New Real-Time High-Density Impulsive Noise Removal Method Applied to Medical Images

This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy ima...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 10; p. 1709
Main Authors Alanazi, Turki M., Berriri, Kamel, Albekairi, Mohammed, Ben Atitallah, Ahmed, Sahbani, Anis, Kaaniche, Khaled
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.05.2023
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics13101709

Cover

Abstract This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10.
AbstractList This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10.
This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10.This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10.
Audience Academic
Author Alanazi, Turki M.
Kaaniche, Khaled
Sahbani, Anis
Ben Atitallah, Ahmed
Albekairi, Mohammed
Berriri, Kamel
AuthorAffiliation 1 Department of Electrical Engineering, College of Engineering, Jouf University, Sakakah 72388, Saudi Arabia
3 Institute for Intelligent Systems and Robotics (ISIR), CNRS, Sorbonne University, 75006 Paris, France
2 LAMMDA Laboratory, University of Sousse, Sousse 4054, Tunisia
AuthorAffiliation_xml – name: 3 Institute for Intelligent Systems and Robotics (ISIR), CNRS, Sorbonne University, 75006 Paris, France
– name: 2 LAMMDA Laboratory, University of Sousse, Sousse 4054, Tunisia
– name: 1 Department of Electrical Engineering, College of Engineering, Jouf University, Sakakah 72388, Saudi Arabia
Author_xml – sequence: 1
  givenname: Turki M.
  orcidid: 0000-0002-1314-7146
  surname: Alanazi
  fullname: Alanazi, Turki M.
– sequence: 2
  givenname: Kamel
  surname: Berriri
  fullname: Berriri, Kamel
– sequence: 3
  givenname: Mohammed
  surname: Albekairi
  fullname: Albekairi, Mohammed
– sequence: 4
  givenname: Ahmed
  orcidid: 0000-0002-2121-4417
  surname: Ben Atitallah
  fullname: Ben Atitallah, Ahmed
– sequence: 5
  givenname: Anis
  surname: Sahbani
  fullname: Sahbani, Anis
– sequence: 6
  givenname: Khaled
  orcidid: 0000-0003-0625-6245
  surname: Kaaniche
  fullname: Kaaniche, Khaled
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37238194$$D View this record in MEDLINE/PubMed
BookMark eNqNkttu1DAQhiNURA_0CZBQJG64SfEpB1-hVaF0pVIk2HvLiSdZr5w4xMlW-_ZM2FK6VYWIL2KNv_ln5rdPo6POdxBFbyi54FySD8bqpvNhtFWgnBKaE_kiOmEkTxMhaHH0aH8cnYewIfhJyguWvoqOec54QaU4iX7cwl38HbRLVraF-No26-QTdMGOu3jZ9pMLdgvxrbcBEGv9Vrv4K4xrb-JF3zsLJh49Royt8GTZ6gbC6-hlrV2A8_v_WbS6-ry6vE5uvn1ZXi5ukirN8jERJc9KVpUgyjqXmkDKC2IKAVCDqagQMjWSsUqaIjfIlcAyU1PGMpbrWvOzaLmXNV5vVD_YVg875bVVvwN-aJQe0CAHSgLXDFLKMm0EEbxIWQqGZ5BJDFGKWmKvNXW93t1p5x4EKVGz4-oZxzHt4z6tn8oWm4ZuHLQ76OXwpLNr1fgtijKaZ2Qu_P5eYfA_Jwijam2owDndgZ-CYgUjcy3KEX33BN34aejQYaTwMvns2F-q0Ti47WqPhatZVC3yVBJBsHmkLp6hcBlobYVPrbYYP0h4-3jShxH_vCQE-B6oBh_CAPV_GiifZFV21KP1s13W_TP3F-Mj8cw
CitedBy_id crossref_primary_10_1016_j_neucom_2025_129667
crossref_primary_10_3390_app14020635
crossref_primary_10_1007_s10044_024_01296_7
crossref_primary_10_3390_app132112069
crossref_primary_10_1038_s41598_025_92283_3
Cites_doi 10.1109/LSP.2011.2122333
10.1007/s11760-012-0368-3
10.1016/j.ijleo.2015.06.005
10.1109/5.784243
10.1002/cta.3000
10.1179/1743131X14Y.0000000072
10.1016/S0167-8655(03)00016-3
10.1002/cta.2790
10.1186/s13640-017-0215-0
10.1109/LSP.2009.2038769
10.1109/TIE.2018.2793225
10.1007/978-3-662-03939-7
10.1007/11867661
10.3390/jcm8040462
10.3390/data8020029
10.1016/j.sigpro.2007.02.009
10.1016/S0165-0114(01)00181-6
10.1109/LSP.2014.2333012
10.1016/j.sigpro.2018.01.027
10.1109/SITIS.2012.20
10.1109/TFUZZ.2008.917297
10.1186/s13634-017-0502-z
10.1109/5.54807
10.1049/iet-ipr.2017.0910
10.23919/FRUCT.2017.8071343
10.1109/76.285620
10.1109/STA.2015.7505212
10.3906/elk-1705-256
10.1016/j.patrec.2018.06.002
10.1007/s12652-020-02376-2
10.3390/s110303205
10.1016/j.aeue.2016.04.018
10.1007/s11265-013-0744-4
10.1016/0893-6080(95)00128-X
10.1109/CACS.2018.8606777
10.1117/1.JEI.28.3.033010
10.1049/iet-ipr.2016.0320
10.13005/bpj/1484
10.1016/j.aeue.2016.01.013
10.3923/ajsr.2015.291.303
10.1109/GCIS.2009.130
10.1155/2015/596348
10.1016/j.brs.2021.10.060
10.1007/3-540-44692-3_69
10.3390/diagnostics12112738
10.3390/s20102782
10.1016/j.compeleceng.2017.05.035
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics13101709
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_9e3a2e5126ad40438525ed36e6926a11
10.3390/diagnostics13101709
PMC10217601
A759040310
37238194
10_3390_diagnostics13101709
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia
  grantid: 223202
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c567t-4b36b2cbe4bf79a0e5380d84eefedc14495d922c9d87d2cbbe26df122627afa3
IEDL.DBID M48
ISSN 2075-4418
IngestDate Fri Oct 03 12:41:19 EDT 2025
Sun Oct 26 03:52:20 EDT 2025
Tue Sep 30 17:13:55 EDT 2025
Thu Sep 04 16:45:26 EDT 2025
Sun Jun 29 16:56:01 EDT 2025
Tue Jun 17 21:46:03 EDT 2025
Mon Oct 20 17:20:21 EDT 2025
Mon Jul 21 05:56:34 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Thu Oct 16 04:32:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords image processing
medical images
high-level synthesis
high-density impulsive noise
FPGA
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-4b36b2cbe4bf79a0e5380d84eefedc14495d922c9d87d2cbbe26df122627afa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0625-6245
0000-0002-2121-4417
0000-0002-1314-7146
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics13101709
PMID 37238194
PQID 2819434495
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_9e3a2e5126ad40438525ed36e6926a11
unpaywall_primary_10_3390_diagnostics13101709
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10217601
proquest_miscellaneous_2820017013
proquest_journals_2819434495
gale_infotracmisc_A759040310
gale_infotracacademiconefile_A759040310
pubmed_primary_37238194
crossref_primary_10_3390_diagnostics13101709
crossref_citationtrail_10_3390_diagnostics13101709
PublicationCentury 2000
PublicationDate 2023-05-11
PublicationDateYYYYMMDD 2023-05-11
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lukac (ref_12) 2003; 24
Singh (ref_17) 2013; 62
Jayasree (ref_46) 2012; 7
Kthiri (ref_52) 2013; 73
ref_14
ref_58
Esakkirajan (ref_37) 2011; 18
ref_11
ref_10
Morillas (ref_16) 2011; 11
ref_53
Nyrhinen (ref_30) 2021; 14
Astola (ref_1) 1990; 78
ref_15
ref_59
Roy (ref_24) 2018; 65
Khriji (ref_20) 2002; 128
ref_61
Kammoun (ref_56) 2019; 28
ref_60
Alanazi (ref_57) 2021; 68
Plataniotis (ref_13) 1998; Volume 45
Kishorebabu (ref_39) 2017; 2017
ref_21
ref_29
ref_27
ref_26
Toh (ref_36) 2010; 17
Chen (ref_42) 2018; 12
Boudabous (ref_50) 2010; 7
Abid (ref_54) 2021; 49
Zhang (ref_19) 2018; 147
Kong (ref_25) 1996; 9
ref_34
Roy (ref_18) 2017; 11
ref_32
Wang (ref_23) 2015; 126
Varatharajan (ref_40) 2018; 70
Kammoun (ref_55) 2020; 48
Boudabous (ref_51) 2007; 16
Elamaran (ref_7) 2015; 8
Arora (ref_33) 2020; 139
Plataniotis (ref_22) 1999; 87
Lei (ref_8) 2015; 2015
Zhang (ref_45) 2014; 21
ref_47
ref_44
Lukac (ref_5) 2007; 87
Liang (ref_28) 2008; 16
Khan (ref_38) 2017; 2017
Balasubramanian (ref_41) 2016; 70
ref_3
Faragallah (ref_35) 2016; 70
ref_2
Viero (ref_4) 1994; 4
Erkan (ref_43) 2018; 26
ref_49
ref_48
ref_9
Goyal (ref_31) 2018; 11
ref_6
References_xml – volume: 18
  start-page: 287
  year: 2011
  ident: ref_37
  article-title: Removal of High Density Salt and Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2011.2122333
– volume: 7
  start-page: 1145
  year: 2012
  ident: ref_46
  article-title: A Fast Novel Algorithm for Salt and Pepper Image Noise Cancellation Using Cardinal, B.-Splines
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-012-0368-3
– ident: ref_9
– ident: ref_49
– ident: ref_32
– volume: 126
  start-page: 2428
  year: 2015
  ident: ref_23
  article-title: Fuzzy decision filter for color images denoising
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.06.005
– ident: ref_61
– volume: 87
  start-page: 1601
  year: 1999
  ident: ref_22
  article-title: Adaptive fuzzy systems for multichannel signal processing
  publication-title: Proc. IEEE
  doi: 10.1109/5.784243
– volume: 49
  start-page: 2329
  year: 2021
  ident: ref_54
  article-title: A new hardware architecture of the adaptive vector median filter and validation in a hardware/software environment
  publication-title: Int. J. Circuit Theory Appl.
  doi: 10.1002/cta.3000
– volume: 62
  start-page: 313
  year: 2013
  ident: ref_17
  article-title: Switching vector median filters based on non-causal linear prediction for detection of impulse noise
  publication-title: Imaging Sci. J.
  doi: 10.1179/1743131X14Y.0000000072
– volume: 24
  start-page: 1889
  year: 2003
  ident: ref_12
  article-title: Adaptive vector median filtering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00016-3
– volume: 48
  start-page: 1274
  year: 2020
  ident: ref_55
  article-title: An FPGA comparative study of high-level and low-level combined designs for HEVC intra, inverse quantization, and IDCT/IDST 2D modules
  publication-title: Int. J. Circuit Theory Appl.
  doi: 10.1002/cta.2790
– ident: ref_10
– volume: 2017
  start-page: 67
  year: 2017
  ident: ref_39
  article-title: An Adaptive Decision Based Interpolation Scheme for the Removal of High Density Salt and Pepper Noise in Images
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-017-0215-0
– volume: 17
  start-page: 281
  year: 2010
  ident: ref_36
  article-title: Noise Adaptive Fuzzy Switching Median Filter for Salt-and-Pepper Noise Reduction
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2038769
– volume: 65
  start-page: 7268
  year: 2018
  ident: ref_24
  article-title: Region Adaptive Fuzzy Filter: An Approach for Removal of Random-Valued Impulse Noise
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2793225
– ident: ref_47
  doi: 10.1007/978-3-662-03939-7
– ident: ref_15
  doi: 10.1007/11867661
– ident: ref_34
  doi: 10.3390/jcm8040462
– ident: ref_59
  doi: 10.3390/data8020029
– volume: 87
  start-page: 2085
  year: 2007
  ident: ref_5
  article-title: Sharpening vector median filters
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2007.02.009
– ident: ref_53
– volume: 128
  start-page: 35
  year: 2002
  ident: ref_20
  article-title: Adaptive fuzzy order statistics-rational hybrid filters for color image processing
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(01)00181-6
– volume: 21
  start-page: 1280
  year: 2014
  ident: ref_45
  article-title: A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2333012
– volume: 147
  start-page: 173
  year: 2018
  ident: ref_19
  article-title: A New Adaptive Switching Median Filter for Impulse Noise Reduction with Pre-Detection Based on Evidential Reasoning
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.01.027
– ident: ref_6
  doi: 10.1109/SITIS.2012.20
– volume: 16
  start-page: 863
  year: 2008
  ident: ref_28
  article-title: A Novel Two-Stage Impulse Noise Removal Technique Based on Neural Networks and Fuzzy Decision
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2008.917297
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_38
  article-title: An Adaptive Dynamically Weighted Median Filter for Impulse Noise Removal
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-017-0502-z
– ident: ref_11
– volume: 78
  start-page: 678
  year: 1990
  ident: ref_1
  article-title: Vector median filters
  publication-title: Proc. IEEE
  doi: 10.1109/5.54807
– volume: 12
  start-page: 863
  year: 2018
  ident: ref_42
  article-title: Adaptive Probability Filter for Removing Salt and Pepper Noises
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2017.0910
– ident: ref_26
  doi: 10.23919/FRUCT.2017.8071343
– volume: 4
  start-page: 129
  year: 1994
  ident: ref_4
  article-title: Three-dimensional median-related filters for color image sequence filtering
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/76.285620
– ident: ref_21
  doi: 10.1109/STA.2015.7505212
– volume: 26
  start-page: 162
  year: 2018
  ident: ref_43
  article-title: A New Method Based on Pixel Density in Salt and Pepper Noise Removal
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1705-256
– ident: ref_14
– volume: Volume 45
  start-page: 1414
  year: 1998
  ident: ref_13
  article-title: Color image processing using adaptive vector directional filters
  publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
– volume: 139
  start-page: 1
  year: 2020
  ident: ref_33
  article-title: Filtering Impulse Noise in Medical Images Using Information Sets
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.06.002
– ident: ref_44
  doi: 10.1007/s12652-020-02376-2
– volume: 11
  start-page: 3205
  year: 2011
  ident: ref_16
  article-title: Adaptive Marginal Median Filter for Colour Images
  publication-title: Sensors
  doi: 10.3390/s110303205
– volume: 70
  start-page: 1034
  year: 2016
  ident: ref_35
  article-title: Adaptive Switching Weighted Median Filter Framework for Suppressing Salt-and-pepper Noise
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2016.04.018
– volume: 73
  start-page: 189
  year: 2013
  ident: ref_52
  article-title: A Very High Throughput Deblocking Filter for H.264/AVC
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-013-0744-4
– volume: 9
  start-page: 373
  year: 1996
  ident: ref_25
  article-title: A neural network adaptive filter for the removal of impulse noise in digital images
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(95)00128-X
– ident: ref_2
  doi: 10.1109/CACS.2018.8606777
– ident: ref_29
– volume: 16
  start-page: 113
  year: 2007
  ident: ref_51
  article-title: Efficient architecture and implementation of vector median filter in co-design context
  publication-title: RadioEng. Prague
– volume: 28
  start-page: 033010
  year: 2019
  ident: ref_56
  article-title: Case study of an HEVC decoder application using high-level synthesis: Intraprediction, dequantization, and inverse transform blocks
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.28.3.033010
– volume: 11
  start-page: 352
  year: 2017
  ident: ref_18
  article-title: Combination of adaptive vector median filter and weighted mean filter for removal of high density impulse noise from color images
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2016.0320
– volume: 11
  start-page: 1227
  year: 2018
  ident: ref_31
  article-title: Noise Issues Prevailing in Various Types of Medical Images
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/1484
– volume: 70
  start-page: 471
  year: 2016
  ident: ref_41
  article-title: Probabilistic Decision Based Filter to Remove Impulse Noise Using Patch Else Trimmed Median
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2016.01.013
– volume: 68
  start-page: 2925
  year: 2021
  ident: ref_57
  article-title: An Optimized SW/HW AVMF Design Based on High-Level Synthesis Flow for Color Images
  publication-title: Comput. Mater. Contin.
– volume: 8
  start-page: 291
  year: 2015
  ident: ref_7
  article-title: A Case Study of Impulse Noise Reduction Using Morphological Image Processing with Structuring Elements
  publication-title: Asian J. Sci. Res.
  doi: 10.3923/ajsr.2015.291.303
– ident: ref_48
  doi: 10.1109/GCIS.2009.130
– volume: 2015
  start-page: 596348
  year: 2015
  ident: ref_8
  article-title: Multivariate Self-Dual Morphological Operators Based on Extremum Constraint
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/596348
– volume: 14
  start-page: 1606
  year: 2021
  ident: ref_30
  article-title: The Impulse Noise of TMS inside a 3 T and 9.4 T MRI
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2021.10.060
– ident: ref_3
  doi: 10.1007/3-540-44692-3_69
– ident: ref_60
– ident: ref_58
  doi: 10.3390/diagnostics12112738
– volume: 7
  start-page: 70
  year: 2010
  ident: ref_50
  article-title: HW/SW design- based implementation of vector median rational hybrid filter
  publication-title: Int. Arab J. Inf. Technol.
– ident: ref_27
  doi: 10.3390/s20102782
– volume: 70
  start-page: 447
  year: 2018
  ident: ref_40
  article-title: An Adaptive Decision Based Kriging Interpolation Algorithm for the Removal of High Density Salt and Pepper Noise in Images
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.05.035
SSID ssj0000913825
Score 2.2753186
Snippet This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1709
SubjectTerms Algorithms
Analysis
Design
Digital integrated circuits
Field programmable gate arrays
FPGA
high-density impulsive noise
high-level synthesis
image processing
medical images
Methods
Morphology
Neighborhoods
Performance evaluation
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHgoXRHmGFmQkJC5E3dixEx9boCpI7QGK1Jvl2I6otE1W3ayq_vvOJG6UAAIOXOPxJvPweGY9_gbgrfR15vJSpVXpNP11o9PKBZ0G3F99jeGcqnu0z1N1_D3_ci7PJ62-qCZsgAceBLevg7A84LakrCckmFJyGbxQQWl8NNzqXZR6kkz1PlgTtp4cYIYE5vX7fqhcI-zjTJAdUgniZCvqEft_9cuTjennosn7m2Zlb67tcjnZkY4ewcMYSrKDgYUduBeax7B9Eg_Ln8A3dGDsKwaCKd3zYFTRkX6kevXuhn2-XG2WVLnOTtuLdUCyyxZtjp30DaVZjE1Z17J4koMz0POsn8LZ0aezD8dp7KGQOqmKLs0roSruqpBXdaHtIqCDW_gyD6FGVjCb0tJrzp32ZeGRrgpcofowKOOFra14BltN24QXwKRzKPbMVXRQ6_H3vOXCigznqjIXIQF-J03jIr44tblYGswzSAXmNypI4P04aTXAa_yZ_JDUNJISNnb_AC3GRIsxf7OYBN6Rkg2tYPxAZ-NFBGSTsLDMQSE1ujZ8ZQJ7M0pceW4-fGcmJq78taGDyVyQXBN4Mw7TTKpma0K7IRre4xZlIoHng1WNLImiT6LzBMqZvc14no80Fz96XHDq0k4lTgmko2n-i1Rf_g-p7sIDjvEfFVZk2R5sdVeb8Arjta563S_NWx58PaM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGTYK9IL4pDBQkJF6ItiRt2j4gtMGmgbQTGkPaW5UmKUy6tbddT2j_PXabljtAE6-N09ax4zix8zPA68RVwsaZ5mVmczq6yXlpfc49rq-uQndOVx3a51QffYs_nyVnGzAd7sJQWuVgEztD7RpLZ-Q7FPCJVYz-_Pv5JaeqURRdHUpomFBawb3rIMZuwaYkZKwJbO4fTL-cjKcuhIKJe6Iefkjhfn_H9RlthIksFOknpSauLFEdkv_f9nplwfozmfLOsp6b659mNltZqQ7vwd3gYrK9Xifuw4avH8Dt4xBEfwhf0bCxE3QQOd3_YJTpwT9SHnt7zT5dzJczymhn0-Z84ZHsokFdZMddoWkWfFbWNixEeLAHWqTFIzg9PDj9cMRDbQVuE522PC6VLqUtfVxWaW52PRq-XZfF3lfIiqBxdrmUNndZ6pCu9FKjWNFZk6mpjHoMk7qp_VNgibVOaWFLCuA6fJ8zUhklsK_OYuUjkMNoFjbgjlP5i1mB-w8SQfEPEUTwduw072E3bibfJzGNpISZ3T1orr4XYQoWuVdGenRwtHGEKZQlMvH4617n-EiICN6QkAua2fiD1oQLCsgmYWQVe2mSo8nDT0awvUaJM9KuNw9qUgSLsCh-628Er8Zm6klZbrVvlkQjOzwjoSJ40mvVyJJKu811HEG2pm9rPK-31Oc_Orxwqt5OqU8R8FE1_2dUn93Mx3PYkujxUSqFENswaa-W_gV6aG35Mky7X5B-PMY
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BJwEv43MQGChISLyQtbYTJ35C5WMaSKsQbNJ4ihzbgYouqdZkaPz13CVu1Q6EQLzG5za2z_cR__w7gGeJLZmJMxkVmVH06UZFhXEqcuhfbYnhnCw7ts-JPDiO358kJ2u3-AlWian4tDPSHP1ZhP46GzKB23vI0pEazm358tx_S2IyQ4-DPi-7ClsywWh8AFvHkw_jz1RTbtm7JxsSmN0PbY9fIwZkJkgbCYi45pA63v5frfOae7oMnbzeVnN98V3PZmt-af8m6OWIejjKt722KfbMj0tkj_8z5Fuw7YPWcNxr2W244qo7cO3QH8vfhU9oKsOPGHJGdKMkJOxI9IaQ8c1F-O503s4IIx9O6unCodhpjdodHnalq0MfBYdNHfozI-yBNm5xD4723x69Poh8tYbIJDJtorgQsuCmcHFRpkqPHJrSkc1i50qcLszbVGIV50bZLLUoVzguUVEw_OOpLrXYgUFVV-4BhIkxVkhmCjoStvh7VnOhBcO-MouFC4AvVyw3nsmcCmrMcsxoaJnz3yxzAC9WneY9kcefxV-RKqxEiYW7e1Cffcn9ps6VE5o7DJmktsRSlCU8cfjqTip8xFgAz0mRcrIV-IJG-ysPOExi3crHaaLQiOJfBrC7IYl73Gw2L1Ux9zZmkdMRaCxoXgN4umqmnoSbq1zdkgzvGJKYCOB-r7mrIYm0S9fjALINnd4Y82ZLNf3aMZBTPXgCUwUQrdT_b2b14T_KP4IbHINKQmswtguD5qx1jzEIbIonfp__BKxmV_M
  priority: 102
  providerName: Unpaywall
Title New Real-Time High-Density Impulsive Noise Removal Method Applied to Medical Images
URI https://www.ncbi.nlm.nih.gov/pubmed/37238194
https://www.proquest.com/docview/2819434495
https://www.proquest.com/docview/2820017013
https://pubmed.ncbi.nlm.nih.gov/PMC10217601
https://www.mdpi.com/2075-4418/13/10/1709/pdf?version=1683815098
https://doaj.org/article/9e3a2e5126ad40438525ed36e6926a11
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTQJeEN8ERhUkBC8EGjtx4geEOtg0kFpNY5XGU5TYDkzKkq5NBf3vuXPcaoEx8Wqfk9h3vg_78juAl7EuQxWlIihSJenoRgaFMjIwaF91ie6cKC3a50QcTqMvp_HpFqwTMt0CLq4M7aie1HRevf11sfqAG_49RZwYsr_TXVIawRqHnERsKF_NLgKqLEU3sK7Mxg3YQeslqbzD2IUAVltLQuGLO0Cifz2uZ7Qstv_fGvySCfszvfLWsp7lq595VV2yXQd34Y5zOv1RJyX3YMvU9-Hm2F2rP4CvqOr8Y3QZA_ojxKfcj-ATZba3K__z-WxZUY67P2nOFgbJzhuUTn9sS0_7zov128Z3dz44AnXU4iGcHOyffDwMXLWFQMUiaYOo4KJgqjBRUSYyHxpUhUOdRsaUOBWMu2SsJWNK6jTRSFcYJpDR6L6xJC9z_gi266Y2T8CPldJchKqgK12Nz9M54zkPcaxII248YOvVzJRDIqeCGFWGEQmxILuCBR682QyadUAc15PvEZs2pISibRua-ffMbcpMGp4zgy6PyDWhDKUxiw1-uhESm8LQg9fE5IykDz9Q5e6XBZwmoWZloySWqATxlR7s9ihxj6p-91pMsrWIZ3SFGXFaVw9ebLppJOW91aZZEg2zCEch9-BxJ1WbKfHEhtuRB2lP3npz7vfUZz8sgjjVc6dkKA-CjWj-z6o-vX4ez-A2Qx-QkivCcBe22_nSPEefrS0GsLO3Pzk6Htgzj4Hdgtg2nRyNvv0GEJVHkA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVqJcEG8WChgJxIVVs_a-fKhQS1sltIlQKVJvltf2QqV0NzSJqvw4_hszG2dJAFVcel2PvX7My_b4G4A3iS0jE-dpWORG0tGNDAvjZOjQvtoS3bm0bNA-B2n3a_zpLDlbg5-LtzAUVrnQiY2itrWhM_JtuvCJRYz-_IfRj5CyRtHt6iKFhvapFexOAzHmH3YcudkVbuHGO719XO-3nB8enH7shj7LQGiSNJuEcSHSgpvCxUWZSd1xqAI6No-dK501Ef3RSs6NtHlmka5wPMUBotvCM11qgc3egg3smsS938beweDzSXvIQ6CbuAWbox0JITvbdh5ARxDMkSBxoEjIJYvYJA742zws2cc_Yzc3p9VIz670cLhkGA_vwV3v0bLdOQvehzVXPYDbfX9n_xC-oB5lJ-iPhvTchFFgSbhPYfOTGetdjKZDCqBng_p87JDsokbWZ_0mrzXzLjKb1MxfKGENVIDjR3B6E5P8GNarunJPgSXGWJFGpqD7YovtWc2FFhHWTfNYuAD4YjaV8TDnlG1jqHC7Q0ug_rEEAbxvK43mKB_Xk-_RMrWkBNHdfKgvvykv8Uo6oblDfyrVliCM8oQnDrvuUomfoiiAd7TIihQJdtBo_x4Ch0mQXGo3SyRqWPxlAFsrlKgAzGrxgk2UV0Bj9VtcAnjdFlNNCqqrXD0lGt7AJ0UigCdzrmqHJLJmLx8HkK_w28qYV0uq8-8NPDkli6dIqwDCljX_Z1afXT-OV7DZPe0fq-Pe4Og53OHobFIURxRtwfrkcupeoHM4KV56EWSgbljofwHDM3sI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTRq8IL4JDDASiBeiNnY-Hya00VUrY9U0hrQ3y7EdNqlLurXV1D-R_4q7xA0toImXvcbnJP6489n38-8A3kWmCHSYxn6e6oyObjI_1zbzLa6vpkB3Li5qts9hvP89_HIana7Bz8VdGIJVLmxibahNpemMvEMBn1CE6M93CgeLOOr1P40vfcogRZHWRToN5dIsmO2absxd8jiw82vczk22Bz0c-_ec9_dOPu_7LuOAr6M4mfphLuKc69yGeZFkqmvRHHRNGlpbWKMD-rrJONeZSRODcrnlMTYWXRieqEIJfO0d2KDYF9qIjd294dFxe-BDBJy4HWuYj4TIuh3TgOmIjjkQpBqEilxaHeskAn8vFUtr5Z84zruzcqzm12o0Wlok-w_gvvNu2U4zHR_Cmi0fweahi98_hm9oU9kx-qY-XT1hBDLxewShn87Z4GI8GxGYng2r84lFsYsK1YAd1jmumXOX2bRiLriENdAYTp7AyW108lNYL6vSPgcWaW1EHOicYscG32cUF0oEWDdOQ2E94IvelNpRnlPmjZHErQ8NgfzHEHjwsa00bhg_bhbfpWFqRYmuu35QXf2QTvtlZoXiFn2rWBmiM0ojHln8dRtn-CgIPPhAgyzJqOAPauXuRmAziZ5L7iRRhtYWP-nB1ookGgO9WryYJtIZo4n8rToevG2LqSYB7EpbzUiG11RKgfDgWTOr2iaJpN7Xhx6kK_Ntpc2rJeX5WU1VTonjCXXlgd9Ozf_p1Rc3t-MNbKLyy6-D4cFLuMfR7yRARxBswfr0amZfoZ84zV87DWQgb1nnfwE53H83
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BJwEv43MQGChISLyQtbYTJ35C5WMaSKsQbNJ4ihzbgYouqdZkaPz13CVu1Q6EQLzG5za2z_cR__w7gGeJLZmJMxkVmVH06UZFhXEqcuhfbYnhnCw7ts-JPDiO358kJ2u3-AlWian4tDPSHP1ZhP46GzKB23vI0pEazm358tx_S2IyQ4-DPi-7ClsywWh8AFvHkw_jz1RTbtm7JxsSmN0PbY9fIwZkJkgbCYi45pA63v5frfOae7oMnbzeVnN98V3PZmt-af8m6OWIejjKt722KfbMj0tkj_8z5Fuw7YPWcNxr2W244qo7cO3QH8vfhU9oKsOPGHJGdKMkJOxI9IaQ8c1F-O503s4IIx9O6unCodhpjdodHnalq0MfBYdNHfozI-yBNm5xD4723x69Poh8tYbIJDJtorgQsuCmcHFRpkqPHJrSkc1i50qcLszbVGIV50bZLLUoVzguUVEw_OOpLrXYgUFVV-4BhIkxVkhmCjoStvh7VnOhBcO-MouFC4AvVyw3nsmcCmrMcsxoaJnz3yxzAC9WneY9kcefxV-RKqxEiYW7e1Cffcn9ps6VE5o7DJmktsRSlCU8cfjqTip8xFgAz0mRcrIV-IJG-ysPOExi3crHaaLQiOJfBrC7IYl73Gw2L1Ux9zZmkdMRaCxoXgN4umqmnoSbq1zdkgzvGJKYCOB-r7mrIYm0S9fjALINnd4Y82ZLNf3aMZBTPXgCUwUQrdT_b2b14T_KP4IbHINKQmswtguD5qx1jzEIbIonfp__BKxmV_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Real-Time+High-Density+Impulsive+Noise+Removal+Method+Applied+to+Medical+Images&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Alanazi%2C+Turki+M&rft.au=Kamel+Berriri&rft.au=Albekairi%2C+Mohammed&rft.au=Ahmed+Ben+Atitallah&rft.date=2023-05-11&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=13&rft.issue=10&rft.spage=1709&rft_id=info:doi/10.3390%2Fdiagnostics13101709&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon