Advanced analysis of disintegrating pharmaceutical compacts using deep learning-based segmentation of time-resolved micro-tomography images
The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles,...
Saved in:
Published in | Heliyon Vol. 10; no. 4; p. e26025 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
29.02.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2405-8440 2405-8440 |
DOI | 10.1016/j.heliyon.2024.e26025 |
Cover
Abstract | The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.
[Display omitted] |
---|---|
AbstractList | The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets. The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets. Image 1 The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets. The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets. [Display omitted] |
ArticleNumber | e26025 |
Author | Puchkov, Maxim Wendelspiess, Erwin Detampel, Pascal Schlepütz, Christian M. Huwyler, Jörg Waldner, Samuel |
Author_xml | – sequence: 1 givenname: Samuel surname: Waldner fullname: Waldner, Samuel organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland – sequence: 2 givenname: Erwin surname: Wendelspiess fullname: Wendelspiess, Erwin organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland – sequence: 3 givenname: Pascal surname: Detampel fullname: Detampel, Pascal organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland – sequence: 4 givenname: Christian M. surname: Schlepütz fullname: Schlepütz, Christian M. organization: Swiss Light Source, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland – sequence: 5 givenname: Jörg surname: Huwyler fullname: Huwyler, Jörg organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland – sequence: 6 givenname: Maxim orcidid: 0000-0002-7028-2774 surname: Puchkov fullname: Puchkov, Maxim email: maxim.puchkov@unibas.ch organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38384517$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNUREvpTwDlyCWLHccfEQdUVXxUqsQFztasPcl6ldjBzq60v4E_jcMuVctlT_6YmWc8ft_XxYUPHoviLSUrSqj4sF1tcHCH4Fc1qZsV1oLU_EVxVTeEV6ppyMWT_WVxk9KWEEK5Eq1kr4pLpphqOJVXxe9buwdv0JbgYTgkl8rQldYl52fsI8zO9-W0gTiCwd3sDAylCeMEZk7lLi1RiziVA0L0-VStIWVYwn5EP-fy4Bfg7EasIqYw7HN0dCaGag5jyB2mzaF0I_SY3hQvOxgS3pzW6-Lnl88_7r5VD9-_3t_dPlSGCzlXvKFMALENr0FhZwQBsxa0Y3kgKbghNUGhkAHnQkhpWttKy9FKpmzXWc6ui_sj1wbY6inm7vGgAzj99yLEXkPMow6oCWeESbAoGmwIVQpo3XQqw6BmaNaZ9enImnbrEa3JQ0cYnkGfR7zb6D7sNSVKqpaTTHh_IsTwa4dp1qNLBocBPIZd0oxyJpVgjJ9NrVtGGilEu1DfPX3X44P-KZ8T-DEhS5FSxO4xhRK9mExv9clkejGZPpos1338r864o855PDecrT59F2Z99w6jTsbh4j8X0cxZAHeG8AddQ_UK |
CitedBy_id | crossref_primary_10_1063_5_0248724 crossref_primary_10_1016_j_softx_2024_101796 |
Cites_doi | 10.1016/j.ejps.2009.01.008 10.1016/j.egyr.2021.02.065 10.1002/2015WR017502 10.1016/S0168-9002(02)01167-1 10.1016/S0168-583X(02)01689-0 10.3390/met10020189 10.1111/jphp.12276 10.1021/mp1001476 10.1016/j.ijpharm.2020.119174 10.1016/j.xphs.2015.12.019 10.1021/mp400407c 10.1107/S1600577517013522 10.1016/j.xplc.2021.100165 10.1038/s41467-020-20657-4 10.1211/002235703765951348 10.1007/s11095-017-2129-z 10.1016/j.powtec.2016.05.067 10.3389/feart.2019.00346 10.1002/jps.2600551015 10.1016/S0378-5173(03)00142-X 10.1002/jps.23119 10.1016/j.ejpb.2004.07.013 10.3390/w3010235 10.1208/s12249-012-9835-y 10.1016/j.ejps.2022.106346 10.3109/10837450.2015.1045618 10.1038/nature14539 10.1007/s11095-013-1034-3 10.1371/journal.pbio.1001823 10.1016/j.ijpharm.2019.118827 10.1002/jps.23488 10.1088/0022-3727/46/49/494004 10.1016/j.mattod.2017.06.001 10.1046/j.1365-2818.2002.01010.x 10.1007/BF00344251 10.1016/j.ejmp.2020.09.007 10.1021/js960384k 10.1016/j.ultramic.2015.05.002 10.1016/0378-5173(87)90105-0 10.1016/j.ejpb.2009.07.003 10.1081/DDC-100107242 10.1016/S0378-5173(99)00402-0 10.1016/j.polymer.2019.01.049 10.1016/j.epsl.2020.116679 10.1211/jpp.59.2.0008 10.1021/js960188d 10.1038/nature21056 10.1016/j.ijpharm.2015.04.068 10.1016/j.ijpharm.2014.02.011 10.1016/j.ijpharm.2018.07.025 10.1016/0378-5173(89)90075-6 10.1016/j.matcom.2020.04.031 10.3109/03639049409038331 10.1002/jps.22110 10.1016/j.xphs.2020.01.014 10.1364/OE.17.019006 10.3390/pharmaceutics13050685 10.1007/s13244-018-0639-9 10.1126/science.aaw4633 10.3109/10837459709031440 10.1007/s12247-019-09390-8 10.1038/s41598-020-69487-w 10.1038/s41598-020-74827-x 10.1109/TMI.1986.4307775 10.1038/s41586-019-1799-6 10.1016/j.ijpharm.2014.09.021 10.1038/s41467-019-11521-1 10.1364/OE.17.008567 10.1016/j.xphs.2016.08.026 10.1016/j.jhydrol.2004.05.005 10.1126/science.237.4821.1439 10.1038/s41598-018-19426-7 10.1007/s11095-011-0535-1 10.3109/03639048109057708 10.1107/S1600577516005658 10.1002/jps.3030440107 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.heliyon.2024.e26025 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2405-8440 |
ExternalDocumentID | oai_doaj_org_article_053037ade64e40188a124f8ed7a23ecb PMC10878950 38384517 10_1016_j_heliyon_2024_e26025 S2405844024020565 |
Genre | Journal Article |
GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E O9- OK1 ROL RPM SSZ AAYXX CITATION EJD IPNFZ RIG 0SF AACTN NCXOZ NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c567t-54136a0d452a8efc60acb61f3517765c020e68e3a556677c9d97d5ed738dffd53 |
IEDL.DBID | DOA |
ISSN | 2405-8440 |
IngestDate | Wed Aug 27 01:28:24 EDT 2025 Thu Aug 21 18:35:20 EDT 2025 Fri Aug 22 20:27:19 EDT 2025 Fri Jul 11 03:58:02 EDT 2025 Thu Jan 02 22:28:24 EST 2025 Thu Sep 25 00:38:13 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Sat Sep 27 17:12:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Time-resolved micro-computed tomography Swelling Tablets Deep learning-based image segmentation Disintegration |
Language | English |
License | This is an open access article under the CC BY license. 2024 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-54136a0d452a8efc60acb61f3517765c020e68e3a556677c9d97d5ed738dffd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7028-2774 |
OpenAccessLink | https://doaj.org/article/053037ade64e40188a124f8ed7a23ecb |
PMID | 38384517 |
PQID | 2930476690 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_053037ade64e40188a124f8ed7a23ecb pubmedcentral_primary_oai_pubmedcentral_nih_gov_10878950 proquest_miscellaneous_3153786335 proquest_miscellaneous_2930476690 pubmed_primary_38384517 crossref_primary_10_1016_j_heliyon_2024_e26025 crossref_citationtrail_10_1016_j_heliyon_2024_e26025 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e26025 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-29 |
PublicationDateYYYYMMDD | 2024-02-29 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Heliyon |
PublicationTitleAlternate | Heliyon |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wagner-Hattler, Québatte, Keiser, Schoelkopf, Schlepütz, Huwyler, Puchkov (bib37) 2020; 573 Mokso, Marone, Irvine, Nyvlt, Schwyn, Mader, Taylor, Krapp, Skeren, Stampanoni (bib48) 2013; 46 Villanova, Daudin, Lhuissier, Jauffrès, Lou, Martin, Labouré, Tucoulou, Martínez-Criado, Salvo (bib41) 2017; 20 Maggi, Bruni, Conte (bib103) 2000; 195 Leuenberger, Rohera, Haas (bib5) 1987; 38 Schomberg, Diener, Wünsch, Finke, Kwade (bib38) 2021; 3 García-Moreno, Radtke, Neu, Kamm, Klaus, Schlepütz, Banhart (bib42) 2020; 10 Waldner (bib90) 2022 Wietzke, Jansen, Jung, Reuter, Baudrit, Bastian, Chatterjee, Koch (bib23) 2009; 17 Bawuah, Pierotic Mendia, Silfsten, Pääkkönen, Ervasti, Ketolainen, Zeitler, Peiponen (bib15) 2014; 465 Cörek, Rodgers, Siegrist, Einfalt, Detampel, Schlepütz, Sieber, Fluder, Schulz, Unterweger, Alexiou, Müller, Puchkov, Huwyler (bib40) 2020; 16 Al-Raoush, Willson (bib13) 2005; 300 Chen, Hughes, Gladden, Mantle (bib17) 2010; 99 Nott (bib20) 2010; 74 Bultreys, Boone, Boone, De Schryver, Masschaele, Van Loo, Van Hoorebeke, Cnudde (bib45) 2015; 51 Berg (bib86) 2019; 16 Unnikrishnan, Donovan, Macpherson, Tormey (bib58) 2020; 15 Ronneberger, Fischer, Brox, U-Net (bib66) 2015 Stirnimann, Di Maiuta, Gerard, Alles, Huwyler, Puchkov (bib96) 2013; 30 Markl, Zeitler (bib1) 2017; 34 Quodbach, Kleinebudde (bib2) 2015 M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: A System for Large-Scale Machine Learning, (n.d.) 21. Guyot-Hermann, Ringard (bib11) 1981; 7 Radon (bib50) 1986; 5 Desai, Liew, Heng (bib8) 2012; 101 Marti, Fusseis, Butler, Schlepütz, Marone, Gilgannon, Kilian, Yang (bib44) 2021; 554 Fitri, Haryanto, Arimura, YunHao, Ninomiya, Nakano, Haekal, Warty, Fauzi (bib70) 2020; 78 B.P. Flannery, H.W. Deckman, W.G. Roberge, Three-dimensional X-ray Microtomography, 237 (n.d.) 7.. Fukushima (bib63) 1980; 36 Curlin (bib4) 1955; 44 Ma, Kittikunakorn, Sorman, Xi, Chen, Marsh, Mongeau, Piché, Williams, Skomski (bib57) 2020; 109 (bib92) 2023 Zhao, Stewart (bib29) 2010; 55 Yalamanchili, Arshad, Mohammed, Garigipati, Entschev, Kloppenborg, Malcolm, Melonakos (bib76) 2015 Csobán, Kállai-Szabó, Kállai-Szabó, Takács, Hurtony, Gordon, Zelkó, Antal (bib55) 2016; 301 Patel, Hopponent (bib6) 1966; 55 Quodbach, Kleinebudde (bib9) 2014; 66 Virta, Hannula, Tamminen, Lindfors, Kaukinen, Popp, Taavela, Saavalainen, Hiltunen, Hyttinen, Kurppa (bib35) 2020; 10 Paganin, Mayo, Gureyev, Miller, Wilkins (bib39) 2002; 206 Yang, De Andrade, Scullin, Dyer, Kasthuri, De Carlo, Gürsoy (bib72) 2018; 8 Schüssele, Bauer-Brandl (bib97) 2003; 257 Ekmekciyan, Tuglu, El-Saleh, Muehlenfeld, Stoyanov, Quodbach (bib99) 2018; 548 Desai, Liew, Heng (bib14) 2016; 105 Matsumaru (bib10) 1959; 79 van Aarle, Palenstijn, De Beenhouwer, Altantzis, Bals, Batenburg, Sijbers (bib78) 2015; 157 Schlack, Bauer-Brandl, Schubert, Becker (bib102) 2001; 27 LeCun, Bengio, Hinton (bib59) 2015; 521 Wu, Wu, Feng, Duan, Dai, Liu, Wang, Yang, Chen, Gay, Doonan, Niu, Xiong, Yang (bib68) 2021; 2 Borjigin, Zhan, Li, Meda, Tran (bib73) 2023; 181 Tajarobi, Abrahmsén-Alami, Carlsson, Larsson (bib19) 2009; 37 (bib88) 2022 Stewart, Zhao (bib28) 2005; 59 Mokso, Schlepütz, Theidel, Billich, Schmid, Celcer, Mikuljan, Sala, Marone, Schlumpf, Stampanoni (bib51) 2017; 24 Valueva, Nagornov, Lyakhov, Valuev, Chervyakov (bib64) 2020; 177 Stampanoni, Borchert, Wyss, Abela, Patterson, Hunt, Vermeulen, Rüegsegger (bib32) 2002; 491 Quodbach, Moussavi, Tammer, Frahm, Kleinebudde (bib21) 2014; 475 Wilson, Wren, Reynolds (bib30) 2012; 29 Rojas, Guisao, Ruge (bib95) 2012; 13 A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier Nonlinearities Improve Neural Network Acoustic Models, (n.d.) 6. Coutant, Skibic, Doddridge, Kemp, Sperry (bib25) 2010; 7 Catellani, Predella, Bellotti, Colombo (bib12) 1989; 51 Zeitler, Taday, Newnham, Pepper, Gordon, Rades (bib24) 2010; 59 Liu, Stewart (bib27) 1998; 87 Kingma, Ba (bib87) 2017 Akseli, Xie, Schultz, Ladyzhynsky, Bramante, He, Deanne, Horspool, Schwabe (bib22) 2017; 106 Tembely, AlSumaiti, Alameri (bib71) 2021; 7 Yamashita, Nishio, Do, Togashi (bib67) 2018; 9 Münch, Trtik, Marone, Stampanoni (bib77) 2009; 17 Chen, Gladden, Mantle (bib18) 2014; 11 Stampanoni, Groso, Isenegger, Mikuljan, Chen, Bertrand, Henein, Betemps, Frommherz, Böhler, Meister, Lange, Abela (bib31) 2006 Samuel Waldner (bib89) 2022 Salvo, Cloetens, Maire, Zabler, Blandin, Buffière, Ludwig, Boller, Bellet, Josserond (bib36) 2003; 200 Thibert, Hancock (bib100) 1996; 85 Hiremath, Nuguru, Agrahari (bib98) 2019 Faroongsarng, Peck (bib7) 1994; 20 Rowe, Sheskey, Owen (bib101) 2006 Pelt, Gürsoy, Palenstijn, Sijbers, De Carlo, Batenburg (bib79) 2016; 23 Xu, Gupta, Sayeed, Khan (bib26) 2013; 102 Sussillo, Abbott (bib85) 2015 McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian, Back, Chesus, Corrado, Darzi, Etemadi, Garcia-Vicente, Gilbert, Halling-Brown, Hassabis, Jansen, Karthikesalingam, Kelly, King, Ledsam, Melnick, Mostofi, Peng, Reicher, Romera-Paredes, Sidebottom, Suleyman, Tse, Young, De Fauw, Shetty (bib61) 2020; 577 Doerr, Florence (bib56) 2020; 2 (bib75) 2022 Walker, Schwyn, Mokso, Wicklein, Müller, Doube, Stampanoni, Krapp, Taylor (bib46) 2014; 12 (bib80) 2022 Farkas, Madarász, Nagy, Antal, Kállai-Szabó (bib52) 2021; 13 Le Caër (bib93) 2011; 3 Lassau, Ammari, Chouzenoux, Gortais, Herent, Devilder, Soliman, Meyrignac, Talabard, Lamarque, Dubois, Loiseau, Trichelair, Bendjebbar, Garcia, Balleyguier, Merad, Stoclin, Jegou, Griscelli, Tetelboum, Li, Verma, Terris, Dardouri, Gupta, Neacsu, Chemouni, Sefta, Jehanno, Bousaid, Boursin, Planchet, Azoulay, Dachary, Brulport, Gonzalez, Dehaene, Schiratti, Schutte, Pesquet, Talbot, Pronier, Wainrib, Clozel, Barlesi, Bellin, Blum (bib62) 2021; 12 García-Moreno, Kamm, Neu, Bülk, Mokso, Schlepütz, Stampanoni, Banhart (bib47) 2019; 10 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib65) 2015 Anjos, Vargas, Martins Neta, Martins, Medeiros, Evsukoff (bib69) 2019 Heyndrickx, Bultreys, Goethals, Van Hoorebeke, Boone (bib49) 2020; 10 Mészáros, Galata, Madarász, Köte, Csorba, Dávid, Domokos, Szabó, Nagy, Marosi, Farkas, Nagy (bib53) 2020; 578 R Core Team (bib91) 2023 Thoma (bib83) 2016 Kennedy, Niebergall (bib54) 1997; 2 Shangraw, Mitrevej, Shah (bib3) 1980; 4 Waldner, Puchkov (bib74) 2022 Peiponen, Bawuah, Chakraborty, Juuti, Zeitler, Ketolainen (bib16) 2015; 489 Pérez-Tamarit, Solórzano, Mokso, Rodríguez-Pérez (bib43) 2019; 166 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib60) 2017; 542 von Orelli (bib94) 2005 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, (n.d.) 19.. Marone, Schlepütz, Marti, Fusseis, Velásquez-Parra, Griffa, Jiménez-Martínez, Dobson, Stampanoni (bib34) 2020; 7 Patel (10.1016/j.heliyon.2024.e26025_bib6) 1966; 55 Tajarobi (10.1016/j.heliyon.2024.e26025_bib19) 2009; 37 Münch (10.1016/j.heliyon.2024.e26025_bib77) 2009; 17 Bultreys (10.1016/j.heliyon.2024.e26025_bib45) 2015; 51 Catellani (10.1016/j.heliyon.2024.e26025_bib12) 1989; 51 Quodbach (10.1016/j.heliyon.2024.e26025_bib21) 2014; 475 van Aarle (10.1016/j.heliyon.2024.e26025_bib78) 2015; 157 Tembely (10.1016/j.heliyon.2024.e26025_bib71) 2021; 7 Berg (10.1016/j.heliyon.2024.e26025_bib86) 2019; 16 10.1016/j.heliyon.2024.e26025_bib81 10.1016/j.heliyon.2024.e26025_bib82 Wu (10.1016/j.heliyon.2024.e26025_bib68) 2021; 2 Markl (10.1016/j.heliyon.2024.e26025_bib1) 2017; 34 Thibert (10.1016/j.heliyon.2024.e26025_bib100) 1996; 85 Matsumaru (10.1016/j.heliyon.2024.e26025_bib10) 1959; 79 Schlack (10.1016/j.heliyon.2024.e26025_bib102) 2001; 27 Yang (10.1016/j.heliyon.2024.e26025_bib72) 2018; 8 Coutant (10.1016/j.heliyon.2024.e26025_bib25) 2010; 7 R Core Team (10.1016/j.heliyon.2024.e26025_bib91) 2023 Desai (10.1016/j.heliyon.2024.e26025_bib8) 2012; 101 10.1016/j.heliyon.2024.e26025_bib84 Villanova (10.1016/j.heliyon.2024.e26025_bib41) 2017; 20 Samuel Waldner (10.1016/j.heliyon.2024.e26025_bib89) 2022 Al-Raoush (10.1016/j.heliyon.2024.e26025_bib13) 2005; 300 García-Moreno (10.1016/j.heliyon.2024.e26025_bib47) 2019; 10 Chen (10.1016/j.heliyon.2024.e26025_bib17) 2010; 99 Ronneberger (10.1016/j.heliyon.2024.e26025_bib66) 2015 Marone (10.1016/j.heliyon.2024.e26025_bib34) 2020; 7 Pelt (10.1016/j.heliyon.2024.e26025_bib79) 2016; 23 Pérez-Tamarit (10.1016/j.heliyon.2024.e26025_bib43) 2019; 166 Salvo (10.1016/j.heliyon.2024.e26025_bib36) 2003; 200 Chen (10.1016/j.heliyon.2024.e26025_bib18) 2014; 11 Cörek (10.1016/j.heliyon.2024.e26025_bib40) 2020; 16 García-Moreno (10.1016/j.heliyon.2024.e26025_bib42) 2020; 10 Farkas (10.1016/j.heliyon.2024.e26025_bib52) 2021; 13 Schomberg (10.1016/j.heliyon.2024.e26025_bib38) 2021; 3 Fitri (10.1016/j.heliyon.2024.e26025_bib70) 2020; 78 Borjigin (10.1016/j.heliyon.2024.e26025_bib73) 2023; 181 Anjos (10.1016/j.heliyon.2024.e26025_bib69) 2019 Mészáros (10.1016/j.heliyon.2024.e26025_bib53) 2020; 578 Liu (10.1016/j.heliyon.2024.e26025_bib27) 1998; 87 Walker (10.1016/j.heliyon.2024.e26025_bib46) 2014; 12 von Orelli (10.1016/j.heliyon.2024.e26025_bib94) 2005 Esteva (10.1016/j.heliyon.2024.e26025_bib60) 2017; 542 Unnikrishnan (10.1016/j.heliyon.2024.e26025_bib58) 2020; 15 Valueva (10.1016/j.heliyon.2024.e26025_bib64) 2020; 177 Radon (10.1016/j.heliyon.2024.e26025_bib50) 1986; 5 Faroongsarng (10.1016/j.heliyon.2024.e26025_bib7) 1994; 20 Szegedy (10.1016/j.heliyon.2024.e26025_bib65) 2015 Shangraw (10.1016/j.heliyon.2024.e26025_bib3) 1980; 4 Bawuah (10.1016/j.heliyon.2024.e26025_bib15) 2014; 465 Wilson (10.1016/j.heliyon.2024.e26025_bib30) 2012; 29 Wagner-Hattler (10.1016/j.heliyon.2024.e26025_bib37) 2020; 573 Le Caër (10.1016/j.heliyon.2024.e26025_bib93) 2011; 3 Stampanoni (10.1016/j.heliyon.2024.e26025_bib32) 2002; 491 Leuenberger (10.1016/j.heliyon.2024.e26025_bib5) 1987; 38 Guyot-Hermann (10.1016/j.heliyon.2024.e26025_bib11) 1981; 7 Yamashita (10.1016/j.heliyon.2024.e26025_bib67) 2018; 9 Akseli (10.1016/j.heliyon.2024.e26025_bib22) 2017; 106 Kingma (10.1016/j.heliyon.2024.e26025_bib87) 2017 (10.1016/j.heliyon.2024.e26025_bib88) 2022 Xu (10.1016/j.heliyon.2024.e26025_bib26) 2013; 102 Yalamanchili (10.1016/j.heliyon.2024.e26025_bib76) 2015 10.1016/j.heliyon.2024.e26025_bib33 Marti (10.1016/j.heliyon.2024.e26025_bib44) 2021; 554 Mokso (10.1016/j.heliyon.2024.e26025_bib51) 2017; 24 Kennedy (10.1016/j.heliyon.2024.e26025_bib54) 1997; 2 Nott (10.1016/j.heliyon.2024.e26025_bib20) 2010; 74 Quodbach (10.1016/j.heliyon.2024.e26025_bib9) 2014; 66 Hiremath (10.1016/j.heliyon.2024.e26025_bib98) 2019 LeCun (10.1016/j.heliyon.2024.e26025_bib59) 2015; 521 Csobán (10.1016/j.heliyon.2024.e26025_bib55) 2016; 301 Ma (10.1016/j.heliyon.2024.e26025_bib57) 2020; 109 Stampanoni (10.1016/j.heliyon.2024.e26025_bib31) 2006 Virta (10.1016/j.heliyon.2024.e26025_bib35) 2020; 10 Peiponen (10.1016/j.heliyon.2024.e26025_bib16) 2015; 489 Quodbach (10.1016/j.heliyon.2024.e26025_bib2) 2015 Rojas (10.1016/j.heliyon.2024.e26025_bib95) 2012; 13 Wietzke (10.1016/j.heliyon.2024.e26025_bib23) 2009; 17 Zeitler (10.1016/j.heliyon.2024.e26025_bib24) 2010; 59 Stewart (10.1016/j.heliyon.2024.e26025_bib28) 2005; 59 Rowe (10.1016/j.heliyon.2024.e26025_bib101) 2006 Stirnimann (10.1016/j.heliyon.2024.e26025_bib96) 2013; 30 Maggi (10.1016/j.heliyon.2024.e26025_bib103) 2000; 195 Desai (10.1016/j.heliyon.2024.e26025_bib14) 2016; 105 Doerr (10.1016/j.heliyon.2024.e26025_bib56) 2020; 2 Curlin (10.1016/j.heliyon.2024.e26025_bib4) 1955; 44 Paganin (10.1016/j.heliyon.2024.e26025_bib39) 2002; 206 Sussillo (10.1016/j.heliyon.2024.e26025_bib85) 2015 Mokso (10.1016/j.heliyon.2024.e26025_bib48) 2013; 46 McKinney (10.1016/j.heliyon.2024.e26025_bib61) 2020; 577 Lassau (10.1016/j.heliyon.2024.e26025_bib62) 2021; 12 Waldner (10.1016/j.heliyon.2024.e26025_bib90) 2022 Waldner (10.1016/j.heliyon.2024.e26025_bib74) 2022 Schüssele (10.1016/j.heliyon.2024.e26025_bib97) 2003; 257 Ekmekciyan (10.1016/j.heliyon.2024.e26025_bib99) 2018; 548 Heyndrickx (10.1016/j.heliyon.2024.e26025_bib49) 2020; 10 (10.1016/j.heliyon.2024.e26025_bib92) 2023 Zhao (10.1016/j.heliyon.2024.e26025_bib29) 2010; 55 Fukushima (10.1016/j.heliyon.2024.e26025_bib63) 1980; 36 Thoma (10.1016/j.heliyon.2024.e26025_bib83) 2016 |
References_xml | – volume: 10 year: 2020 ident: bib49 article-title: Improving image quality in fast, time-resolved micro-CT by weighted back projection publication-title: Sci. Rep. – year: 2005 ident: bib94 article-title: Search for Technological Reasons to Develop a Capsule or a Tablet Formulation – volume: 55 start-page: 749 year: 2010 end-page: 755 ident: bib29 article-title: De-agglomeration of micronized benzodiazepines in dissolution media measured by laser diffraction particle sizing publication-title: J. Pharm. Pharmacol. – volume: 2 year: 2020 ident: bib56 article-title: A micro-XRT image analysis and machine learning methodology for the characterisation of multi-particulate capsule formulations publication-title: Int. J. Pharm. X – volume: 74 start-page: 78 year: 2010 end-page: 83 ident: bib20 article-title: Magnetic resonance imaging of tablet dissolution publication-title: Eur. J. Pharm. Biopharm. – year: 2022 ident: bib80 article-title: tomopy.misc.corr — TomoPy 51b58c8055428181d91913c91362f443a79ad0cd documentation – volume: 5 start-page: 170 year: 1986 end-page: 176 ident: bib50 article-title: On the determination of functions from their integral values along certain manifolds publication-title: IEEE Trans. Med. Imag. – volume: 23 start-page: 842 year: 2016 end-page: 849 ident: bib79 article-title: Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data publication-title: J. Synchrotron Radiat. – volume: 206 start-page: 33 year: 2002 end-page: 40 ident: bib39 article-title: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object publication-title: J. Microsc. – volume: 51 start-page: 8668 year: 2015 end-page: 8676 ident: bib45 article-title: Real‐time visualization of H aines jumps in sandstone with laboratory‐based microcomputed tomography publication-title: Water Resour. Res. – volume: 44 start-page: 16 year: 1955 ident: bib4 article-title: A note on tablet disintegration with Starch*1Chief chemist, L. Perrigo company publication-title: J. Am. Pharm. Assoc. Sci. Ed. – volume: 10 year: 2020 ident: bib35 article-title: X-ray microtomography is a novel method for accurate evaluation of small-bowel mucosal morphology and surface area publication-title: Sci. Rep. – volume: 301 start-page: 228 year: 2016 end-page: 233 ident: bib55 article-title: Assessment of distribution of pellets in tablets by non-destructive microfocus X-ray imaging and image analysis technique publication-title: Powder Technol. – volume: 7 start-page: 155 year: 1981 end-page: 177 ident: bib11 article-title: Disintegration mechanisms of tablets containing starches. Hypothesis about the particle-particle repulsive force publication-title: Drug Dev. Ind. Pharm. – volume: 15 start-page: 392 year: 2020 end-page: 403 ident: bib58 article-title: Machine learning for automated quality evaluation in pharmaceutical manufacturing of emulsions publication-title: J. Pharm. Innov. – volume: 11 start-page: 630 year: 2014 end-page: 637 ident: bib18 article-title: Direct visualization of publication-title: Mol. Pharm. – reference: B.P. Flannery, H.W. Deckman, W.G. Roberge, Three-dimensional X-ray Microtomography, 237 (n.d.) 7.. – volume: 195 start-page: 229 year: 2000 end-page: 238 ident: bib103 article-title: High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms publication-title: Int. J. Pharm. – volume: 38 start-page: 109 year: 1987 end-page: 115 ident: bib5 article-title: Percolation theory — a novel approach to solid dosage form design publication-title: Int. J. Pharm. – volume: 181 year: 2023 ident: bib73 article-title: Predicting mini-tablet dissolution performance utilizing X-ray computed tomography publication-title: Eur. J. Pharmaceut. Sci. – volume: 109 start-page: 1547 year: 2020 end-page: 1557 ident: bib57 article-title: Application of deep learning convolutional neural networks for internal tablet defect detection: high accuracy, throughput, and adaptability publication-title: J. Pharmaceut. Sci. – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib60 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – year: 2022 ident: bib75 article-title: tomopy.prep.normalize — TomoPy 51b58c8055428181d91913c91362f443a79ad0cd documentation – volume: 87 start-page: 1632 year: 1998 end-page: 1638 ident: bib27 article-title: Deaggregation during the dissolution of benzodiazepines in interactive mixtures publication-title: J. Pharmaceut. Sci. – volume: 7 start-page: 1460 year: 2021 end-page: 1472 ident: bib71 article-title: Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography publication-title: Energy Rep. – volume: 17 start-page: 8567 year: 2009 ident: bib77 article-title: Stripe and ring artifact removal with combined wavelet—Fourier filtering publication-title: Opt Express – volume: 157 start-page: 35 year: 2015 end-page: 47 ident: bib78 article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography publication-title: Ultramicroscopy – volume: 12 year: 2014 ident: bib46 article-title: In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor publication-title: PLoS Biol. – volume: 27 start-page: 789 year: 2001 end-page: 801 ident: bib102 article-title: Properties of Fujicalin®, a new modified anhydrous dibasic calcium phosphate for direct compression: comparison with dicalcium phosphate dihydrate publication-title: Drug Dev. Ind. Pharm. – year: 2015 ident: bib76 article-title: ArrayFire - A High Performance Software Library for Parallel Computing with an Easy-To-Use API – volume: 20 start-page: 779 year: 1994 end-page: 798 ident: bib7 article-title: The swelling & water uptake of tablets III: moisture sorption behavior of tablet disintegrants publication-title: Drug Dev. Ind. Pharm. – volume: 7 start-page: 1508 year: 2010 end-page: 1515 ident: bib25 article-title: In vitro monitoring of dissolution of an immediate release tablet by focused beam reflectance measurement publication-title: Mol. Pharm. – volume: 3 year: 2021 ident: bib38 article-title: The use of X-ray microtomography to investigate the microstructure of pharmaceutical tablets: potentials and comparison to common physical methods publication-title: Int. J. Pharm. X – volume: 59 start-page: 209 year: 2010 end-page: 223 ident: bib24 article-title: Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review publication-title: J. Pharm. Pharmacol. – volume: 102 start-page: 1513 year: 2013 end-page: 1523 ident: bib26 article-title: Process analytical technology to understand the disintegration behavior of alendronate sodium tablets publication-title: J. Pharmaceut. Sci. – volume: 34 start-page: 890 year: 2017 end-page: 917 ident: bib1 article-title: A review of disintegration mechanisms and measurement techniques publication-title: Pharm. Res. (N. Y.) – volume: 46 year: 2013 ident: bib48 article-title: Advantages of phase retrieval for fast x-ray tomographic microscopy publication-title: J. Phys. Appl. Phys. – volume: 59 start-page: 315 year: 2005 end-page: 323 ident: bib28 article-title: Understanding agglomeration of indomethacin during the dissolution of micronised indomethacin mixtures through dissolution and de-agglomeration modeling approaches publication-title: Eur. J. Pharm. Biopharm. – volume: 30 start-page: 1915 year: 2013 end-page: 1925 ident: bib96 article-title: Functionalized calcium carbonate as a novel pharmaceutical excipient for the preparation of orally dispersible tablets publication-title: Pharm. Res. (N. Y.) – volume: 3 start-page: 235 year: 2011 end-page: 253 ident: bib93 article-title: Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation publication-title: Water – volume: 55 start-page: 1065 year: 1966 end-page: 1068 ident: bib6 article-title: Mechanism of action of starch as a disintegrating agent in aspirin tablets publication-title: J. Pharmaceut. Sci. – volume: 105 start-page: 2545 year: 2016 end-page: 2555 ident: bib14 article-title: Review of disintegrants and the disintegration phenomena publication-title: J. Pharmaceut. Sci. – volume: 16 year: 2020 ident: bib40 article-title: Shedding light on metal‐based nanoparticles in zebrafish by computed tomography with micrometer resolution publication-title: Small – reference: A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier Nonlinearities Improve Neural Network Acoustic Models, (n.d.) 6. – volume: 24 start-page: 1250 year: 2017 end-page: 1259 ident: bib51 article-title: GigaFRoST: the gigabit fast readout system for tomography publication-title: J. Synchrotron Radiat. – volume: 578 year: 2020 ident: bib53 article-title: Digital UV/VIS imaging: a rapid PAT tool for crushing strength, drug content and particle size distribution determination in tablets publication-title: Int. J. Pharm. – volume: 166 start-page: 50 year: 2019 end-page: 54 ident: bib43 article-title: In-situ understanding of pore nucleation and growth in polyurethane foams by using real-time synchrotron X-ray tomography publication-title: Polymer – year: 2022 ident: bib89 article-title: Three - Dimensional Reconstruction of Time-Resolved Disintegration Process in Pharmaceutical Tablets – volume: 7 start-page: 346 year: 2020 ident: bib34 article-title: Time resolved in situ X-ray tomographic microscopy unraveling dynamic processes in geologic systems publication-title: Front. Earth Sci. – volume: 2 start-page: 205 year: 1997 end-page: 212 ident: bib54 article-title: Preliminary assessment of an image analysis method for the evaluation of pharmaceutical coatings publication-title: Pharmaceut. Dev. Technol. – volume: 548 start-page: 491 year: 2018 end-page: 499 ident: bib99 article-title: Competing for water: a new approach to understand disintegrant performance publication-title: Int. J. Pharm. – volume: 37 start-page: 89 year: 2009 end-page: 97 ident: bib19 article-title: Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging—effect of solubility of additives on HPMC matrix tablets publication-title: Eur. J. Pharmaceut. Sci. – volume: 12 start-page: 634 year: 2021 ident: bib62 article-title: Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients publication-title: Nat. Commun. – volume: 85 start-page: 1255 year: 1996 end-page: 1258 ident: bib100 article-title: Direct visualization of superdisintegrant hydration using environmental scanning electron microscopy publication-title: J. Pharmaceut. Sci. – volume: 177 start-page: 232 year: 2020 end-page: 243 ident: bib64 article-title: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation publication-title: Math. Comput. Simulat. – start-page: 1 year: 2015 end-page: 9 ident: bib65 article-title: Going deeper with convolutions publication-title: 2015 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR – volume: 2 year: 2021 ident: bib68 article-title: A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits publication-title: Plant Commun. – start-page: 1 year: 2015 end-page: 12 ident: bib2 article-title: A critical review on tablet disintegration publication-title: Pharmaceut. Dev. Technol. – volume: 257 start-page: 301 year: 2003 end-page: 304 ident: bib97 article-title: Note on the measurement of flowability according to the European Pharmacopoeia publication-title: Int. J. Pharm. – volume: 13 start-page: 685 year: 2021 ident: bib52 article-title: Image analysis: a versatile tool in the manufacturing and quality control of pharmaceutical dosage forms publication-title: Pharmaceutics – volume: 465 start-page: 70 year: 2014 end-page: 76 ident: bib15 article-title: Detection of porosity of pharmaceutical compacts by terahertz radiation transmission and light reflection measurement techniques publication-title: Int. J. Pharm. – volume: 99 start-page: 3462 year: 2010 end-page: 3472 ident: bib17 article-title: Quantitative ultra-fast MRI of HPMC swelling and dissolution publication-title: J. Pharmaceut. Sci. – volume: 554 year: 2021 ident: bib44 article-title: Time-resolved grain-scale 3D imaging of hydrofracturing in halite layers induced by gypsum dehydration and pore fluid pressure buildup publication-title: Earth Planet Sci. Lett. – volume: 9 start-page: 611 year: 2018 end-page: 629 ident: bib67 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imag. – reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: A System for Large-Scale Machine Learning, (n.d.) 21. – volume: 78 start-page: 201 year: 2020 end-page: 208 ident: bib70 article-title: Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network publication-title: Phys. Med. – volume: 200 start-page: 273 year: 2003 end-page: 286 ident: bib36 article-title: X-ray micro-tomography an attractive characterisation technique in materials science publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms – volume: 16 start-page: 7 year: 2019 ident: bib86 article-title: ilastik: interactive machine learning for (bio)image analysis publication-title: Nat. Methods – year: 2006 ident: bib101 publication-title: Handbook of Pharmaceutical Excipients: Edited by Raymond C. Rowe, Paul J. Sheskey, Siân C. Owen – year: 2015 ident: bib85 article-title: Random Walk Initialization for Training Very Deep Feedforward Networks – start-page: 1 year: 2019 end-page: 4 ident: bib69 article-title: Convolutional Neural Network for micro-CT image classification of carbonate rocks samples publication-title: Proc. 16th Int. Congr. Braz. Geophys. Soc. – volume: 20 start-page: 354 year: 2017 end-page: 359 ident: bib41 article-title: Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science publication-title: Mater. Today – year: 2006 ident: bib31 article-title: Trends in Synchrotron-Based Tomographic Imaging: the SLS Experience – volume: 10 start-page: 3762 year: 2019 ident: bib47 article-title: Using X-ray tomoscopy to explore the dynamics of foaming metal publication-title: Nat. Commun. – volume: 4 start-page: 49 year: 1980 end-page: 57 ident: bib3 article-title: others, A new era of tablet disintegrants publication-title: Pharmaceut. Technol. – year: 2022 ident: bib90 article-title: Visualization Videos of Time-Resolved Tomographic Microscopy Data Depicting Disintegrating Pharmaceutical Tablets – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: bib63 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. – volume: 10 start-page: 189 year: 2020 ident: bib42 article-title: The influence of alloy composition and liquid phase on foaming of Al–Si–Mg alloys publication-title: Metals – volume: 101 start-page: 2155 year: 2012 end-page: 2164 ident: bib8 article-title: Understanding disintegrant action by visualization publication-title: J. Pharmaceut. Sci. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib59 article-title: Deep learning publication-title: Nature – volume: 577 start-page: 89 year: 2020 end-page: 94 ident: bib61 article-title: International evaluation of an AI system for breast cancer screening publication-title: Nature – year: 2015 ident: bib66 publication-title: Convolutional Networks for Biomedical Image Segmentation – start-page: 263 year: 2019 end-page: 315 ident: bib98 article-title: Material attributes and their impact on wet granulation process performance publication-title: Handb. Pharm. Wet Granulation – volume: 17 year: 2009 ident: bib23 article-title: Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers publication-title: Opt Express – volume: 106 start-page: 234 year: 2017 end-page: 247 ident: bib22 article-title: A practical framework toward prediction of breaking force and disintegration of tablet formulations using machine learning tools publication-title: J. Pharmaceut. Sci. – volume: 573 year: 2020 ident: bib37 article-title: Study of drug particle distributions within mini-tablets using synchrotron X-ray microtomography and superpixel image clustering publication-title: Int. J. Pharm. – year: 2017 ident: bib87 article-title: Adam: A Method for Stochastic Optimization – year: 2022 ident: bib74 article-title: 4D_CT_code – reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, (n.d.) 19.. – year: 2023 ident: bib91 article-title: A Language and Environment for Statistical Computing – volume: 8 start-page: 2575 year: 2018 ident: bib72 article-title: Low-dose x-ray tomography through a deep convolutional neural network publication-title: Sci. Rep. – year: 2022 ident: bib88 publication-title: tf.keras.metrics.sparse_categorical_crossentropy | TensorFlow Core v2.8.0 – volume: 491 start-page: 291 year: 2002 end-page: 301 ident: bib32 article-title: High resolution X-ray detector for synchrotron-based microtomography publication-title: Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. – year: 2023 ident: bib92 article-title: RStudio: Integrated Development Environment for R, Posit Software – volume: 475 start-page: 605 year: 2014 end-page: 612 ident: bib21 article-title: Assessment of disintegrant efficacy with fractal dimensions from real-time MRI publication-title: Int. J. Pharm. – volume: 489 start-page: 100 year: 2015 end-page: 105 ident: bib16 article-title: Estimation of Young's modulus of pharmaceutical tablet obtained by terahertz time-delay measurement publication-title: Int. J. Pharm. – volume: 13 start-page: 1054 year: 2012 end-page: 1062 ident: bib95 article-title: Functional assessment of four types of disintegrants and their effect on the spironolactone release properties publication-title: AAPS PharmSciTech – volume: 300 start-page: 44 year: 2005 end-page: 64 ident: bib13 article-title: Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems publication-title: J. Hydrol. – year: 2016 ident: bib83 article-title: A Survey of Semantic Segmentation – volume: 51 start-page: 63 year: 1989 end-page: 66 ident: bib12 article-title: Tablet water uptake and disintegration force measurements publication-title: Int. J. Pharm. – volume: 29 start-page: 198 year: 2012 end-page: 208 ident: bib30 article-title: Linking dissolution to disintegration in immediate release tablets using image analysis and a population balance modelling approach publication-title: Pharm. Res. (N. Y.) – volume: 66 start-page: 1429 year: 2014 end-page: 1438 ident: bib9 article-title: Systematic classification of tablet disintegrants by water uptake and force development kinetics publication-title: J. Pharm. Pharmacol. – volume: 79 start-page: 63 year: 1959 end-page: 64 ident: bib10 article-title: Studies on formation and disintegration mechanisms of tablets publication-title: J. Pharmaceut. Sci. – volume: 37 start-page: 89 year: 2009 ident: 10.1016/j.heliyon.2024.e26025_bib19 article-title: Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging—effect of solubility of additives on HPMC matrix tablets publication-title: Eur. J. Pharmaceut. Sci. doi: 10.1016/j.ejps.2009.01.008 – volume: 7 start-page: 1460 year: 2021 ident: 10.1016/j.heliyon.2024.e26025_bib71 article-title: Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.02.065 – start-page: 1 year: 2019 ident: 10.1016/j.heliyon.2024.e26025_bib69 article-title: Convolutional Neural Network for micro-CT image classification of carbonate rocks samples – volume: 51 start-page: 8668 year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib45 article-title: Real‐time visualization of H aines jumps in sandstone with laboratory‐based microcomputed tomography publication-title: Water Resour. Res. doi: 10.1002/2015WR017502 – volume: 491 start-page: 291 year: 2002 ident: 10.1016/j.heliyon.2024.e26025_bib32 article-title: High resolution X-ray detector for synchrotron-based microtomography publication-title: Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. doi: 10.1016/S0168-9002(02)01167-1 – volume: 200 start-page: 273 year: 2003 ident: 10.1016/j.heliyon.2024.e26025_bib36 article-title: X-ray micro-tomography an attractive characterisation technique in materials science publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms doi: 10.1016/S0168-583X(02)01689-0 – year: 2017 ident: 10.1016/j.heliyon.2024.e26025_bib87 – year: 2022 ident: 10.1016/j.heliyon.2024.e26025_bib90 – volume: 10 start-page: 189 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib42 article-title: The influence of alloy composition and liquid phase on foaming of Al–Si–Mg alloys publication-title: Metals doi: 10.3390/met10020189 – volume: 66 start-page: 1429 year: 2014 ident: 10.1016/j.heliyon.2024.e26025_bib9 article-title: Systematic classification of tablet disintegrants by water uptake and force development kinetics publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.12276 – volume: 7 start-page: 1508 year: 2010 ident: 10.1016/j.heliyon.2024.e26025_bib25 article-title: In vitro monitoring of dissolution of an immediate release tablet by focused beam reflectance measurement publication-title: Mol. Pharm. doi: 10.1021/mp1001476 – year: 2006 ident: 10.1016/j.heliyon.2024.e26025_bib31 – volume: 578 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib53 article-title: Digital UV/VIS imaging: a rapid PAT tool for crushing strength, drug content and particle size distribution determination in tablets publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119174 – volume: 105 start-page: 2545 year: 2016 ident: 10.1016/j.heliyon.2024.e26025_bib14 article-title: Review of disintegrants and the disintegration phenomena publication-title: J. Pharmaceut. Sci. doi: 10.1016/j.xphs.2015.12.019 – volume: 11 start-page: 630 year: 2014 ident: 10.1016/j.heliyon.2024.e26025_bib18 article-title: Direct visualization of in vitro drug mobilization from lescol XL tablets using two-dimensional 19 F and 1 H magnetic resonance imaging publication-title: Mol. Pharm. doi: 10.1021/mp400407c – volume: 24 start-page: 1250 year: 2017 ident: 10.1016/j.heliyon.2024.e26025_bib51 article-title: GigaFRoST: the gigabit fast readout system for tomography publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577517013522 – volume: 2 year: 2021 ident: 10.1016/j.heliyon.2024.e26025_bib68 article-title: A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits publication-title: Plant Commun. doi: 10.1016/j.xplc.2021.100165 – volume: 12 start-page: 634 year: 2021 ident: 10.1016/j.heliyon.2024.e26025_bib62 article-title: Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients publication-title: Nat. Commun. doi: 10.1038/s41467-020-20657-4 – volume: 55 start-page: 749 year: 2010 ident: 10.1016/j.heliyon.2024.e26025_bib29 article-title: De-agglomeration of micronized benzodiazepines in dissolution media measured by laser diffraction particle sizing publication-title: J. Pharm. Pharmacol. doi: 10.1211/002235703765951348 – volume: 34 start-page: 890 year: 2017 ident: 10.1016/j.heliyon.2024.e26025_bib1 article-title: A review of disintegration mechanisms and measurement techniques publication-title: Pharm. Res. (N. Y.) doi: 10.1007/s11095-017-2129-z – year: 2022 ident: 10.1016/j.heliyon.2024.e26025_bib74 – volume: 301 start-page: 228 year: 2016 ident: 10.1016/j.heliyon.2024.e26025_bib55 article-title: Assessment of distribution of pellets in tablets by non-destructive microfocus X-ray imaging and image analysis technique publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.05.067 – year: 2023 ident: 10.1016/j.heliyon.2024.e26025_bib92 – start-page: 1 year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib65 article-title: Going deeper with convolutions – volume: 79 start-page: 63 year: 1959 ident: 10.1016/j.heliyon.2024.e26025_bib10 article-title: Studies on formation and disintegration mechanisms of tablets publication-title: J. Pharmaceut. Sci. – volume: 7 start-page: 346 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib34 article-title: Time resolved in situ X-ray tomographic microscopy unraveling dynamic processes in geologic systems publication-title: Front. Earth Sci. doi: 10.3389/feart.2019.00346 – volume: 3 year: 2021 ident: 10.1016/j.heliyon.2024.e26025_bib38 article-title: The use of X-ray microtomography to investigate the microstructure of pharmaceutical tablets: potentials and comparison to common physical methods publication-title: Int. J. Pharm. X – volume: 55 start-page: 1065 year: 1966 ident: 10.1016/j.heliyon.2024.e26025_bib6 article-title: Mechanism of action of starch as a disintegrating agent in aspirin tablets publication-title: J. Pharmaceut. Sci. doi: 10.1002/jps.2600551015 – volume: 257 start-page: 301 year: 2003 ident: 10.1016/j.heliyon.2024.e26025_bib97 article-title: Note on the measurement of flowability according to the European Pharmacopoeia publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(03)00142-X – volume: 101 start-page: 2155 year: 2012 ident: 10.1016/j.heliyon.2024.e26025_bib8 article-title: Understanding disintegrant action by visualization publication-title: J. Pharmaceut. Sci. doi: 10.1002/jps.23119 – year: 2022 ident: 10.1016/j.heliyon.2024.e26025_bib88 – year: 2023 ident: 10.1016/j.heliyon.2024.e26025_bib91 – volume: 59 start-page: 315 year: 2005 ident: 10.1016/j.heliyon.2024.e26025_bib28 article-title: Understanding agglomeration of indomethacin during the dissolution of micronised indomethacin mixtures through dissolution and de-agglomeration modeling approaches publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2004.07.013 – volume: 3 start-page: 235 year: 2011 ident: 10.1016/j.heliyon.2024.e26025_bib93 article-title: Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation publication-title: Water doi: 10.3390/w3010235 – volume: 13 start-page: 1054 year: 2012 ident: 10.1016/j.heliyon.2024.e26025_bib95 article-title: Functional assessment of four types of disintegrants and their effect on the spironolactone release properties publication-title: AAPS PharmSciTech doi: 10.1208/s12249-012-9835-y – volume: 181 year: 2023 ident: 10.1016/j.heliyon.2024.e26025_bib73 article-title: Predicting mini-tablet dissolution performance utilizing X-ray computed tomography publication-title: Eur. J. Pharmaceut. Sci. doi: 10.1016/j.ejps.2022.106346 – year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib76 – start-page: 1 year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib2 article-title: A critical review on tablet disintegration publication-title: Pharmaceut. Dev. Technol. doi: 10.3109/10837450.2015.1045618 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib59 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib85 – volume: 30 start-page: 1915 year: 2013 ident: 10.1016/j.heliyon.2024.e26025_bib96 article-title: Functionalized calcium carbonate as a novel pharmaceutical excipient for the preparation of orally dispersible tablets publication-title: Pharm. Res. (N. Y.) doi: 10.1007/s11095-013-1034-3 – volume: 12 year: 2014 ident: 10.1016/j.heliyon.2024.e26025_bib46 article-title: In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001823 – volume: 573 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib37 article-title: Study of drug particle distributions within mini-tablets using synchrotron X-ray microtomography and superpixel image clustering publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118827 – volume: 2 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib56 article-title: A micro-XRT image analysis and machine learning methodology for the characterisation of multi-particulate capsule formulations publication-title: Int. J. Pharm. X – start-page: 263 year: 2019 ident: 10.1016/j.heliyon.2024.e26025_bib98 article-title: Material attributes and their impact on wet granulation process performance – volume: 102 start-page: 1513 year: 2013 ident: 10.1016/j.heliyon.2024.e26025_bib26 article-title: Process analytical technology to understand the disintegration behavior of alendronate sodium tablets publication-title: J. Pharmaceut. Sci. doi: 10.1002/jps.23488 – ident: 10.1016/j.heliyon.2024.e26025_bib81 – volume: 46 year: 2013 ident: 10.1016/j.heliyon.2024.e26025_bib48 article-title: Advantages of phase retrieval for fast x-ray tomographic microscopy publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/46/49/494004 – volume: 20 start-page: 354 year: 2017 ident: 10.1016/j.heliyon.2024.e26025_bib41 article-title: Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science publication-title: Mater. Today doi: 10.1016/j.mattod.2017.06.001 – volume: 206 start-page: 33 year: 2002 ident: 10.1016/j.heliyon.2024.e26025_bib39 article-title: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object publication-title: J. Microsc. doi: 10.1046/j.1365-2818.2002.01010.x – volume: 36 start-page: 193 year: 1980 ident: 10.1016/j.heliyon.2024.e26025_bib63 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – volume: 78 start-page: 201 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib70 article-title: Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network publication-title: Phys. Med. doi: 10.1016/j.ejmp.2020.09.007 – volume: 87 start-page: 1632 year: 1998 ident: 10.1016/j.heliyon.2024.e26025_bib27 article-title: Deaggregation during the dissolution of benzodiazepines in interactive mixtures publication-title: J. Pharmaceut. Sci. doi: 10.1021/js960384k – volume: 157 start-page: 35 year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib78 article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.05.002 – volume: 38 start-page: 109 year: 1987 ident: 10.1016/j.heliyon.2024.e26025_bib5 article-title: Percolation theory — a novel approach to solid dosage form design publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(87)90105-0 – volume: 74 start-page: 78 year: 2010 ident: 10.1016/j.heliyon.2024.e26025_bib20 article-title: Magnetic resonance imaging of tablet dissolution publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2009.07.003 – volume: 4 start-page: 49 year: 1980 ident: 10.1016/j.heliyon.2024.e26025_bib3 article-title: others, A new era of tablet disintegrants publication-title: Pharmaceut. Technol. – volume: 27 start-page: 789 year: 2001 ident: 10.1016/j.heliyon.2024.e26025_bib102 article-title: Properties of Fujicalin®, a new modified anhydrous dibasic calcium phosphate for direct compression: comparison with dicalcium phosphate dihydrate publication-title: Drug Dev. Ind. Pharm. doi: 10.1081/DDC-100107242 – ident: 10.1016/j.heliyon.2024.e26025_bib84 – volume: 195 start-page: 229 year: 2000 ident: 10.1016/j.heliyon.2024.e26025_bib103 article-title: High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(99)00402-0 – volume: 166 start-page: 50 year: 2019 ident: 10.1016/j.heliyon.2024.e26025_bib43 article-title: In-situ understanding of pore nucleation and growth in polyurethane foams by using real-time synchrotron X-ray tomography publication-title: Polymer doi: 10.1016/j.polymer.2019.01.049 – volume: 554 year: 2021 ident: 10.1016/j.heliyon.2024.e26025_bib44 article-title: Time-resolved grain-scale 3D imaging of hydrofracturing in halite layers induced by gypsum dehydration and pore fluid pressure buildup publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2020.116679 – volume: 59 start-page: 209 year: 2010 ident: 10.1016/j.heliyon.2024.e26025_bib24 article-title: Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review publication-title: J. Pharm. Pharmacol. doi: 10.1211/jpp.59.2.0008 – volume: 85 start-page: 1255 year: 1996 ident: 10.1016/j.heliyon.2024.e26025_bib100 article-title: Direct visualization of superdisintegrant hydration using environmental scanning electron microscopy publication-title: J. Pharmaceut. Sci. doi: 10.1021/js960188d – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.heliyon.2024.e26025_bib60 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – year: 2005 ident: 10.1016/j.heliyon.2024.e26025_bib94 – volume: 489 start-page: 100 year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib16 article-title: Estimation of Young's modulus of pharmaceutical tablet obtained by terahertz time-delay measurement publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.04.068 – volume: 465 start-page: 70 year: 2014 ident: 10.1016/j.heliyon.2024.e26025_bib15 article-title: Detection of porosity of pharmaceutical compacts by terahertz radiation transmission and light reflection measurement techniques publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.02.011 – volume: 548 start-page: 491 year: 2018 ident: 10.1016/j.heliyon.2024.e26025_bib99 article-title: Competing for water: a new approach to understand disintegrant performance publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.07.025 – volume: 51 start-page: 63 year: 1989 ident: 10.1016/j.heliyon.2024.e26025_bib12 article-title: Tablet water uptake and disintegration force measurements publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(89)90075-6 – volume: 177 start-page: 232 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib64 article-title: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation publication-title: Math. Comput. Simulat. doi: 10.1016/j.matcom.2020.04.031 – volume: 20 start-page: 779 year: 1994 ident: 10.1016/j.heliyon.2024.e26025_bib7 article-title: The swelling & water uptake of tablets III: moisture sorption behavior of tablet disintegrants publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639049409038331 – volume: 99 start-page: 3462 year: 2010 ident: 10.1016/j.heliyon.2024.e26025_bib17 article-title: Quantitative ultra-fast MRI of HPMC swelling and dissolution publication-title: J. Pharmaceut. Sci. doi: 10.1002/jps.22110 – volume: 109 start-page: 1547 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib57 article-title: Application of deep learning convolutional neural networks for internal tablet defect detection: high accuracy, throughput, and adaptability publication-title: J. Pharmaceut. Sci. doi: 10.1016/j.xphs.2020.01.014 – volume: 17 year: 2009 ident: 10.1016/j.heliyon.2024.e26025_bib23 article-title: Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers publication-title: Opt Express doi: 10.1364/OE.17.019006 – volume: 13 start-page: 685 year: 2021 ident: 10.1016/j.heliyon.2024.e26025_bib52 article-title: Image analysis: a versatile tool in the manufacturing and quality control of pharmaceutical dosage forms publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13050685 – volume: 9 start-page: 611 year: 2018 ident: 10.1016/j.heliyon.2024.e26025_bib67 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imag. doi: 10.1007/s13244-018-0639-9 – ident: 10.1016/j.heliyon.2024.e26025_bib82 – volume: 16 start-page: 7 year: 2019 ident: 10.1016/j.heliyon.2024.e26025_bib86 article-title: ilastik: interactive machine learning for (bio)image analysis publication-title: Nat. Methods doi: 10.1126/science.aaw4633 – volume: 2 start-page: 205 year: 1997 ident: 10.1016/j.heliyon.2024.e26025_bib54 article-title: Preliminary assessment of an image analysis method for the evaluation of pharmaceutical coatings publication-title: Pharmaceut. Dev. Technol. doi: 10.3109/10837459709031440 – volume: 15 start-page: 392 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib58 article-title: Machine learning for automated quality evaluation in pharmaceutical manufacturing of emulsions publication-title: J. Pharm. Innov. doi: 10.1007/s12247-019-09390-8 – year: 2022 ident: 10.1016/j.heliyon.2024.e26025_bib89 – year: 2006 ident: 10.1016/j.heliyon.2024.e26025_bib101 – volume: 10 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib35 article-title: X-ray microtomography is a novel method for accurate evaluation of small-bowel mucosal morphology and surface area publication-title: Sci. Rep. doi: 10.1038/s41598-020-69487-w – volume: 10 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib49 article-title: Improving image quality in fast, time-resolved micro-CT by weighted back projection publication-title: Sci. Rep. doi: 10.1038/s41598-020-74827-x – volume: 5 start-page: 170 year: 1986 ident: 10.1016/j.heliyon.2024.e26025_bib50 article-title: On the determination of functions from their integral values along certain manifolds publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.1986.4307775 – volume: 16 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib40 article-title: Shedding light on metal‐based nanoparticles in zebrafish by computed tomography with micrometer resolution publication-title: Small – volume: 577 start-page: 89 year: 2020 ident: 10.1016/j.heliyon.2024.e26025_bib61 article-title: International evaluation of an AI system for breast cancer screening publication-title: Nature doi: 10.1038/s41586-019-1799-6 – volume: 475 start-page: 605 year: 2014 ident: 10.1016/j.heliyon.2024.e26025_bib21 article-title: Assessment of disintegrant efficacy with fractal dimensions from real-time MRI publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.09.021 – volume: 10 start-page: 3762 year: 2019 ident: 10.1016/j.heliyon.2024.e26025_bib47 article-title: Using X-ray tomoscopy to explore the dynamics of foaming metal publication-title: Nat. Commun. doi: 10.1038/s41467-019-11521-1 – volume: 17 start-page: 8567 year: 2009 ident: 10.1016/j.heliyon.2024.e26025_bib77 article-title: Stripe and ring artifact removal with combined wavelet—Fourier filtering publication-title: Opt Express doi: 10.1364/OE.17.008567 – volume: 106 start-page: 234 year: 2017 ident: 10.1016/j.heliyon.2024.e26025_bib22 article-title: A practical framework toward prediction of breaking force and disintegration of tablet formulations using machine learning tools publication-title: J. Pharmaceut. Sci. doi: 10.1016/j.xphs.2016.08.026 – volume: 300 start-page: 44 year: 2005 ident: 10.1016/j.heliyon.2024.e26025_bib13 article-title: Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.05.005 – ident: 10.1016/j.heliyon.2024.e26025_bib33 doi: 10.1126/science.237.4821.1439 – year: 2015 ident: 10.1016/j.heliyon.2024.e26025_bib66 – volume: 8 start-page: 2575 year: 2018 ident: 10.1016/j.heliyon.2024.e26025_bib72 article-title: Low-dose x-ray tomography through a deep convolutional neural network publication-title: Sci. Rep. doi: 10.1038/s41598-018-19426-7 – volume: 29 start-page: 198 year: 2012 ident: 10.1016/j.heliyon.2024.e26025_bib30 article-title: Linking dissolution to disintegration in immediate release tablets using image analysis and a population balance modelling approach publication-title: Pharm. Res. (N. Y.) doi: 10.1007/s11095-011-0535-1 – volume: 7 start-page: 155 year: 1981 ident: 10.1016/j.heliyon.2024.e26025_bib11 article-title: Disintegration mechanisms of tablets containing starches. Hypothesis about the particle-particle repulsive force publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639048109057708 – volume: 23 start-page: 842 year: 2016 ident: 10.1016/j.heliyon.2024.e26025_bib79 article-title: Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577516005658 – year: 2016 ident: 10.1016/j.heliyon.2024.e26025_bib83 – volume: 44 start-page: 16 year: 1955 ident: 10.1016/j.heliyon.2024.e26025_bib4 article-title: A note on tablet disintegration with Starch*1Chief chemist, L. Perrigo company publication-title: J. Am. Pharm. Assoc. Sci. Ed. doi: 10.1002/jps.3030440107 |
SSID | ssj0001586973 |
Score | 2.2867057 |
Snippet | The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e26025 |
SubjectTerms | active pharmaceutical ingredients automation bioavailability Deep learning-based image segmentation Disintegration factor analysis micro-computed tomography neural networks Swelling Tablets time series analysis Time-resolved micro-computed tomography |
Title | Advanced analysis of disintegrating pharmaceutical compacts using deep learning-based segmentation of time-resolved micro-tomography images |
URI | https://dx.doi.org/10.1016/j.heliyon.2024.e26025 https://www.ncbi.nlm.nih.gov/pubmed/38384517 https://www.proquest.com/docview/2930476690 https://www.proquest.com/docview/3153786335 https://pubmed.ncbi.nlm.nih.gov/PMC10878950 https://doaj.org/article/053037ade64e40188a124f8ed7a23ecb |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkRAXxJvlURmJa7ZO_D4uiKqiKgdERW-RYzu7qXaTVZMi8Rv404wTZ8mC0F645uHEns-Zz_HMNwi90z5V1mmRGJrZhBUFgynFTaKYVoUsAVE-ZCNffBZnl-zTFb-alPoKMWGDPPAwcCcAEkKlcV4wD2sBpQx4pFJ5J01GvS3C15doMllMDfnBSmhJf6fsnFzPV35d_WiC5mnG5h54fCiPPXFGvWb_nk_6m3P-GTo58UWnD9GDSCLxYnj5R-iOrx-jexdxm_wJ-rmIO_vYRM0R3JTYVe0oDgH-Cm9X07_ZuA9Gt12LQyT8EjvvtziWlFgmwdc53PrlJqYq1aHBUJc-geV6s_4OZzchtC_pmk0UwcbVBr5V7VN0efrx64ezJFZdSCwXsks4uDVhiGM8M8qXVhBjC5GWlKdSCm6BX3qhPDUcmKCUVjstHQd7UOXK0nH6DB3VTe1fIFxIUmqVmkwKzwpitfTSiaCglpUwBtkMsXH4cxslyUNljHU-xp5d59FqebBaPlhthua727aDJsehG94H2-4uDpLa_QEAWh6Blh8C2gypERl5ZCcD64CmqkPPfzsiKYfZG7ZkTO2b2zYHskWYFEKTf19DwSlJJSiFdp4P6Nv1hCqqGBgGXm4Pl3td3T9TV6teRTwlSirNycv_MTiv0P3Q3z7XX79GR93NrX8DbK0rjtHdxfmXb-fH_QT9Bee_RMM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+analysis+of+disintegrating+pharmaceutical+compacts+using+deep+learning-based+segmentation+of+time-resolved+micro-tomography+images&rft.jtitle=Heliyon&rft.au=Waldner%2C+Samuel&rft.au=Wendelspiess%2C+Erwin&rft.au=Detampel%2C+Pascal&rft.au=Schlep%C3%BCtz%2C+Christian+M&rft.date=2024-02-29&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=4&rft.spage=e26025&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e26025&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |