Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy

Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett’s esophagus (BE). However, interpretation of VLE images is comp...

Full description

Saved in:
Bibliographic Details
Published inGastrointestinal endoscopy Vol. 86; no. 5; pp. 839 - 846
Main Authors Swager, Anne-Fré, van der Sommen, Fons, Klomp, Sander R., Zinger, Sveta, Meijer, Sybren L., Schoon, Erik J., Bergman, Jacques J.G.H.M., de With, Peter H., Curvers, Wouter L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2017
Subjects
Online AccessGet full text
ISSN0016-5107
1097-6779
1085-8741
1097-6779
DOI10.1016/j.gie.2017.03.011

Cover

Abstract Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett’s esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images. We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation. Three novel clinically inspired algorithm features were developed. The feature “layering and signal decay statistics” showed the optimal performance compared with the other clinically features (“layering” and “signal intensity distribution”) and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81). This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm.
AbstractList Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett’s esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images. We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation. Three novel clinically inspired algorithm features were developed. The feature “layering and signal decay statistics” showed the optimal performance compared with the other clinically features (“layering” and “signal intensity distribution”) and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81). This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm.
Background and Aims Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett’s esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images. Methods We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation. Results Three novel clinically inspired algorithm features were developed. The feature “layering and signal decay statistics” showed the optimal performance compared with the other clinically features (“layering” and “signal intensity distribution”) and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81). Conclusions This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm.
Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett's esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images.BACKGROUND AND AIMSVolumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm deep. VLE has the potential to improve detection of early neoplasia in Barrett's esophagus (BE). However, interpretation of VLE images is complex because of the large amount of data that need to be interpreted in real time. The aim of this study was to investigate the feasibility of a computer algorithm to identify early BE neoplasia on ex vivo VLE images.We used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation.METHODSWe used 60 VLE images from a database of high-quality ex vivo VLE-histology correlations, obtained from BE patients ± neoplasia (30 nondysplastic BE [NDBE] and 30 high-grade dysplasia/early adenocarcinoma images). VLE features from a recently developed clinical VLE prediction score for BE neoplasia served as input for the algorithm: (1) higher VLE surface than subsurface signal and (2) lack of layering. With this input, novel clinically inspired algorithm features were developed, based on signal intensity statistics and grayscale correlations. For comparison, generic image analysis methods were examined for their performance to detect neoplasia. For classification of the images in the NDBE or neoplastic group, several machine learning methods were evaluated. Leave-1-out cross-validation was used for algorithm validation.Three novel clinically inspired algorithm features were developed. The feature "layering and signal decay statistics" showed the optimal performance compared with the other clinically features ("layering" and "signal intensity distribution") and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81).RESULTSThree novel clinically inspired algorithm features were developed. The feature "layering and signal decay statistics" showed the optimal performance compared with the other clinically features ("layering" and "signal intensity distribution") and generic image analyses methods, with an area under the receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and specificity were 90% and 93%, respectively. In addition, the algorithm showed a better performance than the clinical VLE prediction score (AUC .81).This is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm.CONCLUSIONSThis is the first study in which a computer algorithm for BE neoplasia was developed based on VLE images with direct histologic correlates. The algorithm showed good performance to detect BE neoplasia in ex vivo VLE images compared with the performance of a recently developed clinical VLE prediction score. This study suggests that an automatic detection algorithm has the potential to assist endoscopists in detecting early neoplasia on VLE. Future studies on in vivo VLE scans are needed to further validate the algorithm.
Author Schoon, Erik J.
Meijer, Sybren L.
Curvers, Wouter L.
Swager, Anne-Fré
van der Sommen, Fons
Bergman, Jacques J.G.H.M.
Klomp, Sander R.
Zinger, Sveta
de With, Peter H.
Author_xml – sequence: 1
  givenname: Anne-Fré
  surname: Swager
  fullname: Swager, Anne-Fré
  organization: Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
– sequence: 2
  givenname: Fons
  surname: van der Sommen
  fullname: van der Sommen, Fons
  organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
– sequence: 3
  givenname: Sander R.
  surname: Klomp
  fullname: Klomp, Sander R.
  organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
– sequence: 4
  givenname: Sveta
  surname: Zinger
  fullname: Zinger, Sveta
  organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
– sequence: 5
  givenname: Sybren L.
  surname: Meijer
  fullname: Meijer, Sybren L.
  organization: Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands
– sequence: 6
  givenname: Erik J.
  surname: Schoon
  fullname: Schoon, Erik J.
  organization: Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, the Netherlands
– sequence: 7
  givenname: Jacques J.G.H.M.
  surname: Bergman
  fullname: Bergman, Jacques J.G.H.M.
  organization: Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
– sequence: 8
  givenname: Peter H.
  surname: de With
  fullname: de With, Peter H.
  organization: Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
– sequence: 9
  givenname: Wouter L.
  surname: Curvers
  fullname: Curvers, Wouter L.
  organization: Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28322771$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxi1URLeFB-CCcuSS4HE2sSMkJLrin1SJA3BElteeVF4cO9hJUW68Bq_Hk-BoC4dKFE6W7O_3jeebOSMnPngk5DHQCii0zw7VlcWKUeAVrSsKcI9sgHa8bDnvTsiGZlHZAOWn5CylA6VUsBoekFMmasY4hw35vAvDOE8YS2UNmsLghHqywRehL1BFtxQXKkacpp_ff6TCYxidSlYVc7L-qrgObh5wilYX-Rpjgd6EweoYkg7j8pDc75VL-OjmPCefXr_6uHtbXr5_82738rLUTcunkvcMNROi7vpmb5RhpmW9bqHZ5g8jp2K_zy9C73GrAcW2UwpMh0I1fd0q1tXnhB19Zz-q5ZtyTo7RDiouEqhcs5IHmbOSa1aS1jJnlaGnR2iM4euMaZKDTRqdU7nLOUkQvGvbZluzLH1yI533A5o_5r9zzAI4CtbOU8T-v-rzW4y2k1qzn6Ky7k7y-ZHEnOm1xSiTtug1Ghvz9KQJ9k76xS1aO-utVu4LLpgOYY4-D0uCTExS-WHdonWJgNcUOhDZoPu7wT-K_wLMGtb5
CitedBy_id crossref_primary_10_1016_j_tgie_2018_04_002
crossref_primary_10_1053_j_gastro_2018_01_070
crossref_primary_10_1111_den_13317
crossref_primary_10_1002_cam4_4447
crossref_primary_10_3748_wjg_v27_i16_1664
crossref_primary_10_1097_MCG_0000000000001423
crossref_primary_10_3389_fmed_2022_822731
crossref_primary_10_1016_j_cgh_2021_02_008
crossref_primary_10_1097_CM9_0000000000000623
crossref_primary_10_1016_j_gie_2020_07_052
crossref_primary_10_1016_j_bpg_2020_101720
crossref_primary_10_1053_j_gastro_2019_08_058
crossref_primary_10_3748_wjg_v27_i37_6191
crossref_primary_10_1016_j_gtc_2024_08_005
crossref_primary_10_1016_j_compmedimag_2020_101701
crossref_primary_10_1016_j_bpg_2020_101722
crossref_primary_10_3748_wjg_v27_i32_5351
crossref_primary_10_1016_j_tgie_2019_150634
crossref_primary_10_3390_app9112183
crossref_primary_10_35712_aig_v3_i5_117
crossref_primary_10_4251_wjgo_v14_i5_989
crossref_primary_10_1053_j_gastro_2017_12_045
crossref_primary_10_1111_exsy_12504
crossref_primary_10_3390_diagnostics13182862
crossref_primary_10_1155_2021_7594513
crossref_primary_10_1007_s12328_018_0863_3
crossref_primary_10_17235_reed_2022_8961_2022
crossref_primary_10_1002_1878_0261_12792
crossref_primary_10_1111_den_13481
crossref_primary_10_11569_wcjd_v29_i24_1389
crossref_primary_10_1016_j_compbiomed_2020_104029
crossref_primary_10_3748_wjg_v26_i38_5784
crossref_primary_10_1016_j_thorsurg_2018_07_012
crossref_primary_10_1155_acis_6552580
crossref_primary_10_37126_aige_v2_i2_25
crossref_primary_10_1111_den_13402
crossref_primary_10_1007_s10462_024_11033_5
crossref_primary_10_1016_j_compbiomed_2018_03_014
crossref_primary_10_1016_j_gie_2020_06_034
crossref_primary_10_3390_photonics10010051
crossref_primary_10_3748_wjg_v26_i35_5256
crossref_primary_10_1016_j_tige_2020_09_001
crossref_primary_10_3748_wjg_v25_i1_1
crossref_primary_10_1093_dote_doz065
crossref_primary_10_1007_s11894_018_0661_6
crossref_primary_10_3748_wjg_v25_i14_1666
crossref_primary_10_3748_wjg_v27_i40_6794
crossref_primary_10_12688_f1000research_21971_1
crossref_primary_10_17650_1726_9776_2023_19_2_148_152
crossref_primary_10_1007_s11938_021_00353_y
crossref_primary_10_37126_aige_v1_i2_28
crossref_primary_10_3748_wjg_v24_i45_5057
crossref_primary_10_1002_jso_26844
crossref_primary_10_1111_den_13908
crossref_primary_10_1177_2040622319837851
crossref_primary_10_1177_26317745211049964
crossref_primary_10_1111_jgh_15354
crossref_primary_10_1016_j_gie_2019_06_044
crossref_primary_10_1016_j_gie_2020_07_007
crossref_primary_10_1016_j_bspc_2024_107230
crossref_primary_10_1109_TMI_2021_3125061
crossref_primary_10_3390_jcm13071990
crossref_primary_10_1016_j_gie_2017_04_017
crossref_primary_10_1016_j_gie_2021_09_017
crossref_primary_10_3390_app8122420
crossref_primary_10_1186_s13063_021_05527_8
crossref_primary_10_35711_aimi_v3_i3_70
crossref_primary_10_7759_cureus_47755
crossref_primary_10_4166_kjg_2020_75_3_120
crossref_primary_10_1016_j_vgie_2020_08_013
crossref_primary_10_1016_j_gie_2018_12_020
crossref_primary_10_5946_ce_2023_031
crossref_primary_10_1097_MCG_0000000000001629
crossref_primary_10_1016_j_gastha_2022_02_025
crossref_primary_10_1016_j_gie_2019_12_049
crossref_primary_10_17116_dokgastro2020902130
crossref_primary_10_1007_s10620_018_5453_1
crossref_primary_10_3748_wjg_v27_i14_1392
crossref_primary_10_1007_s10620_021_07086_z
crossref_primary_10_1117_1_JBO_22_12_121716
crossref_primary_10_3748_wjg_v26_i39_5959
crossref_primary_10_1111_apt_16778
crossref_primary_10_3390_diagnostics13040662
crossref_primary_10_1016_j_gie_2019_05_012
crossref_primary_10_3390_diagnostics11091719
crossref_primary_10_1109_ACCESS_2019_2930891
crossref_primary_10_1016_j_gie_2019_12_018
crossref_primary_10_1055_a_1907_6569
crossref_primary_10_2139_ssrn_4180735
crossref_primary_10_1097_MOG_0000000000000557
crossref_primary_10_1109_TSMC_2021_3096974
crossref_primary_10_1016_j_gie_2019_08_018
crossref_primary_10_3390_jcm11030569
crossref_primary_10_7759_cureus_29567
crossref_primary_10_1016_j_gie_2019_05_004
crossref_primary_10_3390_app112210982
crossref_primary_10_3748_wjg_v26_i46_7287
crossref_primary_10_1177_2631774520935220
crossref_primary_10_3390_cancers13215494
crossref_primary_10_1016_j_gie_2022_10_031
crossref_primary_10_1016_j_gie_2018_04_2333
Cites_doi 10.1055/s-0042-101409
10.1111/dote.12371
10.1117/12.2253860
10.1158/1055-9965.EPI-10-0012
10.1136/gutjnl-2013-305372
10.1016/j.gie.2016.03.1180
10.1364/OE.11.002953
10.1016/j.gie.2016.09.012
10.1016/j.gie.2015.08.057
10.1038/nm1450
10.1016/j.gie.2015.08.050
10.1364/BOE.1.000825
10.1016/j.gie.2006.08.009
10.1016/S0016-5085(16)32158-8
10.1117/1.2337314
10.1016/j.gie.2008.05.014
10.1055/s-0042-105284
10.1016/S0016-5085(15)30316-4
ContentType Journal Article
Copyright 2017 American Society for Gastrointestinal Endoscopy
American Society for Gastrointestinal Endoscopy
Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 American Society for Gastrointestinal Endoscopy
– notice: American Society for Gastrointestinal Endoscopy
– notice: Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.gie.2017.03.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6779
EndPage 846
ExternalDocumentID oai:pure.tue.nl:openaire/ae2dfe60-14fc-4cc0-9e5e-05859efe1c05
28322771
10_1016_j_gie_2017_03_011
S0016510717301918
1_s2_0_S0016510717301918
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FD8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M28
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OC.
ON0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
UNMZH
UV1
WH7
WOW
X7M
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c567t-7f2ec28839f5bdad2d62fc6154082e708bb9f58cbe4c1e849aa1d9e8a5f36a293
IEDL.DBID .~1
ISSN 0016-5107
1097-6779
1085-8741
IngestDate Sun Oct 26 03:27:57 EDT 2025
Thu Oct 02 05:13:31 EDT 2025
Mon Jul 21 05:48:09 EDT 2025
Wed Oct 01 05:22:38 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Fri Feb 23 02:33:59 EST 2024
Tue Feb 25 19:54:42 EST 2025
Tue Oct 14 19:29:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords OCT
BE
HGD
EAC
ROC
NDBE
VLE
AUC
area under the receiver operating characteristic curve
early adenocarcinoma
nondysplastic Barrett’s esophagus
optical coherence tomography
Barrett’s esophagus
volumetric laser endomicroscopy
receiver operating characteristic (curve)
high-grade dysplasia
Language English
License Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-7f2ec28839f5bdad2d62fc6154082e708bb9f58cbe4c1e849aa1d9e8a5f36a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://research.tue.nl/en/publications/ae2dfe60-14fc-4cc0-9e5e-05859efe1c05
PMID 28322771
PQID 1879665432
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_gie_2017_03_011
proquest_miscellaneous_1879665432
pubmed_primary_28322771
crossref_primary_10_1016_j_gie_2017_03_011
crossref_citationtrail_10_1016_j_gie_2017_03_011
elsevier_sciencedirect_doi_10_1016_j_gie_2017_03_011
elsevier_clinicalkeyesjournals_1_s2_0_S0016510717301918
elsevier_clinicalkey_doi_10_1016_j_gie_2017_03_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastrointestinal endoscopy
PublicationTitleAlternate Gastrointest Endosc
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Fitzgerald, di Pietro, Ragunath (bib2) 2014; 63
Suter, Vakoc, Yachimski (bib4) 2008; 68
Trindade, Inamdar, Smith (bib20) 2016
Suter, Gora, Lauwers (bib21) 2014; 2
Wolfsen, Sharma, Wallace (bib5) 2015; 3
Swager, Boerwinkel, de Bruin (bib14) 2016; 29
Trindade, George, Berkowitz (bib10) 2016; 4
van der Sommen, Zinger, Curvers (bib11) 2016; 48
Curvers, Bergman (bib19) 2016; 83
Yun, Tearney, De Boer (bib16) 2003; 11
Swager, van Oijen, Tearney (bib8) 2016; 150
Pohl, Sirovich, Welch (bib1) 2010; 19
Swager, van Oijen, Tearney (bib9) 2016; 83
Shaheen, Falk, Iyer (bib3) 2015; 108
Qi, Sivak, Isenberg (bib12) 2006; 11
Rodriguez-Diaz, Singh (bib22) 2015; 148
Klomp SR, van der Sommen F, Swager A, et al. Evaluation of image features and classification methods for Barrett’s cancer detection using VLE imaging. Proc SPIE Med Imaging 2017;10134, 101340D.
Swager, Tearney, Leggett (bib6) 2017; 85
Qi, Pan, Sivak (bib13) 2010; 1
Yun, Tearney, Vakoc (bib15) 2006; 12
Leggett, Gorospe, Chan (bib7) 2016; 83
Vakoc, Shishko, Yun (bib17) 2007; 65
Yun (10.1016/j.gie.2017.03.011_bib16) 2003; 11
Rodriguez-Diaz (10.1016/j.gie.2017.03.011_bib22) 2015; 148
Wolfsen (10.1016/j.gie.2017.03.011_bib5) 2015; 3
Yun (10.1016/j.gie.2017.03.011_bib15) 2006; 12
Pohl (10.1016/j.gie.2017.03.011_bib1) 2010; 19
Curvers (10.1016/j.gie.2017.03.011_bib19) 2016; 83
Fitzgerald (10.1016/j.gie.2017.03.011_bib2) 2014; 63
Qi (10.1016/j.gie.2017.03.011_bib13) 2010; 1
Trindade (10.1016/j.gie.2017.03.011_bib20) 2016
Swager (10.1016/j.gie.2017.03.011_bib6) 2017; 85
Swager (10.1016/j.gie.2017.03.011_bib9) 2016; 83
Swager (10.1016/j.gie.2017.03.011_bib14) 2016; 29
Trindade (10.1016/j.gie.2017.03.011_bib10) 2016; 4
Suter (10.1016/j.gie.2017.03.011_bib4) 2008; 68
Leggett (10.1016/j.gie.2017.03.011_bib7) 2016; 83
van der Sommen (10.1016/j.gie.2017.03.011_bib11) 2016; 48
Shaheen (10.1016/j.gie.2017.03.011_bib3) 2015; 108
Qi (10.1016/j.gie.2017.03.011_bib12) 2006; 11
Vakoc (10.1016/j.gie.2017.03.011_bib17) 2007; 65
Suter (10.1016/j.gie.2017.03.011_bib21) 2014; 2
Swager (10.1016/j.gie.2017.03.011_bib8) 2016; 150
10.1016/j.gie.2017.03.011_bib18
29061257 - Gastrointest Endosc. 2017 Nov;86(5):847-848
References_xml – volume: 83
  start-page: 880
  year: 2016
  end-page: 888
  ident: bib7
  article-title: Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus
  publication-title: Gastrointest Endosc
– volume: 1
  start-page: 825
  year: 2010
  end-page: 847
  ident: bib13
  article-title: Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography
  publication-title: Biomed Opt Express
– volume: 4
  start-page: E318
  year: 2016
  end-page: E322
  ident: bib10
  article-title: Volumetric laser endomicroscopy can target neoplasia not detected by conventional endoscopic measures in long segment Barrett’s esophagus
  publication-title: Endosc Int open
– volume: 11
  start-page: 44010
  year: 2006
  ident: bib12
  article-title: Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography
  publication-title: J Biomed Opt
– volume: 11
  start-page: 2953
  year: 2003
  end-page: 2963
  ident: bib16
  article-title: High-speed optical frequency-domain imaging
  publication-title: Opt Express
– reference: Klomp SR, van der Sommen F, Swager A, et al. Evaluation of image features and classification methods for Barrett’s cancer detection using VLE imaging. Proc SPIE Med Imaging 2017;10134, 101340D.
– volume: 85
  start-page: 918
  year: 2017
  end-page: 926
  ident: bib6
  article-title: Identification of volumetric laser endomicroscopy features predictive for early neoplasia in Barrett’s esophagus using high-quality histological correlation
  publication-title: Gastrointest Endosc
– volume: 148
  start-page: S91
  year: 2015
  end-page: S92
  ident: bib22
  article-title: Computer-assisted image interpretation of volumetric laser endomicroscopy in Barrett’s esophagus
  publication-title: Gastroenterology
– volume: 12
  start-page: 1429
  year: 2006
  end-page: 1433
  ident: bib15
  article-title: Comprehensive volumetric optical microscopy in vivo
  publication-title: Nat Med
– volume: 68
  start-page: 745
  year: 2008
  end-page: 753
  ident: bib4
  article-title: Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging
  publication-title: Gastrointest Endosc
– volume: 19
  start-page: 1468
  year: 2010
  end-page: 1470
  ident: bib1
  article-title: Esophageal adenocarcinoma incidence: Are we reaching the peak?
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 83
  start-page: AB573
  year: 2016
  ident: bib9
  article-title: How good are experts in identifying endoscopically visible early Barrett’s neoplasia on in vivo volumetric laser endomicroscopy [abstract]?
  publication-title: Gastrointest Endosc
– volume: 3
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib5
  article-title: Safety and feasibility of volumetric laser endomicroscopy in patients with Barrett’s esophagus (with videos)
  publication-title: Gastrointest Endosc
– volume: 48
  start-page: 617
  year: 2016
  end-page: 624
  ident: bib11
  article-title: Computer-aided detection of early neoplastic lesions in Barrett’s esophagus
  publication-title: Endoscopy
– volume: 65
  start-page: 898
  year: 2007
  end-page: 905
  ident: bib17
  article-title: Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video)
  publication-title: Gastrointest Endosc
– volume: 29
  start-page: 505
  year: 2016
  end-page: 512
  ident: bib14
  article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: a feasibility study on histological correlation
  publication-title: Dis Esophagus
– year: 2016
  ident: bib20
  article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: interobserver agreement for interpretation of Barrett’s esophagus and associated neoplasia among high-frequency users
  publication-title: Gastrointest Endosc. In Press
– volume: 108
  start-page: 1238
  year: 2015
  end-page: 1249
  ident: bib3
  article-title: ACG Clinical Guideline: diagnosis and management of Barrett’s esophagus
  publication-title: Am J Gastroenterol
– volume: 150
  start-page: S628
  year: 2016
  ident: bib8
  article-title: How good are experts in identifying early Barrett’s neoplasia in endoscopic resection specimens using volumetric laser endomicroscopy?
  publication-title: Gastroenterology
– volume: 63
  start-page: 7
  year: 2014
  end-page: 42
  ident: bib2
  article-title: British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus
  publication-title: Gut
– volume: 83
  start-page: 115
  year: 2016
  end-page: 116
  ident: bib19
  article-title: A new paradigm shift in endoscopy: from interpretation to automated image analysis?
  publication-title: Gastrointest Endosc
– volume: 2
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib21
  article-title: Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study
  publication-title: Gastrointest Endosc
– volume: 4
  start-page: E318
  year: 2016
  ident: 10.1016/j.gie.2017.03.011_bib10
  article-title: Volumetric laser endomicroscopy can target neoplasia not detected by conventional endoscopic measures in long segment Barrett’s esophagus
  publication-title: Endosc Int open
  doi: 10.1055/s-0042-101409
– volume: 29
  start-page: 505
  year: 2016
  ident: 10.1016/j.gie.2017.03.011_bib14
  article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: a feasibility study on histological correlation
  publication-title: Dis Esophagus
  doi: 10.1111/dote.12371
– ident: 10.1016/j.gie.2017.03.011_bib18
  doi: 10.1117/12.2253860
– volume: 19
  start-page: 1468
  year: 2010
  ident: 10.1016/j.gie.2017.03.011_bib1
  article-title: Esophageal adenocarcinoma incidence: Are we reaching the peak?
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-10-0012
– volume: 3
  start-page: 1
  year: 2015
  ident: 10.1016/j.gie.2017.03.011_bib5
  article-title: Safety and feasibility of volumetric laser endomicroscopy in patients with Barrett’s esophagus (with videos)
  publication-title: Gastrointest Endosc
– volume: 63
  start-page: 7
  year: 2014
  ident: 10.1016/j.gie.2017.03.011_bib2
  article-title: British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus
  publication-title: Gut
  doi: 10.1136/gutjnl-2013-305372
– volume: 83
  start-page: AB573
  year: 2016
  ident: 10.1016/j.gie.2017.03.011_bib9
  article-title: How good are experts in identifying endoscopically visible early Barrett’s neoplasia on in vivo volumetric laser endomicroscopy [abstract]?
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2016.03.1180
– volume: 11
  start-page: 2953
  year: 2003
  ident: 10.1016/j.gie.2017.03.011_bib16
  article-title: High-speed optical frequency-domain imaging
  publication-title: Opt Express
  doi: 10.1364/OE.11.002953
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.gie.2017.03.011_bib21
  article-title: Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study
  publication-title: Gastrointest Endosc
– volume: 108
  start-page: 1238
  year: 2015
  ident: 10.1016/j.gie.2017.03.011_bib3
  article-title: ACG Clinical Guideline: diagnosis and management of Barrett’s esophagus
  publication-title: Am J Gastroenterol
– volume: 85
  start-page: 918
  year: 2017
  ident: 10.1016/j.gie.2017.03.011_bib6
  article-title: Identification of volumetric laser endomicroscopy features predictive for early neoplasia in Barrett’s esophagus using high-quality histological correlation
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2016.09.012
– volume: 83
  start-page: 115
  year: 2016
  ident: 10.1016/j.gie.2017.03.011_bib19
  article-title: A new paradigm shift in endoscopy: from interpretation to automated image analysis?
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2015.08.057
– volume: 12
  start-page: 1429
  year: 2006
  ident: 10.1016/j.gie.2017.03.011_bib15
  article-title: Comprehensive volumetric optical microscopy in vivo
  publication-title: Nat Med
  doi: 10.1038/nm1450
– volume: 83
  start-page: 880
  year: 2016
  ident: 10.1016/j.gie.2017.03.011_bib7
  article-title: Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2015.08.050
– year: 2016
  ident: 10.1016/j.gie.2017.03.011_bib20
  article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: interobserver agreement for interpretation of Barrett’s esophagus and associated neoplasia among high-frequency users
  publication-title: Gastrointest Endosc. In Press
– volume: 1
  start-page: 825
  year: 2010
  ident: 10.1016/j.gie.2017.03.011_bib13
  article-title: Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.1.000825
– volume: 65
  start-page: 898
  year: 2007
  ident: 10.1016/j.gie.2017.03.011_bib17
  article-title: Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2006.08.009
– volume: 150
  start-page: S628
  year: 2016
  ident: 10.1016/j.gie.2017.03.011_bib8
  article-title: How good are experts in identifying early Barrett’s neoplasia in endoscopic resection specimens using volumetric laser endomicroscopy?
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(16)32158-8
– volume: 11
  start-page: 44010
  year: 2006
  ident: 10.1016/j.gie.2017.03.011_bib12
  article-title: Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography
  publication-title: J Biomed Opt
  doi: 10.1117/1.2337314
– volume: 68
  start-page: 745
  year: 2008
  ident: 10.1016/j.gie.2017.03.011_bib4
  article-title: Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2008.05.014
– volume: 48
  start-page: 617
  year: 2016
  ident: 10.1016/j.gie.2017.03.011_bib11
  article-title: Computer-aided detection of early neoplastic lesions in Barrett’s esophagus
  publication-title: Endoscopy
  doi: 10.1055/s-0042-105284
– volume: 148
  start-page: S91
  year: 2015
  ident: 10.1016/j.gie.2017.03.011_bib22
  article-title: Computer-assisted image interpretation of volumetric laser endomicroscopy in Barrett’s esophagus
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(15)30316-4
– reference: 29061257 - Gastrointest Endosc. 2017 Nov;86(5):847-848
SSID ssj0008231
Score 2.5583975
Snippet Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall layers up to 3-mm...
Background and Aims Volumetric laser endomicroscopy (VLE) is an advanced imaging system that provides a near-microscopic resolution scan of the esophageal wall...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 839
SubjectTerms Adenocarcinoma - diagnosis
Adenocarcinoma - pathology
Aged
Algorithms
Barrett Esophagus - diagnosis
Barrett Esophagus - pathology
Case-Control Studies
Diagnosis, Computer-Assisted - methods
Esophageal Neoplasms - diagnosis
Esophageal Neoplasms - pathology
Esophagoscopy - methods
Esophagus - pathology
Female
Gastroenterology and Hepatology
Humans
Image Interpretation, Computer-Assisted - methods
Machine Learning
Male
Microscopy, Confocal - methods
Middle Aged
Reproducibility of Results
ROC Curve
Sensitivity and Specificity
Support Vector Machine
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9RAEG5kFjwevI_xogWflJ5J5-jjcRWXRdhF0IH1QZo-qtdjzAw7CbI--Tf8e_4SuybJsHjsIviYowhJVaq_pKq-j5DHWsVSu9KxGF3BSptrZrHJUasgRKaSzbpiurcvdmfly4PqoB-PxlmYnuLm_aRp08f5fAr1dHni_9XUQh4iiIzxMnpWep8xDRWwLMFeDRG4R0LTLVElZD4iW7P9V9tvu2QsWAo_OfTbK7kWtcT6KxNS6qHguW79OvyABJpcrulPOf_bkvU7JL1ELrT10h5_sfP5iWVq5wr5PNxg153yadI2buK__sL9-L-ewFVyucezdLsLwGvkHNTXyfm9vmJ_g7wbZCMYclEGGqBZN3_VdBEpILsyfdZ1C__49n1Fa2xox8FOig35h7RLnqgiQNNuOKJQB5yjRg7OxfL4JpntvHjzfJf1kg7MV0I2TMYcPAoc61i5YEMeRB59QlWoew0yU86lI8o7KD0HVWpredCgbBULkQKpuEVG9aKGO4Q6qaItlLJl5ZHjRnshQ5DBuYTwlPRjkg1eM77nO0fZjbkZGts-muRog442WWGSo8fkycZk2ZF9nHZyPoSCGaZYU941aSk6zUj-yQhWfeZYGW5WucnMa4xYDFiOKVhzNSblxrIHRx3oOeuCj4YoNSlxYDXIJle26UJKapSeLvIxud2F7-amUb8qlzJZP93E89lP5O4_nX2PXMStbq7zPhk1Ry08SACvcQ_79_YnVE1LTQ
  priority: 102
  providerName: Unpaywall
Title Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016510717301918
https://www.clinicalkey.es/playcontent/1-s2.0-S0016510717301918
https://dx.doi.org/10.1016/j.gie.2017.03.011
https://www.ncbi.nlm.nih.gov/pubmed/28322771
https://www.proquest.com/docview/1879665432
https://research.tue.nl/en/publications/ae2dfe60-14fc-4cc0-9e5e-05859efe1c05
UnpaywallVersion submittedVersion
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 1097-6779
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 20200430
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 1097-6779
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 20200430
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 1097-6779
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 1097-6779
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008231
  issn: 1097-6779
  databaseCode: AKRWK
  dateStart: 19710801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CBDUH8RnXR2jBkzJmHj39OK7BsCpZPLgQD9J0T3eHlWV2ye4SchH_hn_PX2LVPFYlmoCnYXqm6Jnq6uqC-uorgOdaRa4dd0mMrki4zXViCeSolRciVSjTZEyPxmI04e-Oy-MtOOhrYQhW2fn-1qc33rob2e-0ub-YTqnGNxNoUZRGxjglo4JfziV1MXj19RfMg9JcrTcWCb3dZzYbjNfJlJgyM9nwnGbZv86mi7HnDtxY1wt7fmZns9_Oo8PbcKsLJNmw_dY7sBXqu3D9qEuV34PPfb-GhEggPfNh1aCuajaPLBCtMXvdwnR_fPu-ZDUhyamikhES_oS1Xovo-xkOh1MWak8FzER-OV-c34fJ4ZuPB6Ok66WQVKWQq0TGPFTUWVjH0nnrcy_yWGE4Qw2ng0yVc_hEVS7wKguKa2szr4OyZSwErmDxALbreR0eAnNSRVsoZXlZEbmMroT0XnrnMLRSshpA2mvRVB3ROPW7mJkeUfbFoOINKd6khUHFD-DFRmTRsmxc9nLeL43py0fR4Rk8Ay4Tkn8TCstuyy5NZpa5Sc0FsxoA30j-YZlXTfistxqDO5bSMBaXco0TKamp53ORD2C3NafNT1PjqFxKlH65sa-rNfLo_z7xMdyku7ay8glsr07X4SmGWCu31-yhPbg2fPt-NMbrZPxh-OknAlkm1w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iBKMH8RVd46MFT8ok8-zHUYNh1WxOCeQiTT_DhmV2ye4iuYh_w7_nL0nVPFYlmoDX6Sm6p7q6uob66iuA10rGUtnSJjHaIilNrhJDIEclPeepRJkmYzo64MOj8tNxdbwGu30tDMEqO9_f-vTGW3dPdjpt7szGY6rxzThaFKWRMU7J5A24WVa5oD-w7W-_cB6U52rdMU_o9T612YC8TsZElZmJhug0y_51OV0OPu_AxrKemfOvZjL57ULauwd3u0iSvWsXex_WQv0Abo26XPlD-NI3bEiIBdIzHxYN7Kpm08gC8Rqz9y1O9-f3H3NWE5ScSioZQeFPWOu2iL-f4eNwxkLtqYKZ2C-ns_NHcLT34XB3mHTNFBJXcbFIRMyDo9bCKlbWG597nkeH8Qx1nA4ildbiiHQ2lC4LslTGZF4FaapYcNzCYhPW62kdngCzQkZTSGnKyhG7jHJceC-8tRhbSeEGkPZa1K5jGqeGFxPdQ8pONSpek-J1WmhU_ADerERmLc3GVS_n_dbovn4UPZ7GS-AqIfE3oTDvzuxcZ3qe61RfsqsBlCvJP0zzuglf9Vaj8chSHsbgVi5xIikUNX0u8gE8bs1p9dHUOQptGKXfruzreo08_b8lvoSN4eFoX-9_PPi8BbdppC2zfAbri7NleI7x1sK-aM7TBV_1Jrw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9RAEG5kFjwevI_xogWflJ5J5-jjcRWXRdhF0IH1QZo-qtdjzAw7CbI--Tf8e_4SuybJsHjsIviYowhJVaq_pKq-j5DHWsVSu9KxGF3BSptrZrHJUasgRKaSzbpiurcvdmfly4PqoB-PxlmYnuLm_aRp08f5fAr1dHni_9XUQh4iiIzxMnpWep8xDRWwLMFeDRG4R0LTLVElZD4iW7P9V9tvu2QsWAo_OfTbK7kWtcT6KxNS6qHguW79OvyABJpcrulPOf_bkvU7JL1ELrT10h5_sfP5iWVq5wr5PNxg153yadI2buK__sL9-L-ewFVyucezdLsLwGvkHNTXyfm9vmJ_g7wbZCMYclEGGqBZN3_VdBEpILsyfdZ1C__49n1Fa2xox8FOig35h7RLnqgiQNNuOKJQB5yjRg7OxfL4JpntvHjzfJf1kg7MV0I2TMYcPAoc61i5YEMeRB59QlWoew0yU86lI8o7KD0HVWpredCgbBULkQKpuEVG9aKGO4Q6qaItlLJl5ZHjRnshQ5DBuYTwlPRjkg1eM77nO0fZjbkZGts-muRog442WWGSo8fkycZk2ZF9nHZyPoSCGaZYU941aSk6zUj-yQhWfeZYGW5WucnMa4xYDFiOKVhzNSblxrIHRx3oOeuCj4YoNSlxYDXIJle26UJKapSeLvIxud2F7-amUb8qlzJZP93E89lP5O4_nX2PXMStbq7zPhk1Ry08SACvcQ_79_YnVE1LTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+detection+of+early+Barrett%E2%80%99s+neoplasia+using+volumetric+laser+endomicroscopy&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Swager%2C+Anne-Fr%C3%A9%2C+MD&rft.au=van+der+Sommen%2C+Fons%2C+MSc&rft.au=Klomp%2C+Sander+R.%2C+BSc&rft.au=Zinger%2C+Sveta%2C+PhD&rft.date=2017-11-01&rft.issn=0016-5107&rft_id=info:doi/10.1016%2Fj.gie.2017.03.011&rft.externalDBID=ECK1-s2.0-S0016510717301918&rft.externalDocID=1_s2_0_S0016510717301918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon