Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy
Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett’s esophagus (BE). However, interpretation of VLE images is comp...
Saved in:
| Published in | Gastrointestinal endoscopy Vol. 86; no. 5; pp. 839 - 846 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.11.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-5107 1097-6779 1085-8741 1097-6779 |
| DOI | 10.1016/j.gie.2017.03.011 |
Cover
| Abstract | Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett’s esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images.
We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation.
Three novel clinically inspired algorithm features were developed. The feature “layering and signal decay statistics” showed the optimal performance compared with the other clinically features (“layering” and “signal intensity distribution”) and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81).
This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm. |
|---|---|
| AbstractList | Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett’s esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images.
We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation.
Three novel clinically inspired algorithm features were developed. The feature “layering and signal decay statistics” showed the optimal performance compared with the other clinically features (“layering” and “signal intensity distribution”) and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81).
This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm. Background and Aims Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett’s esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images. Methods We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation. Results Three novel clinically inspired algorithm features were developed. The feature “layering and signal decay statistics” showed the optimal performance compared with the other clinically features (“layering” and “signal intensity distribution”) and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81). Conclusions This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm. Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett's esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images.BACKGROUND AND AIMSVolumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett's esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images.We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation.METHODSWe used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation.Three novel clinically inspired algorithm features were developed. The feature "layering and signal decay statistics" showed the optimal performance compared with the other clinically features ("layering" and "signal intensity distribution") and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81).RESULTSThree novel clinically inspired algorithm features were developed. The feature "layering and signal decay statistics" showed the optimal performance compared with the other clinically features ("layering" and "signal intensity distribution") and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81).This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm.CONCLUSIONSThis is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm. |
| Author | Schoon, Erik J. Meijer, Sybren L. Curvers, Wouter L. Swager, Anne-Fré van der Sommen, Fons Bergman, Jacques J.G.H.M. Klomp, Sander R. Zinger, Sveta de With, Peter H. |
| Author_xml | – sequence: 1 givenname: Anne-Fré surname: Swager fullname: Swager, Anne-Fré organization: Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands – sequence: 2 givenname: Fons surname: van der Sommen fullname: van der Sommen, Fons organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands – sequence: 3 givenname: Sander R. surname: Klomp fullname: Klomp, Sander R. organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands – sequence: 4 givenname: Sveta surname: Zinger fullname: Zinger, Sveta organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands – sequence: 5 givenname: Sybren L. surname: Meijer fullname: Meijer, Sybren L. organization: Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands – sequence: 6 givenname: Erik J. surname: Schoon fullname: Schoon, Erik J. organization: Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, the Netherlands – sequence: 7 givenname: Jacques J.G.H.M. surname: Bergman fullname: Bergman, Jacques J.G.H.M. organization: Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands – sequence: 8 givenname: Peter H. surname: de With fullname: de With, Peter H. organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands – sequence: 9 givenname: Wouter L. surname: Curvers fullname: Curvers, Wouter L. organization: Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, the Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28322771$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks9u1DAQxi1URLeFB-CCcuSS4HE2sSMkJLrin1SJA3BElteeVF4cO9hJUW68Bq_Hk-BoC4dKFE6W7O_3jeebOSMnPngk5DHQCii0zw7VlcWKUeAVrSsKcI9sgHa8bDnvTsiGZlHZAOWn5CylA6VUsBoekFMmasY4hw35vAvDOE8YS2UNmsLghHqywRehL1BFtxQXKkacpp_ff6TCYxidSlYVc7L-qrgObh5wilYX-Rpjgd6EweoYkg7j8pDc75VL-OjmPCefXr_6uHtbXr5_82738rLUTcunkvcMNROi7vpmb5RhpmW9bqHZ5g8jp2K_zy9C73GrAcW2UwpMh0I1fd0q1tXnhB19Zz-q5ZtyTo7RDiouEqhcs5IHmbOSa1aS1jJnlaGnR2iM4euMaZKDTRqdU7nLOUkQvGvbZluzLH1yI533A5o_5r9zzAI4CtbOU8T-v-rzW4y2k1qzn6Ky7k7y-ZHEnOm1xSiTtug1Ghvz9KQJ9k76xS1aO-utVu4LLpgOYY4-D0uCTExS-WHdonWJgNcUOhDZoPu7wT-K_wLMGtb5 |
| CitedBy_id | crossref_primary_10_1016_j_tgie_2018_04_002 crossref_primary_10_1053_j_gastro_2018_01_070 crossref_primary_10_1111_den_13317 crossref_primary_10_1002_cam4_4447 crossref_primary_10_3748_wjg_v27_i16_1664 crossref_primary_10_1097_MCG_0000000000001423 crossref_primary_10_3389_fmed_2022_822731 crossref_primary_10_1016_j_cgh_2021_02_008 crossref_primary_10_1097_CM9_0000000000000623 crossref_primary_10_1016_j_gie_2020_07_052 crossref_primary_10_1016_j_bpg_2020_101720 crossref_primary_10_1053_j_gastro_2019_08_058 crossref_primary_10_3748_wjg_v27_i37_6191 crossref_primary_10_1016_j_gtc_2024_08_005 crossref_primary_10_1016_j_compmedimag_2020_101701 crossref_primary_10_1016_j_bpg_2020_101722 crossref_primary_10_3748_wjg_v27_i32_5351 crossref_primary_10_1016_j_tgie_2019_150634 crossref_primary_10_3390_app9112183 crossref_primary_10_35712_aig_v3_i5_117 crossref_primary_10_4251_wjgo_v14_i5_989 crossref_primary_10_1053_j_gastro_2017_12_045 crossref_primary_10_1111_exsy_12504 crossref_primary_10_3390_diagnostics13182862 crossref_primary_10_1155_2021_7594513 crossref_primary_10_1007_s12328_018_0863_3 crossref_primary_10_17235_reed_2022_8961_2022 crossref_primary_10_1002_1878_0261_12792 crossref_primary_10_1111_den_13481 crossref_primary_10_11569_wcjd_v29_i24_1389 crossref_primary_10_1016_j_compbiomed_2020_104029 crossref_primary_10_3748_wjg_v26_i38_5784 crossref_primary_10_1016_j_thorsurg_2018_07_012 crossref_primary_10_1155_acis_6552580 crossref_primary_10_37126_aige_v2_i2_25 crossref_primary_10_1111_den_13402 crossref_primary_10_1007_s10462_024_11033_5 crossref_primary_10_1016_j_compbiomed_2018_03_014 crossref_primary_10_1016_j_gie_2020_06_034 crossref_primary_10_3390_photonics10010051 crossref_primary_10_3748_wjg_v26_i35_5256 crossref_primary_10_1016_j_tige_2020_09_001 crossref_primary_10_3748_wjg_v25_i1_1 crossref_primary_10_1093_dote_doz065 crossref_primary_10_1007_s11894_018_0661_6 crossref_primary_10_3748_wjg_v25_i14_1666 crossref_primary_10_3748_wjg_v27_i40_6794 crossref_primary_10_12688_f1000research_21971_1 crossref_primary_10_17650_1726_9776_2023_19_2_148_152 crossref_primary_10_1007_s11938_021_00353_y crossref_primary_10_37126_aige_v1_i2_28 crossref_primary_10_3748_wjg_v24_i45_5057 crossref_primary_10_1002_jso_26844 crossref_primary_10_1111_den_13908 crossref_primary_10_1177_2040622319837851 crossref_primary_10_1177_26317745211049964 crossref_primary_10_1111_jgh_15354 crossref_primary_10_1016_j_gie_2019_06_044 crossref_primary_10_1016_j_gie_2020_07_007 crossref_primary_10_1016_j_bspc_2024_107230 crossref_primary_10_1109_TMI_2021_3125061 crossref_primary_10_3390_jcm13071990 crossref_primary_10_1016_j_gie_2017_04_017 crossref_primary_10_1016_j_gie_2021_09_017 crossref_primary_10_3390_app8122420 crossref_primary_10_1186_s13063_021_05527_8 crossref_primary_10_35711_aimi_v3_i3_70 crossref_primary_10_7759_cureus_47755 crossref_primary_10_4166_kjg_2020_75_3_120 crossref_primary_10_1016_j_vgie_2020_08_013 crossref_primary_10_1016_j_gie_2018_12_020 crossref_primary_10_5946_ce_2023_031 crossref_primary_10_1097_MCG_0000000000001629 crossref_primary_10_1016_j_gastha_2022_02_025 crossref_primary_10_1016_j_gie_2019_12_049 crossref_primary_10_17116_dokgastro2020902130 crossref_primary_10_1007_s10620_018_5453_1 crossref_primary_10_3748_wjg_v27_i14_1392 crossref_primary_10_1007_s10620_021_07086_z crossref_primary_10_1117_1_JBO_22_12_121716 crossref_primary_10_3748_wjg_v26_i39_5959 crossref_primary_10_1111_apt_16778 crossref_primary_10_3390_diagnostics13040662 crossref_primary_10_1016_j_gie_2019_05_012 crossref_primary_10_3390_diagnostics11091719 crossref_primary_10_1109_ACCESS_2019_2930891 crossref_primary_10_1016_j_gie_2019_12_018 crossref_primary_10_1055_a_1907_6569 crossref_primary_10_2139_ssrn_4180735 crossref_primary_10_1097_MOG_0000000000000557 crossref_primary_10_1109_TSMC_2021_3096974 crossref_primary_10_1016_j_gie_2019_08_018 crossref_primary_10_3390_jcm11030569 crossref_primary_10_7759_cureus_29567 crossref_primary_10_1016_j_gie_2019_05_004 crossref_primary_10_3390_app112210982 crossref_primary_10_3748_wjg_v26_i46_7287 crossref_primary_10_1177_2631774520935220 crossref_primary_10_3390_cancers13215494 crossref_primary_10_1016_j_gie_2022_10_031 crossref_primary_10_1016_j_gie_2018_04_2333 |
| Cites_doi | 10.1055/s-0042-101409 10.1111/dote.12371 10.1117/12.2253860 10.1158/1055-9965.EPI-10-0012 10.1136/gutjnl-2013-305372 10.1016/j.gie.2016.03.1180 10.1364/OE.11.002953 10.1016/j.gie.2016.09.012 10.1016/j.gie.2015.08.057 10.1038/nm1450 10.1016/j.gie.2015.08.050 10.1364/BOE.1.000825 10.1016/j.gie.2006.08.009 10.1016/S0016-5085(16)32158-8 10.1117/1.2337314 10.1016/j.gie.2008.05.014 10.1055/s-0042-105284 10.1016/S0016-5085(15)30316-4 |
| ContentType | Journal Article |
| Copyright | 2017 American Society for Gastrointestinal Endoscopy American Society for Gastrointestinal Endoscopy Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2017 American Society for Gastrointestinal Endoscopy – notice: American Society for Gastrointestinal Endoscopy – notice: Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.gie.2017.03.011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1097-6779 |
| EndPage | 846 |
| ExternalDocumentID | oai:pure.tue.nl:openaire/ae2dfe60-14fc-4cc0-9e5e-05859efe1c05 28322771 10_1016_j_gie_2017_03_011 S0016510717301918 1_s2_0_S0016510717301918 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FD8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LZ1 M28 M41 MO0 N4W N9A O-L O9- OAUVE OC. ON0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SJN SPCBC SSH SSZ T5K UNMZH UV1 WH7 WOW X7M Z5R ZGI ZXP ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c567t-7f2ec28839f5bdad2d62fc6154082e708bb9f58cbe4c1e849aa1d9e8a5f36a293 |
| IEDL.DBID | .~1 |
| ISSN | 0016-5107 1097-6779 1085-8741 |
| IngestDate | Sun Oct 26 03:27:57 EDT 2025 Thu Oct 02 05:13:31 EDT 2025 Mon Jul 21 05:48:09 EDT 2025 Wed Oct 01 05:22:38 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Fri Feb 23 02:33:59 EST 2024 Tue Feb 25 19:54:42 EST 2025 Tue Oct 14 19:29:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | OCT BE HGD EAC ROC NDBE VLE AUC area under the receiver operating characteristic curve early adenocarcinoma nondysplastic Barrett’s esophagus optical coherence tomography Barrett’s esophagus volumetric laser endomicroscopy receiver operating characteristic (curve) high-grade dysplasia |
| Language | English |
| License | Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-7f2ec28839f5bdad2d62fc6154082e708bb9f58cbe4c1e849aa1d9e8a5f36a293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://research.tue.nl/en/publications/ae2dfe60-14fc-4cc0-9e5e-05859efe1c05 |
| PMID | 28322771 |
| PQID | 1879665432 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_gie_2017_03_011 proquest_miscellaneous_1879665432 pubmed_primary_28322771 crossref_primary_10_1016_j_gie_2017_03_011 crossref_citationtrail_10_1016_j_gie_2017_03_011 elsevier_sciencedirect_doi_10_1016_j_gie_2017_03_011 elsevier_clinicalkeyesjournals_1_s2_0_S0016510717301918 elsevier_clinicalkey_doi_10_1016_j_gie_2017_03_011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Gastrointestinal endoscopy |
| PublicationTitleAlternate | Gastrointest Endosc |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Fitzgerald, di Pietro, Ragunath (bib2) 2014; 63 Suter, Vakoc, Yachimski (bib4) 2008; 68 Trindade, Inamdar, Smith (bib20) 2016 Suter, Gora, Lauwers (bib21) 2014; 2 Wolfsen, Sharma, Wallace (bib5) 2015; 3 Swager, Boerwinkel, de Bruin (bib14) 2016; 29 Trindade, George, Berkowitz (bib10) 2016; 4 van der Sommen, Zinger, Curvers (bib11) 2016; 48 Curvers, Bergman (bib19) 2016; 83 Yun, Tearney, De Boer (bib16) 2003; 11 Swager, van Oijen, Tearney (bib8) 2016; 150 Pohl, Sirovich, Welch (bib1) 2010; 19 Swager, van Oijen, Tearney (bib9) 2016; 83 Shaheen, Falk, Iyer (bib3) 2015; 108 Qi, Sivak, Isenberg (bib12) 2006; 11 Rodriguez-Diaz, Singh (bib22) 2015; 148 Klomp SR, van der Sommen F, Swager A, et al. Evaluation of image features and classification methods for Barrett’s cancer detection using VLE imaging. Proc SPIE Med Imaging 2017;10134, 101340D. Swager, Tearney, Leggett (bib6) 2017; 85 Qi, Pan, Sivak (bib13) 2010; 1 Yun, Tearney, Vakoc (bib15) 2006; 12 Leggett, Gorospe, Chan (bib7) 2016; 83 Vakoc, Shishko, Yun (bib17) 2007; 65 Yun (10.1016/j.gie.2017.03.011_bib16) 2003; 11 Rodriguez-Diaz (10.1016/j.gie.2017.03.011_bib22) 2015; 148 Wolfsen (10.1016/j.gie.2017.03.011_bib5) 2015; 3 Yun (10.1016/j.gie.2017.03.011_bib15) 2006; 12 Pohl (10.1016/j.gie.2017.03.011_bib1) 2010; 19 Curvers (10.1016/j.gie.2017.03.011_bib19) 2016; 83 Fitzgerald (10.1016/j.gie.2017.03.011_bib2) 2014; 63 Qi (10.1016/j.gie.2017.03.011_bib13) 2010; 1 Trindade (10.1016/j.gie.2017.03.011_bib20) 2016 Swager (10.1016/j.gie.2017.03.011_bib6) 2017; 85 Swager (10.1016/j.gie.2017.03.011_bib9) 2016; 83 Swager (10.1016/j.gie.2017.03.011_bib14) 2016; 29 Trindade (10.1016/j.gie.2017.03.011_bib10) 2016; 4 Suter (10.1016/j.gie.2017.03.011_bib4) 2008; 68 Leggett (10.1016/j.gie.2017.03.011_bib7) 2016; 83 van der Sommen (10.1016/j.gie.2017.03.011_bib11) 2016; 48 Shaheen (10.1016/j.gie.2017.03.011_bib3) 2015; 108 Qi (10.1016/j.gie.2017.03.011_bib12) 2006; 11 Vakoc (10.1016/j.gie.2017.03.011_bib17) 2007; 65 Suter (10.1016/j.gie.2017.03.011_bib21) 2014; 2 Swager (10.1016/j.gie.2017.03.011_bib8) 2016; 150 10.1016/j.gie.2017.03.011_bib18 29061257 - Gastrointest Endosc. 2017 Nov;86(5):847-848 |
| References_xml | – volume: 83 start-page: 880 year: 2016 end-page: 888 ident: bib7 article-title: Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus publication-title: Gastrointest Endosc – volume: 1 start-page: 825 year: 2010 end-page: 847 ident: bib13 article-title: Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography publication-title: Biomed Opt Express – volume: 4 start-page: E318 year: 2016 end-page: E322 ident: bib10 article-title: Volumetric laser endomicroscopy can target neoplasia not detected by conventional endoscopic measures in long segment Barrett’s esophagus publication-title: Endosc Int open – volume: 11 start-page: 44010 year: 2006 ident: bib12 article-title: Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography publication-title: J Biomed Opt – volume: 11 start-page: 2953 year: 2003 end-page: 2963 ident: bib16 article-title: High-speed optical frequency-domain imaging publication-title: Opt Express – reference: Klomp SR, van der Sommen F, Swager A, et al. Evaluation of image features and classification methods for Barrett’s cancer detection using VLE imaging. Proc SPIE Med Imaging 2017;10134, 101340D. – volume: 85 start-page: 918 year: 2017 end-page: 926 ident: bib6 article-title: Identification of volumetric laser endomicroscopy features predictive for early neoplasia in Barrett’s esophagus using high-quality histological correlation publication-title: Gastrointest Endosc – volume: 148 start-page: S91 year: 2015 end-page: S92 ident: bib22 article-title: Computer-assisted image interpretation of volumetric laser endomicroscopy in Barrett’s esophagus publication-title: Gastroenterology – volume: 12 start-page: 1429 year: 2006 end-page: 1433 ident: bib15 article-title: Comprehensive volumetric optical microscopy in vivo publication-title: Nat Med – volume: 68 start-page: 745 year: 2008 end-page: 753 ident: bib4 article-title: Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging publication-title: Gastrointest Endosc – volume: 19 start-page: 1468 year: 2010 end-page: 1470 ident: bib1 article-title: Esophageal adenocarcinoma incidence: Are we reaching the peak? publication-title: Cancer Epidemiol Biomarkers Prev – volume: 83 start-page: AB573 year: 2016 ident: bib9 article-title: How good are experts in identifying endoscopically visible early Barrett’s neoplasia on in vivo volumetric laser endomicroscopy [abstract]? publication-title: Gastrointest Endosc – volume: 3 start-page: 1 year: 2015 end-page: 10 ident: bib5 article-title: Safety and feasibility of volumetric laser endomicroscopy in patients with Barrett’s esophagus (with videos) publication-title: Gastrointest Endosc – volume: 48 start-page: 617 year: 2016 end-page: 624 ident: bib11 article-title: Computer-aided detection of early neoplastic lesions in Barrett’s esophagus publication-title: Endoscopy – volume: 65 start-page: 898 year: 2007 end-page: 905 ident: bib17 article-title: Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video) publication-title: Gastrointest Endosc – volume: 29 start-page: 505 year: 2016 end-page: 512 ident: bib14 article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: a feasibility study on histological correlation publication-title: Dis Esophagus – year: 2016 ident: bib20 article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: interobserver agreement for interpretation of Barrett’s esophagus and associated neoplasia among high-frequency users publication-title: Gastrointest Endosc. In Press – volume: 108 start-page: 1238 year: 2015 end-page: 1249 ident: bib3 article-title: ACG Clinical Guideline: diagnosis and management of Barrett’s esophagus publication-title: Am J Gastroenterol – volume: 150 start-page: S628 year: 2016 ident: bib8 article-title: How good are experts in identifying early Barrett’s neoplasia in endoscopic resection specimens using volumetric laser endomicroscopy? publication-title: Gastroenterology – volume: 63 start-page: 7 year: 2014 end-page: 42 ident: bib2 article-title: British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus publication-title: Gut – volume: 83 start-page: 115 year: 2016 end-page: 116 ident: bib19 article-title: A new paradigm shift in endoscopy: from interpretation to automated image analysis? publication-title: Gastrointest Endosc – volume: 2 start-page: 1 year: 2014 end-page: 11 ident: bib21 article-title: Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study publication-title: Gastrointest Endosc – volume: 4 start-page: E318 year: 2016 ident: 10.1016/j.gie.2017.03.011_bib10 article-title: Volumetric laser endomicroscopy can target neoplasia not detected by conventional endoscopic measures in long segment Barrett’s esophagus publication-title: Endosc Int open doi: 10.1055/s-0042-101409 – volume: 29 start-page: 505 year: 2016 ident: 10.1016/j.gie.2017.03.011_bib14 article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: a feasibility study on histological correlation publication-title: Dis Esophagus doi: 10.1111/dote.12371 – ident: 10.1016/j.gie.2017.03.011_bib18 doi: 10.1117/12.2253860 – volume: 19 start-page: 1468 year: 2010 ident: 10.1016/j.gie.2017.03.011_bib1 article-title: Esophageal adenocarcinoma incidence: Are we reaching the peak? publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-10-0012 – volume: 3 start-page: 1 year: 2015 ident: 10.1016/j.gie.2017.03.011_bib5 article-title: Safety and feasibility of volumetric laser endomicroscopy in patients with Barrett’s esophagus (with videos) publication-title: Gastrointest Endosc – volume: 63 start-page: 7 year: 2014 ident: 10.1016/j.gie.2017.03.011_bib2 article-title: British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus publication-title: Gut doi: 10.1136/gutjnl-2013-305372 – volume: 83 start-page: AB573 year: 2016 ident: 10.1016/j.gie.2017.03.011_bib9 article-title: How good are experts in identifying endoscopically visible early Barrett’s neoplasia on in vivo volumetric laser endomicroscopy [abstract]? publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2016.03.1180 – volume: 11 start-page: 2953 year: 2003 ident: 10.1016/j.gie.2017.03.011_bib16 article-title: High-speed optical frequency-domain imaging publication-title: Opt Express doi: 10.1364/OE.11.002953 – volume: 2 start-page: 1 year: 2014 ident: 10.1016/j.gie.2017.03.011_bib21 article-title: Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study publication-title: Gastrointest Endosc – volume: 108 start-page: 1238 year: 2015 ident: 10.1016/j.gie.2017.03.011_bib3 article-title: ACG Clinical Guideline: diagnosis and management of Barrett’s esophagus publication-title: Am J Gastroenterol – volume: 85 start-page: 918 year: 2017 ident: 10.1016/j.gie.2017.03.011_bib6 article-title: Identification of volumetric laser endomicroscopy features predictive for early neoplasia in Barrett’s esophagus using high-quality histological correlation publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2016.09.012 – volume: 83 start-page: 115 year: 2016 ident: 10.1016/j.gie.2017.03.011_bib19 article-title: A new paradigm shift in endoscopy: from interpretation to automated image analysis? publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2015.08.057 – volume: 12 start-page: 1429 year: 2006 ident: 10.1016/j.gie.2017.03.011_bib15 article-title: Comprehensive volumetric optical microscopy in vivo publication-title: Nat Med doi: 10.1038/nm1450 – volume: 83 start-page: 880 year: 2016 ident: 10.1016/j.gie.2017.03.011_bib7 article-title: Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2015.08.050 – year: 2016 ident: 10.1016/j.gie.2017.03.011_bib20 article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: interobserver agreement for interpretation of Barrett’s esophagus and associated neoplasia among high-frequency users publication-title: Gastrointest Endosc. In Press – volume: 1 start-page: 825 year: 2010 ident: 10.1016/j.gie.2017.03.011_bib13 article-title: Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography publication-title: Biomed Opt Express doi: 10.1364/BOE.1.000825 – volume: 65 start-page: 898 year: 2007 ident: 10.1016/j.gie.2017.03.011_bib17 article-title: Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video) publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2006.08.009 – volume: 150 start-page: S628 year: 2016 ident: 10.1016/j.gie.2017.03.011_bib8 article-title: How good are experts in identifying early Barrett’s neoplasia in endoscopic resection specimens using volumetric laser endomicroscopy? publication-title: Gastroenterology doi: 10.1016/S0016-5085(16)32158-8 – volume: 11 start-page: 44010 year: 2006 ident: 10.1016/j.gie.2017.03.011_bib12 article-title: Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography publication-title: J Biomed Opt doi: 10.1117/1.2337314 – volume: 68 start-page: 745 year: 2008 ident: 10.1016/j.gie.2017.03.011_bib4 article-title: Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2008.05.014 – volume: 48 start-page: 617 year: 2016 ident: 10.1016/j.gie.2017.03.011_bib11 article-title: Computer-aided detection of early neoplastic lesions in Barrett’s esophagus publication-title: Endoscopy doi: 10.1055/s-0042-105284 – volume: 148 start-page: S91 year: 2015 ident: 10.1016/j.gie.2017.03.011_bib22 article-title: Computer-assisted image interpretation of volumetric laser endomicroscopy in Barrett’s esophagus publication-title: Gastroenterology doi: 10.1016/S0016-5085(15)30316-4 – reference: 29061257 - Gastrointest Endosc. 2017 Nov;86(5):847-848 |
| SSID | ssj0008231 |
| Score | 2.5583975 |
| Snippet | Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm... Background and Aims Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 839 |
| SubjectTerms | Adenocarcinoma - diagnosis Adenocarcinoma - pathology Aged Algorithms Barrett Esophagus - diagnosis Barrett Esophagus - pathology Case-Control Studies Diagnosis, Computer-Assisted - methods Esophageal Neoplasms - diagnosis Esophageal Neoplasms - pathology Esophagoscopy - methods Esophagus - pathology Female Gastroenterology and Hepatology Humans Image Interpretation, Computer-Assisted - methods Machine Learning Male Microscopy, Confocal - methods Middle Aged Reproducibility of Results ROC Curve Sensitivity and Specificity Support Vector Machine |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9RAEG5kFjwevI_xogWflJ5J5-jjcRWXRdhF0IH1QZo-qtdjzAw7CbI--Tf8e_4SuybJsHjsIviYowhJVaq_pKq-j5DHWsVSu9KxGF3BSptrZrHJUasgRKaSzbpiurcvdmfly4PqoB-PxlmYnuLm_aRp08f5fAr1dHni_9XUQh4iiIzxMnpWep8xDRWwLMFeDRG4R0LTLVElZD4iW7P9V9tvu2QsWAo_OfTbK7kWtcT6KxNS6qHguW79OvyABJpcrulPOf_bkvU7JL1ELrT10h5_sfP5iWVq5wr5PNxg153yadI2buK__sL9-L-ewFVyucezdLsLwGvkHNTXyfm9vmJ_g7wbZCMYclEGGqBZN3_VdBEpILsyfdZ1C__49n1Fa2xox8FOig35h7RLnqgiQNNuOKJQB5yjRg7OxfL4JpntvHjzfJf1kg7MV0I2TMYcPAoc61i5YEMeRB59QlWoew0yU86lI8o7KD0HVWpredCgbBULkQKpuEVG9aKGO4Q6qaItlLJl5ZHjRnshQ5DBuYTwlPRjkg1eM77nO0fZjbkZGts-muRog442WWGSo8fkycZk2ZF9nHZyPoSCGaZYU941aSk6zUj-yQhWfeZYGW5WucnMa4xYDFiOKVhzNSblxrIHRx3oOeuCj4YoNSlxYDXIJle26UJKapSeLvIxud2F7-amUb8qlzJZP93E89lP5O4_nX2PXMStbq7zPhk1Ry08SACvcQ_79_YnVE1LTQ priority: 102 providerName: Unpaywall |
| Title | Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0016510717301918 https://www.clinicalkey.es/playcontent/1-s2.0-S0016510717301918 https://dx.doi.org/10.1016/j.gie.2017.03.011 https://www.ncbi.nlm.nih.gov/pubmed/28322771 https://www.proquest.com/docview/1879665432 https://research.tue.nl/en/publications/ae2dfe60-14fc-4cc0-9e5e-05859efe1c05 |
| UnpaywallVersion | submittedVersion |
| Volume | 86 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1097-6779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008231 issn: 1097-6779 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1097-6779 dateEnd: 20200430 omitProxy: true ssIdentifier: ssj0008231 issn: 1097-6779 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1097-6779 dateEnd: 20200430 omitProxy: true ssIdentifier: ssj0008231 issn: 1097-6779 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1097-6779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008231 issn: 1097-6779 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-6779 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008231 issn: 1097-6779 databaseCode: AKRWK dateStart: 19710801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CBDUH8RnXR2jBkzJmHj39OK7BsCpZPLgQD9J0T3eHlWV2ye4SchH_hn_PX2LVPFYlmoCnYXqm6Jnq6uqC-uorgOdaRa4dd0mMrki4zXViCeSolRciVSjTZEyPxmI04e-Oy-MtOOhrYQhW2fn-1qc33rob2e-0ub-YTqnGNxNoUZRGxjglo4JfziV1MXj19RfMg9JcrTcWCb3dZzYbjNfJlJgyM9nwnGbZv86mi7HnDtxY1wt7fmZns9_Oo8PbcKsLJNmw_dY7sBXqu3D9qEuV34PPfb-GhEggPfNh1aCuajaPLBCtMXvdwnR_fPu-ZDUhyamikhES_oS1Xovo-xkOh1MWak8FzER-OV-c34fJ4ZuPB6Ok66WQVKWQq0TGPFTUWVjH0nnrcy_yWGE4Qw2ng0yVc_hEVS7wKguKa2szr4OyZSwErmDxALbreR0eAnNSRVsoZXlZEbmMroT0XnrnMLRSshpA2mvRVB3ROPW7mJkeUfbFoOINKd6khUHFD-DFRmTRsmxc9nLeL43py0fR4Rk8Ay4Tkn8TCstuyy5NZpa5Sc0FsxoA30j-YZlXTfistxqDO5bSMBaXco0TKamp53ORD2C3NafNT1PjqFxKlH65sa-rNfLo_z7xMdyku7ay8glsr07X4SmGWCu31-yhPbg2fPt-NMbrZPxh-OknAlkm1w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iBKMH8RVd46MFT8ok8-zHUYNh1WxOCeQiTT_DhmV2ye4iuYh_w7_nL0nVPFYlmoDX6Sm6p7q6uob66iuA10rGUtnSJjHaIilNrhJDIEclPeepRJkmYzo64MOj8tNxdbwGu30tDMEqO9_f-vTGW3dPdjpt7szGY6rxzThaFKWRMU7J5A24WVa5oD-w7W-_cB6U52rdMU_o9T612YC8TsZElZmJhug0y_51OV0OPu_AxrKemfOvZjL57ULauwd3u0iSvWsXex_WQv0Abo26XPlD-NI3bEiIBdIzHxYN7Kpm08gC8Rqz9y1O9-f3H3NWE5ScSioZQeFPWOu2iL-f4eNwxkLtqYKZ2C-ns_NHcLT34XB3mHTNFBJXcbFIRMyDo9bCKlbWG597nkeH8Qx1nA4ildbiiHQ2lC4LslTGZF4FaapYcNzCYhPW62kdngCzQkZTSGnKyhG7jHJceC-8tRhbSeEGkPZa1K5jGqeGFxPdQ8pONSpek-J1WmhU_ADerERmLc3GVS_n_dbovn4UPZ7GS-AqIfE3oTDvzuxcZ3qe61RfsqsBlCvJP0zzuglf9Vaj8chSHsbgVi5xIikUNX0u8gE8bs1p9dHUOQptGKXfruzreo08_b8lvoSN4eFoX-9_PPi8BbdppC2zfAbri7NleI7x1sK-aM7TBV_1Jrw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9RAEG5kFjwevI_xogWflJ5J5-jjcRWXRdhF0IH1QZo-qtdjzAw7CbI--Tf8e_4SuybJsHjsIviYowhJVaq_pKq-j5DHWsVSu9KxGF3BSptrZrHJUasgRKaSzbpiurcvdmfly4PqoB-PxlmYnuLm_aRp08f5fAr1dHni_9XUQh4iiIzxMnpWep8xDRWwLMFeDRG4R0LTLVElZD4iW7P9V9tvu2QsWAo_OfTbK7kWtcT6KxNS6qHguW79OvyABJpcrulPOf_bkvU7JL1ELrT10h5_sfP5iWVq5wr5PNxg153yadI2buK__sL9-L-ewFVyucezdLsLwGvkHNTXyfm9vmJ_g7wbZCMYclEGGqBZN3_VdBEpILsyfdZ1C__49n1Fa2xox8FOig35h7RLnqgiQNNuOKJQB5yjRg7OxfL4JpntvHjzfJf1kg7MV0I2TMYcPAoc61i5YEMeRB59QlWoew0yU86lI8o7KD0HVWpredCgbBULkQKpuEVG9aKGO4Q6qaItlLJl5ZHjRnshQ5DBuYTwlPRjkg1eM77nO0fZjbkZGts-muRog442WWGSo8fkycZk2ZF9nHZyPoSCGaZYU941aSk6zUj-yQhWfeZYGW5WucnMa4xYDFiOKVhzNSblxrIHRx3oOeuCj4YoNSlxYDXIJle26UJKapSeLvIxud2F7-amUb8qlzJZP93E89lP5O4_nX2PXMStbq7zPhk1Ry08SACvcQ_79_YnVE1LTQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+detection+of+early+Barrett%E2%80%99s+neoplasia+using+volumetric+laser+endomicroscopy&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Swager%2C+Anne-Fr%C3%A9%2C+MD&rft.au=van+der+Sommen%2C+Fons%2C+MSc&rft.au=Klomp%2C+Sander+R.%2C+BSc&rft.au=Zinger%2C+Sveta%2C+PhD&rft.date=2017-11-01&rft.issn=0016-5107&rft_id=info:doi/10.1016%2Fj.gie.2017.03.011&rft.externalDBID=ECK1-s2.0-S0016510717301918&rft.externalDocID=1_s2_0_S0016510717301918 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon |