Advanced analysis of disintegrating pharmaceutical compacts using deep learning-based segmentation of time-resolved micro-tomography images

The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles,...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 4; p. e26025
Main Authors Waldner, Samuel, Wendelspiess, Erwin, Detampel, Pascal, Schlepütz, Christian M., Huwyler, Jörg, Puchkov, Maxim
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 29.02.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2405-8440
2405-8440
DOI10.1016/j.heliyon.2024.e26025

Cover

Abstract The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets. [Display omitted]
AbstractList The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.
The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets. Image 1
The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.
The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets. [Display omitted]
ArticleNumber e26025
Author Puchkov, Maxim
Wendelspiess, Erwin
Detampel, Pascal
Schlepütz, Christian M.
Huwyler, Jörg
Waldner, Samuel
Author_xml – sequence: 1
  givenname: Samuel
  surname: Waldner
  fullname: Waldner, Samuel
  organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
– sequence: 2
  givenname: Erwin
  surname: Wendelspiess
  fullname: Wendelspiess, Erwin
  organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
– sequence: 3
  givenname: Pascal
  surname: Detampel
  fullname: Detampel, Pascal
  organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
– sequence: 4
  givenname: Christian M.
  surname: Schlepütz
  fullname: Schlepütz, Christian M.
  organization: Swiss Light Source, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
– sequence: 5
  givenname: Jörg
  surname: Huwyler
  fullname: Huwyler, Jörg
  organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
– sequence: 6
  givenname: Maxim
  orcidid: 0000-0002-7028-2774
  surname: Puchkov
  fullname: Puchkov, Maxim
  email: maxim.puchkov@unibas.ch
  organization: Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38384517$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNUREvpTwDlyCWLHccfEQdUVXxUqsQFztasPcl6ldjBzq60v4E_jcMuVctlT_6YmWc8ft_XxYUPHoviLSUrSqj4sF1tcHCH4Fc1qZsV1oLU_EVxVTeEV6ppyMWT_WVxk9KWEEK5Eq1kr4pLpphqOJVXxe9buwdv0JbgYTgkl8rQldYl52fsI8zO9-W0gTiCwd3sDAylCeMEZk7lLi1RiziVA0L0-VStIWVYwn5EP-fy4Bfg7EasIqYw7HN0dCaGag5jyB2mzaF0I_SY3hQvOxgS3pzW6-Lnl88_7r5VD9-_3t_dPlSGCzlXvKFMALENr0FhZwQBsxa0Y3kgKbghNUGhkAHnQkhpWttKy9FKpmzXWc6ui_sj1wbY6inm7vGgAzj99yLEXkPMow6oCWeESbAoGmwIVQpo3XQqw6BmaNaZ9enImnbrEa3JQ0cYnkGfR7zb6D7sNSVKqpaTTHh_IsTwa4dp1qNLBocBPIZd0oxyJpVgjJ9NrVtGGilEu1DfPX3X44P-KZ8T-DEhS5FSxO4xhRK9mExv9clkejGZPpos1338r864o855PDecrT59F2Z99w6jTsbh4j8X0cxZAHeG8AddQ_UK
CitedBy_id crossref_primary_10_1063_5_0248724
crossref_primary_10_1016_j_softx_2024_101796
Cites_doi 10.1016/j.ejps.2009.01.008
10.1016/j.egyr.2021.02.065
10.1002/2015WR017502
10.1016/S0168-9002(02)01167-1
10.1016/S0168-583X(02)01689-0
10.3390/met10020189
10.1111/jphp.12276
10.1021/mp1001476
10.1016/j.ijpharm.2020.119174
10.1016/j.xphs.2015.12.019
10.1021/mp400407c
10.1107/S1600577517013522
10.1016/j.xplc.2021.100165
10.1038/s41467-020-20657-4
10.1211/002235703765951348
10.1007/s11095-017-2129-z
10.1016/j.powtec.2016.05.067
10.3389/feart.2019.00346
10.1002/jps.2600551015
10.1016/S0378-5173(03)00142-X
10.1002/jps.23119
10.1016/j.ejpb.2004.07.013
10.3390/w3010235
10.1208/s12249-012-9835-y
10.1016/j.ejps.2022.106346
10.3109/10837450.2015.1045618
10.1038/nature14539
10.1007/s11095-013-1034-3
10.1371/journal.pbio.1001823
10.1016/j.ijpharm.2019.118827
10.1002/jps.23488
10.1088/0022-3727/46/49/494004
10.1016/j.mattod.2017.06.001
10.1046/j.1365-2818.2002.01010.x
10.1007/BF00344251
10.1016/j.ejmp.2020.09.007
10.1021/js960384k
10.1016/j.ultramic.2015.05.002
10.1016/0378-5173(87)90105-0
10.1016/j.ejpb.2009.07.003
10.1081/DDC-100107242
10.1016/S0378-5173(99)00402-0
10.1016/j.polymer.2019.01.049
10.1016/j.epsl.2020.116679
10.1211/jpp.59.2.0008
10.1021/js960188d
10.1038/nature21056
10.1016/j.ijpharm.2015.04.068
10.1016/j.ijpharm.2014.02.011
10.1016/j.ijpharm.2018.07.025
10.1016/0378-5173(89)90075-6
10.1016/j.matcom.2020.04.031
10.3109/03639049409038331
10.1002/jps.22110
10.1016/j.xphs.2020.01.014
10.1364/OE.17.019006
10.3390/pharmaceutics13050685
10.1007/s13244-018-0639-9
10.1126/science.aaw4633
10.3109/10837459709031440
10.1007/s12247-019-09390-8
10.1038/s41598-020-69487-w
10.1038/s41598-020-74827-x
10.1109/TMI.1986.4307775
10.1038/s41586-019-1799-6
10.1016/j.ijpharm.2014.09.021
10.1038/s41467-019-11521-1
10.1364/OE.17.008567
10.1016/j.xphs.2016.08.026
10.1016/j.jhydrol.2004.05.005
10.1126/science.237.4821.1439
10.1038/s41598-018-19426-7
10.1007/s11095-011-0535-1
10.3109/03639048109057708
10.1107/S1600577516005658
10.1002/jps.3030440107
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2024.e26025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_053037ade64e40188a124f8ed7a23ecb
PMC10878950
38384517
10_1016_j_heliyon_2024_e26025
S2405844024020565
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
0SF
AACTN
NCXOZ
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c567t-54136a0d452a8efc60acb61f3517765c020e68e3a556677c9d97d5ed738dffd53
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Wed Aug 27 01:28:24 EDT 2025
Thu Aug 21 18:35:20 EDT 2025
Fri Aug 22 20:27:19 EDT 2025
Fri Jul 11 03:58:02 EDT 2025
Thu Jan 02 22:28:24 EST 2025
Thu Sep 25 00:38:13 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Sat Sep 27 17:12:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Time-resolved micro-computed tomography
Swelling
Tablets
Deep learning-based image segmentation
Disintegration
Language English
License This is an open access article under the CC BY license.
2024 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-54136a0d452a8efc60acb61f3517765c020e68e3a556677c9d97d5ed738dffd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7028-2774
OpenAccessLink https://doaj.org/article/053037ade64e40188a124f8ed7a23ecb
PMID 38384517
PQID 2930476690
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_053037ade64e40188a124f8ed7a23ecb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10878950
proquest_miscellaneous_3153786335
proquest_miscellaneous_2930476690
pubmed_primary_38384517
crossref_primary_10_1016_j_heliyon_2024_e26025
crossref_citationtrail_10_1016_j_heliyon_2024_e26025
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e26025
PublicationCentury 2000
PublicationDate 2024-02-29
PublicationDateYYYYMMDD 2024-02-29
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wagner-Hattler, Québatte, Keiser, Schoelkopf, Schlepütz, Huwyler, Puchkov (bib37) 2020; 573
Mokso, Marone, Irvine, Nyvlt, Schwyn, Mader, Taylor, Krapp, Skeren, Stampanoni (bib48) 2013; 46
Villanova, Daudin, Lhuissier, Jauffrès, Lou, Martin, Labouré, Tucoulou, Martínez-Criado, Salvo (bib41) 2017; 20
Maggi, Bruni, Conte (bib103) 2000; 195
Leuenberger, Rohera, Haas (bib5) 1987; 38
Schomberg, Diener, Wünsch, Finke, Kwade (bib38) 2021; 3
García-Moreno, Radtke, Neu, Kamm, Klaus, Schlepütz, Banhart (bib42) 2020; 10
Waldner (bib90) 2022
Wietzke, Jansen, Jung, Reuter, Baudrit, Bastian, Chatterjee, Koch (bib23) 2009; 17
Bawuah, Pierotic Mendia, Silfsten, Pääkkönen, Ervasti, Ketolainen, Zeitler, Peiponen (bib15) 2014; 465
Cörek, Rodgers, Siegrist, Einfalt, Detampel, Schlepütz, Sieber, Fluder, Schulz, Unterweger, Alexiou, Müller, Puchkov, Huwyler (bib40) 2020; 16
Al-Raoush, Willson (bib13) 2005; 300
Chen, Hughes, Gladden, Mantle (bib17) 2010; 99
Nott (bib20) 2010; 74
Bultreys, Boone, Boone, De Schryver, Masschaele, Van Loo, Van Hoorebeke, Cnudde (bib45) 2015; 51
Berg (bib86) 2019; 16
Unnikrishnan, Donovan, Macpherson, Tormey (bib58) 2020; 15
Ronneberger, Fischer, Brox, U-Net (bib66) 2015
Stirnimann, Di Maiuta, Gerard, Alles, Huwyler, Puchkov (bib96) 2013; 30
Markl, Zeitler (bib1) 2017; 34
Quodbach, Kleinebudde (bib2) 2015
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: A System for Large-Scale Machine Learning, (n.d.) 21.
Guyot-Hermann, Ringard (bib11) 1981; 7
Radon (bib50) 1986; 5
Desai, Liew, Heng (bib8) 2012; 101
Marti, Fusseis, Butler, Schlepütz, Marone, Gilgannon, Kilian, Yang (bib44) 2021; 554
Fitri, Haryanto, Arimura, YunHao, Ninomiya, Nakano, Haekal, Warty, Fauzi (bib70) 2020; 78
B.P. Flannery, H.W. Deckman, W.G. Roberge, Three-dimensional X-ray Microtomography, 237 (n.d.) 7..
Fukushima (bib63) 1980; 36
Curlin (bib4) 1955; 44
Ma, Kittikunakorn, Sorman, Xi, Chen, Marsh, Mongeau, Piché, Williams, Skomski (bib57) 2020; 109
(bib92) 2023
Zhao, Stewart (bib29) 2010; 55
Yalamanchili, Arshad, Mohammed, Garigipati, Entschev, Kloppenborg, Malcolm, Melonakos (bib76) 2015
Csobán, Kállai-Szabó, Kállai-Szabó, Takács, Hurtony, Gordon, Zelkó, Antal (bib55) 2016; 301
Patel, Hopponent (bib6) 1966; 55
Quodbach, Kleinebudde (bib9) 2014; 66
Virta, Hannula, Tamminen, Lindfors, Kaukinen, Popp, Taavela, Saavalainen, Hiltunen, Hyttinen, Kurppa (bib35) 2020; 10
Paganin, Mayo, Gureyev, Miller, Wilkins (bib39) 2002; 206
Yang, De Andrade, Scullin, Dyer, Kasthuri, De Carlo, Gürsoy (bib72) 2018; 8
Schüssele, Bauer-Brandl (bib97) 2003; 257
Ekmekciyan, Tuglu, El-Saleh, Muehlenfeld, Stoyanov, Quodbach (bib99) 2018; 548
Desai, Liew, Heng (bib14) 2016; 105
Matsumaru (bib10) 1959; 79
van Aarle, Palenstijn, De Beenhouwer, Altantzis, Bals, Batenburg, Sijbers (bib78) 2015; 157
Schlack, Bauer-Brandl, Schubert, Becker (bib102) 2001; 27
LeCun, Bengio, Hinton (bib59) 2015; 521
Wu, Wu, Feng, Duan, Dai, Liu, Wang, Yang, Chen, Gay, Doonan, Niu, Xiong, Yang (bib68) 2021; 2
Borjigin, Zhan, Li, Meda, Tran (bib73) 2023; 181
Tajarobi, Abrahmsén-Alami, Carlsson, Larsson (bib19) 2009; 37
(bib88) 2022
Stewart, Zhao (bib28) 2005; 59
Mokso, Schlepütz, Theidel, Billich, Schmid, Celcer, Mikuljan, Sala, Marone, Schlumpf, Stampanoni (bib51) 2017; 24
Valueva, Nagornov, Lyakhov, Valuev, Chervyakov (bib64) 2020; 177
Stampanoni, Borchert, Wyss, Abela, Patterson, Hunt, Vermeulen, Rüegsegger (bib32) 2002; 491
Quodbach, Moussavi, Tammer, Frahm, Kleinebudde (bib21) 2014; 475
Wilson, Wren, Reynolds (bib30) 2012; 29
Rojas, Guisao, Ruge (bib95) 2012; 13
A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier Nonlinearities Improve Neural Network Acoustic Models, (n.d.) 6.
Coutant, Skibic, Doddridge, Kemp, Sperry (bib25) 2010; 7
Catellani, Predella, Bellotti, Colombo (bib12) 1989; 51
Zeitler, Taday, Newnham, Pepper, Gordon, Rades (bib24) 2010; 59
Liu, Stewart (bib27) 1998; 87
Kingma, Ba (bib87) 2017
Akseli, Xie, Schultz, Ladyzhynsky, Bramante, He, Deanne, Horspool, Schwabe (bib22) 2017; 106
Tembely, AlSumaiti, Alameri (bib71) 2021; 7
Yamashita, Nishio, Do, Togashi (bib67) 2018; 9
Münch, Trtik, Marone, Stampanoni (bib77) 2009; 17
Chen, Gladden, Mantle (bib18) 2014; 11
Stampanoni, Groso, Isenegger, Mikuljan, Chen, Bertrand, Henein, Betemps, Frommherz, Böhler, Meister, Lange, Abela (bib31) 2006
Samuel Waldner (bib89) 2022
Salvo, Cloetens, Maire, Zabler, Blandin, Buffière, Ludwig, Boller, Bellet, Josserond (bib36) 2003; 200
Thibert, Hancock (bib100) 1996; 85
Hiremath, Nuguru, Agrahari (bib98) 2019
Faroongsarng, Peck (bib7) 1994; 20
Rowe, Sheskey, Owen (bib101) 2006
Pelt, Gürsoy, Palenstijn, Sijbers, De Carlo, Batenburg (bib79) 2016; 23
Xu, Gupta, Sayeed, Khan (bib26) 2013; 102
Sussillo, Abbott (bib85) 2015
McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian, Back, Chesus, Corrado, Darzi, Etemadi, Garcia-Vicente, Gilbert, Halling-Brown, Hassabis, Jansen, Karthikesalingam, Kelly, King, Ledsam, Melnick, Mostofi, Peng, Reicher, Romera-Paredes, Sidebottom, Suleyman, Tse, Young, De Fauw, Shetty (bib61) 2020; 577
Doerr, Florence (bib56) 2020; 2
(bib75) 2022
Walker, Schwyn, Mokso, Wicklein, Müller, Doube, Stampanoni, Krapp, Taylor (bib46) 2014; 12
(bib80) 2022
Farkas, Madarász, Nagy, Antal, Kállai-Szabó (bib52) 2021; 13
Le Caër (bib93) 2011; 3
Lassau, Ammari, Chouzenoux, Gortais, Herent, Devilder, Soliman, Meyrignac, Talabard, Lamarque, Dubois, Loiseau, Trichelair, Bendjebbar, Garcia, Balleyguier, Merad, Stoclin, Jegou, Griscelli, Tetelboum, Li, Verma, Terris, Dardouri, Gupta, Neacsu, Chemouni, Sefta, Jehanno, Bousaid, Boursin, Planchet, Azoulay, Dachary, Brulport, Gonzalez, Dehaene, Schiratti, Schutte, Pesquet, Talbot, Pronier, Wainrib, Clozel, Barlesi, Bellin, Blum (bib62) 2021; 12
García-Moreno, Kamm, Neu, Bülk, Mokso, Schlepütz, Stampanoni, Banhart (bib47) 2019; 10
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib65) 2015
Anjos, Vargas, Martins Neta, Martins, Medeiros, Evsukoff (bib69) 2019
Heyndrickx, Bultreys, Goethals, Van Hoorebeke, Boone (bib49) 2020; 10
Mészáros, Galata, Madarász, Köte, Csorba, Dávid, Domokos, Szabó, Nagy, Marosi, Farkas, Nagy (bib53) 2020; 578
R Core Team (bib91) 2023
Thoma (bib83) 2016
Kennedy, Niebergall (bib54) 1997; 2
Shangraw, Mitrevej, Shah (bib3) 1980; 4
Waldner, Puchkov (bib74) 2022
Peiponen, Bawuah, Chakraborty, Juuti, Zeitler, Ketolainen (bib16) 2015; 489
Pérez-Tamarit, Solórzano, Mokso, Rodríguez-Pérez (bib43) 2019; 166
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib60) 2017; 542
von Orelli (bib94) 2005
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, (n.d.) 19..
Marone, Schlepütz, Marti, Fusseis, Velásquez-Parra, Griffa, Jiménez-Martínez, Dobson, Stampanoni (bib34) 2020; 7
Patel (10.1016/j.heliyon.2024.e26025_bib6) 1966; 55
Tajarobi (10.1016/j.heliyon.2024.e26025_bib19) 2009; 37
Münch (10.1016/j.heliyon.2024.e26025_bib77) 2009; 17
Bultreys (10.1016/j.heliyon.2024.e26025_bib45) 2015; 51
Catellani (10.1016/j.heliyon.2024.e26025_bib12) 1989; 51
Quodbach (10.1016/j.heliyon.2024.e26025_bib21) 2014; 475
van Aarle (10.1016/j.heliyon.2024.e26025_bib78) 2015; 157
Tembely (10.1016/j.heliyon.2024.e26025_bib71) 2021; 7
Berg (10.1016/j.heliyon.2024.e26025_bib86) 2019; 16
10.1016/j.heliyon.2024.e26025_bib81
10.1016/j.heliyon.2024.e26025_bib82
Wu (10.1016/j.heliyon.2024.e26025_bib68) 2021; 2
Markl (10.1016/j.heliyon.2024.e26025_bib1) 2017; 34
Thibert (10.1016/j.heliyon.2024.e26025_bib100) 1996; 85
Matsumaru (10.1016/j.heliyon.2024.e26025_bib10) 1959; 79
Schlack (10.1016/j.heliyon.2024.e26025_bib102) 2001; 27
Yang (10.1016/j.heliyon.2024.e26025_bib72) 2018; 8
Coutant (10.1016/j.heliyon.2024.e26025_bib25) 2010; 7
R Core Team (10.1016/j.heliyon.2024.e26025_bib91) 2023
Desai (10.1016/j.heliyon.2024.e26025_bib8) 2012; 101
10.1016/j.heliyon.2024.e26025_bib84
Villanova (10.1016/j.heliyon.2024.e26025_bib41) 2017; 20
Samuel Waldner (10.1016/j.heliyon.2024.e26025_bib89) 2022
Al-Raoush (10.1016/j.heliyon.2024.e26025_bib13) 2005; 300
García-Moreno (10.1016/j.heliyon.2024.e26025_bib47) 2019; 10
Chen (10.1016/j.heliyon.2024.e26025_bib17) 2010; 99
Ronneberger (10.1016/j.heliyon.2024.e26025_bib66) 2015
Marone (10.1016/j.heliyon.2024.e26025_bib34) 2020; 7
Pelt (10.1016/j.heliyon.2024.e26025_bib79) 2016; 23
Pérez-Tamarit (10.1016/j.heliyon.2024.e26025_bib43) 2019; 166
Salvo (10.1016/j.heliyon.2024.e26025_bib36) 2003; 200
Chen (10.1016/j.heliyon.2024.e26025_bib18) 2014; 11
Cörek (10.1016/j.heliyon.2024.e26025_bib40) 2020; 16
García-Moreno (10.1016/j.heliyon.2024.e26025_bib42) 2020; 10
Farkas (10.1016/j.heliyon.2024.e26025_bib52) 2021; 13
Schomberg (10.1016/j.heliyon.2024.e26025_bib38) 2021; 3
Fitri (10.1016/j.heliyon.2024.e26025_bib70) 2020; 78
Borjigin (10.1016/j.heliyon.2024.e26025_bib73) 2023; 181
Anjos (10.1016/j.heliyon.2024.e26025_bib69) 2019
Mészáros (10.1016/j.heliyon.2024.e26025_bib53) 2020; 578
Liu (10.1016/j.heliyon.2024.e26025_bib27) 1998; 87
Walker (10.1016/j.heliyon.2024.e26025_bib46) 2014; 12
von Orelli (10.1016/j.heliyon.2024.e26025_bib94) 2005
Esteva (10.1016/j.heliyon.2024.e26025_bib60) 2017; 542
Unnikrishnan (10.1016/j.heliyon.2024.e26025_bib58) 2020; 15
Valueva (10.1016/j.heliyon.2024.e26025_bib64) 2020; 177
Radon (10.1016/j.heliyon.2024.e26025_bib50) 1986; 5
Faroongsarng (10.1016/j.heliyon.2024.e26025_bib7) 1994; 20
Szegedy (10.1016/j.heliyon.2024.e26025_bib65) 2015
Shangraw (10.1016/j.heliyon.2024.e26025_bib3) 1980; 4
Bawuah (10.1016/j.heliyon.2024.e26025_bib15) 2014; 465
Wilson (10.1016/j.heliyon.2024.e26025_bib30) 2012; 29
Wagner-Hattler (10.1016/j.heliyon.2024.e26025_bib37) 2020; 573
Le Caër (10.1016/j.heliyon.2024.e26025_bib93) 2011; 3
Stampanoni (10.1016/j.heliyon.2024.e26025_bib32) 2002; 491
Leuenberger (10.1016/j.heliyon.2024.e26025_bib5) 1987; 38
Guyot-Hermann (10.1016/j.heliyon.2024.e26025_bib11) 1981; 7
Yamashita (10.1016/j.heliyon.2024.e26025_bib67) 2018; 9
Akseli (10.1016/j.heliyon.2024.e26025_bib22) 2017; 106
Kingma (10.1016/j.heliyon.2024.e26025_bib87) 2017
(10.1016/j.heliyon.2024.e26025_bib88) 2022
Xu (10.1016/j.heliyon.2024.e26025_bib26) 2013; 102
Yalamanchili (10.1016/j.heliyon.2024.e26025_bib76) 2015
10.1016/j.heliyon.2024.e26025_bib33
Marti (10.1016/j.heliyon.2024.e26025_bib44) 2021; 554
Mokso (10.1016/j.heliyon.2024.e26025_bib51) 2017; 24
Kennedy (10.1016/j.heliyon.2024.e26025_bib54) 1997; 2
Nott (10.1016/j.heliyon.2024.e26025_bib20) 2010; 74
Quodbach (10.1016/j.heliyon.2024.e26025_bib9) 2014; 66
Hiremath (10.1016/j.heliyon.2024.e26025_bib98) 2019
LeCun (10.1016/j.heliyon.2024.e26025_bib59) 2015; 521
Csobán (10.1016/j.heliyon.2024.e26025_bib55) 2016; 301
Ma (10.1016/j.heliyon.2024.e26025_bib57) 2020; 109
Stampanoni (10.1016/j.heliyon.2024.e26025_bib31) 2006
Virta (10.1016/j.heliyon.2024.e26025_bib35) 2020; 10
Peiponen (10.1016/j.heliyon.2024.e26025_bib16) 2015; 489
Quodbach (10.1016/j.heliyon.2024.e26025_bib2) 2015
Rojas (10.1016/j.heliyon.2024.e26025_bib95) 2012; 13
Wietzke (10.1016/j.heliyon.2024.e26025_bib23) 2009; 17
Zeitler (10.1016/j.heliyon.2024.e26025_bib24) 2010; 59
Stewart (10.1016/j.heliyon.2024.e26025_bib28) 2005; 59
Rowe (10.1016/j.heliyon.2024.e26025_bib101) 2006
Stirnimann (10.1016/j.heliyon.2024.e26025_bib96) 2013; 30
Maggi (10.1016/j.heliyon.2024.e26025_bib103) 2000; 195
Desai (10.1016/j.heliyon.2024.e26025_bib14) 2016; 105
Doerr (10.1016/j.heliyon.2024.e26025_bib56) 2020; 2
Curlin (10.1016/j.heliyon.2024.e26025_bib4) 1955; 44
Paganin (10.1016/j.heliyon.2024.e26025_bib39) 2002; 206
Sussillo (10.1016/j.heliyon.2024.e26025_bib85) 2015
Mokso (10.1016/j.heliyon.2024.e26025_bib48) 2013; 46
McKinney (10.1016/j.heliyon.2024.e26025_bib61) 2020; 577
Lassau (10.1016/j.heliyon.2024.e26025_bib62) 2021; 12
Waldner (10.1016/j.heliyon.2024.e26025_bib90) 2022
Waldner (10.1016/j.heliyon.2024.e26025_bib74) 2022
Schüssele (10.1016/j.heliyon.2024.e26025_bib97) 2003; 257
Ekmekciyan (10.1016/j.heliyon.2024.e26025_bib99) 2018; 548
Heyndrickx (10.1016/j.heliyon.2024.e26025_bib49) 2020; 10
(10.1016/j.heliyon.2024.e26025_bib92) 2023
Zhao (10.1016/j.heliyon.2024.e26025_bib29) 2010; 55
Fukushima (10.1016/j.heliyon.2024.e26025_bib63) 1980; 36
Thoma (10.1016/j.heliyon.2024.e26025_bib83) 2016
References_xml – volume: 10
  year: 2020
  ident: bib49
  article-title: Improving image quality in fast, time-resolved micro-CT by weighted back projection
  publication-title: Sci. Rep.
– year: 2005
  ident: bib94
  article-title: Search for Technological Reasons to Develop a Capsule or a Tablet Formulation
– volume: 55
  start-page: 749
  year: 2010
  end-page: 755
  ident: bib29
  article-title: De-agglomeration of micronized benzodiazepines in dissolution media measured by laser diffraction particle sizing
  publication-title: J. Pharm. Pharmacol.
– volume: 2
  year: 2020
  ident: bib56
  article-title: A micro-XRT image analysis and machine learning methodology for the characterisation of multi-particulate capsule formulations
  publication-title: Int. J. Pharm. X
– volume: 74
  start-page: 78
  year: 2010
  end-page: 83
  ident: bib20
  article-title: Magnetic resonance imaging of tablet dissolution
  publication-title: Eur. J. Pharm. Biopharm.
– year: 2022
  ident: bib80
  article-title: tomopy.misc.corr — TomoPy 51b58c8055428181d91913c91362f443a79ad0cd documentation
– volume: 5
  start-page: 170
  year: 1986
  end-page: 176
  ident: bib50
  article-title: On the determination of functions from their integral values along certain manifolds
  publication-title: IEEE Trans. Med. Imag.
– volume: 23
  start-page: 842
  year: 2016
  end-page: 849
  ident: bib79
  article-title: Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data
  publication-title: J. Synchrotron Radiat.
– volume: 206
  start-page: 33
  year: 2002
  end-page: 40
  ident: bib39
  article-title: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object
  publication-title: J. Microsc.
– volume: 51
  start-page: 8668
  year: 2015
  end-page: 8676
  ident: bib45
  article-title: Real‐time visualization of H aines jumps in sandstone with laboratory‐based microcomputed tomography
  publication-title: Water Resour. Res.
– volume: 44
  start-page: 16
  year: 1955
  ident: bib4
  article-title: A note on tablet disintegration with Starch*1Chief chemist, L. Perrigo company
  publication-title: J. Am. Pharm. Assoc. Sci. Ed.
– volume: 10
  year: 2020
  ident: bib35
  article-title: X-ray microtomography is a novel method for accurate evaluation of small-bowel mucosal morphology and surface area
  publication-title: Sci. Rep.
– volume: 301
  start-page: 228
  year: 2016
  end-page: 233
  ident: bib55
  article-title: Assessment of distribution of pellets in tablets by non-destructive microfocus X-ray imaging and image analysis technique
  publication-title: Powder Technol.
– volume: 7
  start-page: 155
  year: 1981
  end-page: 177
  ident: bib11
  article-title: Disintegration mechanisms of tablets containing starches. Hypothesis about the particle-particle repulsive force
  publication-title: Drug Dev. Ind. Pharm.
– volume: 15
  start-page: 392
  year: 2020
  end-page: 403
  ident: bib58
  article-title: Machine learning for automated quality evaluation in pharmaceutical manufacturing of emulsions
  publication-title: J. Pharm. Innov.
– volume: 11
  start-page: 630
  year: 2014
  end-page: 637
  ident: bib18
  article-title: Direct visualization of
  publication-title: Mol. Pharm.
– reference: B.P. Flannery, H.W. Deckman, W.G. Roberge, Three-dimensional X-ray Microtomography, 237 (n.d.) 7..
– volume: 195
  start-page: 229
  year: 2000
  end-page: 238
  ident: bib103
  article-title: High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms
  publication-title: Int. J. Pharm.
– volume: 38
  start-page: 109
  year: 1987
  end-page: 115
  ident: bib5
  article-title: Percolation theory — a novel approach to solid dosage form design
  publication-title: Int. J. Pharm.
– volume: 181
  year: 2023
  ident: bib73
  article-title: Predicting mini-tablet dissolution performance utilizing X-ray computed tomography
  publication-title: Eur. J. Pharmaceut. Sci.
– volume: 109
  start-page: 1547
  year: 2020
  end-page: 1557
  ident: bib57
  article-title: Application of deep learning convolutional neural networks for internal tablet defect detection: high accuracy, throughput, and adaptability
  publication-title: J. Pharmaceut. Sci.
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib60
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– year: 2022
  ident: bib75
  article-title: tomopy.prep.normalize — TomoPy 51b58c8055428181d91913c91362f443a79ad0cd documentation
– volume: 87
  start-page: 1632
  year: 1998
  end-page: 1638
  ident: bib27
  article-title: Deaggregation during the dissolution of benzodiazepines in interactive mixtures
  publication-title: J. Pharmaceut. Sci.
– volume: 7
  start-page: 1460
  year: 2021
  end-page: 1472
  ident: bib71
  article-title: Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography
  publication-title: Energy Rep.
– volume: 17
  start-page: 8567
  year: 2009
  ident: bib77
  article-title: Stripe and ring artifact removal with combined wavelet—Fourier filtering
  publication-title: Opt Express
– volume: 157
  start-page: 35
  year: 2015
  end-page: 47
  ident: bib78
  article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography
  publication-title: Ultramicroscopy
– volume: 12
  year: 2014
  ident: bib46
  article-title: In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor
  publication-title: PLoS Biol.
– volume: 27
  start-page: 789
  year: 2001
  end-page: 801
  ident: bib102
  article-title: Properties of Fujicalin®, a new modified anhydrous dibasic calcium phosphate for direct compression: comparison with dicalcium phosphate dihydrate
  publication-title: Drug Dev. Ind. Pharm.
– year: 2015
  ident: bib76
  article-title: ArrayFire - A High Performance Software Library for Parallel Computing with an Easy-To-Use API
– volume: 20
  start-page: 779
  year: 1994
  end-page: 798
  ident: bib7
  article-title: The swelling & water uptake of tablets III: moisture sorption behavior of tablet disintegrants
  publication-title: Drug Dev. Ind. Pharm.
– volume: 7
  start-page: 1508
  year: 2010
  end-page: 1515
  ident: bib25
  article-title: In vitro monitoring of dissolution of an immediate release tablet by focused beam reflectance measurement
  publication-title: Mol. Pharm.
– volume: 3
  year: 2021
  ident: bib38
  article-title: The use of X-ray microtomography to investigate the microstructure of pharmaceutical tablets: potentials and comparison to common physical methods
  publication-title: Int. J. Pharm. X
– volume: 59
  start-page: 209
  year: 2010
  end-page: 223
  ident: bib24
  article-title: Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review
  publication-title: J. Pharm. Pharmacol.
– volume: 102
  start-page: 1513
  year: 2013
  end-page: 1523
  ident: bib26
  article-title: Process analytical technology to understand the disintegration behavior of alendronate sodium tablets
  publication-title: J. Pharmaceut. Sci.
– volume: 34
  start-page: 890
  year: 2017
  end-page: 917
  ident: bib1
  article-title: A review of disintegration mechanisms and measurement techniques
  publication-title: Pharm. Res. (N. Y.)
– volume: 46
  year: 2013
  ident: bib48
  article-title: Advantages of phase retrieval for fast x-ray tomographic microscopy
  publication-title: J. Phys. Appl. Phys.
– volume: 59
  start-page: 315
  year: 2005
  end-page: 323
  ident: bib28
  article-title: Understanding agglomeration of indomethacin during the dissolution of micronised indomethacin mixtures through dissolution and de-agglomeration modeling approaches
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 30
  start-page: 1915
  year: 2013
  end-page: 1925
  ident: bib96
  article-title: Functionalized calcium carbonate as a novel pharmaceutical excipient for the preparation of orally dispersible tablets
  publication-title: Pharm. Res. (N. Y.)
– volume: 3
  start-page: 235
  year: 2011
  end-page: 253
  ident: bib93
  article-title: Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation
  publication-title: Water
– volume: 55
  start-page: 1065
  year: 1966
  end-page: 1068
  ident: bib6
  article-title: Mechanism of action of starch as a disintegrating agent in aspirin tablets
  publication-title: J. Pharmaceut. Sci.
– volume: 105
  start-page: 2545
  year: 2016
  end-page: 2555
  ident: bib14
  article-title: Review of disintegrants and the disintegration phenomena
  publication-title: J. Pharmaceut. Sci.
– volume: 16
  year: 2020
  ident: bib40
  article-title: Shedding light on metal‐based nanoparticles in zebrafish by computed tomography with micrometer resolution
  publication-title: Small
– reference: A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier Nonlinearities Improve Neural Network Acoustic Models, (n.d.) 6.
– volume: 24
  start-page: 1250
  year: 2017
  end-page: 1259
  ident: bib51
  article-title: GigaFRoST: the gigabit fast readout system for tomography
  publication-title: J. Synchrotron Radiat.
– volume: 578
  year: 2020
  ident: bib53
  article-title: Digital UV/VIS imaging: a rapid PAT tool for crushing strength, drug content and particle size distribution determination in tablets
  publication-title: Int. J. Pharm.
– volume: 166
  start-page: 50
  year: 2019
  end-page: 54
  ident: bib43
  article-title: In-situ understanding of pore nucleation and growth in polyurethane foams by using real-time synchrotron X-ray tomography
  publication-title: Polymer
– year: 2022
  ident: bib89
  article-title: Three - Dimensional Reconstruction of Time-Resolved Disintegration Process in Pharmaceutical Tablets
– volume: 7
  start-page: 346
  year: 2020
  ident: bib34
  article-title: Time resolved in situ X-ray tomographic microscopy unraveling dynamic processes in geologic systems
  publication-title: Front. Earth Sci.
– volume: 2
  start-page: 205
  year: 1997
  end-page: 212
  ident: bib54
  article-title: Preliminary assessment of an image analysis method for the evaluation of pharmaceutical coatings
  publication-title: Pharmaceut. Dev. Technol.
– volume: 548
  start-page: 491
  year: 2018
  end-page: 499
  ident: bib99
  article-title: Competing for water: a new approach to understand disintegrant performance
  publication-title: Int. J. Pharm.
– volume: 37
  start-page: 89
  year: 2009
  end-page: 97
  ident: bib19
  article-title: Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging—effect of solubility of additives on HPMC matrix tablets
  publication-title: Eur. J. Pharmaceut. Sci.
– volume: 12
  start-page: 634
  year: 2021
  ident: bib62
  article-title: Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
  publication-title: Nat. Commun.
– volume: 85
  start-page: 1255
  year: 1996
  end-page: 1258
  ident: bib100
  article-title: Direct visualization of superdisintegrant hydration using environmental scanning electron microscopy
  publication-title: J. Pharmaceut. Sci.
– volume: 177
  start-page: 232
  year: 2020
  end-page: 243
  ident: bib64
  article-title: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
  publication-title: Math. Comput. Simulat.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib65
  article-title: Going deeper with convolutions
  publication-title: 2015 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
– volume: 2
  year: 2021
  ident: bib68
  article-title: A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits
  publication-title: Plant Commun.
– start-page: 1
  year: 2015
  end-page: 12
  ident: bib2
  article-title: A critical review on tablet disintegration
  publication-title: Pharmaceut. Dev. Technol.
– volume: 257
  start-page: 301
  year: 2003
  end-page: 304
  ident: bib97
  article-title: Note on the measurement of flowability according to the European Pharmacopoeia
  publication-title: Int. J. Pharm.
– volume: 13
  start-page: 685
  year: 2021
  ident: bib52
  article-title: Image analysis: a versatile tool in the manufacturing and quality control of pharmaceutical dosage forms
  publication-title: Pharmaceutics
– volume: 465
  start-page: 70
  year: 2014
  end-page: 76
  ident: bib15
  article-title: Detection of porosity of pharmaceutical compacts by terahertz radiation transmission and light reflection measurement techniques
  publication-title: Int. J. Pharm.
– volume: 99
  start-page: 3462
  year: 2010
  end-page: 3472
  ident: bib17
  article-title: Quantitative ultra-fast MRI of HPMC swelling and dissolution
  publication-title: J. Pharmaceut. Sci.
– volume: 554
  year: 2021
  ident: bib44
  article-title: Time-resolved grain-scale 3D imaging of hydrofracturing in halite layers induced by gypsum dehydration and pore fluid pressure buildup
  publication-title: Earth Planet Sci. Lett.
– volume: 9
  start-page: 611
  year: 2018
  end-page: 629
  ident: bib67
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imag.
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: A System for Large-Scale Machine Learning, (n.d.) 21.
– volume: 78
  start-page: 201
  year: 2020
  end-page: 208
  ident: bib70
  article-title: Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network
  publication-title: Phys. Med.
– volume: 200
  start-page: 273
  year: 2003
  end-page: 286
  ident: bib36
  article-title: X-ray micro-tomography an attractive characterisation technique in materials science
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
– volume: 16
  start-page: 7
  year: 2019
  ident: bib86
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat. Methods
– year: 2006
  ident: bib101
  publication-title: Handbook of Pharmaceutical Excipients: Edited by Raymond C. Rowe, Paul J. Sheskey, Siân C. Owen
– year: 2015
  ident: bib85
  article-title: Random Walk Initialization for Training Very Deep Feedforward Networks
– start-page: 1
  year: 2019
  end-page: 4
  ident: bib69
  article-title: Convolutional Neural Network for micro-CT image classification of carbonate rocks samples
  publication-title: Proc. 16th Int. Congr. Braz. Geophys. Soc.
– volume: 20
  start-page: 354
  year: 2017
  end-page: 359
  ident: bib41
  article-title: Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science
  publication-title: Mater. Today
– year: 2006
  ident: bib31
  article-title: Trends in Synchrotron-Based Tomographic Imaging: the SLS Experience
– volume: 10
  start-page: 3762
  year: 2019
  ident: bib47
  article-title: Using X-ray tomoscopy to explore the dynamics of foaming metal
  publication-title: Nat. Commun.
– volume: 4
  start-page: 49
  year: 1980
  end-page: 57
  ident: bib3
  article-title: others, A new era of tablet disintegrants
  publication-title: Pharmaceut. Technol.
– year: 2022
  ident: bib90
  article-title: Visualization Videos of Time-Resolved Tomographic Microscopy Data Depicting Disintegrating Pharmaceutical Tablets
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: bib63
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
– volume: 10
  start-page: 189
  year: 2020
  ident: bib42
  article-title: The influence of alloy composition and liquid phase on foaming of Al–Si–Mg alloys
  publication-title: Metals
– volume: 101
  start-page: 2155
  year: 2012
  end-page: 2164
  ident: bib8
  article-title: Understanding disintegrant action by visualization
  publication-title: J. Pharmaceut. Sci.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib59
  article-title: Deep learning
  publication-title: Nature
– volume: 577
  start-page: 89
  year: 2020
  end-page: 94
  ident: bib61
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
– year: 2015
  ident: bib66
  publication-title: Convolutional Networks for Biomedical Image Segmentation
– start-page: 263
  year: 2019
  end-page: 315
  ident: bib98
  article-title: Material attributes and their impact on wet granulation process performance
  publication-title: Handb. Pharm. Wet Granulation
– volume: 17
  year: 2009
  ident: bib23
  article-title: Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers
  publication-title: Opt Express
– volume: 106
  start-page: 234
  year: 2017
  end-page: 247
  ident: bib22
  article-title: A practical framework toward prediction of breaking force and disintegration of tablet formulations using machine learning tools
  publication-title: J. Pharmaceut. Sci.
– volume: 573
  year: 2020
  ident: bib37
  article-title: Study of drug particle distributions within mini-tablets using synchrotron X-ray microtomography and superpixel image clustering
  publication-title: Int. J. Pharm.
– year: 2017
  ident: bib87
  article-title: Adam: A Method for Stochastic Optimization
– year: 2022
  ident: bib74
  article-title: 4D_CT_code
– reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, (n.d.) 19..
– year: 2023
  ident: bib91
  article-title: A Language and Environment for Statistical Computing
– volume: 8
  start-page: 2575
  year: 2018
  ident: bib72
  article-title: Low-dose x-ray tomography through a deep convolutional neural network
  publication-title: Sci. Rep.
– year: 2022
  ident: bib88
  publication-title: tf.keras.metrics.sparse_categorical_crossentropy | TensorFlow Core v2.8.0
– volume: 491
  start-page: 291
  year: 2002
  end-page: 301
  ident: bib32
  article-title: High resolution X-ray detector for synchrotron-based microtomography
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip.
– year: 2023
  ident: bib92
  article-title: RStudio: Integrated Development Environment for R, Posit Software
– volume: 475
  start-page: 605
  year: 2014
  end-page: 612
  ident: bib21
  article-title: Assessment of disintegrant efficacy with fractal dimensions from real-time MRI
  publication-title: Int. J. Pharm.
– volume: 489
  start-page: 100
  year: 2015
  end-page: 105
  ident: bib16
  article-title: Estimation of Young's modulus of pharmaceutical tablet obtained by terahertz time-delay measurement
  publication-title: Int. J. Pharm.
– volume: 13
  start-page: 1054
  year: 2012
  end-page: 1062
  ident: bib95
  article-title: Functional assessment of four types of disintegrants and their effect on the spironolactone release properties
  publication-title: AAPS PharmSciTech
– volume: 300
  start-page: 44
  year: 2005
  end-page: 64
  ident: bib13
  article-title: Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems
  publication-title: J. Hydrol.
– year: 2016
  ident: bib83
  article-title: A Survey of Semantic Segmentation
– volume: 51
  start-page: 63
  year: 1989
  end-page: 66
  ident: bib12
  article-title: Tablet water uptake and disintegration force measurements
  publication-title: Int. J. Pharm.
– volume: 29
  start-page: 198
  year: 2012
  end-page: 208
  ident: bib30
  article-title: Linking dissolution to disintegration in immediate release tablets using image analysis and a population balance modelling approach
  publication-title: Pharm. Res. (N. Y.)
– volume: 66
  start-page: 1429
  year: 2014
  end-page: 1438
  ident: bib9
  article-title: Systematic classification of tablet disintegrants by water uptake and force development kinetics
  publication-title: J. Pharm. Pharmacol.
– volume: 79
  start-page: 63
  year: 1959
  end-page: 64
  ident: bib10
  article-title: Studies on formation and disintegration mechanisms of tablets
  publication-title: J. Pharmaceut. Sci.
– volume: 37
  start-page: 89
  year: 2009
  ident: 10.1016/j.heliyon.2024.e26025_bib19
  article-title: Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging—effect of solubility of additives on HPMC matrix tablets
  publication-title: Eur. J. Pharmaceut. Sci.
  doi: 10.1016/j.ejps.2009.01.008
– volume: 7
  start-page: 1460
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26025_bib71
  article-title: Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.02.065
– start-page: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26025_bib69
  article-title: Convolutional Neural Network for micro-CT image classification of carbonate rocks samples
– volume: 51
  start-page: 8668
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib45
  article-title: Real‐time visualization of H aines jumps in sandstone with laboratory‐based microcomputed tomography
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017502
– volume: 491
  start-page: 291
  year: 2002
  ident: 10.1016/j.heliyon.2024.e26025_bib32
  article-title: High resolution X-ray detector for synchrotron-based microtomography
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/S0168-9002(02)01167-1
– volume: 200
  start-page: 273
  year: 2003
  ident: 10.1016/j.heliyon.2024.e26025_bib36
  article-title: X-ray micro-tomography an attractive characterisation technique in materials science
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/S0168-583X(02)01689-0
– year: 2017
  ident: 10.1016/j.heliyon.2024.e26025_bib87
– year: 2022
  ident: 10.1016/j.heliyon.2024.e26025_bib90
– volume: 10
  start-page: 189
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib42
  article-title: The influence of alloy composition and liquid phase on foaming of Al–Si–Mg alloys
  publication-title: Metals
  doi: 10.3390/met10020189
– volume: 66
  start-page: 1429
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26025_bib9
  article-title: Systematic classification of tablet disintegrants by water uptake and force development kinetics
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.12276
– volume: 7
  start-page: 1508
  year: 2010
  ident: 10.1016/j.heliyon.2024.e26025_bib25
  article-title: In vitro monitoring of dissolution of an immediate release tablet by focused beam reflectance measurement
  publication-title: Mol. Pharm.
  doi: 10.1021/mp1001476
– year: 2006
  ident: 10.1016/j.heliyon.2024.e26025_bib31
– volume: 578
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib53
  article-title: Digital UV/VIS imaging: a rapid PAT tool for crushing strength, drug content and particle size distribution determination in tablets
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119174
– volume: 105
  start-page: 2545
  year: 2016
  ident: 10.1016/j.heliyon.2024.e26025_bib14
  article-title: Review of disintegrants and the disintegration phenomena
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1016/j.xphs.2015.12.019
– volume: 11
  start-page: 630
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26025_bib18
  article-title: Direct visualization of in vitro drug mobilization from lescol XL tablets using two-dimensional 19 F and 1 H magnetic resonance imaging
  publication-title: Mol. Pharm.
  doi: 10.1021/mp400407c
– volume: 24
  start-page: 1250
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26025_bib51
  article-title: GigaFRoST: the gigabit fast readout system for tomography
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577517013522
– volume: 2
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26025_bib68
  article-title: A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits
  publication-title: Plant Commun.
  doi: 10.1016/j.xplc.2021.100165
– volume: 12
  start-page: 634
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26025_bib62
  article-title: Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20657-4
– volume: 55
  start-page: 749
  year: 2010
  ident: 10.1016/j.heliyon.2024.e26025_bib29
  article-title: De-agglomeration of micronized benzodiazepines in dissolution media measured by laser diffraction particle sizing
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/002235703765951348
– volume: 34
  start-page: 890
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26025_bib1
  article-title: A review of disintegration mechanisms and measurement techniques
  publication-title: Pharm. Res. (N. Y.)
  doi: 10.1007/s11095-017-2129-z
– year: 2022
  ident: 10.1016/j.heliyon.2024.e26025_bib74
– volume: 301
  start-page: 228
  year: 2016
  ident: 10.1016/j.heliyon.2024.e26025_bib55
  article-title: Assessment of distribution of pellets in tablets by non-destructive microfocus X-ray imaging and image analysis technique
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.05.067
– year: 2023
  ident: 10.1016/j.heliyon.2024.e26025_bib92
– start-page: 1
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib65
  article-title: Going deeper with convolutions
– volume: 79
  start-page: 63
  year: 1959
  ident: 10.1016/j.heliyon.2024.e26025_bib10
  article-title: Studies on formation and disintegration mechanisms of tablets
  publication-title: J. Pharmaceut. Sci.
– volume: 7
  start-page: 346
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib34
  article-title: Time resolved in situ X-ray tomographic microscopy unraveling dynamic processes in geologic systems
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2019.00346
– volume: 3
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26025_bib38
  article-title: The use of X-ray microtomography to investigate the microstructure of pharmaceutical tablets: potentials and comparison to common physical methods
  publication-title: Int. J. Pharm. X
– volume: 55
  start-page: 1065
  year: 1966
  ident: 10.1016/j.heliyon.2024.e26025_bib6
  article-title: Mechanism of action of starch as a disintegrating agent in aspirin tablets
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1002/jps.2600551015
– volume: 257
  start-page: 301
  year: 2003
  ident: 10.1016/j.heliyon.2024.e26025_bib97
  article-title: Note on the measurement of flowability according to the European Pharmacopoeia
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(03)00142-X
– volume: 101
  start-page: 2155
  year: 2012
  ident: 10.1016/j.heliyon.2024.e26025_bib8
  article-title: Understanding disintegrant action by visualization
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1002/jps.23119
– year: 2022
  ident: 10.1016/j.heliyon.2024.e26025_bib88
– year: 2023
  ident: 10.1016/j.heliyon.2024.e26025_bib91
– volume: 59
  start-page: 315
  year: 2005
  ident: 10.1016/j.heliyon.2024.e26025_bib28
  article-title: Understanding agglomeration of indomethacin during the dissolution of micronised indomethacin mixtures through dissolution and de-agglomeration modeling approaches
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2004.07.013
– volume: 3
  start-page: 235
  year: 2011
  ident: 10.1016/j.heliyon.2024.e26025_bib93
  article-title: Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation
  publication-title: Water
  doi: 10.3390/w3010235
– volume: 13
  start-page: 1054
  year: 2012
  ident: 10.1016/j.heliyon.2024.e26025_bib95
  article-title: Functional assessment of four types of disintegrants and their effect on the spironolactone release properties
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-012-9835-y
– volume: 181
  year: 2023
  ident: 10.1016/j.heliyon.2024.e26025_bib73
  article-title: Predicting mini-tablet dissolution performance utilizing X-ray computed tomography
  publication-title: Eur. J. Pharmaceut. Sci.
  doi: 10.1016/j.ejps.2022.106346
– year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib76
– start-page: 1
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib2
  article-title: A critical review on tablet disintegration
  publication-title: Pharmaceut. Dev. Technol.
  doi: 10.3109/10837450.2015.1045618
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib59
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib85
– volume: 30
  start-page: 1915
  year: 2013
  ident: 10.1016/j.heliyon.2024.e26025_bib96
  article-title: Functionalized calcium carbonate as a novel pharmaceutical excipient for the preparation of orally dispersible tablets
  publication-title: Pharm. Res. (N. Y.)
  doi: 10.1007/s11095-013-1034-3
– volume: 12
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26025_bib46
  article-title: In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001823
– volume: 573
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib37
  article-title: Study of drug particle distributions within mini-tablets using synchrotron X-ray microtomography and superpixel image clustering
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.118827
– volume: 2
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib56
  article-title: A micro-XRT image analysis and machine learning methodology for the characterisation of multi-particulate capsule formulations
  publication-title: Int. J. Pharm. X
– start-page: 263
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26025_bib98
  article-title: Material attributes and their impact on wet granulation process performance
– volume: 102
  start-page: 1513
  year: 2013
  ident: 10.1016/j.heliyon.2024.e26025_bib26
  article-title: Process analytical technology to understand the disintegration behavior of alendronate sodium tablets
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1002/jps.23488
– ident: 10.1016/j.heliyon.2024.e26025_bib81
– volume: 46
  year: 2013
  ident: 10.1016/j.heliyon.2024.e26025_bib48
  article-title: Advantages of phase retrieval for fast x-ray tomographic microscopy
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/46/49/494004
– volume: 20
  start-page: 354
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26025_bib41
  article-title: Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.06.001
– volume: 206
  start-page: 33
  year: 2002
  ident: 10.1016/j.heliyon.2024.e26025_bib39
  article-title: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.2002.01010.x
– volume: 36
  start-page: 193
  year: 1980
  ident: 10.1016/j.heliyon.2024.e26025_bib63
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 78
  start-page: 201
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib70
  article-title: Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2020.09.007
– volume: 87
  start-page: 1632
  year: 1998
  ident: 10.1016/j.heliyon.2024.e26025_bib27
  article-title: Deaggregation during the dissolution of benzodiazepines in interactive mixtures
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1021/js960384k
– volume: 157
  start-page: 35
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib78
  article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.05.002
– volume: 38
  start-page: 109
  year: 1987
  ident: 10.1016/j.heliyon.2024.e26025_bib5
  article-title: Percolation theory — a novel approach to solid dosage form design
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(87)90105-0
– volume: 74
  start-page: 78
  year: 2010
  ident: 10.1016/j.heliyon.2024.e26025_bib20
  article-title: Magnetic resonance imaging of tablet dissolution
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2009.07.003
– volume: 4
  start-page: 49
  year: 1980
  ident: 10.1016/j.heliyon.2024.e26025_bib3
  article-title: others, A new era of tablet disintegrants
  publication-title: Pharmaceut. Technol.
– volume: 27
  start-page: 789
  year: 2001
  ident: 10.1016/j.heliyon.2024.e26025_bib102
  article-title: Properties of Fujicalin®, a new modified anhydrous dibasic calcium phosphate for direct compression: comparison with dicalcium phosphate dihydrate
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1081/DDC-100107242
– ident: 10.1016/j.heliyon.2024.e26025_bib84
– volume: 195
  start-page: 229
  year: 2000
  ident: 10.1016/j.heliyon.2024.e26025_bib103
  article-title: High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(99)00402-0
– volume: 166
  start-page: 50
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26025_bib43
  article-title: In-situ understanding of pore nucleation and growth in polyurethane foams by using real-time synchrotron X-ray tomography
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.01.049
– volume: 554
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26025_bib44
  article-title: Time-resolved grain-scale 3D imaging of hydrofracturing in halite layers induced by gypsum dehydration and pore fluid pressure buildup
  publication-title: Earth Planet Sci. Lett.
  doi: 10.1016/j.epsl.2020.116679
– volume: 59
  start-page: 209
  year: 2010
  ident: 10.1016/j.heliyon.2024.e26025_bib24
  article-title: Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/jpp.59.2.0008
– volume: 85
  start-page: 1255
  year: 1996
  ident: 10.1016/j.heliyon.2024.e26025_bib100
  article-title: Direct visualization of superdisintegrant hydration using environmental scanning electron microscopy
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1021/js960188d
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26025_bib60
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– year: 2005
  ident: 10.1016/j.heliyon.2024.e26025_bib94
– volume: 489
  start-page: 100
  year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib16
  article-title: Estimation of Young's modulus of pharmaceutical tablet obtained by terahertz time-delay measurement
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.04.068
– volume: 465
  start-page: 70
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26025_bib15
  article-title: Detection of porosity of pharmaceutical compacts by terahertz radiation transmission and light reflection measurement techniques
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.02.011
– volume: 548
  start-page: 491
  year: 2018
  ident: 10.1016/j.heliyon.2024.e26025_bib99
  article-title: Competing for water: a new approach to understand disintegrant performance
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.07.025
– volume: 51
  start-page: 63
  year: 1989
  ident: 10.1016/j.heliyon.2024.e26025_bib12
  article-title: Tablet water uptake and disintegration force measurements
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(89)90075-6
– volume: 177
  start-page: 232
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib64
  article-title: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
  publication-title: Math. Comput. Simulat.
  doi: 10.1016/j.matcom.2020.04.031
– volume: 20
  start-page: 779
  year: 1994
  ident: 10.1016/j.heliyon.2024.e26025_bib7
  article-title: The swelling & water uptake of tablets III: moisture sorption behavior of tablet disintegrants
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639049409038331
– volume: 99
  start-page: 3462
  year: 2010
  ident: 10.1016/j.heliyon.2024.e26025_bib17
  article-title: Quantitative ultra-fast MRI of HPMC swelling and dissolution
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1002/jps.22110
– volume: 109
  start-page: 1547
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib57
  article-title: Application of deep learning convolutional neural networks for internal tablet defect detection: high accuracy, throughput, and adaptability
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1016/j.xphs.2020.01.014
– volume: 17
  year: 2009
  ident: 10.1016/j.heliyon.2024.e26025_bib23
  article-title: Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers
  publication-title: Opt Express
  doi: 10.1364/OE.17.019006
– volume: 13
  start-page: 685
  year: 2021
  ident: 10.1016/j.heliyon.2024.e26025_bib52
  article-title: Image analysis: a versatile tool in the manufacturing and quality control of pharmaceutical dosage forms
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13050685
– volume: 9
  start-page: 611
  year: 2018
  ident: 10.1016/j.heliyon.2024.e26025_bib67
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imag.
  doi: 10.1007/s13244-018-0639-9
– ident: 10.1016/j.heliyon.2024.e26025_bib82
– volume: 16
  start-page: 7
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26025_bib86
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat. Methods
  doi: 10.1126/science.aaw4633
– volume: 2
  start-page: 205
  year: 1997
  ident: 10.1016/j.heliyon.2024.e26025_bib54
  article-title: Preliminary assessment of an image analysis method for the evaluation of pharmaceutical coatings
  publication-title: Pharmaceut. Dev. Technol.
  doi: 10.3109/10837459709031440
– volume: 15
  start-page: 392
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib58
  article-title: Machine learning for automated quality evaluation in pharmaceutical manufacturing of emulsions
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-019-09390-8
– year: 2022
  ident: 10.1016/j.heliyon.2024.e26025_bib89
– year: 2006
  ident: 10.1016/j.heliyon.2024.e26025_bib101
– volume: 10
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib35
  article-title: X-ray microtomography is a novel method for accurate evaluation of small-bowel mucosal morphology and surface area
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69487-w
– volume: 10
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib49
  article-title: Improving image quality in fast, time-resolved micro-CT by weighted back projection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74827-x
– volume: 5
  start-page: 170
  year: 1986
  ident: 10.1016/j.heliyon.2024.e26025_bib50
  article-title: On the determination of functions from their integral values along certain manifolds
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.1986.4307775
– volume: 16
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib40
  article-title: Shedding light on metal‐based nanoparticles in zebrafish by computed tomography with micrometer resolution
  publication-title: Small
– volume: 577
  start-page: 89
  year: 2020
  ident: 10.1016/j.heliyon.2024.e26025_bib61
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– volume: 475
  start-page: 605
  year: 2014
  ident: 10.1016/j.heliyon.2024.e26025_bib21
  article-title: Assessment of disintegrant efficacy with fractal dimensions from real-time MRI
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.09.021
– volume: 10
  start-page: 3762
  year: 2019
  ident: 10.1016/j.heliyon.2024.e26025_bib47
  article-title: Using X-ray tomoscopy to explore the dynamics of foaming metal
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11521-1
– volume: 17
  start-page: 8567
  year: 2009
  ident: 10.1016/j.heliyon.2024.e26025_bib77
  article-title: Stripe and ring artifact removal with combined wavelet—Fourier filtering
  publication-title: Opt Express
  doi: 10.1364/OE.17.008567
– volume: 106
  start-page: 234
  year: 2017
  ident: 10.1016/j.heliyon.2024.e26025_bib22
  article-title: A practical framework toward prediction of breaking force and disintegration of tablet formulations using machine learning tools
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1016/j.xphs.2016.08.026
– volume: 300
  start-page: 44
  year: 2005
  ident: 10.1016/j.heliyon.2024.e26025_bib13
  article-title: Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.05.005
– ident: 10.1016/j.heliyon.2024.e26025_bib33
  doi: 10.1126/science.237.4821.1439
– year: 2015
  ident: 10.1016/j.heliyon.2024.e26025_bib66
– volume: 8
  start-page: 2575
  year: 2018
  ident: 10.1016/j.heliyon.2024.e26025_bib72
  article-title: Low-dose x-ray tomography through a deep convolutional neural network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19426-7
– volume: 29
  start-page: 198
  year: 2012
  ident: 10.1016/j.heliyon.2024.e26025_bib30
  article-title: Linking dissolution to disintegration in immediate release tablets using image analysis and a population balance modelling approach
  publication-title: Pharm. Res. (N. Y.)
  doi: 10.1007/s11095-011-0535-1
– volume: 7
  start-page: 155
  year: 1981
  ident: 10.1016/j.heliyon.2024.e26025_bib11
  article-title: Disintegration mechanisms of tablets containing starches. Hypothesis about the particle-particle repulsive force
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639048109057708
– volume: 23
  start-page: 842
  year: 2016
  ident: 10.1016/j.heliyon.2024.e26025_bib79
  article-title: Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577516005658
– year: 2016
  ident: 10.1016/j.heliyon.2024.e26025_bib83
– volume: 44
  start-page: 16
  year: 1955
  ident: 10.1016/j.heliyon.2024.e26025_bib4
  article-title: A note on tablet disintegration with Starch*1Chief chemist, L. Perrigo company
  publication-title: J. Am. Pharm. Assoc. Sci. Ed.
  doi: 10.1002/jps.3030440107
SSID ssj0001586973
Score 2.2867057
Snippet The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e26025
SubjectTerms active pharmaceutical ingredients
automation
bioavailability
Deep learning-based image segmentation
Disintegration
factor analysis
micro-computed tomography
neural networks
Swelling
Tablets
time series analysis
Time-resolved micro-computed tomography
Title Advanced analysis of disintegrating pharmaceutical compacts using deep learning-based segmentation of time-resolved micro-tomography images
URI https://dx.doi.org/10.1016/j.heliyon.2024.e26025
https://www.ncbi.nlm.nih.gov/pubmed/38384517
https://www.proquest.com/docview/2930476690
https://www.proquest.com/docview/3153786335
https://pubmed.ncbi.nlm.nih.gov/PMC10878950
https://doaj.org/article/053037ade64e40188a124f8ed7a23ecb
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkRAXxJvlURmJa7ZO_D4uiKqiKgdERW-RYzu7qXaTVZMi8Rv404wTZ8mC0F645uHEns-Zz_HMNwi90z5V1mmRGJrZhBUFgynFTaKYVoUsAVE-ZCNffBZnl-zTFb-alPoKMWGDPPAwcCcAEkKlcV4wD2sBpQx4pFJ5J01GvS3C15doMllMDfnBSmhJf6fsnFzPV35d_WiC5mnG5h54fCiPPXFGvWb_nk_6m3P-GTo58UWnD9GDSCLxYnj5R-iOrx-jexdxm_wJ-rmIO_vYRM0R3JTYVe0oDgH-Cm9X07_ZuA9Gt12LQyT8EjvvtziWlFgmwdc53PrlJqYq1aHBUJc-geV6s_4OZzchtC_pmk0UwcbVBr5V7VN0efrx64ezJFZdSCwXsks4uDVhiGM8M8qXVhBjC5GWlKdSCm6BX3qhPDUcmKCUVjstHQd7UOXK0nH6DB3VTe1fIFxIUmqVmkwKzwpitfTSiaCglpUwBtkMsXH4cxslyUNljHU-xp5d59FqebBaPlhthua727aDJsehG94H2-4uDpLa_QEAWh6Blh8C2gypERl5ZCcD64CmqkPPfzsiKYfZG7ZkTO2b2zYHskWYFEKTf19DwSlJJSiFdp4P6Nv1hCqqGBgGXm4Pl3td3T9TV6teRTwlSirNycv_MTiv0P3Q3z7XX79GR93NrX8DbK0rjtHdxfmXb-fH_QT9Bee_RMM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+analysis+of+disintegrating+pharmaceutical+compacts+using+deep+learning-based+segmentation+of+time-resolved+micro-tomography+images&rft.jtitle=Heliyon&rft.au=Waldner%2C+Samuel&rft.au=Wendelspiess%2C+Erwin&rft.au=Detampel%2C+Pascal&rft.au=Schlep%C3%BCtz%2C+Christian+M&rft.date=2024-02-29&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=4&rft.spage=e26025&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e26025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon