NE) have developed evolutionary algorithms designed specifically...
Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms...
SourceID proquest
pubmed
pascalfrancis
crossref
mit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1860
SubjectTerms Algorithms
Animals
Applied sciences
Artificial Intelligence
Biological and medical sciences
Biological Evolution
Combinatorics
Combinatorics. Ordered structures
Computer science; control theory; systems
Computer Simulation - trends
Designs and configurations
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Humans
Learning and adaptive systems
Letters
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Miscellaneous
Nerve Net - physiology
Neural networks
Neural Networks (Computer)
Neurons - physiology
Sciences and techniques of general use
Topology
Title Autonomous Evolution of Topographic Regularities in Artificial Neural Networks
URI https://direct.mit.edu/neco/article/doi/10.1162/neco.2010.06-09-1042
https://www.ncbi.nlm.nih.gov/pubmed/20235822
https://www.proquest.com/docview/365559090
https://www.proquest.com/docview/733108530
https://www.proquest.com/docview/754896652
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1530-888X
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: ABDBF
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1530-888X
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtswTFjTyy57P7JuhQ67DIO3mI4l-RjsVQxrdlgL5GZIsgwYWJ2gcXro14-05RfWrNsuTmzRoiFSFCnxwdjrPHPS2lwGSS41GiixDXRiIDDa0XoSmVBRNPLpUpycz7-u4lVbq9xHl1Tmnb2-Ma7kf6iKz5CuFCX7D5TtOsUH-B_pi1ekMF7_isaLXUUxCeTF6q48pvrQf71pMlHX-Zmp2PxlnTiVNjeoG581gnJZ1j-1J_h2qKcumyZb13wYHdZ_0TtbNP612_4pFSP2u98-0uft9-GGAp2Fy3ZDwbVCcBagZbwaSkmAATfIgcgLVVMQ4HdZLOrcrmhFew86QX4WaP7BEBxHdHNR04cKucfK4xnnwG6bDtghSCFgwg4XH0-__ejWXFQCYx8YiWjf34SU0j77bkY6yMFFUZFHrN7ipMibaib7zY1a7Th7wO55e4EvGuI_ZHdc-Yjdb2txcC-aH7Nlzwu84wW-zvmAF_iQF3hR8p4XeMMLvOWFJ-z886ezDyeBr5UR2FjIKtCQZ3RILLWFKIsyByYDMPHM5do4bRKtcVo6oQCtqSR0GWRqbmMlnTQiyUT0lE3KdemeM54pnYCTkYqMmoe504C3wmaIQCpj5JRF7eil1ieSp3omP9PaoBSQ0vCnNPwpOU0mKQ3_lAXdW5smkcot8G-QMKmfbdtbYBcjWIK5AihkGqEKKgXCQ4ivE_x1sdnTx_GIBbqPBFC4qIVqyo5anugxRSJGk3yWzKaMd60ooOnUTZcOaZ5SUVS0a6I_gcRzlQgR40c8a5itx-5Z9sXeliN2t5_FL9mkuty5V6goV-bYz5Jfh0m82A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+evolution+of+topographic+regularities+in+artificial+neural+networks&rft.jtitle=Neural+computation&rft.au=Gauci%2C+Jason&rft.au=Stanley%2C+Kenneth+O&rft.date=2010-07-01&rft.eissn=1530-888X&rft.volume=22&rft.issue=7&rft.spage=1860&rft_id=info:doi/10.1162%2Fneco.2010.06-09-1042&rft_id=info%3Apmid%2F20235822&rft.externalDocID=20235822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon