A New Weighted Deep Learning Feature Using Particle Swarm and Ant Lion Optimization for Cervical Cancer Diagnosis on Pap Smear Images

One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer....

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 17; p. 2762
Main Authors Alsalatie, Mohammed, Alquran, Hiam, Mustafa, Wan Azani, Zyout, Ala’a, Alqudah, Ali Mohammad, Kaifi, Reham, Qudsieh, Suhair
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.08.2023
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics13172762

Cover

Abstract One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.
AbstractList One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.
One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.
Audience Academic
Author Alsalatie, Mohammed
Zyout, Ala’a
Alqudah, Ali Mohammad
Kaifi, Reham
Mustafa, Wan Azani
Qudsieh, Suhair
Alquran, Hiam
AuthorAffiliation 3 Faculty of Electrical Engineering & Technology, Campus Pauh Putra, Universiti Malaysia Perlis, Arau 02600, Malaysia
1 King Hussein Medical Center, Royal Jordanian Medical Service, The Institute of Biomedical Technology, Amman 11855, Jordan; mhmdsliti312@gmail.com
5 College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
6 King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
2 Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; alzuet@yu.edu.jo (A.Z.); ali_qudah@hotmail.com (A.M.A.)
4 Advanced Computing (AdvCOMP), Centre of Excellence (CoE), Universiti Malaysia Perlis, Arau 02600, Malaysia
7 Department of Obstetrics and Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; suhair.qudsieh@yu.edu.jo
AuthorAffiliation_xml – name: 5 College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
– name: 1 King Hussein Medical Center, Royal Jordanian Medical Service, The Institute of Biomedical Technology, Amman 11855, Jordan; mhmdsliti312@gmail.com
– name: 3 Faculty of Electrical Engineering & Technology, Campus Pauh Putra, Universiti Malaysia Perlis, Arau 02600, Malaysia
– name: 6 King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
– name: 4 Advanced Computing (AdvCOMP), Centre of Excellence (CoE), Universiti Malaysia Perlis, Arau 02600, Malaysia
– name: 7 Department of Obstetrics and Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; suhair.qudsieh@yu.edu.jo
– name: 2 Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; alzuet@yu.edu.jo (A.Z.); ali_qudah@hotmail.com (A.M.A.)
Author_xml – sequence: 1
  givenname: Mohammed
  orcidid: 0000-0002-5450-3311
  surname: Alsalatie
  fullname: Alsalatie, Mohammed
– sequence: 2
  givenname: Hiam
  orcidid: 0000-0002-2966-6442
  surname: Alquran
  fullname: Alquran, Hiam
– sequence: 3
  givenname: Wan Azani
  orcidid: 0000-0001-7260-6085
  surname: Mustafa
  fullname: Mustafa, Wan Azani
– sequence: 4
  givenname: Ala’a
  surname: Zyout
  fullname: Zyout, Ala’a
– sequence: 5
  givenname: Ali Mohammad
  orcidid: 0000-0002-5417-0043
  surname: Alqudah
  fullname: Alqudah, Ali Mohammad
– sequence: 6
  givenname: Reham
  orcidid: 0000-0002-5490-6639
  surname: Kaifi
  fullname: Kaifi, Reham
– sequence: 7
  givenname: Suhair
  surname: Qudsieh
  fullname: Qudsieh, Suhair
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37685299$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARLaVfgIQsselmSuw4TrJCoymFkUa0UqlYRjf2TeoqsYOddFT2_DdOZyidqkLEi_hxzrnnPl5He8YajKK3ND5JkiL-oDQ0xvpBS08TmrFMsBfRAYuzdMY5zfce7fejI-9v4vAVNMlZ-iraTzKRp6woDqJfc_IV1-Q76uZ6QEVOEXuyQnBGm4acIQyjQ3Llp9MFuBCvRXK5BtcRMIrMzUBW2hpy3g-60z9hmA61dWSB7lZLaMkCjERHTjeGtScBcAE9uexCFLLsoEH_JnpZQ-vxaPs_jK7OPn1bfJmtzj8vF_PVTKYiG2aUixhokdO6rqtYMlZksqgwlopWjCsQIBkoESc5pbnAXCiqUoYIMq4FIE0Oo-VGV1m4KXunO3B3pQVd3l9Y15TbHEsQdcVZzrO8qrgsBNQFjRWPQYXKJRkLWnyjNZoe7tbQtg-CNC6nJpXPNCnQPm5o_Vh1qCSawUG742X3xejrsrG3QZTnGRNpUDjeKjj7Y0Q_lJ32EtsWDNrRlywXSeityLIAff8EemNHZ0KJJxRjnAZff1ENhMS1qW0ILCfRcp4JzgQvisn4yTOosBR2WobprHW43yG8e5zpQ4p_hi8Akg1AOuu9w_o_C1g8YUk93M9d8KPbf3J_A0tABHc
CitedBy_id crossref_primary_10_3389_fonc_2024_1437185
crossref_primary_10_1109_ACCESS_2024_3469869
crossref_primary_10_17116_patol20248602165
crossref_primary_10_1016_j_bspc_2024_106665
crossref_primary_10_3390_diagnostics14161727
Cites_doi 10.4103/apjon.apjon_15_18
10.1109/ACCESS.2020.2979926
10.3390/bioengineering9100578
10.1186/s13104-020-05180-5
10.1016/j.cmpb.2016.10.001
10.1016/j.eij.2010.10.005
10.3390/bioengineering10010105
10.3390/bioengineering10070764
10.1186/s12938-019-0634-5
10.1109/IJCNN.2004.1380137
10.1166/jmihi.2016.1690
10.1016/j.advengsoft.2015.01.010
10.3390/s22093272
10.1016/j.bbe.2019.12.004
10.3390/jimaging7070111
10.3390/diagnostics12112756
10.1088/1742-6596/978/1/012032
10.7717/peerj-cs.457
10.1016/j.compbiomed.2022.105392
10.1007/978-3-319-60964-5_23
10.1016/j.patrec.2008.02.024
10.1007/s13198-022-01805-z
10.1109/BMEI.2013.6746996
10.1007/s00521-021-06764-3
10.3390/diagnostics12122900
10.1109/JBHI.2017.2705583
10.3322/caac.21660
10.1016/j.patcog.2022.108829
10.1109/IEMTRONICS52119.2021.9422617
10.3389/fneur.2021.640696
10.1016/j.future.2019.09.015
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics13172762
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_a6fb428478bb4c96af910d40ad852372
10.3390/diagnostics13172762
PMC10487265
A764264992
37685299
10_3390_diagnostics13172762
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Higher Education Malaysia
  grantid: FRGS/1/2021/SKK0/UNIMAP/02/1
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c567t-1460a1981fffb0c2297c9be0cd1b24da6ac2ad60381186e86d1d52eeac0f6ae13
IEDL.DBID DOA
ISSN 2075-4418
IngestDate Tue Oct 14 19:05:33 EDT 2025
Sun Oct 26 02:53:58 EDT 2025
Tue Sep 30 17:25:08 EDT 2025
Fri Sep 05 09:40:32 EDT 2025
Sun Jun 29 15:36:27 EDT 2025
Tue Jun 17 22:25:36 EDT 2025
Mon Oct 20 17:18:33 EDT 2025
Mon Jul 21 06:01:54 EDT 2025
Thu Oct 16 04:46:38 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords DarkNet-19
Pap smear images
support vector machine
AlexNet
NasNet
particle swarm optimization
random forest
cervical cancer
ant lion optimization
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-1460a1981fffb0c2297c9be0cd1b24da6ac2ad60381186e86d1d52eeac0f6ae13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5417-0043
0000-0002-2966-6442
0000-0002-5490-6639
0000-0001-7260-6085
0000-0002-5450-3311
OpenAccessLink https://doaj.org/article/a6fb428478bb4c96af910d40ad852372
PMID 37685299
PQID 2862241131
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_a6fb428478bb4c96af910d40ad852372
unpaywall_primary_10_3390_diagnostics13172762
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10487265
proquest_miscellaneous_2863299677
proquest_journals_2862241131
gale_infotracmisc_A764264992
gale_infotracacademiconefile_A764264992
pubmed_primary_37685299
crossref_primary_10_3390_diagnostics13172762
crossref_citationtrail_10_3390_diagnostics13172762
PublicationCentury 2000
PublicationDate 20230825
PublicationDateYYYYMMDD 2023-08-25
PublicationDate_xml – month: 8
  year: 2023
  text: 20230825
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Malli (ref_18) 2017; 6
Bora (ref_1) 2017; 138
Sung (ref_2) 2021; 71
Tsai (ref_3) 2008; 29
Alquran (ref_21) 2022; 72
Wang (ref_19) 2020; 8
ref_13
ref_34
ref_33
Dalwinder (ref_37) 2020; 40
ref_10
Sachan (ref_5) 2018; 5
ref_31
ref_30
Wu (ref_32) 2022; 34
Zhang (ref_17) 2017; 21
Vichianin (ref_41) 2021; 12
ref_38
ref_15
Dongoran (ref_39) 2018; 978
Liu (ref_8) 2022; 130
William (ref_4) 2019; 18
Ghoneim (ref_20) 2020; 102
Zeng (ref_35) 2004; Volume 2
ref_25
ref_22
ref_43
ref_42
Sukumar (ref_11) 2016; 6
Ramakrishnan (ref_24) 2022; 144
Sweilam (ref_40) 2010; 11
ref_29
ref_28
Albuquerque (ref_27) 2021; 7
ref_26
ref_9
Mbaga (ref_16) 2015; 118
Waly (ref_23) 2022; 70
Athinarayanan (ref_14) 2006; 6
Mirjalili (ref_36) 2015; 83
Thippeveeranna (ref_6) 2013; 14
ref_7
Sukumar (ref_12) 2015; 10
References_xml – volume: 14
  start-page: 849
  year: 2013
  ident: ref_6
  article-title: Knowledge, Attitude and Practice of the Pap Smear as a Screening Procedure Among Nurses in a Tertiary Hospital in North Eastern India. Asian Pac
  publication-title: J. Cancer Prev.
– ident: ref_30
– volume: 5
  start-page: 337
  year: 2018
  ident: ref_5
  article-title: A Study on cervical cancer screening using pap smear test and clinical correlation
  publication-title: Asia-Pacific J. Oncol. Nurs.
  doi: 10.4103/apjon.apjon_15_18
– volume: 72
  start-page: 5117
  year: 2022
  ident: ref_21
  article-title: Cervical Cancer Classification Using Combined Machine Learning and Deep Learning Approach
  publication-title: Comput. Mater. Contin.
– volume: 8
  start-page: 50674
  year: 2020
  ident: ref_19
  article-title: Adaptive Pruning of Transfer Learned Deep Convolutional Neural Network for Classification of Cervical Pap Smear Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979926
– ident: ref_34
– volume: 118
  start-page: 10
  year: 2015
  ident: ref_16
  article-title: Pap smear images classification for early detection of cervical cancer
  publication-title: Int. J. Comput. Appl.
– volume: 10
  start-page: 21021
  year: 2015
  ident: ref_12
  article-title: Computer aided detection of cervical cancer using Pap smear images based on hybrid classifier
  publication-title: Int. J. Appl. Eng. Res. Res. India Publ.
– ident: ref_26
  doi: 10.3390/bioengineering9100578
– ident: ref_42
  doi: 10.1186/s13104-020-05180-5
– volume: 138
  start-page: 31
  year: 2017
  ident: ref_1
  article-title: Automated classification of Pap smear images to detect cervical dysplasia
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.10.001
– volume: 11
  start-page: 81
  year: 2010
  ident: ref_40
  article-title: Support vector machine for diagnosis cancer disease: A comparative study
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2010.10.005
– ident: ref_28
  doi: 10.3390/bioengineering10010105
– volume: 6
  start-page: 8
  year: 2006
  ident: ref_14
  article-title: Robust and efficient diagnosis of cervical cancer in Pap smear images using textures features with RBF and kernel SVM classification
  publication-title: System
– ident: ref_38
  doi: 10.3390/bioengineering10070764
– volume: 18
  start-page: 16
  year: 2019
  ident: ref_4
  article-title: A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-019-0634-5
– volume: Volume 2
  start-page: 1327
  year: 2004
  ident: ref_35
  article-title: Feature weighting using neural networks
  publication-title: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541)
  doi: 10.1109/IJCNN.2004.1380137
– volume: 6
  start-page: 312
  year: 2016
  ident: ref_11
  article-title: Computer Aided Detection of Cervical Cancer Using Pap Smear Images Based on Adaptive Neuro Fuzzy Inference System Classifier
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2016.1690
– volume: 83
  start-page: 80
  year: 2015
  ident: ref_36
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: ref_22
  doi: 10.3390/s22093272
– volume: 40
  start-page: 337
  year: 2020
  ident: ref_37
  article-title: Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.12.004
– ident: ref_10
  doi: 10.3390/jimaging7070111
– ident: ref_29
  doi: 10.3390/diagnostics12112756
– volume: 978
  start-page: 012032
  year: 2018
  ident: ref_39
  article-title: Feature weighting using particle swarm optimization for learning vector quantization classifier
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/978/1/012032
– volume: 7
  start-page: e457
  year: 2021
  ident: ref_27
  article-title: Ordinal losses for classification of cervical cancer risk
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.457
– volume: 144
  start-page: 105392
  year: 2022
  ident: ref_24
  article-title: Cervical cancer diagnosis based on modified uniform local ternary patterns and feed forward multilayer network optimized by genetic algorithm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105392
– ident: ref_7
  doi: 10.1007/978-3-319-60964-5_23
– volume: 29
  start-page: 1441
  year: 2008
  ident: ref_3
  article-title: Nucleus and cytoplast contour detector of cervical smear image
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.02.024
– ident: ref_33
– ident: ref_25
  doi: 10.1007/s13198-022-01805-z
– ident: ref_13
  doi: 10.1109/BMEI.2013.6746996
– volume: 34
  start-page: 6011
  year: 2022
  ident: ref_32
  article-title: YOLO-SLAM: A semantic SLAM system towards dynamic environment with geometric constraint
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06764-3
– volume: 70
  start-page: 3295
  year: 2022
  ident: ref_23
  article-title: Optimal Deep Convolution Neural Network for Cervical Cancer Diagnosis Model
  publication-title: Comput. Mater. Contin.
– ident: ref_9
  doi: 10.3390/diagnostics12122900
– ident: ref_15
– volume: 21
  start-page: 1633
  year: 2017
  ident: ref_17
  article-title: DeepPap: Deep Convolutional Networks for Cervical Cell Classification
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2705583
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_2
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– ident: ref_43
– volume: 6
  start-page: 145
  year: 2017
  ident: ref_18
  article-title: Machine learning technique for detection of cervical cancer using k-NN and artificial neural network
  publication-title: Int. J. Emerg. Trends Technol. Comput. Sci. IJETTCS
– volume: 130
  start-page: 108829
  year: 2022
  ident: ref_8
  article-title: CVM-Cervix: A hybrid cervical Pap-smear image classification framework using CNN, visual transformer and multilayer perceptron
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108829
– ident: ref_31
  doi: 10.1109/IEMTRONICS52119.2021.9422617
– volume: 12
  start-page: 640696
  year: 2021
  ident: ref_41
  article-title: Accuracy of support-vector machines for diagnosis of Alzheimer’s disease, using volume of brain obtained by structural MRI at Siriraj hospital
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.640696
– volume: 102
  start-page: 643
  year: 2020
  ident: ref_20
  article-title: Cervical cancer classification using convolutional neural networks and extreme learning machines
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.015
SSID ssj0000913825
Score 2.3142617
Snippet One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2762
SubjectTerms Accuracy
AlexNet
Algorithms
Artificial intelligence
Cancer
Cells
Cervical cancer
Cervix
Classification
Comparative analysis
Cytoplasm
DarkNet-19
Data mining
Deep learning
Diagnosis
Health aspects
Machine learning
Mathematical optimization
Medical diagnosis
Medical imaging
Medical imaging equipment
Medical research
Medical screening
Morphology
Mortality
NasNet
Neural networks
Oncology, Experimental
Pap smear
Pap smear images
Pap test
random forest
support vector machine
Women
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7qFtQX8W60ygiCL4Ymk2SSPIhsty1V7LpYi30Lc62F3WzM7lL8Af5vz0kmsVEpvmZOJnM5-c43t28IeZUAS86AV_hIzv04EYmfZVb5Ik2jRNk00DEecD6e8qPT-MNZcrZFpt1ZGNxW2WFiA9R6qXCOfJdBphBtwih8V3338dYoXF3trtAQ7moF_baRGLtBthkqY43I9t7BdPa5n3VBFUwYE7XyQxGM93d1u6MNNZEhb4jmnA1CVKPk_zdeXwlYf26mvLUpK_HjUsznVyLV4V1yx1FMOm594h7ZMuV9cvPYLaI_ID_HFKCNfm0mRY2m-8ZU1OmsnlPkhJva0GYvAZ05z6Inl6JeUFFqOi7X9CP0Jv0EaLNwxzgpcF86aXAHPj1BV6rpflvpixUFg5mo6MkCvkLfLwDDVg_J6eHBl8mR725j8FXC07UPkBqIMM9Ca60MFGN5qnJpAqVDyWItuFBMaI4rj2HGTcZ1qBNmANgDy4UJo0dkVC5L84TQXMTcWmAGeDI3EFYqYI3ANbWMpYl46BHWdUChnFQ53pgxL2DIgr1W_KPXPPKmf6lqlTquN9_Dnu1NUWa7ebCszwvXtoXgVsYYwDMpY5VzYYFdaSiyzmAAn0Imr9EvCgQDKKAS7kwDVBNltYpxypFx5jlY7gws4SdWw-TOswoHIqvit8t75GWfjG_ixrjSLDeNTQSMgqepRx63jthXCWIHFDPPPZINXHRQ52FKefGtkRiHQXqWMp54xO-9-X9a9en19XhGbjMgiTgnz5IdMlrXG_McSN1avnB_6i-OLU4P
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamIQEviPsCAxkJiRcCiRM79gNCpWMaiMKkUbG3yPFlTGrTkrYa-wH8b85J3GqBgXjgtT5ufDmX7yT2dwh5ygElS8AVMYLzOOeax1J6E-uiyLjxRWJzvOA8-igOxvn7Y368RdZVUcMCLi5N7bCe1LiZvPj-7fw1GPwrzDghZX9pu0NpSGucZhiQ0SdfgVClsJbDKOD91jUrpNzjHfvQn_r2IlRL5P-7u74Qr349S3ltVc_1-ZmeTC4Eqv2b5EZAmHTQqcQtsuXq2-TqKHxDv0N-DCh4NvqlfSfqLN1zbk4DzeoJRUi4ahxtjxLQw6BY9OhMN1Oqa0sH9ZJ-gM2kn8DZTMMtTgrQlw5btwOPHqImNXSvm_TpgoLAoZ7Toyk8hb6bggtb3CXj_befhwdxKMYQGy6KZQweNdGpkqn3vkoMY6owqnKJsWnFcquFNkxbgR8eUymcFDa1nDnw64kX2qXZPbJdz2q3Q6jSufAegAFezE20rwyARoCatsorl4k0Imy9AaUJTOVYMGNSQsaCu1ZesmsReb7pNO-IOv4u_gZ3diOKLNvtD7PmpAxrW2rhqxzjt6yq3CihPYArC0O2EvL3Av7kGepFidoJAzQ6XGmAaSKrVjkoBAJOpUBytycJNmz6zWvNKtcmUDIwI8BXMOKIPNk0Y088F1e72aqVyQBQiKKIyP1OETdTgtABw1QqIrKnor0591vq068twzjk6LJggkck3mjzv6zqg_-xqg_JdQZIEl_cM75LtpfNyj0C5LesHrfW_BPf5VoW
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagk4AX7pfAQEZC4oWsiRM7zhMqHdNAbFQaFeMpcnwZFW1a9cIE7_xvzkncqhkIgXitjxvbOf7OZ-f4MyHPOLBkCbwiRHIeplzxUEqnQ5VlCdcui0yKB5yPjsXhMH17yk-3TvFjWiUsxUc1SDOIZyHEa9mNk26cdRnM3O7MuJdf_V4SKokAp5Y5v0x2BAc23iE7w-NB7xPeKbeu3YgNJbC675omfw0VkOMEY7dgrYBU6_b_is5b4eli6uTVVTVT387VeLwVlw5uELXuUZOO8mVvtSz39PcLYo__0-Wb5LonrbTXeNktcslWt8mVI_9Z_g750aMAlvRjvc1qDd23dka9cusZRZa5mltaZyfQgfdVenKu5hOqKkN71ZK-g6fS94BfE38wlAKbpv0ayeDRfXTOOd1vBna0oGAwUDN6MoGn0DcTQMXFXTI8eP2hfxj6-x1CzUW2DAGkIxXnMnbOlZFmLM90XtpIm7hkqVFCaaaMwG-ZsRRWChMbziyEisgJZePkHulU08o-IDRXqXAOuAae9Y2UKzXwUGCvpkxLm4g4IGz9kgvtxc_xDo5xAYsg9IziN54RkBebSrNG--PP5q_QezamKNxd_zCdnxV-bAslXJkiJZBlmepcKAd8zUCTjeQsyeBPnqPvFQgv0ECt_CkJ6CYKdRW9TCCHzXOw3G1ZAizodvHaewsPS4uCwcwEygYtDsjTTTHWxFS7yk5XtU0CHEVkWUDuN86-6RJEI2hmngdEtqZBq8_tkmr0uRYth2W_zJjgAQk3M-ZvRvXhP9o_ItcY8FDc9md8l3SW85V9DLxxWT7x0PATWklpew
  priority: 102
  providerName: Unpaywall
Title A New Weighted Deep Learning Feature Using Particle Swarm and Ant Lion Optimization for Cervical Cancer Diagnosis on Pap Smear Images
URI https://www.ncbi.nlm.nih.gov/pubmed/37685299
https://www.proquest.com/docview/2862241131
https://www.proquest.com/docview/2863299677
https://pubmed.ncbi.nlm.nih.gov/PMC10487265
https://www.mdpi.com/2075-4418/13/17/2762/pdf?version=1693217895
https://doaj.org/article/a6fb428478bb4c96af910d40ad852372
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkYAL4t1AqYyExIWoiZP4cUy3rQpilxVlRTlFjh9QaTdd7UMVP4D_zYyTrjaAgAOXHOKJ4rHH33xO7M-EvCyAJUvgFTGS8zgvdBFL6U2shcgK40Vic9zgPBzx00n-9rw43zrqC9eEtfLAbcMdaO7rHDFU1nVuFNceEpzNE20lzKFEQN9Eqq3JVMBghdp6RSszlMG8_sC2K9dQ-zjNMGtz1ktFQbH_V1zeSkw_L5q8vW7m-tuVnk63MtLJPXK3o5K0bF24T2645gG5Nex-lj8k30sKEEY_hY-fztIj5-a001P9QpH7rReOhjUDdNw1BD270osZ1Y2lZbOi76DX6HtAlVm3XZMCx6WDgC_w6gGGzIIetU5fLCkYjPWcns3gLfTNDLBq-YhMTo4_Dk7j7tSF2BRcrGKAzkSnSqbe-zoxjClhVO0SY9Oa5VZzbZi2HP8wppI7yW1qC-YAwBPPtUuzx2SnuWzcLqFK59x7YAC4AzfRvjbADoFT2jqvXcbTiLDrDqhMJ0mOJ2NMK5iaYK9Vv-m1iLzePDRvFTn-bH6IPbsxRTntcAOCrOratvpbkEXkFcZFhYMeKmh0t3cB3ET5rKoUHJmlUmC517OEwWr6xdeRVXVgsawYjBcgUlDjiLzYFOOTuACucZfrYJMBc-BCRORJG4gblyBHQDWViojshWjP535Jc_E1SInDZFwKxouIxJto_pdWffo_WvUZucOAMuIXelbskZ3VYu2eA8Vb1fvk5uHxaPxhP4xquA5zCfcmo3H5-Qd2MFQE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqJcEG8MBRYJxAWr9tpe24cKpUmrhCYhoq3ozax316VS4pg8FPUH8Lf4bczYG1MDqrj06h2vPZ7xN9--Zgh5EwBLjoBX2EjObT8QgR1FmbRFGHqBzEJH-XjAeTDk3VP_41lwtkF-rs_C4LbKNSaWQK2mEufIdxl0CtHG9dwPxXcbq0bh6uq6hIYwpRXUXplizBzsONKXKxjCzfd6HbD3W8YOD07aXdtUGbBlwMOFDVDhCBh6u1mWpY5kLA5lnGpHKjdlvhJcSCYUxxU1N-I64spVAdMAWE7GhXY96PcW2fI9P4bB39b-wXD0uZ7lwaybMAar0h15XuzsqmoHHeZgBl2APXDWCIll5YC_48OVAPnn5s3tZV6Iy5UYj69ExsN75K6htLRV-eB9sqHzB-T2wCzaPyQ_WhSglH4pJ2G1oh2tC2ryup5T5KDLmabl3gU6Mp5Mj1diNqEiV7SVL2gfvId-AnSbmGOjFLg2bZc4B49uo-vOaKdS-mJOQWAkCno8gafQ3gQwc_6InN6IXR6TzXya66eExsLnWQZMBE8COyJLJbBU4LYq9VPtcdcibG2ARJrU6FihY5zAEAmtlvzDahZ5X99UVJlBrhffR8vWopjWu7wwnZ0n5tsmgmepj4QhSlNfxlxkwOYUvLKKAuaF0Mk79IsEwQdeUApzhgLUxDReSSvkyHDjGCR3GpIAGrLZvPasxIDWPPn9i1nkdd2Md-JGvFxPl6WMBwyGh6FFnlSOWKsEsQpeM44tEjVctKFzsyW_-FamNHchkISMBxaxa2_-n6_67Ho9XpHt7smgn_R7w6Pn5A4DgorrASzYIZuL2VK_AEK5SF-av5aSrzcNFL8AkiOMHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVipcEG8MBRYJxAUr9tpe24cKpUmjhrYholTtzaz3USolTshDVX8Af45fxYy9MTWgikuv3vHa6xl_8-1jZgh5EwFLToBXuEjO3TASkZskRroijoNImthTIQY4Hw743nH48TQ6XSM_V7EweKxyhYklUKuJxDXyFoNOwdv4gd8y9ljEsNv7MP3uYgUp3GldldMQtsyC2i7Tjdkgj319eQHTufl2vwu6f8tYb_dLZ8-1FQdcGfF44QJseAKm4b4xJvckY2ks01x7Uvk5C5XgQjKhOO6u-QnXCVe-ipgG8PIMF9oPoN9bZAM3vwAkNnZ2B8PP9YoPZuCE-ViV-igIUq-lqtN0mI8ZxgVMgrOGeyyrCPztK644yz8Pct5eFlNxeSFGoytesneP3LX0lrYre7xP1nTxgGwe2g38h-RHmwKs0pNyQVYr2tV6Sm2O1zOKfHQ507Q8x0CH1qrp0YWYjakoFG0XC3oAlkQ_AdKNbQgpBd5NOyXmwaM7aMYz2q0GfT6nIDAUU3o0hqfQ_hjwc_6IHN-IXh6T9WJS6KeEpiLkxgArwahgT5hcAmMFnqvyMNcB9x3CVgrIpE2TjtU6RhlMl1Br2T-05pD39U3TKkvI9eI7qNlaFFN8lxcms7PMfttMcJOHSB6SPA9lyoUBZqfglVUSsSCGTt6hXWQIRPCCUth4ChgmpvTK2jFHtpumILnVkAQAkc3mlWVlFsDm2e_fzSGv62a8Ew_lFXqyLGUCYDM8jh3ypDLEekjgt-A109QhScNEG2NuthTn38r05j44lZjxyCFubc3_81WfXT-OV2QTACM76A_2n5M7DLgqbg2waIusL2ZL_QK45SJ_aX9aSr7eNE78At45kE4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagk4AX7pfAQEZC4oWsiRM7zhMqHdNAbFQaFeMpcnwZFW1a9cIE7_xvzkncqhkIgXitjxvbOf7OZ-f4MyHPOLBkCbwiRHIeplzxUEqnQ5VlCdcui0yKB5yPjsXhMH17yk-3TvFjWiUsxUc1SDOIZyHEa9mNk26cdRnM3O7MuJdf_V4SKokAp5Y5v0x2BAc23iE7w-NB7xPeKbeu3YgNJbC675omfw0VkOMEY7dgrYBU6_b_is5b4eli6uTVVTVT387VeLwVlw5uELXuUZOO8mVvtSz39PcLYo__0-Wb5LonrbTXeNktcslWt8mVI_9Z_g750aMAlvRjvc1qDd23dka9cusZRZa5mltaZyfQgfdVenKu5hOqKkN71ZK-g6fS94BfE38wlAKbpv0ayeDRfXTOOd1vBna0oGAwUDN6MoGn0DcTQMXFXTI8eP2hfxj6-x1CzUW2DAGkIxXnMnbOlZFmLM90XtpIm7hkqVFCaaaMwG-ZsRRWChMbziyEisgJZePkHulU08o-IDRXqXAOuAae9Y2UKzXwUGCvpkxLm4g4IGz9kgvtxc_xDo5xAYsg9IziN54RkBebSrNG--PP5q_QezamKNxd_zCdnxV-bAslXJkiJZBlmepcKAd8zUCTjeQsyeBPnqPvFQgv0ECt_CkJ6CYKdRW9TCCHzXOw3G1ZAizodvHaewsPS4uCwcwEygYtDsjTTTHWxFS7yk5XtU0CHEVkWUDuN86-6RJEI2hmngdEtqZBq8_tkmr0uRYth2W_zJjgAQk3M-ZvRvXhP9o_ItcY8FDc9md8l3SW85V9DLxxWT7x0PATWklpew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Weighted+Deep+Learning+Feature+Using+Particle+Swarm+and+Ant+Lion+Optimization+for+Cervical+Cancer+Diagnosis+on+Pap+Smear+Images&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Mohammed+Alsalatie&rft.au=Hiam+Alquran&rft.au=Wan+Azani+Mustafa&rft.au=Ala%E2%80%99a+Zyout&rft.date=2023-08-25&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=13&rft.issue=17&rft.spage=2762&rft_id=info:doi/10.3390%2Fdiagnostics13172762&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a6fb428478bb4c96af910d40ad852372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon