A novel hierarchical framework for plant leaf disease detection using residual vision transformer

Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the a...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 9; p. e29912
Main Authors Vallabhajosyula, Sasikala, Sistla, Venkatramaphanikumar, Kolli, Venkata Krishna Kishore
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.05.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2405-8440
2405-8440
DOI10.1016/j.heliyon.2024.e29912

Cover

Abstract Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50.
AbstractList Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50.
Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50.Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50.
ArticleNumber e29912
Author Kolli, Venkata Krishna Kishore
Sistla, Venkatramaphanikumar
Vallabhajosyula, Sasikala
Author_xml – sequence: 1
  givenname: Sasikala
  surname: Vallabhajosyula
  fullname: Vallabhajosyula, Sasikala
  organization: Department of CSE, Vignan's Nirula Institute of Technology and Science for Women, Guntur, Andhra Pradesh, India
– sequence: 2
  givenname: Venkatramaphanikumar
  surname: Sistla
  fullname: Sistla, Venkatramaphanikumar
  organization: Department of CSE, Vignan's Foundation for Science, Technology, and Research, Guntur, Andhra Pradesh, India
– sequence: 3
  givenname: Venkata Krishna Kishore
  surname: Kolli
  fullname: Kolli, Venkata Krishna Kishore
  email: kvkkishore@vignan.ac.in
  organization: Department of CSE, Vignan's Foundation for Science, Technology, and Research, Guntur, Andhra Pradesh, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38699004$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v3CAQxa0qVZOm-QitfOxlt2CwAfVQRVH_RIrUS3tGYzzeZcvCFuyN9tsHx9so6SU5MYJ5Pwbee1uc-OCxKN5TsqSENp82yzU6ewh-WZGKL7FSilavirOKk3ohOScnj-rT4iKlDSGE1rJRgr0pTlkuFCH8rIDL0oc9unJtMUI0a2vAlX2ELd6G-KfsQyx3DvxQOoS-7GxCSFh2OKAZbPDlmKxflRGT7cas3Ns07Q4RfMraLcZ3xeseXMKL43pe_P729dfVj8XNz-_XV5c3C1M3YlgoKVE0RnV1b_pWKmFE1bVcckOFpD1iK2plsJOc9sAqlEyhlMBrRMoQgJ0X1zO3C7DRu2i3EA86gNX3GyGuNMTBGodataTnqiJCmoozlIpz0XYdNLWYrqOZ1cys0e_gcAvOPQAp0ZMFeqOPFujJAj1bkIVfZuFubLfYGfT5J9yTaZ6eeLvWq7DXlJKGU8Yy4eOREMPfEdOgtzYZdNkDDGPSjNZMkkZW4vlWUhPFGnVP_fB4roeB_gUhN9Rzg4khpYj9ix_8-T-dsQNMycjPs-6l34U5GPucQJ2MRZ9ttjHnKztnnyHcASe992g
CitedBy_id crossref_primary_10_1111_jph_70028
crossref_primary_10_1007_s42979_024_03400_4
crossref_primary_10_1016_j_engappai_2024_109412
crossref_primary_10_1016_j_rineng_2024_103784
crossref_primary_10_1007_s10661_024_13468_3
crossref_primary_10_3390_make6040114
crossref_primary_10_1016_j_compag_2024_109734
Cites_doi 10.1016/j.micpro.2022.104631
10.1109/TPAMI.2016.2644615
10.1016/j.engappai.2023.106020
10.1016/j.heliyon.2023.e16341
10.1016/j.compag.2022.106892
10.1007/s11042-023-15226-y
10.1049/ipr2.12397
10.1016/j.aiia.2021.12.002
10.1016/j.advengsoft.2022.103336
10.1007/s00521-021-06714-z
10.1007/s11119-022-09927-x
10.1109/ACCESS.2022.3232917
10.1109/ACCESS.2023.3244499
10.3389/fpls.2022.963302
10.1007/s11042-022-12147-0
10.1016/j.engappai.2022.105210
10.3390/plants9101302
10.1007/s11042-023-14933-w
10.1016/j.heliyon.2023.e15482
10.1109/ACCESS.2019.2943454
10.1016/j.compag.2021.106644
10.1186/s13007-021-00722-9
10.1007/s11104-022-05513-2
10.1109/ACCESS.2021.3058947
10.1109/TCBB.2022.3195291
10.3390/s21144749
10.1016/j.compag.2022.107485
10.1016/j.compag.2022.107543
10.1007/s13593-014-0246-1
10.1007/s11104-022-05407-3
10.1016/j.heliyon.2022.e11855
10.1016/j.procs.2023.01.188
10.1016/j.compag.2021.106658
10.3389/fpls.2019.00155
10.1109/ACCESS.2022.3187203
10.1186/s40537-021-00444-8
10.3390/rs10010075
10.1016/j.compag.2018.03.032
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.heliyon.2024.e29912
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_9b0f492078c243e89447bdda6574c171
10.1016/j.heliyon.2024.e29912
PMC11064133
38699004
10_1016_j_heliyon_2024_e29912
S2405844024059437
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c567t-988e76c9d5fcfb897c72db484c1781feeb759ced841fa32e839e88a45ee13eaa3
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Tue Oct 14 19:05:41 EDT 2025
Sun Oct 26 02:16:21 EDT 2025
Thu Aug 21 18:34:28 EDT 2025
Fri Aug 22 20:41:18 EDT 2025
Thu Oct 02 10:41:10 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Thu Oct 02 04:36:30 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Sat Oct 11 16:50:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Vision transformer
MobileNetV2
Plant leaf disease detection
Inception V3
Deep leaning
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-988e76c9d5fcfb897c72db484c1781feeb759ced841fa32e839e88a45ee13eaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/9b0f492078c243e89447bdda6574c171
PMID 38699004
PQID 3050936933
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9b0f492078c243e89447bdda6574c171
unpaywall_primary_10_1016_j_heliyon_2024_e29912
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11064133
proquest_miscellaneous_3153806827
proquest_miscellaneous_3050936933
pubmed_primary_38699004
crossref_primary_10_1016_j_heliyon_2024_e29912
crossref_citationtrail_10_1016_j_heliyon_2024_e29912
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e29912
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sai Reddy, Neeraja (bib16) 2022; 81
Peng, Wang (bib2) 2022; 13
Roy (bib28) 2023; 11
Raju Kanaparthi, Sudhakar Ilango (bib30) 2023; 218
Zhang, Yue, Zhang, Li, Gao (bib12) 2022
Paymode, Malode (bib19) 2022; 6
Chen, Chen, Zhang, Sun, Nanehkaran (bib46) 2020; 173
Zhang, Zhang, Zhang, Guo, Gao, Zhang (bib14) 2023
Martinelli, Scalenghe, Davino, Panno, Scuderi, Ruisi (bib8) 2015; 35
Zhang, Zhang, Zhang, Guo, Li, Gao (bib10) 2023; 61
Nandhini, Ashokkumar (bib15) 2022; 34
Too, Yujian, Njuki, Yingchun (bib5) 2019; 161
Liu, Zhang (bib39) 2023; 20
Dananjayan (bib40) 2022; 193
Fan, Peng, Mu, Zhou, Tjahjadi, Ren (bib26) 2022; 196
Moussafir, Chaibi, Saadane (bib34) 2022; 479
Alaeddine, Jihene (bib41) 2023
Lin, Gong, Huang, Liu, Pan (bib1) 2019; 10
Hasan, Yusuf, Alzubaidi (bib50) 2020; 9
Ahmed, Hasan, Ahmed, Sony, Kabir (bib22) 2022
Dhaka, Meena, Rani, Sinwar, Ijaz, Woźniak (bib47) 2021; 21
Kaur, Harnal, Gautam, Singh, Singh (bib24) 2022; 115
Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma (bib44) 2021; 8
Liu, Wang (bib3) 2021; 17
Rai, Pahuja (bib18) 2023
Kaur, Harnal, Gautam (bib17) 2022
Ji (bib35) 2018; 10
Bao, Cheng, Zhou, Guo, Wang, Zhang, Qiao, Zhang (bib25) 2022; 203
Badrinarayanan, Kendall, Cipolla (bib45) 2017; 39
Vishnoi, Kumar, Kumar, Mohan, Khan (bib21) 2023; 11
Zhao, Sun, Xu, Chen (bib37) 2022; 193
Kabiraz, Probha, Majumdar, Mahmud, Bhowmik, Ali (bib51) 2023; 9
Zhang, Zhang, Yang, Bai, Zhang, Guo (bib9) 2022
Bhakta, Phadikar, Majumder (bib20) 2023; 24
Zhou, Zhong, Zhou, Song, Xiang (bib32) 2023; 121
Wang, Sun, Wang (bib6) 2017; 2017
Zhang, Yang, Guo, Li, Gao, Zhang (bib13) 2024
Yadav, Thakur, Saxena (bib33) 2022; 477
Zhou, Zhou, Xing, Song (bib36) 2021; 9
Kc, Yin, Wu, Wu (bib48) 2019; 165
Li, Zhou, Chen, Li, Hu (bib29) 2023; 123A
Algaashani (bib42) 2022; 16
Singh, Misra (bib4) 2017; 4
Yang, Yu, Zhang, Long, Zhang, Xu, Liao (bib27) 2023; 204
Zhang, Bai, Zhang, Zhang, Wang, Guo, Gao (bib11) 2022
Li, Li, Zhang, Zhang, Zhang, Shang (bib38) 2022; vols. 1319–1578
Debnath, Saha (bib31) 2022; 94
Zhou, Zhang, Chen, He, Ma (bib7) 2019; 7
Patel, Mitra, Vinchurkar (bib43) 2022; 8
Kassa, Bekele, Demissew, Abebe (bib49) 2023; 9
Daniya, Vigneshwari (bib23) 2022; 174
Kaur (10.1016/j.heliyon.2024.e29912_bib24) 2022; 115
Too (10.1016/j.heliyon.2024.e29912_bib5) 2019; 161
Ji (10.1016/j.heliyon.2024.e29912_bib35) 2018; 10
Wang (10.1016/j.heliyon.2024.e29912_bib6) 2017; 2017
Liu (10.1016/j.heliyon.2024.e29912_bib39) 2023; 20
Nandhini (10.1016/j.heliyon.2024.e29912_bib15) 2022; 34
Yang (10.1016/j.heliyon.2024.e29912_bib27) 2023; 204
Peng (10.1016/j.heliyon.2024.e29912_bib2) 2022; 13
Debnath (10.1016/j.heliyon.2024.e29912_bib31) 2022; 94
Zhou (10.1016/j.heliyon.2024.e29912_bib36) 2021; 9
Zhang (10.1016/j.heliyon.2024.e29912_bib12) 2022
Yadav (10.1016/j.heliyon.2024.e29912_bib33) 2022; 477
Li (10.1016/j.heliyon.2024.e29912_bib38) 2022; vols. 1319–1578
Singh (10.1016/j.heliyon.2024.e29912_bib4) 2017; 4
Ahmed (10.1016/j.heliyon.2024.e29912_bib22) 2022
Bhakta (10.1016/j.heliyon.2024.e29912_bib20) 2023; 24
Kc (10.1016/j.heliyon.2024.e29912_bib48) 2019; 165
Chen (10.1016/j.heliyon.2024.e29912_bib46) 2020; 173
Zhang (10.1016/j.heliyon.2024.e29912_bib13) 2024
Paymode (10.1016/j.heliyon.2024.e29912_bib19) 2022; 6
Kaur (10.1016/j.heliyon.2024.e29912_bib17) 2022
Bao (10.1016/j.heliyon.2024.e29912_bib25) 2022; 203
Zhang (10.1016/j.heliyon.2024.e29912_bib10) 2023; 61
Raju Kanaparthi (10.1016/j.heliyon.2024.e29912_bib30) 2023; 218
Fan (10.1016/j.heliyon.2024.e29912_bib26) 2022; 196
Zhao (10.1016/j.heliyon.2024.e29912_bib37) 2022; 193
Martinelli (10.1016/j.heliyon.2024.e29912_bib8) 2015; 35
Liu (10.1016/j.heliyon.2024.e29912_bib3) 2021; 17
Lin (10.1016/j.heliyon.2024.e29912_bib1) 2019; 10
Roy (10.1016/j.heliyon.2024.e29912_bib28) 2023; 11
Kabiraz (10.1016/j.heliyon.2024.e29912_bib51) 2023; 9
Moussafir (10.1016/j.heliyon.2024.e29912_bib34) 2022; 479
Li (10.1016/j.heliyon.2024.e29912_bib29) 2023; 123A
Dananjayan (10.1016/j.heliyon.2024.e29912_bib40) 2022; 193
Patel (10.1016/j.heliyon.2024.e29912_bib43) 2022; 8
Zhou (10.1016/j.heliyon.2024.e29912_bib32) 2023; 121
Badrinarayanan (10.1016/j.heliyon.2024.e29912_bib45) 2017; 39
Zhang (10.1016/j.heliyon.2024.e29912_bib14) 2023
Algaashani (10.1016/j.heliyon.2024.e29912_bib42) 2022; 16
Rai (10.1016/j.heliyon.2024.e29912_bib18) 2023
Daniya (10.1016/j.heliyon.2024.e29912_bib23) 2022; 174
Hasan (10.1016/j.heliyon.2024.e29912_bib50) 2020; 9
Zhou (10.1016/j.heliyon.2024.e29912_bib7) 2019; 7
Zhang (10.1016/j.heliyon.2024.e29912_bib11) 2022
Alaeddine (10.1016/j.heliyon.2024.e29912_bib41) 2023
Vishnoi (10.1016/j.heliyon.2024.e29912_bib21) 2023; 11
Sai Reddy (10.1016/j.heliyon.2024.e29912_bib16) 2022; 81
Alzubaidi (10.1016/j.heliyon.2024.e29912_bib44) 2021; 8
Zhang (10.1016/j.heliyon.2024.e29912_bib9) 2022
Dhaka (10.1016/j.heliyon.2024.e29912_bib47) 2021; 21
Kassa (10.1016/j.heliyon.2024.e29912_bib49) 2023; 9
References_xml – volume: 81
  start-page: 24021
  year: 2022
  end-page: 24040
  ident: bib16
  article-title: Plant leaf disease classification and damage detection system using deep learning models
  publication-title: Multimed. Tool. Appl.
– volume: 218
  start-page: 2123
  year: 2023
  end-page: 2132
  ident: bib30
  article-title: A survey on training issues in chili leaf diseases identification using deep learning techniques
  publication-title: Proc. Comput. Sci.
– volume: 193
  year: 2022
  ident: bib37
  article-title: RIC-Net: a plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism
  publication-title: Comput. Electron. Agric.
– volume: 174
  year: 2022
  ident: bib23
  article-title: A novel Moore-Penrose pseudo-inverse weight-based Deep Convolution Neural Network for bacterial leaf blight disease detection system in rice plant
  publication-title: Adv. Eng. Software
– volume: 165
  year: 2019
  ident: bib48
  article-title: Depthwise separable convolution architectures for plant disease classification
  publication-title: Comput. Electron. Agric.
– volume: vols. 1319–1578
  year: 2022
  ident: bib38
  publication-title: SLViT: Shuffle-Convolution-Based Lightweight Vision Transformer for Effective Diagnosis of Sugarcane Leaf Diseases
– volume: 6
  start-page: 23
  year: 2022
  end-page: 33
  ident: bib19
  article-title: Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG
  publication-title: Artificial Intelligence in Agriculture
– volume: 11
  start-page: 6594
  year: 2023
  end-page: 6609
  ident: bib21
  article-title: Detection of apple plant diseases using leaf images through convolutional neural network
  publication-title: IEEE Access
– volume: 16
  start-page: 913
  year: 2022
  end-page: 925
  ident: bib42
  article-title: Tomato leaf disease classification by exploiting transfer learning and feature concatenation
  publication-title: IET Image Process.
– volume: 477
  start-page: 595
  year: 2022
  end-page: 611
  ident: bib33
  article-title: AFD-Net: apple Foliar Disease multi-classification using deep learning on plant pathology dataset
  publication-title: Plant Soil
– volume: 10
  start-page: 75
  year: 2018
  ident: bib35
  article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images
  publication-title: Rem. Sens.
– volume: 8
  start-page: 1
  year: 2021
  end-page: 74
  ident: bib44
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
– volume: 173
  year: 2020
  ident: bib46
  article-title: Using deep transfer learning for image-based plant disease identification
  publication-title: Comput. Electron. Agric.
– volume: 9
  year: 2023
  ident: bib51
  article-title: Conventional and advanced detection techniques of foodborne pathogens: a comprehensive review
  publication-title: Heliyon
– volume: 4
  start-page: 41
  year: 2017
  end-page: 49
  ident: bib4
  article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques
  publication-title: Inf. Process. Agric.
– volume: 193
  year: 2022
  ident: bib40
  article-title: Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images
  publication-title: Comput. Electron. Agric.
– volume: 196
  year: 2022
  ident: bib26
  article-title: Leaf image-based plant di image-base edification using transfer learning and feature fusion
  publication-title: Comput. Electron. Agric.
– start-page: 1730
  year: 2022
  end-page: 1738
  ident: bib11
  article-title: RKformer: Runge-Kutta Transformer with Random-Connection Attention for Infrared Small Target Detection
– volume: 121
  year: 2023
  ident: bib32
  article-title: Rice leaf disease identification by residual-distilled transformer
  publication-title: Eng. Appl. Artif. Intell.
– year: 2023
  ident: bib41
  article-title: Plant leaf disease classification using Wide Residual Networks
  publication-title: Multimed. Tool. Appl.
– volume: 123A
  year: 2023
  ident: bib29
  article-title: Identification of tomato leaf diseases based on LMBRNet
  publication-title: Eng. Appl. Artif. Intell.
– year: 2022
  ident: bib17
  article-title: A novel transfer deep learning method for detection and classification of plant leaf disease
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 10
  year: 2019
  ident: bib1
  article-title: Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network
  publication-title: Front. Plant Sci.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 25
  ident: bib50
  article-title: Review of the state of the art of deep learning for plant Diseases: a broad analysis and discussion
  publication-title: Plants
– volume: 204
  year: 2023
  ident: bib27
  article-title: GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases
  publication-title: Comput. Electron. Agric.
– volume: 35
  start-page: 1
  year: 2015
  end-page: 25
  ident: bib8
  article-title: Advanced methods of plant disease detection
  publication-title: A review. Agron. Sustain. Dev.
– volume: 7
  start-page: 143190
  year: 2019
  end-page: 143206
  ident: bib7
  article-title: Rapid detection of rice disease based on FCM-KM and faster r-CNN fusion
  publication-title: IEEE Access
– start-page: 23016
  year: 2023
  end-page: 23027
  ident: bib14
  article-title: ESSAformer: efficient transformer for hyperspectral image super-resolution
  publication-title: 2023 IEEE/CVF International Conference on Computer Vision (ICCV)
– start-page: 867
  year: 2022
  end-page: 876
  ident: bib9
  article-title: ISNet: shape matters for infrared small target detection
  publication-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2024
  ident: bib13
  article-title: “IRPruneDet: Efficient Infrared Small Target Detection via Wavelet Structure-Regularized Soft Channel Pruning” AAAI
– volume: 24
  start-page: 23
  year: 2023
  end-page: 39
  ident: bib20
  article-title: A novel plant disease prediction model based on thermal images using modified deep convolutional neural network
  publication-title: Precis. Agric.
– volume: 21
  start-page: 4749
  year: 2021
  ident: bib47
  article-title: A survey of deep convolutional neural networks applied for prediction of plant leaf diseases
  publication-title: Sensors
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib6
  article-title: Automatic image-based plant disease severity estimation using deep learning
  publication-title: Comput. Intell. Neurosci.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib45
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 14
  ident: bib10
  article-title: Dim2Clear network for infrared small target detection
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 203
  year: 2022
  ident: bib25
  article-title: An improved DenseNet model to classify the damage caused by cotton aphid
  publication-title: Comput. Electron. Agric.
– volume: 161
  start-page: 272
  year: 2019
  end-page: 279
  ident: bib5
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
– start-page: 1857
  year: 2022
  end-page: 1865
  ident: bib12
  article-title: Exploring Feature Compensation and Cross-Level Correlation for Infrared Small Target Detection
– volume: 34
  start-page: 5513
  year: 2022
  end-page: 5534
  ident: bib15
  article-title: An automatic plant leaf disease identification using DenseNet-121 architecture with a mutation-based Henry gas solubility optimization algorithm
  publication-title: Neural Comput. Appl.
– volume: 20
  start-page: 1278
  year: 2023
  end-page: 1288
  ident: bib39
  article-title: PiTLiD: identification of plant disease from leaf images based on convolutional neural network
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
– volume: 8
  year: 2022
  ident: bib43
  article-title: A review of recent advances in plant-pathogen detection systems
  publication-title: Heliyon
– volume: 9
  year: 2023
  ident: bib49
  article-title: Plant species diversity, plant use, and classification of agroforestry home gardens in southern and southwestern Ethiopia
  publication-title: Heliyon
– volume: 479
  start-page: 251
  year: 2022
  end-page: 266
  ident: bib34
  article-title: Design of efficient techniques for tomato leaf disease detection using genetic algorithm-based and deep neural networks
  publication-title: Plant Soil
– volume: 9
  start-page: 28822
  year: 2021
  end-page: 28831
  ident: bib36
  article-title: Tomato leaf disease identification by restructured deep residual dense network
  publication-title: IEEE Access
– start-page: 68868
  year: 2022
  end-page: 68884
  ident: bib22
  article-title: Less is more: lighter and faster deep neural architecture for tomato leaf disease classification
  publication-title: IEEE Access 10
– volume: 115
  year: 2022
  ident: bib24
  article-title: An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique
  publication-title: Eng. Appl. Artif. Intell.
– volume: 94
  year: 2022
  ident: bib31
  article-title: An IoT-based intelligent farming using CNN for early disease detection in rice paddy
  publication-title: Microprocess. Microsyst.
– volume: 11
  start-page: 14983
  year: 2023
  end-page: 15001
  ident: bib28
  article-title: Detection of tomato leaf diseases for agro-based industries using novel PCA DeepNet
  publication-title: IEEE Access
– volume: 13
  year: 2022
  ident: bib2
  article-title: Leaf disease image retrieval with object detection and deep metric learning
  publication-title: Front. Plant Sci.
– volume: 17
  start-page: 22
  year: 2021
  ident: bib3
  article-title: Plant diseases and pests detection based on deep learning: a review
  publication-title: Plant Methods
– year: 2023
  ident: bib18
  article-title: Classification of diseased cotton leaves and plants using improved deep convolutional neural network
  publication-title: Multimed. Tool. Appl.
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29912_bib6
  article-title: Automatic image-based plant disease severity estimation using deep learning
  publication-title: Comput. Intell. Neurosci.
– start-page: 23016
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib14
  article-title: ESSAformer: efficient transformer for hyperspectral image super-resolution
– volume: 94
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib31
  article-title: An IoT-based intelligent farming using CNN for early disease detection in rice paddy
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2022.104631
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29912_bib45
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 121
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib32
  article-title: Rice leaf disease identification by residual-distilled transformer
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106020
– start-page: 1857
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib12
– volume: 9
  issue: 6
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib49
  article-title: Plant species diversity, plant use, and classification of agroforestry home gardens in southern and southwestern Ethiopia
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e16341
– start-page: 867
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib9
  article-title: ISNet: shape matters for infrared small target detection
– volume: 196
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib26
  article-title: Leaf image-based plant di image-base edification using transfer learning and feature fusion
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106892
– year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib41
  article-title: Plant leaf disease classification using Wide Residual Networks
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-023-15226-y
– volume: 16
  start-page: 913
  issue: 3
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib42
  article-title: Tomato leaf disease classification by exploiting transfer learning and feature concatenation
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12397
– volume: 6
  start-page: 23
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib19
  article-title: Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2021.12.002
– volume: 174
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib23
  article-title: A novel Moore-Penrose pseudo-inverse weight-based Deep Convolution Neural Network for bacterial leaf blight disease detection system in rice plant
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2022.103336
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib10
  article-title: Dim2Clear network for infrared small target detection
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– year: 2024
  ident: 10.1016/j.heliyon.2024.e29912_bib13
– volume: 34
  start-page: 5513
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib15
  article-title: An automatic plant leaf disease identification using DenseNet-121 architecture with a mutation-based Henry gas solubility optimization algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06714-z
– volume: 24
  start-page: 23
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib20
  article-title: A novel plant disease prediction model based on thermal images using modified deep convolutional neural network
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-022-09927-x
– volume: 11
  start-page: 6594
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib21
  article-title: Detection of apple plant diseases using leaf images through convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3232917
– volume: 11
  start-page: 14983
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib28
  article-title: Detection of tomato leaf diseases for agro-based industries using novel PCA DeepNet
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3244499
– volume: 13
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib2
  article-title: Leaf disease image retrieval with object detection and deep metric learning
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.963302
– volume: 81
  start-page: 24021
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib16
  article-title: Plant leaf disease classification and damage detection system using deep learning models
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-022-12147-0
– volume: 115
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib24
  article-title: An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105210
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  ident: 10.1016/j.heliyon.2024.e29912_bib4
  article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques
  publication-title: Inf. Process. Agric.
– volume: 173
  issue: April
  year: 2020
  ident: 10.1016/j.heliyon.2024.e29912_bib46
  article-title: Using deep transfer learning for image-based plant disease identification
  publication-title: Comput. Electron. Agric.
– volume: 123A
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib29
  article-title: Identification of tomato leaf diseases based on LMBRNet
  publication-title: Eng. Appl. Artif. Intell.
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.heliyon.2024.e29912_bib50
  article-title: Review of the state of the art of deep learning for plant Diseases: a broad analysis and discussion
  publication-title: Plants
  doi: 10.3390/plants9101302
– year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib18
  article-title: Classification of diseased cotton leaves and plants using improved deep convolutional neural network
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-023-14933-w
– volume: 9
  issue: 4
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib51
  article-title: Conventional and advanced detection techniques of foodborne pathogens: a comprehensive review
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15482
– volume: 7
  start-page: 143190
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29912_bib7
  article-title: Rapid detection of rice disease based on FCM-KM and faster r-CNN fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2943454
– year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib17
  article-title: A novel transfer deep learning method for detection and classification of plant leaf disease
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 193
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib37
  article-title: RIC-Net: a plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106644
– volume: 17
  start-page: 22
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29912_bib3
  article-title: Plant diseases and pests detection based on deep learning: a review
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00722-9
– volume: 479
  start-page: 251
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib34
  article-title: Design of efficient techniques for tomato leaf disease detection using genetic algorithm-based and deep neural networks
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05513-2
– volume: 9
  start-page: 28822
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29912_bib36
  article-title: Tomato leaf disease identification by restructured deep residual dense network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058947
– volume: 20
  start-page: 1278
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib39
  article-title: PiTLiD: identification of plant disease from leaf images based on convolutional neural network
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
  doi: 10.1109/TCBB.2022.3195291
– volume: 165
  issue: December 2018
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29912_bib48
  article-title: Depthwise separable convolution architectures for plant disease classification
  publication-title: Comput. Electron. Agric.
– volume: 21
  start-page: 4749
  issue: 14
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29912_bib47
  article-title: A survey of deep convolutional neural networks applied for prediction of plant leaf diseases
  publication-title: Sensors
  doi: 10.3390/s21144749
– volume: 203
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib25
  article-title: An improved DenseNet model to classify the damage caused by cotton aphid
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107485
– volume: 204
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib27
  article-title: GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107543
– volume: 35
  start-page: 1
  year: 2015
  ident: 10.1016/j.heliyon.2024.e29912_bib8
  article-title: Advanced methods of plant disease detection
  publication-title: A review. Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0246-1
– volume: vols. 1319–1578
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib38
– volume: 477
  start-page: 595
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib33
  article-title: AFD-Net: apple Foliar Disease multi-classification using deep learning on plant pathology dataset
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05407-3
– volume: 8
  issue: 12
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib43
  article-title: A review of recent advances in plant-pathogen detection systems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e11855
– start-page: 1730
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib11
– volume: 218
  start-page: 2123
  year: 2023
  ident: 10.1016/j.heliyon.2024.e29912_bib30
  article-title: A survey on training issues in chili leaf diseases identification using deep learning techniques
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2023.01.188
– volume: 193
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib40
  article-title: Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106658
– volume: 10
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29912_bib1
  article-title: Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00155
– start-page: 68868
  year: 2022
  ident: 10.1016/j.heliyon.2024.e29912_bib22
  article-title: Less is more: lighter and faster deep neural architecture for tomato leaf disease classification
  publication-title: IEEE Access 10
  doi: 10.1109/ACCESS.2022.3187203
– volume: 8
  start-page: 1
  year: 2021
  ident: 10.1016/j.heliyon.2024.e29912_bib44
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 10
  start-page: 75
  issue: 1
  year: 2018
  ident: 10.1016/j.heliyon.2024.e29912_bib35
  article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images
  publication-title: Rem. Sens.
  doi: 10.3390/rs10010075
– volume: 161
  start-page: 272
  year: 2019
  ident: 10.1016/j.heliyon.2024.e29912_bib5
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.032
SSID ssj0001586973
Score 2.3606482
Snippet Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security....
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e29912
SubjectTerms crops
data collection
Deep leaning
disease detection
foliar diseases
food security
Inception V3
leaves
MobileNetV2
Plant leaf disease detection
villages
vision
Vision transformer
weather
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIu5Q3LS0bimiWJnzkuiKpC6ooDK5WT5ThjuiXKrkq2qPx6xomzEIpokXLJY-KMZ2x_zrwIeS2BW6tTkWgE9wki4jIJfwYTLR1OmEKxqrPoHi3k4ZJ_OBbHMVg9xMKM7PedH9YJ1KuLdUhVmvMZ4OwZagrvSYHQe0L2louP88-hgBwP7XGe_orS-TvtaP3p0vSPlqHLMPOyt-StbbOxF99tXf-2FB3cIYuBid4D5ets25Yz9-OP_I7X5vIu2Y-glM57LbpHbkBzn9w8imb3B8TOabM-h5qGwtmd6QElS_3g10UR-NJNjTKiNVhPo9GHVtB2jl4NDd71Xyju7LvQL9oHtNN2AM1w9pAsD95_eneYxNoMiRNStUmhNSjpikp450tdKKfyquSau0zpzAOUShQOKs0zb1kOiMNAa8sFQMbAWvaITJp1A08IhVTZ0vKqYpZx6XHWw02d0h5Eygo8poQPEjMuJi4P9TNqM3ionZrYfSZ0n-m7b0pmO7JNn7njKoK3QR12D4fE290FlJSJ49gUZep5kSOwcjlnoAvOVVlVVgoVWM-mRA_KZCKG6bEJvmp1VfuvBuUzOMaD4cY2sN5-Mywk6WGyYOwfz4SlK5U6V1PyuFfYHSdMSwQdKcePG6nyiNXxnWZ10uUaR3QoEedgw292Wn-97nz63xTPyO1wFnwzMvGcTNqzLbxAyNeWL-NA_wkR31W1
  priority: 102
  providerName: Unpaywall
Title A novel hierarchical framework for plant leaf disease detection using residual vision transformer
URI https://dx.doi.org/10.1016/j.heliyon.2024.e29912
https://www.ncbi.nlm.nih.gov/pubmed/38699004
https://www.proquest.com/docview/3050936933
https://www.proquest.com/docview/3153806827
https://pubmed.ncbi.nlm.nih.gov/PMC11064133
https://doi.org/10.1016/j.heliyon.2024.e29912
https://doaj.org/article/9b0f492078c243e89447bdda6574c171
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: KQ8
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DIK
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: AKRWK
  dateStart: 20150901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkYAL4s0CrYzENbtJ_D4uiKqq1IoDK5WT5SQTulWUXZUsqP-esZ0sG1XqcqiUU2I78czY8znzIuSTBO6cTkWiEdwniIiLxP8ZTLQsccMUilXBont2Lk8W_PRCXOyU-vI-YTE9cCTczBRpzU2OmqzMOQNtOFdFVTkpFC-zED2ep9rsHKZifLCWRrF_ITuzq-klNMublc95mvMp4Dac5SNlFHL2j3TSbcx523Xy8aZdu5s_rml29NLxM_K0B5R0HifynDyA9gV5dNabzF8SN6ft6jc01Be9DmYD5AqtB58siqCVrhukL23A1bQ32NAKuuCk1VLvGf-T4qk8hG3RGIxOuwHwwvUrsjj--v3LSdLXVUhKIVWXGK1BydJUoi7rQhtVqrwquPb01FkNUChhSqg0z2rHckAMBVo7LgAyBs6x1-SgXbXwllBIlSscryrmGJc17lh4IFO6BpEyg9eE8IHAtuyTjvvaF40dvMuubM8X6_liI18mZLrtto5ZN_Z1-Oy5t23sk2aHGyhKthclu0-UJkQPvLc9_oi4Aoda7nv_x0FWLK5Pb3RxLaw2vyzzCXaYNIzd0carnVTqXE3Imyhf25kwFGSDOxl-3EjyRlMdP2mXlyFPOCI7iRgFXzzbCun_kfPdfZDzPXnih_SuFpn4QA666w0cIoLriqOwWI_Iw8X5t_mPv-73R2Y
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIu5Q3LS0bimiWJnzkuiKpC6ooDK5WT5ThjuiXKrkq2qPx6xomzEIpokXLJY-KMZ2x_zrwIeS2BW6tTkWgE9wki4jIJfwYTLR1OmEKxqrPoHi3k4ZJ_OBbHMVg9xMKM7PedH9YJ1KuLdUhVmvMZ4OwZagrvSYHQe0L2louP88-hgBwP7XGe_orS-TvtaP3p0vSPlqHLMPOyt-StbbOxF99tXf-2FB3cIYuBid4D5ets25Yz9-OP_I7X5vIu2Y-glM57LbpHbkBzn9w8imb3B8TOabM-h5qGwtmd6QElS_3g10UR-NJNjTKiNVhPo9GHVtB2jl4NDd71Xyju7LvQL9oHtNN2AM1w9pAsD95_eneYxNoMiRNStUmhNSjpikp450tdKKfyquSau0zpzAOUShQOKs0zb1kOiMNAa8sFQMbAWvaITJp1A08IhVTZ0vKqYpZx6XHWw02d0h5Eygo8poQPEjMuJi4P9TNqM3ionZrYfSZ0n-m7b0pmO7JNn7njKoK3QR12D4fE290FlJSJ49gUZep5kSOwcjlnoAvOVVlVVgoVWM-mRA_KZCKG6bEJvmp1VfuvBuUzOMaD4cY2sN5-Mywk6WGyYOwfz4SlK5U6V1PyuFfYHSdMSwQdKcePG6nyiNXxnWZ10uUaR3QoEedgw292Wn-97nz63xTPyO1wFnwzMvGcTNqzLbxAyNeWL-NA_wkR31W1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hierarchical+framework+for+plant+leaf+disease+detection+using+residual+vision+transformer&rft.jtitle=Heliyon&rft.au=Vallabhajosyula%2C+Sasikala&rft.au=Sistla%2C+Venkatramaphanikumar&rft.au=Kolli%2C+Venkata+Krishna+Kishore&rft.date=2024-05-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=9+p.e29912-&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e29912&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon