A novel hierarchical framework for plant leaf disease detection using residual vision transformer
Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the a...
Saved in:
| Published in | Heliyon Vol. 10; no. 9; p. e29912 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
15.05.2024
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2405-8440 2405-8440 |
| DOI | 10.1016/j.heliyon.2024.e29912 |
Cover
| Abstract | Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50. |
|---|---|
| AbstractList | Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50. Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50.Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50. |
| ArticleNumber | e29912 |
| Author | Kolli, Venkata Krishna Kishore Sistla, Venkatramaphanikumar Vallabhajosyula, Sasikala |
| Author_xml | – sequence: 1 givenname: Sasikala surname: Vallabhajosyula fullname: Vallabhajosyula, Sasikala organization: Department of CSE, Vignan's Nirula Institute of Technology and Science for Women, Guntur, Andhra Pradesh, India – sequence: 2 givenname: Venkatramaphanikumar surname: Sistla fullname: Sistla, Venkatramaphanikumar organization: Department of CSE, Vignan's Foundation for Science, Technology, and Research, Guntur, Andhra Pradesh, India – sequence: 3 givenname: Venkata Krishna Kishore surname: Kolli fullname: Kolli, Venkata Krishna Kishore email: kvkkishore@vignan.ac.in organization: Department of CSE, Vignan's Foundation for Science, Technology, and Research, Guntur, Andhra Pradesh, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38699004$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk9v3CAQxa0qVZOm-QitfOxlt2CwAfVQRVH_RIrUS3tGYzzeZcvCFuyN9tsHx9so6SU5MYJ5Pwbee1uc-OCxKN5TsqSENp82yzU6ewh-WZGKL7FSilavirOKk3ohOScnj-rT4iKlDSGE1rJRgr0pTlkuFCH8rIDL0oc9unJtMUI0a2vAlX2ELd6G-KfsQyx3DvxQOoS-7GxCSFh2OKAZbPDlmKxflRGT7cas3Ns07Q4RfMraLcZ3xeseXMKL43pe_P729dfVj8XNz-_XV5c3C1M3YlgoKVE0RnV1b_pWKmFE1bVcckOFpD1iK2plsJOc9sAqlEyhlMBrRMoQgJ0X1zO3C7DRu2i3EA86gNX3GyGuNMTBGodataTnqiJCmoozlIpz0XYdNLWYrqOZ1cys0e_gcAvOPQAp0ZMFeqOPFujJAj1bkIVfZuFubLfYGfT5J9yTaZ6eeLvWq7DXlJKGU8Yy4eOREMPfEdOgtzYZdNkDDGPSjNZMkkZW4vlWUhPFGnVP_fB4roeB_gUhN9Rzg4khpYj9ix_8-T-dsQNMycjPs-6l34U5GPucQJ2MRZ9ttjHnKztnnyHcASe992g |
| CitedBy_id | crossref_primary_10_1111_jph_70028 crossref_primary_10_1007_s42979_024_03400_4 crossref_primary_10_1016_j_engappai_2024_109412 crossref_primary_10_1016_j_rineng_2024_103784 crossref_primary_10_1007_s10661_024_13468_3 crossref_primary_10_3390_make6040114 crossref_primary_10_1016_j_compag_2024_109734 |
| Cites_doi | 10.1016/j.micpro.2022.104631 10.1109/TPAMI.2016.2644615 10.1016/j.engappai.2023.106020 10.1016/j.heliyon.2023.e16341 10.1016/j.compag.2022.106892 10.1007/s11042-023-15226-y 10.1049/ipr2.12397 10.1016/j.aiia.2021.12.002 10.1016/j.advengsoft.2022.103336 10.1007/s00521-021-06714-z 10.1007/s11119-022-09927-x 10.1109/ACCESS.2022.3232917 10.1109/ACCESS.2023.3244499 10.3389/fpls.2022.963302 10.1007/s11042-022-12147-0 10.1016/j.engappai.2022.105210 10.3390/plants9101302 10.1007/s11042-023-14933-w 10.1016/j.heliyon.2023.e15482 10.1109/ACCESS.2019.2943454 10.1016/j.compag.2021.106644 10.1186/s13007-021-00722-9 10.1007/s11104-022-05513-2 10.1109/ACCESS.2021.3058947 10.1109/TCBB.2022.3195291 10.3390/s21144749 10.1016/j.compag.2022.107485 10.1016/j.compag.2022.107543 10.1007/s13593-014-0246-1 10.1007/s11104-022-05407-3 10.1016/j.heliyon.2022.e11855 10.1016/j.procs.2023.01.188 10.1016/j.compag.2021.106658 10.3389/fpls.2019.00155 10.1109/ACCESS.2022.3187203 10.1186/s40537-021-00444-8 10.3390/rs10010075 10.1016/j.compag.2018.03.032 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
| Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.heliyon.2024.e29912 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2405-8440 |
| ExternalDocumentID | oai_doaj_org_article_9b0f492078c243e89447bdda6574c171 10.1016/j.heliyon.2024.e29912 PMC11064133 38699004 10_1016_j_heliyon_2024_e29912 S2405844024059437 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E O9- OK1 ROL RPM SSZ AAYXX CITATION EJD IPNFZ RIG NPM 7X8 7S9 L.6 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c567t-988e76c9d5fcfb897c72db484c1781feeb759ced841fa32e839e88a45ee13eaa3 |
| IEDL.DBID | DOA |
| ISSN | 2405-8440 |
| IngestDate | Tue Oct 14 19:05:41 EDT 2025 Sun Oct 26 02:16:21 EDT 2025 Thu Aug 21 18:34:28 EDT 2025 Fri Aug 22 20:41:18 EDT 2025 Thu Oct 02 10:41:10 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Thu Oct 02 04:36:30 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Sat Oct 11 16:50:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Vision transformer MobileNetV2 Plant leaf disease detection Inception V3 Deep leaning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-988e76c9d5fcfb897c72db484c1781feeb759ced841fa32e839e88a45ee13eaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/9b0f492078c243e89447bdda6574c171 |
| PMID | 38699004 |
| PQID | 3050936933 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9b0f492078c243e89447bdda6574c171 unpaywall_primary_10_1016_j_heliyon_2024_e29912 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11064133 proquest_miscellaneous_3153806827 proquest_miscellaneous_3050936933 pubmed_primary_38699004 crossref_primary_10_1016_j_heliyon_2024_e29912 crossref_citationtrail_10_1016_j_heliyon_2024_e29912 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e29912 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-15 |
| PublicationDateYYYYMMDD | 2024-05-15 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Heliyon |
| PublicationTitleAlternate | Heliyon |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Sai Reddy, Neeraja (bib16) 2022; 81 Peng, Wang (bib2) 2022; 13 Roy (bib28) 2023; 11 Raju Kanaparthi, Sudhakar Ilango (bib30) 2023; 218 Zhang, Yue, Zhang, Li, Gao (bib12) 2022 Paymode, Malode (bib19) 2022; 6 Chen, Chen, Zhang, Sun, Nanehkaran (bib46) 2020; 173 Zhang, Zhang, Zhang, Guo, Gao, Zhang (bib14) 2023 Martinelli, Scalenghe, Davino, Panno, Scuderi, Ruisi (bib8) 2015; 35 Zhang, Zhang, Zhang, Guo, Li, Gao (bib10) 2023; 61 Nandhini, Ashokkumar (bib15) 2022; 34 Too, Yujian, Njuki, Yingchun (bib5) 2019; 161 Liu, Zhang (bib39) 2023; 20 Dananjayan (bib40) 2022; 193 Fan, Peng, Mu, Zhou, Tjahjadi, Ren (bib26) 2022; 196 Moussafir, Chaibi, Saadane (bib34) 2022; 479 Alaeddine, Jihene (bib41) 2023 Lin, Gong, Huang, Liu, Pan (bib1) 2019; 10 Hasan, Yusuf, Alzubaidi (bib50) 2020; 9 Ahmed, Hasan, Ahmed, Sony, Kabir (bib22) 2022 Dhaka, Meena, Rani, Sinwar, Ijaz, Woźniak (bib47) 2021; 21 Kaur, Harnal, Gautam, Singh, Singh (bib24) 2022; 115 Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma (bib44) 2021; 8 Liu, Wang (bib3) 2021; 17 Rai, Pahuja (bib18) 2023 Kaur, Harnal, Gautam (bib17) 2022 Ji (bib35) 2018; 10 Bao, Cheng, Zhou, Guo, Wang, Zhang, Qiao, Zhang (bib25) 2022; 203 Badrinarayanan, Kendall, Cipolla (bib45) 2017; 39 Vishnoi, Kumar, Kumar, Mohan, Khan (bib21) 2023; 11 Zhao, Sun, Xu, Chen (bib37) 2022; 193 Kabiraz, Probha, Majumdar, Mahmud, Bhowmik, Ali (bib51) 2023; 9 Zhang, Zhang, Yang, Bai, Zhang, Guo (bib9) 2022 Bhakta, Phadikar, Majumder (bib20) 2023; 24 Zhou, Zhong, Zhou, Song, Xiang (bib32) 2023; 121 Wang, Sun, Wang (bib6) 2017; 2017 Zhang, Yang, Guo, Li, Gao, Zhang (bib13) 2024 Yadav, Thakur, Saxena (bib33) 2022; 477 Zhou, Zhou, Xing, Song (bib36) 2021; 9 Kc, Yin, Wu, Wu (bib48) 2019; 165 Li, Zhou, Chen, Li, Hu (bib29) 2023; 123A Algaashani (bib42) 2022; 16 Singh, Misra (bib4) 2017; 4 Yang, Yu, Zhang, Long, Zhang, Xu, Liao (bib27) 2023; 204 Zhang, Bai, Zhang, Zhang, Wang, Guo, Gao (bib11) 2022 Li, Li, Zhang, Zhang, Zhang, Shang (bib38) 2022; vols. 1319–1578 Debnath, Saha (bib31) 2022; 94 Zhou, Zhang, Chen, He, Ma (bib7) 2019; 7 Patel, Mitra, Vinchurkar (bib43) 2022; 8 Kassa, Bekele, Demissew, Abebe (bib49) 2023; 9 Daniya, Vigneshwari (bib23) 2022; 174 Kaur (10.1016/j.heliyon.2024.e29912_bib24) 2022; 115 Too (10.1016/j.heliyon.2024.e29912_bib5) 2019; 161 Ji (10.1016/j.heliyon.2024.e29912_bib35) 2018; 10 Wang (10.1016/j.heliyon.2024.e29912_bib6) 2017; 2017 Liu (10.1016/j.heliyon.2024.e29912_bib39) 2023; 20 Nandhini (10.1016/j.heliyon.2024.e29912_bib15) 2022; 34 Yang (10.1016/j.heliyon.2024.e29912_bib27) 2023; 204 Peng (10.1016/j.heliyon.2024.e29912_bib2) 2022; 13 Debnath (10.1016/j.heliyon.2024.e29912_bib31) 2022; 94 Zhou (10.1016/j.heliyon.2024.e29912_bib36) 2021; 9 Zhang (10.1016/j.heliyon.2024.e29912_bib12) 2022 Yadav (10.1016/j.heliyon.2024.e29912_bib33) 2022; 477 Li (10.1016/j.heliyon.2024.e29912_bib38) 2022; vols. 1319–1578 Singh (10.1016/j.heliyon.2024.e29912_bib4) 2017; 4 Ahmed (10.1016/j.heliyon.2024.e29912_bib22) 2022 Bhakta (10.1016/j.heliyon.2024.e29912_bib20) 2023; 24 Kc (10.1016/j.heliyon.2024.e29912_bib48) 2019; 165 Chen (10.1016/j.heliyon.2024.e29912_bib46) 2020; 173 Zhang (10.1016/j.heliyon.2024.e29912_bib13) 2024 Paymode (10.1016/j.heliyon.2024.e29912_bib19) 2022; 6 Kaur (10.1016/j.heliyon.2024.e29912_bib17) 2022 Bao (10.1016/j.heliyon.2024.e29912_bib25) 2022; 203 Zhang (10.1016/j.heliyon.2024.e29912_bib10) 2023; 61 Raju Kanaparthi (10.1016/j.heliyon.2024.e29912_bib30) 2023; 218 Fan (10.1016/j.heliyon.2024.e29912_bib26) 2022; 196 Zhao (10.1016/j.heliyon.2024.e29912_bib37) 2022; 193 Martinelli (10.1016/j.heliyon.2024.e29912_bib8) 2015; 35 Liu (10.1016/j.heliyon.2024.e29912_bib3) 2021; 17 Lin (10.1016/j.heliyon.2024.e29912_bib1) 2019; 10 Roy (10.1016/j.heliyon.2024.e29912_bib28) 2023; 11 Kabiraz (10.1016/j.heliyon.2024.e29912_bib51) 2023; 9 Moussafir (10.1016/j.heliyon.2024.e29912_bib34) 2022; 479 Li (10.1016/j.heliyon.2024.e29912_bib29) 2023; 123A Dananjayan (10.1016/j.heliyon.2024.e29912_bib40) 2022; 193 Patel (10.1016/j.heliyon.2024.e29912_bib43) 2022; 8 Zhou (10.1016/j.heliyon.2024.e29912_bib32) 2023; 121 Badrinarayanan (10.1016/j.heliyon.2024.e29912_bib45) 2017; 39 Zhang (10.1016/j.heliyon.2024.e29912_bib14) 2023 Algaashani (10.1016/j.heliyon.2024.e29912_bib42) 2022; 16 Rai (10.1016/j.heliyon.2024.e29912_bib18) 2023 Daniya (10.1016/j.heliyon.2024.e29912_bib23) 2022; 174 Hasan (10.1016/j.heliyon.2024.e29912_bib50) 2020; 9 Zhou (10.1016/j.heliyon.2024.e29912_bib7) 2019; 7 Zhang (10.1016/j.heliyon.2024.e29912_bib11) 2022 Alaeddine (10.1016/j.heliyon.2024.e29912_bib41) 2023 Vishnoi (10.1016/j.heliyon.2024.e29912_bib21) 2023; 11 Sai Reddy (10.1016/j.heliyon.2024.e29912_bib16) 2022; 81 Alzubaidi (10.1016/j.heliyon.2024.e29912_bib44) 2021; 8 Zhang (10.1016/j.heliyon.2024.e29912_bib9) 2022 Dhaka (10.1016/j.heliyon.2024.e29912_bib47) 2021; 21 Kassa (10.1016/j.heliyon.2024.e29912_bib49) 2023; 9 |
| References_xml | – volume: 81 start-page: 24021 year: 2022 end-page: 24040 ident: bib16 article-title: Plant leaf disease classification and damage detection system using deep learning models publication-title: Multimed. Tool. Appl. – volume: 218 start-page: 2123 year: 2023 end-page: 2132 ident: bib30 article-title: A survey on training issues in chili leaf diseases identification using deep learning techniques publication-title: Proc. Comput. Sci. – volume: 193 year: 2022 ident: bib37 article-title: RIC-Net: a plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism publication-title: Comput. Electron. Agric. – volume: 174 year: 2022 ident: bib23 article-title: A novel Moore-Penrose pseudo-inverse weight-based Deep Convolution Neural Network for bacterial leaf blight disease detection system in rice plant publication-title: Adv. Eng. Software – volume: 165 year: 2019 ident: bib48 article-title: Depthwise separable convolution architectures for plant disease classification publication-title: Comput. Electron. Agric. – volume: vols. 1319–1578 year: 2022 ident: bib38 publication-title: SLViT: Shuffle-Convolution-Based Lightweight Vision Transformer for Effective Diagnosis of Sugarcane Leaf Diseases – volume: 6 start-page: 23 year: 2022 end-page: 33 ident: bib19 article-title: Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG publication-title: Artificial Intelligence in Agriculture – volume: 11 start-page: 6594 year: 2023 end-page: 6609 ident: bib21 article-title: Detection of apple plant diseases using leaf images through convolutional neural network publication-title: IEEE Access – volume: 16 start-page: 913 year: 2022 end-page: 925 ident: bib42 article-title: Tomato leaf disease classification by exploiting transfer learning and feature concatenation publication-title: IET Image Process. – volume: 477 start-page: 595 year: 2022 end-page: 611 ident: bib33 article-title: AFD-Net: apple Foliar Disease multi-classification using deep learning on plant pathology dataset publication-title: Plant Soil – volume: 10 start-page: 75 year: 2018 ident: bib35 article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images publication-title: Rem. Sens. – volume: 8 start-page: 1 year: 2021 end-page: 74 ident: bib44 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data – volume: 173 year: 2020 ident: bib46 article-title: Using deep transfer learning for image-based plant disease identification publication-title: Comput. Electron. Agric. – volume: 9 year: 2023 ident: bib51 article-title: Conventional and advanced detection techniques of foodborne pathogens: a comprehensive review publication-title: Heliyon – volume: 4 start-page: 41 year: 2017 end-page: 49 ident: bib4 article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques publication-title: Inf. Process. Agric. – volume: 193 year: 2022 ident: bib40 article-title: Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images publication-title: Comput. Electron. Agric. – volume: 196 year: 2022 ident: bib26 article-title: Leaf image-based plant di image-base edification using transfer learning and feature fusion publication-title: Comput. Electron. Agric. – start-page: 1730 year: 2022 end-page: 1738 ident: bib11 article-title: RKformer: Runge-Kutta Transformer with Random-Connection Attention for Infrared Small Target Detection – volume: 121 year: 2023 ident: bib32 article-title: Rice leaf disease identification by residual-distilled transformer publication-title: Eng. Appl. Artif. Intell. – year: 2023 ident: bib41 article-title: Plant leaf disease classification using Wide Residual Networks publication-title: Multimed. Tool. Appl. – volume: 123A year: 2023 ident: bib29 article-title: Identification of tomato leaf diseases based on LMBRNet publication-title: Eng. Appl. Artif. Intell. – year: 2022 ident: bib17 article-title: A novel transfer deep learning method for detection and classification of plant leaf disease publication-title: J. Ambient Intell. Hum. Comput. – volume: 10 year: 2019 ident: bib1 article-title: Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network publication-title: Front. Plant Sci. – volume: 9 start-page: 1 year: 2020 end-page: 25 ident: bib50 article-title: Review of the state of the art of deep learning for plant Diseases: a broad analysis and discussion publication-title: Plants – volume: 204 year: 2023 ident: bib27 article-title: GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases publication-title: Comput. Electron. Agric. – volume: 35 start-page: 1 year: 2015 end-page: 25 ident: bib8 article-title: Advanced methods of plant disease detection publication-title: A review. Agron. Sustain. Dev. – volume: 7 start-page: 143190 year: 2019 end-page: 143206 ident: bib7 article-title: Rapid detection of rice disease based on FCM-KM and faster r-CNN fusion publication-title: IEEE Access – start-page: 23016 year: 2023 end-page: 23027 ident: bib14 article-title: ESSAformer: efficient transformer for hyperspectral image super-resolution publication-title: 2023 IEEE/CVF International Conference on Computer Vision (ICCV) – start-page: 867 year: 2022 end-page: 876 ident: bib9 article-title: ISNet: shape matters for infrared small target detection publication-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2024 ident: bib13 article-title: “IRPruneDet: Efficient Infrared Small Target Detection via Wavelet Structure-Regularized Soft Channel Pruning” AAAI – volume: 24 start-page: 23 year: 2023 end-page: 39 ident: bib20 article-title: A novel plant disease prediction model based on thermal images using modified deep convolutional neural network publication-title: Precis. Agric. – volume: 21 start-page: 4749 year: 2021 ident: bib47 article-title: A survey of deep convolutional neural networks applied for prediction of plant leaf diseases publication-title: Sensors – volume: 2017 start-page: 1 year: 2017 end-page: 9 ident: bib6 article-title: Automatic image-based plant disease severity estimation using deep learning publication-title: Comput. Intell. Neurosci. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bib45 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 61 start-page: 1 year: 2023 end-page: 14 ident: bib10 article-title: Dim2Clear network for infrared small target detection publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 203 year: 2022 ident: bib25 article-title: An improved DenseNet model to classify the damage caused by cotton aphid publication-title: Comput. Electron. Agric. – volume: 161 start-page: 272 year: 2019 end-page: 279 ident: bib5 article-title: A comparative study of fine-tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. – start-page: 1857 year: 2022 end-page: 1865 ident: bib12 article-title: Exploring Feature Compensation and Cross-Level Correlation for Infrared Small Target Detection – volume: 34 start-page: 5513 year: 2022 end-page: 5534 ident: bib15 article-title: An automatic plant leaf disease identification using DenseNet-121 architecture with a mutation-based Henry gas solubility optimization algorithm publication-title: Neural Comput. Appl. – volume: 20 start-page: 1278 year: 2023 end-page: 1288 ident: bib39 article-title: PiTLiD: identification of plant disease from leaf images based on convolutional neural network publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – volume: 8 year: 2022 ident: bib43 article-title: A review of recent advances in plant-pathogen detection systems publication-title: Heliyon – volume: 9 year: 2023 ident: bib49 article-title: Plant species diversity, plant use, and classification of agroforestry home gardens in southern and southwestern Ethiopia publication-title: Heliyon – volume: 479 start-page: 251 year: 2022 end-page: 266 ident: bib34 article-title: Design of efficient techniques for tomato leaf disease detection using genetic algorithm-based and deep neural networks publication-title: Plant Soil – volume: 9 start-page: 28822 year: 2021 end-page: 28831 ident: bib36 article-title: Tomato leaf disease identification by restructured deep residual dense network publication-title: IEEE Access – start-page: 68868 year: 2022 end-page: 68884 ident: bib22 article-title: Less is more: lighter and faster deep neural architecture for tomato leaf disease classification publication-title: IEEE Access 10 – volume: 115 year: 2022 ident: bib24 article-title: An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique publication-title: Eng. Appl. Artif. Intell. – volume: 94 year: 2022 ident: bib31 article-title: An IoT-based intelligent farming using CNN for early disease detection in rice paddy publication-title: Microprocess. Microsyst. – volume: 11 start-page: 14983 year: 2023 end-page: 15001 ident: bib28 article-title: Detection of tomato leaf diseases for agro-based industries using novel PCA DeepNet publication-title: IEEE Access – volume: 13 year: 2022 ident: bib2 article-title: Leaf disease image retrieval with object detection and deep metric learning publication-title: Front. Plant Sci. – volume: 17 start-page: 22 year: 2021 ident: bib3 article-title: Plant diseases and pests detection based on deep learning: a review publication-title: Plant Methods – year: 2023 ident: bib18 article-title: Classification of diseased cotton leaves and plants using improved deep convolutional neural network publication-title: Multimed. Tool. Appl. – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.heliyon.2024.e29912_bib6 article-title: Automatic image-based plant disease severity estimation using deep learning publication-title: Comput. Intell. Neurosci. – start-page: 23016 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib14 article-title: ESSAformer: efficient transformer for hyperspectral image super-resolution – volume: 94 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib31 article-title: An IoT-based intelligent farming using CNN for early disease detection in rice paddy publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2022.104631 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.heliyon.2024.e29912_bib45 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 121 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib32 article-title: Rice leaf disease identification by residual-distilled transformer publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106020 – start-page: 1857 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib12 – volume: 9 issue: 6 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib49 article-title: Plant species diversity, plant use, and classification of agroforestry home gardens in southern and southwestern Ethiopia publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e16341 – start-page: 867 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib9 article-title: ISNet: shape matters for infrared small target detection – volume: 196 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib26 article-title: Leaf image-based plant di image-base edification using transfer learning and feature fusion publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106892 – year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib41 article-title: Plant leaf disease classification using Wide Residual Networks publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-023-15226-y – volume: 16 start-page: 913 issue: 3 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib42 article-title: Tomato leaf disease classification by exploiting transfer learning and feature concatenation publication-title: IET Image Process. doi: 10.1049/ipr2.12397 – volume: 6 start-page: 23 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib19 article-title: Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2021.12.002 – volume: 174 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib23 article-title: A novel Moore-Penrose pseudo-inverse weight-based Deep Convolution Neural Network for bacterial leaf blight disease detection system in rice plant publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2022.103336 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib10 article-title: Dim2Clear network for infrared small target detection publication-title: IEEE Trans. Geosci. Rem. Sens. – year: 2024 ident: 10.1016/j.heliyon.2024.e29912_bib13 – volume: 34 start-page: 5513 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib15 article-title: An automatic plant leaf disease identification using DenseNet-121 architecture with a mutation-based Henry gas solubility optimization algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06714-z – volume: 24 start-page: 23 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib20 article-title: A novel plant disease prediction model based on thermal images using modified deep convolutional neural network publication-title: Precis. Agric. doi: 10.1007/s11119-022-09927-x – volume: 11 start-page: 6594 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib21 article-title: Detection of apple plant diseases using leaf images through convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3232917 – volume: 11 start-page: 14983 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib28 article-title: Detection of tomato leaf diseases for agro-based industries using novel PCA DeepNet publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3244499 – volume: 13 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib2 article-title: Leaf disease image retrieval with object detection and deep metric learning publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.963302 – volume: 81 start-page: 24021 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib16 article-title: Plant leaf disease classification and damage detection system using deep learning models publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-022-12147-0 – volume: 115 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib24 article-title: An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105210 – volume: 4 start-page: 41 issue: 1 year: 2017 ident: 10.1016/j.heliyon.2024.e29912_bib4 article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques publication-title: Inf. Process. Agric. – volume: 173 issue: April year: 2020 ident: 10.1016/j.heliyon.2024.e29912_bib46 article-title: Using deep transfer learning for image-based plant disease identification publication-title: Comput. Electron. Agric. – volume: 123A year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib29 article-title: Identification of tomato leaf diseases based on LMBRNet publication-title: Eng. Appl. Artif. Intell. – volume: 9 start-page: 1 year: 2020 ident: 10.1016/j.heliyon.2024.e29912_bib50 article-title: Review of the state of the art of deep learning for plant Diseases: a broad analysis and discussion publication-title: Plants doi: 10.3390/plants9101302 – year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib18 article-title: Classification of diseased cotton leaves and plants using improved deep convolutional neural network publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-023-14933-w – volume: 9 issue: 4 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib51 article-title: Conventional and advanced detection techniques of foodborne pathogens: a comprehensive review publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15482 – volume: 7 start-page: 143190 year: 2019 ident: 10.1016/j.heliyon.2024.e29912_bib7 article-title: Rapid detection of rice disease based on FCM-KM and faster r-CNN fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2943454 – year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib17 article-title: A novel transfer deep learning method for detection and classification of plant leaf disease publication-title: J. Ambient Intell. Hum. Comput. – volume: 193 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib37 article-title: RIC-Net: a plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106644 – volume: 17 start-page: 22 year: 2021 ident: 10.1016/j.heliyon.2024.e29912_bib3 article-title: Plant diseases and pests detection based on deep learning: a review publication-title: Plant Methods doi: 10.1186/s13007-021-00722-9 – volume: 479 start-page: 251 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib34 article-title: Design of efficient techniques for tomato leaf disease detection using genetic algorithm-based and deep neural networks publication-title: Plant Soil doi: 10.1007/s11104-022-05513-2 – volume: 9 start-page: 28822 year: 2021 ident: 10.1016/j.heliyon.2024.e29912_bib36 article-title: Tomato leaf disease identification by restructured deep residual dense network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058947 – volume: 20 start-page: 1278 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib39 article-title: PiTLiD: identification of plant disease from leaf images based on convolutional neural network publication-title: IEEE ACM Trans. Comput. Biol. Bioinf doi: 10.1109/TCBB.2022.3195291 – volume: 165 issue: December 2018 year: 2019 ident: 10.1016/j.heliyon.2024.e29912_bib48 article-title: Depthwise separable convolution architectures for plant disease classification publication-title: Comput. Electron. Agric. – volume: 21 start-page: 4749 issue: 14 year: 2021 ident: 10.1016/j.heliyon.2024.e29912_bib47 article-title: A survey of deep convolutional neural networks applied for prediction of plant leaf diseases publication-title: Sensors doi: 10.3390/s21144749 – volume: 203 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib25 article-title: An improved DenseNet model to classify the damage caused by cotton aphid publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107485 – volume: 204 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib27 article-title: GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107543 – volume: 35 start-page: 1 year: 2015 ident: 10.1016/j.heliyon.2024.e29912_bib8 article-title: Advanced methods of plant disease detection publication-title: A review. Agron. Sustain. Dev. doi: 10.1007/s13593-014-0246-1 – volume: vols. 1319–1578 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib38 – volume: 477 start-page: 595 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib33 article-title: AFD-Net: apple Foliar Disease multi-classification using deep learning on plant pathology dataset publication-title: Plant Soil doi: 10.1007/s11104-022-05407-3 – volume: 8 issue: 12 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib43 article-title: A review of recent advances in plant-pathogen detection systems publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e11855 – start-page: 1730 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib11 – volume: 218 start-page: 2123 year: 2023 ident: 10.1016/j.heliyon.2024.e29912_bib30 article-title: A survey on training issues in chili leaf diseases identification using deep learning techniques publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2023.01.188 – volume: 193 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib40 article-title: Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106658 – volume: 10 year: 2019 ident: 10.1016/j.heliyon.2024.e29912_bib1 article-title: Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00155 – start-page: 68868 year: 2022 ident: 10.1016/j.heliyon.2024.e29912_bib22 article-title: Less is more: lighter and faster deep neural architecture for tomato leaf disease classification publication-title: IEEE Access 10 doi: 10.1109/ACCESS.2022.3187203 – volume: 8 start-page: 1 year: 2021 ident: 10.1016/j.heliyon.2024.e29912_bib44 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – volume: 10 start-page: 75 issue: 1 year: 2018 ident: 10.1016/j.heliyon.2024.e29912_bib35 article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images publication-title: Rem. Sens. doi: 10.3390/rs10010075 – volume: 161 start-page: 272 year: 2019 ident: 10.1016/j.heliyon.2024.e29912_bib5 article-title: A comparative study of fine-tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.032 |
| SSID | ssj0001586973 |
| Score | 2.3606482 |
| Snippet | Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security.... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e29912 |
| SubjectTerms | crops data collection Deep leaning disease detection foliar diseases food security Inception V3 leaves MobileNetV2 Plant leaf disease detection villages vision Vision transformer weather |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIu5Q3LS0bimiWJnzkuiKpC6ooDK5WT5ThjuiXKrkq2qPx6xomzEIpokXLJY-KMZ2x_zrwIeS2BW6tTkWgE9wki4jIJfwYTLR1OmEKxqrPoHi3k4ZJ_OBbHMVg9xMKM7PedH9YJ1KuLdUhVmvMZ4OwZagrvSYHQe0L2louP88-hgBwP7XGe_orS-TvtaP3p0vSPlqHLMPOyt-StbbOxF99tXf-2FB3cIYuBid4D5ets25Yz9-OP_I7X5vIu2Y-glM57LbpHbkBzn9w8imb3B8TOabM-h5qGwtmd6QElS_3g10UR-NJNjTKiNVhPo9GHVtB2jl4NDd71Xyju7LvQL9oHtNN2AM1w9pAsD95_eneYxNoMiRNStUmhNSjpikp450tdKKfyquSau0zpzAOUShQOKs0zb1kOiMNAa8sFQMbAWvaITJp1A08IhVTZ0vKqYpZx6XHWw02d0h5Eygo8poQPEjMuJi4P9TNqM3ionZrYfSZ0n-m7b0pmO7JNn7njKoK3QR12D4fE290FlJSJ49gUZep5kSOwcjlnoAvOVVlVVgoVWM-mRA_KZCKG6bEJvmp1VfuvBuUzOMaD4cY2sN5-Mywk6WGyYOwfz4SlK5U6V1PyuFfYHSdMSwQdKcePG6nyiNXxnWZ10uUaR3QoEedgw292Wn-97nz63xTPyO1wFnwzMvGcTNqzLbxAyNeWL-NA_wkR31W1 priority: 102 providerName: Unpaywall |
| Title | A novel hierarchical framework for plant leaf disease detection using residual vision transformer |
| URI | https://dx.doi.org/10.1016/j.heliyon.2024.e29912 https://www.ncbi.nlm.nih.gov/pubmed/38699004 https://www.proquest.com/docview/3050936933 https://www.proquest.com/docview/3153806827 https://pubmed.ncbi.nlm.nih.gov/PMC11064133 https://doi.org/10.1016/j.heliyon.2024.e29912 https://doaj.org/article/9b0f492078c243e89447bdda6574c171 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: KQ8 dateStart: 20150901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DIK dateStart: 20150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: AKRWK dateStart: 20150901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkYAL4s0CrYzENbtJ_D4uiKqq1IoDK5WT5SQTulWUXZUsqP-esZ0sG1XqcqiUU2I78czY8znzIuSTBO6cTkWiEdwniIiLxP8ZTLQsccMUilXBont2Lk8W_PRCXOyU-vI-YTE9cCTczBRpzU2OmqzMOQNtOFdFVTkpFC-zED2ep9rsHKZifLCWRrF_ITuzq-klNMublc95mvMp4Dac5SNlFHL2j3TSbcx523Xy8aZdu5s_rml29NLxM_K0B5R0HifynDyA9gV5dNabzF8SN6ft6jc01Be9DmYD5AqtB58siqCVrhukL23A1bQ32NAKuuCk1VLvGf-T4qk8hG3RGIxOuwHwwvUrsjj--v3LSdLXVUhKIVWXGK1BydJUoi7rQhtVqrwquPb01FkNUChhSqg0z2rHckAMBVo7LgAyBs6x1-SgXbXwllBIlSscryrmGJc17lh4IFO6BpEyg9eE8IHAtuyTjvvaF40dvMuubM8X6_liI18mZLrtto5ZN_Z1-Oy5t23sk2aHGyhKthclu0-UJkQPvLc9_oi4Aoda7nv_x0FWLK5Pb3RxLaw2vyzzCXaYNIzd0carnVTqXE3Imyhf25kwFGSDOxl-3EjyRlMdP2mXlyFPOCI7iRgFXzzbCun_kfPdfZDzPXnih_SuFpn4QA666w0cIoLriqOwWI_Iw8X5t_mPv-73R2Y |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIu5Q3LS0bimiWJnzkuiKpC6ooDK5WT5ThjuiXKrkq2qPx6xomzEIpokXLJY-KMZ2x_zrwIeS2BW6tTkWgE9wki4jIJfwYTLR1OmEKxqrPoHi3k4ZJ_OBbHMVg9xMKM7PedH9YJ1KuLdUhVmvMZ4OwZagrvSYHQe0L2louP88-hgBwP7XGe_orS-TvtaP3p0vSPlqHLMPOyt-StbbOxF99tXf-2FB3cIYuBid4D5ets25Yz9-OP_I7X5vIu2Y-glM57LbpHbkBzn9w8imb3B8TOabM-h5qGwtmd6QElS_3g10UR-NJNjTKiNVhPo9GHVtB2jl4NDd71Xyju7LvQL9oHtNN2AM1w9pAsD95_eneYxNoMiRNStUmhNSjpikp450tdKKfyquSau0zpzAOUShQOKs0zb1kOiMNAa8sFQMbAWvaITJp1A08IhVTZ0vKqYpZx6XHWw02d0h5Eygo8poQPEjMuJi4P9TNqM3ionZrYfSZ0n-m7b0pmO7JNn7njKoK3QR12D4fE290FlJSJ49gUZep5kSOwcjlnoAvOVVlVVgoVWM-mRA_KZCKG6bEJvmp1VfuvBuUzOMaD4cY2sN5-Mywk6WGyYOwfz4SlK5U6V1PyuFfYHSdMSwQdKcePG6nyiNXxnWZ10uUaR3QoEedgw292Wn-97nz63xTPyO1wFnwzMvGcTNqzLbxAyNeWL-NA_wkR31W1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hierarchical+framework+for+plant+leaf+disease+detection+using+residual+vision+transformer&rft.jtitle=Heliyon&rft.au=Vallabhajosyula%2C+Sasikala&rft.au=Sistla%2C+Venkatramaphanikumar&rft.au=Kolli%2C+Venkata+Krishna+Kishore&rft.date=2024-05-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=9+p.e29912-&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e29912&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |