New Real-Time High-Density Impulsive Noise Removal Method Applied to Medical Images
This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy ima...
Saved in:
| Published in | Diagnostics (Basel) Vol. 13; no. 10; p. 1709 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
11.05.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4418 2075-4418 |
| DOI | 10.3390/diagnostics13101709 |
Cover
| Abstract | This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10. |
|---|---|
| AbstractList | This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10. This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10.This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10. |
| Audience | Academic |
| Author | Alanazi, Turki M. Kaaniche, Khaled Sahbani, Anis Ben Atitallah, Ahmed Albekairi, Mohammed Berriri, Kamel |
| AuthorAffiliation | 1 Department of Electrical Engineering, College of Engineering, Jouf University, Sakakah 72388, Saudi Arabia 3 Institute for Intelligent Systems and Robotics (ISIR), CNRS, Sorbonne University, 75006 Paris, France 2 LAMMDA Laboratory, University of Sousse, Sousse 4054, Tunisia |
| AuthorAffiliation_xml | – name: 3 Institute for Intelligent Systems and Robotics (ISIR), CNRS, Sorbonne University, 75006 Paris, France – name: 2 LAMMDA Laboratory, University of Sousse, Sousse 4054, Tunisia – name: 1 Department of Electrical Engineering, College of Engineering, Jouf University, Sakakah 72388, Saudi Arabia |
| Author_xml | – sequence: 1 givenname: Turki M. orcidid: 0000-0002-1314-7146 surname: Alanazi fullname: Alanazi, Turki M. – sequence: 2 givenname: Kamel surname: Berriri fullname: Berriri, Kamel – sequence: 3 givenname: Mohammed surname: Albekairi fullname: Albekairi, Mohammed – sequence: 4 givenname: Ahmed orcidid: 0000-0002-2121-4417 surname: Ben Atitallah fullname: Ben Atitallah, Ahmed – sequence: 5 givenname: Anis surname: Sahbani fullname: Sahbani, Anis – sequence: 6 givenname: Khaled orcidid: 0000-0003-0625-6245 surname: Kaaniche fullname: Kaaniche, Khaled |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37238194$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttu1DAQhiNURA_0CZBQJG64SfEpB1-hVaF0pVIk2HvLiSdZr5w4xMlW-_ZM2FK6VYWIL2KNv_ln5rdPo6POdxBFbyi54FySD8bqpvNhtFWgnBKaE_kiOmEkTxMhaHH0aH8cnYewIfhJyguWvoqOec54QaU4iX7cwl38HbRLVraF-No26-QTdMGOu3jZ9pMLdgvxrbcBEGv9Vrv4K4xrb-JF3zsLJh49Royt8GTZ6gbC6-hlrV2A8_v_WbS6-ry6vE5uvn1ZXi5ukirN8jERJc9KVpUgyjqXmkDKC2IKAVCDqagQMjWSsUqaIjfIlcAyU1PGMpbrWvOzaLmXNV5vVD_YVg875bVVvwN-aJQe0CAHSgLXDFLKMm0EEbxIWQqGZ5BJDFGKWmKvNXW93t1p5x4EKVGz4-oZxzHt4z6tn8oWm4ZuHLQ76OXwpLNr1fgtijKaZ2Qu_P5eYfA_Jwijam2owDndgZ-CYgUjcy3KEX33BN34aejQYaTwMvns2F-q0Ti47WqPhatZVC3yVBJBsHmkLp6hcBlobYVPrbYYP0h4-3jShxH_vCQE-B6oBh_CAPV_GiifZFV21KP1s13W_TP3F-Mj8cw |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2025_129667 crossref_primary_10_3390_app14020635 crossref_primary_10_1007_s10044_024_01296_7 crossref_primary_10_3390_app132112069 crossref_primary_10_1038_s41598_025_92283_3 |
| Cites_doi | 10.1109/LSP.2011.2122333 10.1007/s11760-012-0368-3 10.1016/j.ijleo.2015.06.005 10.1109/5.784243 10.1002/cta.3000 10.1179/1743131X14Y.0000000072 10.1016/S0167-8655(03)00016-3 10.1002/cta.2790 10.1186/s13640-017-0215-0 10.1109/LSP.2009.2038769 10.1109/TIE.2018.2793225 10.1007/978-3-662-03939-7 10.1007/11867661 10.3390/jcm8040462 10.3390/data8020029 10.1016/j.sigpro.2007.02.009 10.1016/S0165-0114(01)00181-6 10.1109/LSP.2014.2333012 10.1016/j.sigpro.2018.01.027 10.1109/SITIS.2012.20 10.1109/TFUZZ.2008.917297 10.1186/s13634-017-0502-z 10.1109/5.54807 10.1049/iet-ipr.2017.0910 10.23919/FRUCT.2017.8071343 10.1109/76.285620 10.1109/STA.2015.7505212 10.3906/elk-1705-256 10.1016/j.patrec.2018.06.002 10.1007/s12652-020-02376-2 10.3390/s110303205 10.1016/j.aeue.2016.04.018 10.1007/s11265-013-0744-4 10.1016/0893-6080(95)00128-X 10.1109/CACS.2018.8606777 10.1117/1.JEI.28.3.033010 10.1049/iet-ipr.2016.0320 10.13005/bpj/1484 10.1016/j.aeue.2016.01.013 10.3923/ajsr.2015.291.303 10.1109/GCIS.2009.130 10.1155/2015/596348 10.1016/j.brs.2021.10.060 10.1007/3-540-44692-3_69 10.3390/diagnostics12112738 10.3390/s20102782 10.1016/j.compeleceng.2017.05.035 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/diagnostics13101709 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_9e3a2e5126ad40438525ed36e6926a11 10.3390/diagnostics13101709 PMC10217601 A759040310 37238194 10_3390_diagnostics13101709 |
| Genre | Journal Article |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GrantInformation_xml | – fundername: Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia grantid: 223202 |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c567t-4b36b2cbe4bf79a0e5380d84eefedc14495d922c9d87d2cbbe26df122627afa3 |
| IEDL.DBID | M48 |
| ISSN | 2075-4418 |
| IngestDate | Fri Oct 03 12:41:19 EDT 2025 Sun Oct 26 03:52:20 EDT 2025 Tue Sep 30 17:13:55 EDT 2025 Thu Sep 04 16:45:26 EDT 2025 Sun Jun 29 16:56:01 EDT 2025 Tue Jun 17 21:46:03 EDT 2025 Mon Oct 20 17:20:21 EDT 2025 Mon Jul 21 05:56:34 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Thu Oct 16 04:32:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | image processing medical images high-level synthesis high-density impulsive noise FPGA |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-4b36b2cbe4bf79a0e5380d84eefedc14495d922c9d87d2cbbe26df122627afa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0625-6245 0000-0002-2121-4417 0000-0002-1314-7146 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics13101709 |
| PMID | 37238194 |
| PQID | 2819434495 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9e3a2e5126ad40438525ed36e6926a11 unpaywall_primary_10_3390_diagnostics13101709 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10217601 proquest_miscellaneous_2820017013 proquest_journals_2819434495 gale_infotracmisc_A759040310 gale_infotracacademiconefile_A759040310 pubmed_primary_37238194 crossref_primary_10_3390_diagnostics13101709 crossref_citationtrail_10_3390_diagnostics13101709 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-11 |
| PublicationDateYYYYMMDD | 2023-05-11 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationTitleAlternate | Diagnostics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lukac (ref_12) 2003; 24 Singh (ref_17) 2013; 62 Jayasree (ref_46) 2012; 7 Kthiri (ref_52) 2013; 73 ref_14 ref_58 Esakkirajan (ref_37) 2011; 18 ref_11 ref_10 Morillas (ref_16) 2011; 11 ref_53 Nyrhinen (ref_30) 2021; 14 Astola (ref_1) 1990; 78 ref_15 ref_59 Roy (ref_24) 2018; 65 Khriji (ref_20) 2002; 128 ref_61 Kammoun (ref_56) 2019; 28 ref_60 Alanazi (ref_57) 2021; 68 Plataniotis (ref_13) 1998; Volume 45 Kishorebabu (ref_39) 2017; 2017 ref_21 ref_29 ref_27 ref_26 Toh (ref_36) 2010; 17 Chen (ref_42) 2018; 12 Boudabous (ref_50) 2010; 7 Abid (ref_54) 2021; 49 Zhang (ref_19) 2018; 147 Kong (ref_25) 1996; 9 ref_34 Roy (ref_18) 2017; 11 ref_32 Wang (ref_23) 2015; 126 Varatharajan (ref_40) 2018; 70 Kammoun (ref_55) 2020; 48 Boudabous (ref_51) 2007; 16 Elamaran (ref_7) 2015; 8 Arora (ref_33) 2020; 139 Plataniotis (ref_22) 1999; 87 Lei (ref_8) 2015; 2015 Zhang (ref_45) 2014; 21 ref_47 ref_44 Lukac (ref_5) 2007; 87 Liang (ref_28) 2008; 16 Khan (ref_38) 2017; 2017 Balasubramanian (ref_41) 2016; 70 ref_3 Faragallah (ref_35) 2016; 70 ref_2 Viero (ref_4) 1994; 4 Erkan (ref_43) 2018; 26 ref_49 ref_48 ref_9 Goyal (ref_31) 2018; 11 ref_6 |
| References_xml | – volume: 18 start-page: 287 year: 2011 ident: ref_37 article-title: Removal of High Density Salt and Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2011.2122333 – volume: 7 start-page: 1145 year: 2012 ident: ref_46 article-title: A Fast Novel Algorithm for Salt and Pepper Image Noise Cancellation Using Cardinal, B.-Splines publication-title: Signal Image Video Process. doi: 10.1007/s11760-012-0368-3 – ident: ref_9 – ident: ref_49 – ident: ref_32 – volume: 126 start-page: 2428 year: 2015 ident: ref_23 article-title: Fuzzy decision filter for color images denoising publication-title: Optik doi: 10.1016/j.ijleo.2015.06.005 – ident: ref_61 – volume: 87 start-page: 1601 year: 1999 ident: ref_22 article-title: Adaptive fuzzy systems for multichannel signal processing publication-title: Proc. IEEE doi: 10.1109/5.784243 – volume: 49 start-page: 2329 year: 2021 ident: ref_54 article-title: A new hardware architecture of the adaptive vector median filter and validation in a hardware/software environment publication-title: Int. J. Circuit Theory Appl. doi: 10.1002/cta.3000 – volume: 62 start-page: 313 year: 2013 ident: ref_17 article-title: Switching vector median filters based on non-causal linear prediction for detection of impulse noise publication-title: Imaging Sci. J. doi: 10.1179/1743131X14Y.0000000072 – volume: 24 start-page: 1889 year: 2003 ident: ref_12 article-title: Adaptive vector median filtering publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(03)00016-3 – volume: 48 start-page: 1274 year: 2020 ident: ref_55 article-title: An FPGA comparative study of high-level and low-level combined designs for HEVC intra, inverse quantization, and IDCT/IDST 2D modules publication-title: Int. J. Circuit Theory Appl. doi: 10.1002/cta.2790 – ident: ref_10 – volume: 2017 start-page: 67 year: 2017 ident: ref_39 article-title: An Adaptive Decision Based Interpolation Scheme for the Removal of High Density Salt and Pepper Noise in Images publication-title: EURASIP J. Image Video Process. doi: 10.1186/s13640-017-0215-0 – volume: 17 start-page: 281 year: 2010 ident: ref_36 article-title: Noise Adaptive Fuzzy Switching Median Filter for Salt-and-Pepper Noise Reduction publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2038769 – volume: 65 start-page: 7268 year: 2018 ident: ref_24 article-title: Region Adaptive Fuzzy Filter: An Approach for Removal of Random-Valued Impulse Noise publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2793225 – ident: ref_47 doi: 10.1007/978-3-662-03939-7 – ident: ref_15 doi: 10.1007/11867661 – ident: ref_34 doi: 10.3390/jcm8040462 – ident: ref_59 doi: 10.3390/data8020029 – volume: 87 start-page: 2085 year: 2007 ident: ref_5 article-title: Sharpening vector median filters publication-title: Signal Process. doi: 10.1016/j.sigpro.2007.02.009 – ident: ref_53 – volume: 128 start-page: 35 year: 2002 ident: ref_20 article-title: Adaptive fuzzy order statistics-rational hybrid filters for color image processing publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(01)00181-6 – volume: 21 start-page: 1280 year: 2014 ident: ref_45 article-title: A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2333012 – volume: 147 start-page: 173 year: 2018 ident: ref_19 article-title: A New Adaptive Switching Median Filter for Impulse Noise Reduction with Pre-Detection Based on Evidential Reasoning publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.01.027 – ident: ref_6 doi: 10.1109/SITIS.2012.20 – volume: 16 start-page: 863 year: 2008 ident: ref_28 article-title: A Novel Two-Stage Impulse Noise Removal Technique Based on Neural Networks and Fuzzy Decision publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2008.917297 – volume: 2017 start-page: 1 year: 2017 ident: ref_38 article-title: An Adaptive Dynamically Weighted Median Filter for Impulse Noise Removal publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-017-0502-z – ident: ref_11 – volume: 78 start-page: 678 year: 1990 ident: ref_1 article-title: Vector median filters publication-title: Proc. IEEE doi: 10.1109/5.54807 – volume: 12 start-page: 863 year: 2018 ident: ref_42 article-title: Adaptive Probability Filter for Removing Salt and Pepper Noises publication-title: IET Image Process. doi: 10.1049/iet-ipr.2017.0910 – ident: ref_26 doi: 10.23919/FRUCT.2017.8071343 – volume: 4 start-page: 129 year: 1994 ident: ref_4 article-title: Three-dimensional median-related filters for color image sequence filtering publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/76.285620 – ident: ref_21 doi: 10.1109/STA.2015.7505212 – volume: 26 start-page: 162 year: 2018 ident: ref_43 article-title: A New Method Based on Pixel Density in Salt and Pepper Noise Removal publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1705-256 – ident: ref_14 – volume: Volume 45 start-page: 1414 year: 1998 ident: ref_13 article-title: Color image processing using adaptive vector directional filters publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing – volume: 139 start-page: 1 year: 2020 ident: ref_33 article-title: Filtering Impulse Noise in Medical Images Using Information Sets publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.06.002 – ident: ref_44 doi: 10.1007/s12652-020-02376-2 – volume: 11 start-page: 3205 year: 2011 ident: ref_16 article-title: Adaptive Marginal Median Filter for Colour Images publication-title: Sensors doi: 10.3390/s110303205 – volume: 70 start-page: 1034 year: 2016 ident: ref_35 article-title: Adaptive Switching Weighted Median Filter Framework for Suppressing Salt-and-pepper Noise publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2016.04.018 – volume: 73 start-page: 189 year: 2013 ident: ref_52 article-title: A Very High Throughput Deblocking Filter for H.264/AVC publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-013-0744-4 – volume: 9 start-page: 373 year: 1996 ident: ref_25 article-title: A neural network adaptive filter for the removal of impulse noise in digital images publication-title: Neural Netw. doi: 10.1016/0893-6080(95)00128-X – ident: ref_2 doi: 10.1109/CACS.2018.8606777 – ident: ref_29 – volume: 16 start-page: 113 year: 2007 ident: ref_51 article-title: Efficient architecture and implementation of vector median filter in co-design context publication-title: RadioEng. Prague – volume: 28 start-page: 033010 year: 2019 ident: ref_56 article-title: Case study of an HEVC decoder application using high-level synthesis: Intraprediction, dequantization, and inverse transform blocks publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.28.3.033010 – volume: 11 start-page: 352 year: 2017 ident: ref_18 article-title: Combination of adaptive vector median filter and weighted mean filter for removal of high density impulse noise from color images publication-title: IET Image Process. doi: 10.1049/iet-ipr.2016.0320 – volume: 11 start-page: 1227 year: 2018 ident: ref_31 article-title: Noise Issues Prevailing in Various Types of Medical Images publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/1484 – volume: 70 start-page: 471 year: 2016 ident: ref_41 article-title: Probabilistic Decision Based Filter to Remove Impulse Noise Using Patch Else Trimmed Median publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2016.01.013 – volume: 68 start-page: 2925 year: 2021 ident: ref_57 article-title: An Optimized SW/HW AVMF Design Based on High-Level Synthesis Flow for Color Images publication-title: Comput. Mater. Contin. – volume: 8 start-page: 291 year: 2015 ident: ref_7 article-title: A Case Study of Impulse Noise Reduction Using Morphological Image Processing with Structuring Elements publication-title: Asian J. Sci. Res. doi: 10.3923/ajsr.2015.291.303 – ident: ref_48 doi: 10.1109/GCIS.2009.130 – volume: 2015 start-page: 596348 year: 2015 ident: ref_8 article-title: Multivariate Self-Dual Morphological Operators Based on Extremum Constraint publication-title: Math. Probl. Eng. doi: 10.1155/2015/596348 – volume: 14 start-page: 1606 year: 2021 ident: ref_30 article-title: The Impulse Noise of TMS inside a 3 T and 9.4 T MRI publication-title: Brain Stimul. doi: 10.1016/j.brs.2021.10.060 – ident: ref_3 doi: 10.1007/3-540-44692-3_69 – ident: ref_60 – ident: ref_58 doi: 10.3390/diagnostics12112738 – volume: 7 start-page: 70 year: 2010 ident: ref_50 article-title: HW/SW design- based implementation of vector median rational hybrid filter publication-title: Int. Arab J. Inf. Technol. – ident: ref_27 doi: 10.3390/s20102782 – volume: 70 start-page: 447 year: 2018 ident: ref_40 article-title: An Adaptive Decision Based Kriging Interpolation Algorithm for the Removal of High Density Salt and Pepper Noise in Images publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.05.035 |
| SSID | ssj0000913825 |
| Score | 2.2753186 |
| Snippet | This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1709 |
| SubjectTerms | Algorithms Analysis Design Digital integrated circuits Field programmable gate arrays FPGA high-density impulsive noise high-level synthesis image processing medical images Methods Morphology Neighborhoods Performance evaluation Tomography |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHgoXRHmGFmQkJC5E3dixEx9boCpI7QGK1Jvl2I6otE1W3ayq_vvOJG6UAAIOXOPxJvPweGY9_gbgrfR15vJSpVXpNP11o9PKBZ0G3F99jeGcqnu0z1N1_D3_ci7PJ62-qCZsgAceBLevg7A84LakrCckmFJyGbxQQWl8NNzqXZR6kkz1PlgTtp4cYIYE5vX7fqhcI-zjTJAdUgniZCvqEft_9cuTjennosn7m2Zlb67tcjnZkY4ewcMYSrKDgYUduBeax7B9Eg_Ln8A3dGDsKwaCKd3zYFTRkX6kevXuhn2-XG2WVLnOTtuLdUCyyxZtjp30DaVZjE1Z17J4koMz0POsn8LZ0aezD8dp7KGQOqmKLs0roSruqpBXdaHtIqCDW_gyD6FGVjCb0tJrzp32ZeGRrgpcofowKOOFra14BltN24QXwKRzKPbMVXRQ6_H3vOXCigznqjIXIQF-J03jIr44tblYGswzSAXmNypI4P04aTXAa_yZ_JDUNJISNnb_AC3GRIsxf7OYBN6Rkg2tYPxAZ-NFBGSTsLDMQSE1ujZ8ZQJ7M0pceW4-fGcmJq78taGDyVyQXBN4Mw7TTKpma0K7IRre4xZlIoHng1WNLImiT6LzBMqZvc14no80Fz96XHDq0k4lTgmko2n-i1Rf_g-p7sIDjvEfFVZk2R5sdVeb8Arjta563S_NWx58PaM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGTYK9IL4pDBQkJF6ItiRt2j4gtMGmgbQTGkPaW5UmKUy6tbddT2j_PXabljtAE6-N09ax4zix8zPA68RVwsaZ5mVmczq6yXlpfc49rq-uQndOVx3a51QffYs_nyVnGzAd7sJQWuVgEztD7RpLZ-Q7FPCJVYz-_Pv5JaeqURRdHUpomFBawb3rIMZuwaYkZKwJbO4fTL-cjKcuhIKJe6Iefkjhfn_H9RlthIksFOknpSauLFEdkv_f9nplwfozmfLOsp6b659mNltZqQ7vwd3gYrK9Xifuw4avH8Dt4xBEfwhf0bCxE3QQOd3_YJTpwT9SHnt7zT5dzJczymhn0-Z84ZHsokFdZMddoWkWfFbWNixEeLAHWqTFIzg9PDj9cMRDbQVuE522PC6VLqUtfVxWaW52PRq-XZfF3lfIiqBxdrmUNndZ6pCu9FKjWNFZk6mpjHoMk7qp_VNgibVOaWFLCuA6fJ8zUhklsK_OYuUjkMNoFjbgjlP5i1mB-w8SQfEPEUTwduw072E3bibfJzGNpISZ3T1orr4XYQoWuVdGenRwtHGEKZQlMvH4617n-EiICN6QkAua2fiD1oQLCsgmYWQVe2mSo8nDT0awvUaJM9KuNw9qUgSLsCh-628Er8Zm6klZbrVvlkQjOzwjoSJ40mvVyJJKu811HEG2pm9rPK-31Oc_Orxwqt5OqU8R8FE1_2dUn93Mx3PYkujxUSqFENswaa-W_gV6aG35Mky7X5B-PMY priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BJwEv43MQGChISLyQtbYTJ35C5WMaSKsQbNJ4ihzbgYouqdZkaPz13CVu1Q6EQLzG5za2z_cR__w7gGeJLZmJMxkVmVH06UZFhXEqcuhfbYnhnCw7ts-JPDiO358kJ2u3-AlWian4tDPSHP1ZhP46GzKB23vI0pEazm358tx_S2IyQ4-DPi-7ClsywWh8AFvHkw_jz1RTbtm7JxsSmN0PbY9fIwZkJkgbCYi45pA63v5frfOae7oMnbzeVnN98V3PZmt-af8m6OWIejjKt722KfbMj0tkj_8z5Fuw7YPWcNxr2W244qo7cO3QH8vfhU9oKsOPGHJGdKMkJOxI9IaQ8c1F-O503s4IIx9O6unCodhpjdodHnalq0MfBYdNHfozI-yBNm5xD4723x69Poh8tYbIJDJtorgQsuCmcHFRpkqPHJrSkc1i50qcLszbVGIV50bZLLUoVzguUVEw_OOpLrXYgUFVV-4BhIkxVkhmCjoStvh7VnOhBcO-MouFC4AvVyw3nsmcCmrMcsxoaJnz3yxzAC9WneY9kcefxV-RKqxEiYW7e1Cffcn9ps6VE5o7DJmktsRSlCU8cfjqTip8xFgAz0mRcrIV-IJG-ysPOExi3crHaaLQiOJfBrC7IYl73Gw2L1Ux9zZmkdMRaCxoXgN4umqmnoSbq1zdkgzvGJKYCOB-r7mrIYm0S9fjALINnd4Y82ZLNf3aMZBTPXgCUwUQrdT_b2b14T_KP4IbHINKQmswtguD5qx1jzEIbIonfp__BKxmV_M priority: 102 providerName: Unpaywall |
| Title | New Real-Time High-Density Impulsive Noise Removal Method Applied to Medical Images |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37238194 https://www.proquest.com/docview/2819434495 https://www.proquest.com/docview/2820017013 https://pubmed.ncbi.nlm.nih.gov/PMC10217601 https://www.mdpi.com/2075-4418/13/10/1709/pdf?version=1683815098 https://doaj.org/article/9e3a2e5126ad40438525ed36e6926a11 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTQJeEN8ERhUkBC8EGjtx4geEOtg0kFpNY5XGU5TYDkzKkq5NBf3vuXPcaoEx8Wqfk9h3vg_78juAl7EuQxWlIihSJenoRgaFMjIwaF91ie6cKC3a50QcTqMvp_HpFqwTMt0CLq4M7aie1HRevf11sfqAG_49RZwYsr_TXVIawRqHnERsKF_NLgKqLEU3sK7Mxg3YQeslqbzD2IUAVltLQuGLO0Cifz2uZ7Qstv_fGvySCfszvfLWsp7lq595VV2yXQd34Y5zOv1RJyX3YMvU9-Hm2F2rP4CvqOr8Y3QZA_ojxKfcj-ATZba3K__z-WxZUY67P2nOFgbJzhuUTn9sS0_7zov128Z3dz44AnXU4iGcHOyffDwMXLWFQMUiaYOo4KJgqjBRUSYyHxpUhUOdRsaUOBWMu2SsJWNK6jTRSFcYJpDR6L6xJC9z_gi266Y2T8CPldJchKqgK12Nz9M54zkPcaxII248YOvVzJRDIqeCGFWGEQmxILuCBR682QyadUAc15PvEZs2pISibRua-ffMbcpMGp4zgy6PyDWhDKUxiw1-uhESm8LQg9fE5IykDz9Q5e6XBZwmoWZloySWqATxlR7s9ihxj6p-91pMsrWIZ3SFGXFaVw9ebLppJOW91aZZEg2zCEch9-BxJ1WbKfHEhtuRB2lP3npz7vfUZz8sgjjVc6dkKA-CjWj-z6o-vX4ez-A2Qx-QkivCcBe22_nSPEefrS0GsLO3Pzk6Htgzj4Hdgtg2nRyNvv0GEJVHkA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVqJcEG8WChgJxIVVs_a-fKhQS1sltIlQKVJvltf2QqV0NzSJqvw4_hszG2dJAFVcel2PvX7My_b4G4A3iS0jE-dpWORG0tGNDAvjZOjQvtoS3bm0bNA-B2n3a_zpLDlbg5-LtzAUVrnQiY2itrWhM_JtuvCJRYz-_IfRj5CyRtHt6iKFhvapFexOAzHmH3YcudkVbuHGO719XO-3nB8enH7shj7LQGiSNJuEcSHSgpvCxUWZSd1xqAI6No-dK501Ef3RSs6NtHlmka5wPMUBotvCM11qgc3egg3smsS938beweDzSXvIQ6CbuAWbox0JITvbdh5ARxDMkSBxoEjIJYvYJA742zws2cc_Yzc3p9VIz670cLhkGA_vwV3v0bLdOQvehzVXPYDbfX9n_xC-oB5lJ-iPhvTchFFgSbhPYfOTGetdjKZDCqBng_p87JDsokbWZ_0mrzXzLjKb1MxfKGENVIDjR3B6E5P8GNarunJPgSXGWJFGpqD7YovtWc2FFhHWTfNYuAD4YjaV8TDnlG1jqHC7Q0ug_rEEAbxvK43mKB_Xk-_RMrWkBNHdfKgvvykv8Uo6oblDfyrVliCM8oQnDrvuUomfoiiAd7TIihQJdtBo_x4Ch0mQXGo3SyRqWPxlAFsrlKgAzGrxgk2UV0Bj9VtcAnjdFlNNCqqrXD0lGt7AJ0UigCdzrmqHJLJmLx8HkK_w28qYV0uq8-8NPDkli6dIqwDCljX_Z1afXT-OV7DZPe0fq-Pe4Og53OHobFIURxRtwfrkcupeoHM4KV56EWSgbljofwHDM3sI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTRq8IL4JDDASiBeiNnY-Hya00VUrY9U0hrQ3y7EdNqlLurXV1D-R_4q7xA0toImXvcbnJP6489n38-8A3kWmCHSYxn6e6oyObjI_1zbzLa6vpkB3Li5qts9hvP89_HIana7Bz8VdGIJVLmxibahNpemMvEMBn1CE6M93CgeLOOr1P40vfcogRZHWRToN5dIsmO2absxd8jiw82vczk22Bz0c-_ec9_dOPu_7LuOAr6M4mfphLuKc69yGeZFkqmvRHHRNGlpbWKMD-rrJONeZSRODcrnlMTYWXRieqEIJfO0d2KDYF9qIjd294dFxe-BDBJy4HWuYj4TIuh3TgOmIjjkQpBqEilxaHeskAn8vFUtr5Z84zruzcqzm12o0Wlok-w_gvvNu2U4zHR_Cmi0fweahi98_hm9oU9kx-qY-XT1hBDLxewShn87Z4GI8GxGYng2r84lFsYsK1YAd1jmumXOX2bRiLriENdAYTp7AyW108lNYL6vSPgcWaW1EHOicYscG32cUF0oEWDdOQ2E94IvelNpRnlPmjZHErQ8NgfzHEHjwsa00bhg_bhbfpWFqRYmuu35QXf2QTvtlZoXiFn2rWBmiM0ojHln8dRtn-CgIPPhAgyzJqOAPauXuRmAziZ5L7iRRhtYWP-nB1ookGgO9WryYJtIZo4n8rToevG2LqSYB7EpbzUiG11RKgfDgWTOr2iaJpN7Xhx6kK_Ntpc2rJeX5WU1VTonjCXXlgd9Ozf_p1Rc3t-MNbKLyy6-D4cFLuMfR7yRARxBswfr0amZfoZ84zV87DWQgb1nnfwE53H83 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BJwEv43MQGChISLyQtbYTJ35C5WMaSKsQbNJ4ihzbgYouqdZkaPz13CVu1Q6EQLzG5za2z_cR__w7gGeJLZmJMxkVmVH06UZFhXEqcuhfbYnhnCw7ts-JPDiO358kJ2u3-AlWian4tDPSHP1ZhP46GzKB23vI0pEazm358tx_S2IyQ4-DPi-7ClsywWh8AFvHkw_jz1RTbtm7JxsSmN0PbY9fIwZkJkgbCYi45pA63v5frfOae7oMnbzeVnN98V3PZmt-af8m6OWIejjKt722KfbMj0tkj_8z5Fuw7YPWcNxr2W244qo7cO3QH8vfhU9oKsOPGHJGdKMkJOxI9IaQ8c1F-O503s4IIx9O6unCodhpjdodHnalq0MfBYdNHfozI-yBNm5xD4723x69Poh8tYbIJDJtorgQsuCmcHFRpkqPHJrSkc1i50qcLszbVGIV50bZLLUoVzguUVEw_OOpLrXYgUFVV-4BhIkxVkhmCjoStvh7VnOhBcO-MouFC4AvVyw3nsmcCmrMcsxoaJnz3yxzAC9WneY9kcefxV-RKqxEiYW7e1Cffcn9ps6VE5o7DJmktsRSlCU8cfjqTip8xFgAz0mRcrIV-IJG-ysPOExi3crHaaLQiOJfBrC7IYl73Gw2L1Ux9zZmkdMRaCxoXgN4umqmnoSbq1zdkgzvGJKYCOB-r7mrIYm0S9fjALINnd4Y82ZLNf3aMZBTPXgCUwUQrdT_b2b14T_KP4IbHINKQmswtguD5qx1jzEIbIonfp__BKxmV_M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Real-Time+High-Density+Impulsive+Noise+Removal+Method+Applied+to+Medical+Images&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Alanazi%2C+Turki+M&rft.au=Kamel+Berriri&rft.au=Albekairi%2C+Mohammed&rft.au=Ahmed+Ben+Atitallah&rft.date=2023-05-11&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=13&rft.issue=10&rft.spage=1709&rft_id=info:doi/10.3390%2Fdiagnostics13101709&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |