A New Weighted Deep Learning Feature Using Particle Swarm and Ant Lion Optimization for Cervical Cancer Diagnosis on Pap Smear Images
One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer....
        Saved in:
      
    
          | Published in | Diagnostics (Basel) Vol. 13; no. 17; p. 2762 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        25.08.2023
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2075-4418 2075-4418  | 
| DOI | 10.3390/diagnostics13172762 | 
Cover
| Abstract | One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data. | 
    
|---|---|
| AbstractList | One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data. One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.  | 
    
| Audience | Academic | 
    
| Author | Alsalatie, Mohammed Zyout, Ala’a Alqudah, Ali Mohammad Kaifi, Reham Mustafa, Wan Azani Qudsieh, Suhair Alquran, Hiam  | 
    
| AuthorAffiliation | 3 Faculty of Electrical Engineering & Technology, Campus Pauh Putra, Universiti Malaysia Perlis, Arau 02600, Malaysia 1 King Hussein Medical Center, Royal Jordanian Medical Service, The Institute of Biomedical Technology, Amman 11855, Jordan; mhmdsliti312@gmail.com 5 College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia 6 King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia 2 Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; alzuet@yu.edu.jo (A.Z.); ali_qudah@hotmail.com (A.M.A.) 4 Advanced Computing (AdvCOMP), Centre of Excellence (CoE), Universiti Malaysia Perlis, Arau 02600, Malaysia 7 Department of Obstetrics and Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; suhair.qudsieh@yu.edu.jo  | 
    
| AuthorAffiliation_xml | – name: 5 College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia – name: 1 King Hussein Medical Center, Royal Jordanian Medical Service, The Institute of Biomedical Technology, Amman 11855, Jordan; mhmdsliti312@gmail.com – name: 3 Faculty of Electrical Engineering & Technology, Campus Pauh Putra, Universiti Malaysia Perlis, Arau 02600, Malaysia – name: 6 King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia – name: 4 Advanced Computing (AdvCOMP), Centre of Excellence (CoE), Universiti Malaysia Perlis, Arau 02600, Malaysia – name: 7 Department of Obstetrics and Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; suhair.qudsieh@yu.edu.jo – name: 2 Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan; alzuet@yu.edu.jo (A.Z.); ali_qudah@hotmail.com (A.M.A.)  | 
    
| Author_xml | – sequence: 1 givenname: Mohammed orcidid: 0000-0002-5450-3311 surname: Alsalatie fullname: Alsalatie, Mohammed – sequence: 2 givenname: Hiam orcidid: 0000-0002-2966-6442 surname: Alquran fullname: Alquran, Hiam – sequence: 3 givenname: Wan Azani orcidid: 0000-0001-7260-6085 surname: Mustafa fullname: Mustafa, Wan Azani – sequence: 4 givenname: Ala’a surname: Zyout fullname: Zyout, Ala’a – sequence: 5 givenname: Ali Mohammad orcidid: 0000-0002-5417-0043 surname: Alqudah fullname: Alqudah, Ali Mohammad – sequence: 6 givenname: Reham orcidid: 0000-0002-5490-6639 surname: Kaifi fullname: Kaifi, Reham – sequence: 7 givenname: Suhair surname: Qudsieh fullname: Qudsieh, Suhair  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37685299$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUstu1DAUjVARLaVfgIQsselmSuw4TrJCoymFkUa0UqlYRjf2TeoqsYOddFT2_DdOZyidqkLEi_hxzrnnPl5He8YajKK3ND5JkiL-oDQ0xvpBS08TmrFMsBfRAYuzdMY5zfce7fejI-9v4vAVNMlZ-iraTzKRp6woDqJfc_IV1-Q76uZ6QEVOEXuyQnBGm4acIQyjQ3Llp9MFuBCvRXK5BtcRMIrMzUBW2hpy3g-60z9hmA61dWSB7lZLaMkCjERHTjeGtScBcAE9uexCFLLsoEH_JnpZQ-vxaPs_jK7OPn1bfJmtzj8vF_PVTKYiG2aUixhokdO6rqtYMlZksqgwlopWjCsQIBkoESc5pbnAXCiqUoYIMq4FIE0Oo-VGV1m4KXunO3B3pQVd3l9Y15TbHEsQdcVZzrO8qrgsBNQFjRWPQYXKJRkLWnyjNZoe7tbQtg-CNC6nJpXPNCnQPm5o_Vh1qCSawUG742X3xejrsrG3QZTnGRNpUDjeKjj7Y0Q_lJ32EtsWDNrRlywXSeityLIAff8EemNHZ0KJJxRjnAZff1ENhMS1qW0ILCfRcp4JzgQvisn4yTOosBR2WobprHW43yG8e5zpQ4p_hi8Akg1AOuu9w_o_C1g8YUk93M9d8KPbf3J_A0tABHc | 
    
| CitedBy_id | crossref_primary_10_3389_fonc_2024_1437185 crossref_primary_10_1109_ACCESS_2024_3469869 crossref_primary_10_17116_patol20248602165 crossref_primary_10_1016_j_bspc_2024_106665 crossref_primary_10_3390_diagnostics14161727  | 
    
| Cites_doi | 10.4103/apjon.apjon_15_18 10.1109/ACCESS.2020.2979926 10.3390/bioengineering9100578 10.1186/s13104-020-05180-5 10.1016/j.cmpb.2016.10.001 10.1016/j.eij.2010.10.005 10.3390/bioengineering10010105 10.3390/bioengineering10070764 10.1186/s12938-019-0634-5 10.1109/IJCNN.2004.1380137 10.1166/jmihi.2016.1690 10.1016/j.advengsoft.2015.01.010 10.3390/s22093272 10.1016/j.bbe.2019.12.004 10.3390/jimaging7070111 10.3390/diagnostics12112756 10.1088/1742-6596/978/1/012032 10.7717/peerj-cs.457 10.1016/j.compbiomed.2022.105392 10.1007/978-3-319-60964-5_23 10.1016/j.patrec.2008.02.024 10.1007/s13198-022-01805-z 10.1109/BMEI.2013.6746996 10.1007/s00521-021-06764-3 10.3390/diagnostics12122900 10.1109/JBHI.2017.2705583 10.3322/caac.21660 10.1016/j.patcog.2022.108829 10.1109/IEMTRONICS52119.2021.9422617 10.3389/fneur.2021.640696 10.1016/j.future.2019.09.015  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023  | 
    
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/diagnostics13172762 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2075-4418 | 
    
| ExternalDocumentID | oai_doaj_org_article_a6fb428478bb4c96af910d40ad852372 10.3390/diagnostics13172762 PMC10487265 A764264992 37685299 10_3390_diagnostics13172762  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Ministry of Higher Education Malaysia grantid: FRGS/1/2021/SKK0/UNIMAP/02/1  | 
    
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c567t-1460a1981fffb0c2297c9be0cd1b24da6ac2ad60381186e86d1d52eeac0f6ae13 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2075-4418 | 
    
| IngestDate | Tue Oct 14 19:05:33 EDT 2025 Sun Oct 26 02:53:58 EDT 2025 Tue Sep 30 17:25:08 EDT 2025 Fri Sep 05 09:40:32 EDT 2025 Sun Jun 29 15:36:27 EDT 2025 Tue Jun 17 22:25:36 EDT 2025 Mon Oct 20 17:18:33 EDT 2025 Mon Jul 21 06:01:54 EDT 2025 Thu Oct 16 04:46:38 EDT 2025 Thu Apr 24 23:08:31 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 17 | 
    
| Keywords | DarkNet-19 Pap smear images support vector machine AlexNet NasNet particle swarm optimization random forest cervical cancer ant lion optimization  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c567t-1460a1981fffb0c2297c9be0cd1b24da6ac2ad60381186e86d1d52eeac0f6ae13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-5417-0043 0000-0002-2966-6442 0000-0002-5490-6639 0000-0001-7260-6085 0000-0002-5450-3311  | 
    
| OpenAccessLink | https://doaj.org/article/a6fb428478bb4c96af910d40ad852372 | 
    
| PMID | 37685299 | 
    
| PQID | 2862241131 | 
    
| PQPubID | 2032410 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a6fb428478bb4c96af910d40ad852372 unpaywall_primary_10_3390_diagnostics13172762 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10487265 proquest_miscellaneous_2863299677 proquest_journals_2862241131 gale_infotracmisc_A764264992 gale_infotracacademiconefile_A764264992 pubmed_primary_37685299 crossref_primary_10_3390_diagnostics13172762 crossref_citationtrail_10_3390_diagnostics13172762  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230825 | 
    
| PublicationDateYYYYMMDD | 2023-08-25 | 
    
| PublicationDate_xml | – month: 8 year: 2023 text: 20230825 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Diagnostics (Basel) | 
    
| PublicationTitleAlternate | Diagnostics (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Malli (ref_18) 2017; 6 Bora (ref_1) 2017; 138 Sung (ref_2) 2021; 71 Tsai (ref_3) 2008; 29 Alquran (ref_21) 2022; 72 Wang (ref_19) 2020; 8 ref_13 ref_34 ref_33 Dalwinder (ref_37) 2020; 40 ref_10 Sachan (ref_5) 2018; 5 ref_31 ref_30 Wu (ref_32) 2022; 34 Zhang (ref_17) 2017; 21 Vichianin (ref_41) 2021; 12 ref_38 ref_15 Dongoran (ref_39) 2018; 978 Liu (ref_8) 2022; 130 William (ref_4) 2019; 18 Ghoneim (ref_20) 2020; 102 Zeng (ref_35) 2004; Volume 2 ref_25 ref_22 ref_43 ref_42 Sukumar (ref_11) 2016; 6 Ramakrishnan (ref_24) 2022; 144 Sweilam (ref_40) 2010; 11 ref_29 ref_28 Albuquerque (ref_27) 2021; 7 ref_26 ref_9 Mbaga (ref_16) 2015; 118 Waly (ref_23) 2022; 70 Athinarayanan (ref_14) 2006; 6 Mirjalili (ref_36) 2015; 83 Thippeveeranna (ref_6) 2013; 14 ref_7 Sukumar (ref_12) 2015; 10  | 
    
| References_xml | – volume: 14 start-page: 849 year: 2013 ident: ref_6 article-title: Knowledge, Attitude and Practice of the Pap Smear as a Screening Procedure Among Nurses in a Tertiary Hospital in North Eastern India. Asian Pac publication-title: J. Cancer Prev. – ident: ref_30 – volume: 5 start-page: 337 year: 2018 ident: ref_5 article-title: A Study on cervical cancer screening using pap smear test and clinical correlation publication-title: Asia-Pacific J. Oncol. Nurs. doi: 10.4103/apjon.apjon_15_18 – volume: 72 start-page: 5117 year: 2022 ident: ref_21 article-title: Cervical Cancer Classification Using Combined Machine Learning and Deep Learning Approach publication-title: Comput. Mater. Contin. – volume: 8 start-page: 50674 year: 2020 ident: ref_19 article-title: Adaptive Pruning of Transfer Learned Deep Convolutional Neural Network for Classification of Cervical Pap Smear Images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2979926 – ident: ref_34 – volume: 118 start-page: 10 year: 2015 ident: ref_16 article-title: Pap smear images classification for early detection of cervical cancer publication-title: Int. J. Comput. Appl. – volume: 10 start-page: 21021 year: 2015 ident: ref_12 article-title: Computer aided detection of cervical cancer using Pap smear images based on hybrid classifier publication-title: Int. J. Appl. Eng. Res. Res. India Publ. – ident: ref_26 doi: 10.3390/bioengineering9100578 – ident: ref_42 doi: 10.1186/s13104-020-05180-5 – volume: 138 start-page: 31 year: 2017 ident: ref_1 article-title: Automated classification of Pap smear images to detect cervical dysplasia publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.10.001 – volume: 11 start-page: 81 year: 2010 ident: ref_40 article-title: Support vector machine for diagnosis cancer disease: A comparative study publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2010.10.005 – ident: ref_28 doi: 10.3390/bioengineering10010105 – volume: 6 start-page: 8 year: 2006 ident: ref_14 article-title: Robust and efficient diagnosis of cervical cancer in Pap smear images using textures features with RBF and kernel SVM classification publication-title: System – ident: ref_38 doi: 10.3390/bioengineering10070764 – volume: 18 start-page: 16 year: 2019 ident: ref_4 article-title: A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images publication-title: Biomed. Eng. Online doi: 10.1186/s12938-019-0634-5 – volume: Volume 2 start-page: 1327 year: 2004 ident: ref_35 article-title: Feature weighting using neural networks publication-title: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) doi: 10.1109/IJCNN.2004.1380137 – volume: 6 start-page: 312 year: 2016 ident: ref_11 article-title: Computer Aided Detection of Cervical Cancer Using Pap Smear Images Based on Adaptive Neuro Fuzzy Inference System Classifier publication-title: J. Med. Imaging Health Inform. doi: 10.1166/jmihi.2016.1690 – volume: 83 start-page: 80 year: 2015 ident: ref_36 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – ident: ref_22 doi: 10.3390/s22093272 – volume: 40 start-page: 337 year: 2020 ident: ref_37 article-title: Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.12.004 – ident: ref_10 doi: 10.3390/jimaging7070111 – ident: ref_29 doi: 10.3390/diagnostics12112756 – volume: 978 start-page: 012032 year: 2018 ident: ref_39 article-title: Feature weighting using particle swarm optimization for learning vector quantization classifier publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/978/1/012032 – volume: 7 start-page: e457 year: 2021 ident: ref_27 article-title: Ordinal losses for classification of cervical cancer risk publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.457 – volume: 144 start-page: 105392 year: 2022 ident: ref_24 article-title: Cervical cancer diagnosis based on modified uniform local ternary patterns and feed forward multilayer network optimized by genetic algorithm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105392 – ident: ref_7 doi: 10.1007/978-3-319-60964-5_23 – volume: 29 start-page: 1441 year: 2008 ident: ref_3 article-title: Nucleus and cytoplast contour detector of cervical smear image publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.02.024 – ident: ref_33 – ident: ref_25 doi: 10.1007/s13198-022-01805-z – ident: ref_13 doi: 10.1109/BMEI.2013.6746996 – volume: 34 start-page: 6011 year: 2022 ident: ref_32 article-title: YOLO-SLAM: A semantic SLAM system towards dynamic environment with geometric constraint publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06764-3 – volume: 70 start-page: 3295 year: 2022 ident: ref_23 article-title: Optimal Deep Convolution Neural Network for Cervical Cancer Diagnosis Model publication-title: Comput. Mater. Contin. – ident: ref_9 doi: 10.3390/diagnostics12122900 – ident: ref_15 – volume: 21 start-page: 1633 year: 2017 ident: ref_17 article-title: DeepPap: Deep Convolutional Networks for Cervical Cell Classification publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2705583 – volume: 71 start-page: 209 year: 2021 ident: ref_2 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – ident: ref_43 – volume: 6 start-page: 145 year: 2017 ident: ref_18 article-title: Machine learning technique for detection of cervical cancer using k-NN and artificial neural network publication-title: Int. J. Emerg. Trends Technol. Comput. Sci. IJETTCS – volume: 130 start-page: 108829 year: 2022 ident: ref_8 article-title: CVM-Cervix: A hybrid cervical Pap-smear image classification framework using CNN, visual transformer and multilayer perceptron publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108829 – ident: ref_31 doi: 10.1109/IEMTRONICS52119.2021.9422617 – volume: 12 start-page: 640696 year: 2021 ident: ref_41 article-title: Accuracy of support-vector machines for diagnosis of Alzheimer’s disease, using volume of brain obtained by structural MRI at Siriraj hospital publication-title: Front. Neurol. doi: 10.3389/fneur.2021.640696 – volume: 102 start-page: 643 year: 2020 ident: ref_20 article-title: Cervical cancer classification using convolutional neural networks and extreme learning machines publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.09.015  | 
    
| SSID | ssj0000913825 | 
    
| Score | 2.3142617 | 
    
| Snippet | One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 2762 | 
    
| SubjectTerms | Accuracy AlexNet Algorithms Artificial intelligence Cancer Cells Cervical cancer Cervix Classification Comparative analysis Cytoplasm DarkNet-19 Data mining Deep learning Diagnosis Health aspects Machine learning Mathematical optimization Medical diagnosis Medical imaging Medical imaging equipment Medical research Medical screening Morphology Mortality NasNet Neural networks Oncology, Experimental Pap smear Pap smear images Pap test random forest support vector machine Women  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7qFtQX8W60ygiCL4Ymk2SSPIhsty1V7LpYi30Lc62F3WzM7lL8Af5vz0kmsVEpvmZOJnM5-c43t28IeZUAS86AV_hIzv04EYmfZVb5Ik2jRNk00DEecD6e8qPT-MNZcrZFpt1ZGNxW2WFiA9R6qXCOfJdBphBtwih8V3338dYoXF3trtAQ7moF_baRGLtBthkqY43I9t7BdPa5n3VBFUwYE7XyQxGM93d1u6MNNZEhb4jmnA1CVKPk_zdeXwlYf26mvLUpK_HjUsznVyLV4V1yx1FMOm594h7ZMuV9cvPYLaI_ID_HFKCNfm0mRY2m-8ZU1OmsnlPkhJva0GYvAZ05z6Inl6JeUFFqOi7X9CP0Jv0EaLNwxzgpcF86aXAHPj1BV6rpflvpixUFg5mo6MkCvkLfLwDDVg_J6eHBl8mR725j8FXC07UPkBqIMM9Ca60MFGN5qnJpAqVDyWItuFBMaI4rj2HGTcZ1qBNmANgDy4UJo0dkVC5L84TQXMTcWmAGeDI3EFYqYI3ANbWMpYl46BHWdUChnFQ53pgxL2DIgr1W_KPXPPKmf6lqlTquN9_Dnu1NUWa7ebCszwvXtoXgVsYYwDMpY5VzYYFdaSiyzmAAn0Imr9EvCgQDKKAS7kwDVBNltYpxypFx5jlY7gws4SdWw-TOswoHIqvit8t75GWfjG_ixrjSLDeNTQSMgqepRx63jthXCWIHFDPPPZINXHRQ52FKefGtkRiHQXqWMp54xO-9-X9a9en19XhGbjMgiTgnz5IdMlrXG_McSN1avnB_6i-OLU4P priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamIQEviPsCAxkJiRcCiRM79gNCpWMaiMKkUbG3yPFlTGrTkrYa-wH8b85J3GqBgXjgtT5ufDmX7yT2dwh5ygElS8AVMYLzOOeax1J6E-uiyLjxRWJzvOA8-igOxvn7Y368RdZVUcMCLi5N7bCe1LiZvPj-7fw1GPwrzDghZX9pu0NpSGucZhiQ0SdfgVClsJbDKOD91jUrpNzjHfvQn_r2IlRL5P-7u74Qr349S3ltVc_1-ZmeTC4Eqv2b5EZAmHTQqcQtsuXq2-TqKHxDv0N-DCh4NvqlfSfqLN1zbk4DzeoJRUi4ahxtjxLQw6BY9OhMN1Oqa0sH9ZJ-gM2kn8DZTMMtTgrQlw5btwOPHqImNXSvm_TpgoLAoZ7Toyk8hb6bggtb3CXj_befhwdxKMYQGy6KZQweNdGpkqn3vkoMY6owqnKJsWnFcquFNkxbgR8eUymcFDa1nDnw64kX2qXZPbJdz2q3Q6jSufAegAFezE20rwyARoCatsorl4k0Imy9AaUJTOVYMGNSQsaCu1ZesmsReb7pNO-IOv4u_gZ3diOKLNvtD7PmpAxrW2rhqxzjt6yq3CihPYArC0O2EvL3Av7kGepFidoJAzQ6XGmAaSKrVjkoBAJOpUBytycJNmz6zWvNKtcmUDIwI8BXMOKIPNk0Y088F1e72aqVyQBQiKKIyP1OETdTgtABw1QqIrKnor0591vq068twzjk6LJggkck3mjzv6zqg_-xqg_JdQZIEl_cM75LtpfNyj0C5LesHrfW_BPf5VoW priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagk4AX7pfAQEZC4oWsiRM7zhMqHdNAbFQaFeMpcnwZFW1a9cIE7_xvzkncqhkIgXitjxvbOf7OZ-f4MyHPOLBkCbwiRHIeplzxUEqnQ5VlCdcui0yKB5yPjsXhMH17yk-3TvFjWiUsxUc1SDOIZyHEa9mNk26cdRnM3O7MuJdf_V4SKokAp5Y5v0x2BAc23iE7w-NB7xPeKbeu3YgNJbC675omfw0VkOMEY7dgrYBU6_b_is5b4eli6uTVVTVT387VeLwVlw5uELXuUZOO8mVvtSz39PcLYo__0-Wb5LonrbTXeNktcslWt8mVI_9Z_g750aMAlvRjvc1qDd23dka9cusZRZa5mltaZyfQgfdVenKu5hOqKkN71ZK-g6fS94BfE38wlAKbpv0ayeDRfXTOOd1vBna0oGAwUDN6MoGn0DcTQMXFXTI8eP2hfxj6-x1CzUW2DAGkIxXnMnbOlZFmLM90XtpIm7hkqVFCaaaMwG-ZsRRWChMbziyEisgJZePkHulU08o-IDRXqXAOuAae9Y2UKzXwUGCvpkxLm4g4IGz9kgvtxc_xDo5xAYsg9IziN54RkBebSrNG--PP5q_QezamKNxd_zCdnxV-bAslXJkiJZBlmepcKAd8zUCTjeQsyeBPnqPvFQgv0ECt_CkJ6CYKdRW9TCCHzXOw3G1ZAizodvHaewsPS4uCwcwEygYtDsjTTTHWxFS7yk5XtU0CHEVkWUDuN86-6RJEI2hmngdEtqZBq8_tkmr0uRYth2W_zJjgAQk3M-ZvRvXhP9o_ItcY8FDc9md8l3SW85V9DLxxWT7x0PATWklpew priority: 102 providerName: Unpaywall  | 
    
| Title | A New Weighted Deep Learning Feature Using Particle Swarm and Ant Lion Optimization for Cervical Cancer Diagnosis on Pap Smear Images | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37685299 https://www.proquest.com/docview/2862241131 https://www.proquest.com/docview/2863299677 https://pubmed.ncbi.nlm.nih.gov/PMC10487265 https://www.mdpi.com/2075-4418/13/17/2762/pdf?version=1693217895 https://doaj.org/article/a6fb428478bb4c96af910d40ad852372  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkYAL4t1AqYyExIWoiZP4cUy3rQpilxVlRTlFjh9QaTdd7UMVP4D_zYyTrjaAgAOXHOKJ4rHH33xO7M-EvCyAJUvgFTGS8zgvdBFL6U2shcgK40Vic9zgPBzx00n-9rw43zrqC9eEtfLAbcMdaO7rHDFU1nVuFNceEpzNE20lzKFEQN9Eqq3JVMBghdp6RSszlMG8_sC2K9dQ-zjNMGtz1ktFQbH_V1zeSkw_L5q8vW7m-tuVnk63MtLJPXK3o5K0bF24T2645gG5Nex-lj8k30sKEEY_hY-fztIj5-a001P9QpH7rReOhjUDdNw1BD270osZ1Y2lZbOi76DX6HtAlVm3XZMCx6WDgC_w6gGGzIIetU5fLCkYjPWcns3gLfTNDLBq-YhMTo4_Dk7j7tSF2BRcrGKAzkSnSqbe-zoxjClhVO0SY9Oa5VZzbZi2HP8wppI7yW1qC-YAwBPPtUuzx2SnuWzcLqFK59x7YAC4AzfRvjbADoFT2jqvXcbTiLDrDqhMJ0mOJ2NMK5iaYK9Vv-m1iLzePDRvFTn-bH6IPbsxRTntcAOCrOratvpbkEXkFcZFhYMeKmh0t3cB3ET5rKoUHJmlUmC517OEwWr6xdeRVXVgsawYjBcgUlDjiLzYFOOTuACucZfrYJMBc-BCRORJG4gblyBHQDWViojshWjP535Jc_E1SInDZFwKxouIxJto_pdWffo_WvUZucOAMuIXelbskZ3VYu2eA8Vb1fvk5uHxaPxhP4xquA5zCfcmo3H5-Qd2MFQE | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqJcEG8MBRYJxAWr9tpe24cKpUmrhCYhoq3ozax316VS4pg8FPUH8Lf4bczYG1MDqrj06h2vPZ7xN9--Zgh5EwBLjoBX2EjObT8QgR1FmbRFGHqBzEJH-XjAeTDk3VP_41lwtkF-rs_C4LbKNSaWQK2mEufIdxl0CtHG9dwPxXcbq0bh6uq6hIYwpRXUXplizBzsONKXKxjCzfd6HbD3W8YOD07aXdtUGbBlwMOFDVDhCBh6u1mWpY5kLA5lnGpHKjdlvhJcSCYUxxU1N-I64spVAdMAWE7GhXY96PcW2fI9P4bB39b-wXD0uZ7lwaybMAar0h15XuzsqmoHHeZgBl2APXDWCIll5YC_48OVAPnn5s3tZV6Iy5UYj69ExsN75K6htLRV-eB9sqHzB-T2wCzaPyQ_WhSglH4pJ2G1oh2tC2ryup5T5KDLmabl3gU6Mp5Mj1diNqEiV7SVL2gfvId-AnSbmGOjFLg2bZc4B49uo-vOaKdS-mJOQWAkCno8gafQ3gQwc_6InN6IXR6TzXya66eExsLnWQZMBE8COyJLJbBU4LYq9VPtcdcibG2ARJrU6FihY5zAEAmtlvzDahZ5X99UVJlBrhffR8vWopjWu7wwnZ0n5tsmgmepj4QhSlNfxlxkwOYUvLKKAuaF0Mk79IsEwQdeUApzhgLUxDReSSvkyHDjGCR3GpIAGrLZvPasxIDWPPn9i1nkdd2Md-JGvFxPl6WMBwyGh6FFnlSOWKsEsQpeM44tEjVctKFzsyW_-FamNHchkISMBxaxa2_-n6_67Ho9XpHt7smgn_R7w6Pn5A4DgorrASzYIZuL2VK_AEK5SF-av5aSrzcNFL8AkiOMHw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVipcEG8MBRYJxAUr9tpe24cKpUmjhrYholTtzaz3USolTshDVX8Af45fxYy9MTWgikuv3vHa6xl_8-1jZgh5EwFLToBXuEjO3TASkZskRroijoNImthTIQY4Hw743nH48TQ6XSM_V7EweKxyhYklUKuJxDXyFoNOwdv4gd8y9ljEsNv7MP3uYgUp3GldldMQtsyC2i7Tjdkgj319eQHTufl2vwu6f8tYb_dLZ8-1FQdcGfF44QJseAKm4b4xJvckY2ks01x7Uvk5C5XgQjKhOO6u-QnXCVe-ipgG8PIMF9oPoN9bZAM3vwAkNnZ2B8PP9YoPZuCE-ViV-igIUq-lqtN0mI8ZxgVMgrOGeyyrCPztK644yz8Pct5eFlNxeSFGoytesneP3LX0lrYre7xP1nTxgGwe2g38h-RHmwKs0pNyQVYr2tV6Sm2O1zOKfHQ507Q8x0CH1qrp0YWYjakoFG0XC3oAlkQ_AdKNbQgpBd5NOyXmwaM7aMYz2q0GfT6nIDAUU3o0hqfQ_hjwc_6IHN-IXh6T9WJS6KeEpiLkxgArwahgT5hcAmMFnqvyMNcB9x3CVgrIpE2TjtU6RhlMl1Br2T-05pD39U3TKkvI9eI7qNlaFFN8lxcms7PMfttMcJOHSB6SPA9lyoUBZqfglVUSsSCGTt6hXWQIRPCCUth4ChgmpvTK2jFHtpumILnVkAQAkc3mlWVlFsDm2e_fzSGv62a8Ew_lFXqyLGUCYDM8jh3ypDLEekjgt-A109QhScNEG2NuthTn38r05j44lZjxyCFubc3_81WfXT-OV2QTACM76A_2n5M7DLgqbg2waIusL2ZL_QK45SJ_aX9aSr7eNE78At45kE4 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLagk4AX7pfAQEZC4oWsiRM7zhMqHdNAbFQaFeMpcnwZFW1a9cIE7_xvzkncqhkIgXitjxvbOf7OZ-f4MyHPOLBkCbwiRHIeplzxUEqnQ5VlCdcui0yKB5yPjsXhMH17yk-3TvFjWiUsxUc1SDOIZyHEa9mNk26cdRnM3O7MuJdf_V4SKokAp5Y5v0x2BAc23iE7w-NB7xPeKbeu3YgNJbC675omfw0VkOMEY7dgrYBU6_b_is5b4eli6uTVVTVT387VeLwVlw5uELXuUZOO8mVvtSz39PcLYo__0-Wb5LonrbTXeNktcslWt8mVI_9Z_g750aMAlvRjvc1qDd23dka9cusZRZa5mltaZyfQgfdVenKu5hOqKkN71ZK-g6fS94BfE38wlAKbpv0ayeDRfXTOOd1vBna0oGAwUDN6MoGn0DcTQMXFXTI8eP2hfxj6-x1CzUW2DAGkIxXnMnbOlZFmLM90XtpIm7hkqVFCaaaMwG-ZsRRWChMbziyEisgJZePkHulU08o-IDRXqXAOuAae9Y2UKzXwUGCvpkxLm4g4IGz9kgvtxc_xDo5xAYsg9IziN54RkBebSrNG--PP5q_QezamKNxd_zCdnxV-bAslXJkiJZBlmepcKAd8zUCTjeQsyeBPnqPvFQgv0ECt_CkJ6CYKdRW9TCCHzXOw3G1ZAizodvHaewsPS4uCwcwEygYtDsjTTTHWxFS7yk5XtU0CHEVkWUDuN86-6RJEI2hmngdEtqZBq8_tkmr0uRYth2W_zJjgAQk3M-ZvRvXhP9o_ItcY8FDc9md8l3SW85V9DLxxWT7x0PATWklpew | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Weighted+Deep+Learning+Feature+Using+Particle+Swarm+and+Ant+Lion+Optimization+for+Cervical+Cancer+Diagnosis+on+Pap+Smear+Images&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Mohammed+Alsalatie&rft.au=Hiam+Alquran&rft.au=Wan+Azani+Mustafa&rft.au=Ala%E2%80%99a+Zyout&rft.date=2023-08-25&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=13&rft.issue=17&rft.spage=2762&rft_id=info:doi/10.3390%2Fdiagnostics13172762&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a6fb428478bb4c96af910d40ad852372 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |