Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis
Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disea...
Saved in:
Published in | Journal of molecular and cellular cardiology Vol. 88; pp. 1 - 13 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2828 1095-8584 1095-8584 |
DOI | 10.1016/j.yjmcc.2015.09.004 |
Cover
Abstract | Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies.
•Overexpression of the ubiquitin ligase Wwp1 yields sudden cardiac death in mouse.•Chronic overexpression of Wwp1 promotes left ventricular hypertrophy.•The effects of Wwp1 are cardiomyocyte cell autonomous.•Wwp1 associates with and ubiquitylates connexin 43 contributing to arrhythmogenesis. |
---|---|
AbstractList | Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and -independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies. Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8 weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies. Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies. •Overexpression of the ubiquitin ligase Wwp1 yields sudden cardiac death in mouse.•Chronic overexpression of Wwp1 promotes left ventricular hypertrophy.•The effects of Wwp1 are cardiomyocyte cell autonomous.•Wwp1 associates with and ubiquitylates connexin 43 contributing to arrhythmogenesis. Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and -independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies.Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and -independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies. Abstract Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8 weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies. |
Author | Abreha, Measho Matesic, Lydia E. Jenkins, Nancy A. Price, Robert L. Thames, Elizabeth L. Basheer, Wassim A. Copeland, Neal G. Swing, Deborah A. Harris, Brett S. Mentrup, Heather L. Lea, Jessica B. |
AuthorAffiliation | d Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA c Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA a Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA b Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA |
AuthorAffiliation_xml | – name: b Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA – name: c Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA – name: d Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA – name: a Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA |
Author_xml | – sequence: 1 givenname: Wassim A. surname: Basheer fullname: Basheer, Wassim A. organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA – sequence: 2 givenname: Brett S. surname: Harris fullname: Harris, Brett S. organization: Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA – sequence: 3 givenname: Heather L. surname: Mentrup fullname: Mentrup, Heather L. organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA – sequence: 4 givenname: Measho surname: Abreha fullname: Abreha, Measho organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA – sequence: 5 givenname: Elizabeth L. surname: Thames fullname: Thames, Elizabeth L. organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA – sequence: 6 givenname: Jessica B. surname: Lea fullname: Lea, Jessica B. organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA – sequence: 7 givenname: Deborah A. surname: Swing fullname: Swing, Deborah A. organization: Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA – sequence: 8 givenname: Neal G. surname: Copeland fullname: Copeland, Neal G. organization: Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA – sequence: 9 givenname: Nancy A. surname: Jenkins fullname: Jenkins, Nancy A. organization: Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA – sequence: 10 givenname: Robert L. surname: Price fullname: Price, Robert L. organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA – sequence: 11 givenname: Lydia E. surname: Matesic fullname: Matesic, Lydia E. email: lmatesic@biol.sc.edu organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26386426$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEYhYNU7Lb6CwSZS29mzedsBrEgi19Q8ELFy5DJvLObdSbZJpm1c-VfN-O2ogXtVQI5zznhPe8ZOnHeAUJPCV4STKoXu-W0G4xZUkzEEtdLjPkDtCC4FqUUkp-gBcaUllRSeYrOYtxhjGvO2CN0SismK06rBfqx1qG1fpi8mRKUcQ_GdtYU_gABrvcBYrTeFb4r0haKsbFXo03WFb3d6AjF1-97UhjvUrDNmCAWyRcB2tGkmcq6tXcOrvOFs0K7ttAhbKe0HfwGHEQbH6OHne4jPLk5z9GXt28-r9-Xlx_ffVi_viyNqKpUgtGiwYwA1R2pakkrwimmbSWZqCtumGgFXnWkloQKQalpamp0LVecyFXTcXaOLo6--7EZoDWQv6x7tQ920GFSXlv194uzW7XxB8UrTjDD2eD5jUHwVyPEpAYbDfS9duDHqMiKUYal5CRLn_2Z9TvkdupZUB8FJvgYA3TK2KTnkeVo2yuC1dyw2qlfDau5YYVrlRvOLLvD3tr_n3p1pCDP-GAhqGgsOAOtDWCSar29h7-4w5veOmt0_w0miDs_BpfrU0RFqrD6NG_evHhEMIzFimaDl_82uDf-J6XZ7CY |
CitedBy_id | crossref_primary_10_1007_s11626_024_00894_3 crossref_primary_10_1016_j_bbamem_2017_05_018 crossref_primary_10_1016_j_bbcan_2016_02_001 crossref_primary_10_1161_CIRCULATIONAHA_121_054827 crossref_primary_10_1242_jcs_204321 crossref_primary_10_3389_fcvm_2021_815595 crossref_primary_10_3390_ijms22116065 crossref_primary_10_1152_ajpheart_00032_2021 crossref_primary_10_3389_fcvm_2023_1198486 crossref_primary_10_3390_ijms19051428 crossref_primary_10_1002_ajmg_a_61571 crossref_primary_10_1038_s41419_023_06380_0 crossref_primary_10_3390_biology13121046 crossref_primary_10_1007_s00018_024_05165_8 crossref_primary_10_1186_s12860_016_0087_7 crossref_primary_10_1002_iid3_852 crossref_primary_10_1152_ajpheart_00620_2019 crossref_primary_10_1016_j_diff_2017_12_003 crossref_primary_10_1242_jcs_202408 crossref_primary_10_7717_peerj_9849 crossref_primary_10_1007_s11033_024_09290_2 crossref_primary_10_1074_jbc_RA117_001315 crossref_primary_10_3390_ijms19051296 crossref_primary_10_1016_j_bbamcr_2015_10_015 crossref_primary_10_1016_j_bbamem_2017_05_008 crossref_primary_10_3390_ijms241612851 crossref_primary_10_1093_cvr_cvz340 crossref_primary_10_1016_j_biopha_2020_110125 crossref_primary_10_1111_ejn_14198 crossref_primary_10_3389_fcell_2021_739944 crossref_primary_10_1016_j_semcdb_2023_02_008 crossref_primary_10_3390_ijms22094413 crossref_primary_10_1128_MCB_00427_17 crossref_primary_10_1124_pr_115_012062 crossref_primary_10_1161_CIRCEP_115_001357 crossref_primary_10_2174_1389202920666190820142043 crossref_primary_10_1007_s00018_019_03285_0 |
Cites_doi | 10.1523/JNEUROSCI.4474-04.2005 10.1093/cvr/cvn133 10.1007/s00018-011-0871-7 10.1016/j.abb.2011.12.027 10.1074/jbc.M109.082347 10.1113/jphysiol.2004.072108 10.1042/bj2730067 10.1038/nrc2841 10.1007/s00232-012-9448-0 10.1152/ajpheart.00514.2007 10.1074/jbc.M506183200 10.1161/01.RES.0000148664.33695.2a 10.1007/s10555-007-9091-x 10.1161/01.RES.88.3.333 10.1016/j.cellsig.2010.03.005 10.1038/sj.onc.1207885 10.1002/ijc.22653 10.1007/s13277-014-2696-0 10.1126/scisignal.2005096 10.1371/journal.pone.0104709 10.1161/CIRCRESAHA.109.194423 10.1038/sj.onc.1210021 10.1242/jcs.03149 10.1002/humu.20958 10.1161/CIRCULATIONAHA.110.976092 10.1002/jbmr.1938 10.1074/jbc.M402006200 10.1021/pr300790h 10.1016/j.oooo.2013.05.006 10.1016/j.yjmcc.2010.09.009 10.1007/s11248-009-9342-4 10.1016/j.yexcr.2009.10.003 10.1038/nm.3739 10.1016/j.febslet.2013.12.022 10.1371/journal.pone.0061027 10.1161/01.RES.76.3.381 10.1111/j.1432-0436.1992.tb00675.x 10.1016/S0739-7240(01)00128-X 10.1074/jbc.M112.436311 10.1016/j.bbrc.2014.04.117 10.1111/tra.12169 10.1161/01.RES.83.6.629 10.1016/j.biochi.2015.02.020 10.1126/science.7892609 10.1161/hh1301.092687 10.1146/annurev.cellbio.19.110701.154617 10.1161/CIRCRESAHA.108.180042 10.1006/mcne.1998.0677 10.1073/pnas.1412152111 10.1042/BJ20141370 10.1021/bi981310l |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.yjmcc.2015.09.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-8584 |
EndPage | 13 |
ExternalDocumentID | PMC4641030 26386426 10_1016_j_yjmcc_2015_09_004 S0022282815300572 1_s2_0_S0022282815300572 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural NIH HHS – fundername: NIGMS NIH HHS grantid: P20 GM103641 – fundername: NHLBI NIH HHS grantid: R01 HL104030 – fundername: NHLBI NIH HHS grantid: R01HL104030 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADUVX AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HLW HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LX2 M29 M41 MO0 N9A O-L O9- OAUVE OA~ OL0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBG SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K WUQ X7M XPP Z5R ZGI ZMT ZU3 ~G- AACTN AEHWI AFCTW AFKWA AJOXV AMFUW RIG SSU AAIAV ABLVK ABYKQ AHPSJ AJBFU DOVZS EFLBG LCYCR AAYXX ACLOT CITATION ~HD AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c566t-eca5b031e2af16982614202d6835964c35d507f198125522cb92ca9874187bf43 |
IEDL.DBID | .~1 |
ISSN | 0022-2828 1095-8584 |
IngestDate | Thu Aug 21 13:52:40 EDT 2025 Sun Sep 28 09:56:15 EDT 2025 Mon Jul 21 05:59:22 EDT 2025 Thu Sep 25 01:05:52 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Fri Feb 23 02:43:03 EST 2024 Sun Feb 23 10:19:51 EST 2025 Tue Aug 26 16:48:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ubiquitin GJ PMA Wwp1 Arrhythmogenesis E1 E2 Ub E3 Gap junction HECT WGA ODDD Connexin Cx43 RING HA WT Tmx LVH ubiquitin ligase hemagglutinin oculodentodigital dysplasia phorbol 12-myristate 13-acetate Connexin 43 wheat germ agglutinin tamoxifen gap junctions ubiquitin activating enzyme ubiquitin homologous to E6-AP carboxy terminus really interesting new gene left ventricular hypertrophy wild type ubiquitin conjugating enzyme |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-eca5b031e2af16982614202d6835964c35d507f198125522cb92ca9874187bf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present Address: The Methodist Cancer Research Program, The Methodist Hospital Research Institute, Houston, TX 77030, USA |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4641030 |
PMID | 26386426 |
PQID | 1732308841 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4641030 proquest_miscellaneous_1732308841 pubmed_primary_26386426 crossref_citationtrail_10_1016_j_yjmcc_2015_09_004 crossref_primary_10_1016_j_yjmcc_2015_09_004 elsevier_sciencedirect_doi_10_1016_j_yjmcc_2015_09_004 elsevier_clinicalkeyesjournals_1_s2_0_S0022282815300572 elsevier_clinicalkey_doi_10_1016_j_yjmcc_2015_09_004 |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of molecular and cellular cardiology |
PublicationTitleAlternate | J Mol Cell Cardiol |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Kristensen, Foster, Naus (bb0065) 2012; 11 Remo, Giovannone, Fishman (bb0015) 2012; 245 Beardslee, Laing, Beyer, Saffitz (bb0020) 1998; 83 Martins-Marques, Catarino, Marques, Matafome, Ribeiro-Rodrigues, Baptista (bb0045) 2015; 112 Martins-Marques, Catarino, Zuzarte, Marques, Matafome, Pereira (bb0050) 2015; 467 Andersson, Winer, Mork, Molkentin, Jaisser (bb0155) 2010; 19 Chen, Sun, Guo, Dong, Sethi, Cheng (bb0170) 2005; 280 Chen, Sun, Guo, Dong, Sethi, Zhou (bb0110) 2007; 26 Laird, Puranam, Revel (bb0030) 1991; 273 Matsui, Nakano, Shao, Gao, Luo, Hong (bb0250) 2008; 103 Girao, Catarino, Pereira (bb0075) 2009; 315 Laird (bb0195) 2014; 588 Su, Lau (bb0040) 2012; 524 Komuro, Imamura, Saitoh, Yoshida, Yamori, Miyazono (bb0090) 2004; 23 Kjenseth, Fykerud, Rivedal, Leithe (bb0035) 2010; 22 Chen, Zhou, Ross, Zhou, Dong (bb0115) 2007; 121 Mund, Lewis, Maslen, Pelham (bb0260) 2014; 111 Zhi, Chen (bb0105) 2012; 69 Fishman, Chugh, Dimarco, Albert, Anderson, Bonow (bb0265) 2010; 122 Jones, Lancaster, Boyett (bb0005) 2004; 560 Leithe, Rivedal (bb0175) 2004; 279 Batra, Kar, Jiang (bb0140) 1818; 2012 Darrow, Laing, Lampe, Saffitz, Beyer (bb0025) 1995; 76 Fromaget, el Aoumari, Gros (bb0210) 1992; 51 Danik, Liu, Zhang, Suk, Morley, Fishman (bb0165) 2004; 95 Sohal, Nghiem, Crackower, Witt, Kimball, Tymitz (bb0185) 2001; 89 Chen, Matesic (bb0085) 2007; 26 Wood, Yuan, Margolis, Colomer, Duan, Kushi (bb0100) 1998; 11 Smyth, Zhang, Sanchez, Lamouille, Vogan, Hesketh (bb0255) 2014; 15 Mosser, Kasanov, Forsberg, Kay, Ney, Bresnick (bb0095) 1998; 37 Zhang, Wu, Ma, Liu, Wu, Zhang (bb0130) 2015; 36 Leykauf, Salek, Bomke, Frech, Lehmann, Durst (bb0080) 2006; 119 Paznekas, Karczeski, Vermeer, Lowry, Delatycki, Laurence (bb0145) 2009; 30 Banerjee, Fuseler, Price, Borg, Baudino (bb0190) 2007; 293 Popovic, Vucic, Dikic (bb0055) 2014; 20 Cheng, Cao, Yuan, Li, Tong (bb0120) 2014; 448 Hicke, Dunn (bb0060) 2003; 19 Reaume, de Sousa, Kulkarni, Langille, Zhu, Davies (bb0200) 1995; 267 Lim, Chew, Tan, Wang, Chung, Zhang (bb0180) 2005; 25 Fouladkou, Lu, Jiang, Zhou, She, Walls (bb0215) 2010; 285 Pfaffl, Georgieva, Georgiev, Ontsouka, Hageleit, Blum (bb0160) 2002; 22 Del Re, Yang, Nakano, Cho, Zhai, Yamamoto (bb0245) 2013; 288 Scicluna, Tanck, Remme, Beekman, Coronel, Wilde (bb0230) 2011; 50 Severs, Bruce, Dupont, Rothery (bb0010) 2008; 80 Naus, Laird (bb0150) 2010; 10 Lin, Hsieh, Chen, Tsai, Chang (bb0125) 2013; 116 Remme, Scicluna, Verkerk, Amin, van Brunschot, Beekman (bb0225) 2009; 104 Shu, Zhang, Boyce, Xing (bb0135) 2013; 28 Yeung, Ho, Yang (bb0235) 2013; 8 Gutstein, Morley, Tamaddon, Vaidya, Schneider, Chen (bb0205) 2001; 88 Molina-Navarro, Trivino, Martinez-Dolz, Lago, Gonzalez-Juanatey, Portoles (bb0220) 2014; 9 Fykerud, Kjenseth, Schink, Sirnes, Bruun, Omori (bb0070) 2012; 125 Wackerhage, Del Re, Judson, Sudol, Sadoshima (bb0240) 2014; 7 Beardslee (10.1016/j.yjmcc.2015.09.004_bb0020) 1998; 83 Lim (10.1016/j.yjmcc.2015.09.004_bb0180) 2005; 25 Danik (10.1016/j.yjmcc.2015.09.004_bb0165) 2004; 95 Remme (10.1016/j.yjmcc.2015.09.004_bb0225) 2009; 104 Chen (10.1016/j.yjmcc.2015.09.004_bb0085) 2007; 26 Smyth (10.1016/j.yjmcc.2015.09.004_bb0255) 2014; 15 Chen (10.1016/j.yjmcc.2015.09.004_bb0170) 2005; 280 Scicluna (10.1016/j.yjmcc.2015.09.004_bb0230) 2011; 50 Chen (10.1016/j.yjmcc.2015.09.004_bb0065) 2012; 11 Martins-Marques (10.1016/j.yjmcc.2015.09.004_bb0045) 2015; 112 Fouladkou (10.1016/j.yjmcc.2015.09.004_bb0215) 2010; 285 Darrow (10.1016/j.yjmcc.2015.09.004_bb0025) 1995; 76 Del Re (10.1016/j.yjmcc.2015.09.004_bb0245) 2013; 288 Fromaget (10.1016/j.yjmcc.2015.09.004_bb0210) 1992; 51 Remo (10.1016/j.yjmcc.2015.09.004_bb0015) 2012; 245 Laird (10.1016/j.yjmcc.2015.09.004_bb0195) 2014; 588 Jones (10.1016/j.yjmcc.2015.09.004_bb0005) 2004; 560 Fykerud (10.1016/j.yjmcc.2015.09.004_bb0070) 2012; 125 Paznekas (10.1016/j.yjmcc.2015.09.004_bb0145) 2009; 30 Banerjee (10.1016/j.yjmcc.2015.09.004_bb0190) 2007; 293 Chen (10.1016/j.yjmcc.2015.09.004_bb0110) 2007; 26 Molina-Navarro (10.1016/j.yjmcc.2015.09.004_bb0220) 2014; 9 Mund (10.1016/j.yjmcc.2015.09.004_bb0260) 2014; 111 Girao (10.1016/j.yjmcc.2015.09.004_bb0075) 2009; 315 Fishman (10.1016/j.yjmcc.2015.09.004_bb0265) 2010; 122 Laird (10.1016/j.yjmcc.2015.09.004_bb0030) 1991; 273 Popovic (10.1016/j.yjmcc.2015.09.004_bb0055) 2014; 20 Sohal (10.1016/j.yjmcc.2015.09.004_bb0185) 2001; 89 Batra (10.1016/j.yjmcc.2015.09.004_bb0140) 1818; 2012 Su (10.1016/j.yjmcc.2015.09.004_bb0040) 2012; 524 Kjenseth (10.1016/j.yjmcc.2015.09.004_bb0035) 2010; 22 Matsui (10.1016/j.yjmcc.2015.09.004_bb0250) 2008; 103 Wackerhage (10.1016/j.yjmcc.2015.09.004_bb0240) 2014; 7 Reaume (10.1016/j.yjmcc.2015.09.004_bb0200) 1995; 267 Zhi (10.1016/j.yjmcc.2015.09.004_bb0105) 2012; 69 Yeung (10.1016/j.yjmcc.2015.09.004_bb0235) 2013; 8 Naus (10.1016/j.yjmcc.2015.09.004_bb0150) 2010; 10 Komuro (10.1016/j.yjmcc.2015.09.004_bb0090) 2004; 23 Severs (10.1016/j.yjmcc.2015.09.004_bb0010) 2008; 80 Lin (10.1016/j.yjmcc.2015.09.004_bb0125) 2013; 116 Leykauf (10.1016/j.yjmcc.2015.09.004_bb0080) 2006; 119 Cheng (10.1016/j.yjmcc.2015.09.004_bb0120) 2014; 448 Gutstein (10.1016/j.yjmcc.2015.09.004_bb0205) 2001; 88 Hicke (10.1016/j.yjmcc.2015.09.004_bb0060) 2003; 19 Martins-Marques (10.1016/j.yjmcc.2015.09.004_bb0050) 2015; 467 Pfaffl (10.1016/j.yjmcc.2015.09.004_bb0160) 2002; 22 Shu (10.1016/j.yjmcc.2015.09.004_bb0135) 2013; 28 Wood (10.1016/j.yjmcc.2015.09.004_bb0100) 1998; 11 Andersson (10.1016/j.yjmcc.2015.09.004_bb0155) 2010; 19 Leithe (10.1016/j.yjmcc.2015.09.004_bb0175) 2004; 279 Zhang (10.1016/j.yjmcc.2015.09.004_bb0130) 2015; 36 Chen (10.1016/j.yjmcc.2015.09.004_bb0115) 2007; 121 Mosser (10.1016/j.yjmcc.2015.09.004_bb0095) 1998; 37 19407241 - Circ Res. 2009 Jun 5;104(11):1283-92 21963408 - Biochim Biophys Acta. 2012 Aug;1818(8):1909-18 25375928 - Nat Med. 2014 Nov;20(11):1242-53 7892609 - Science. 1995 Mar 24;267(5205):1831-4 23553732 - J Bone Miner Res. 2013 Sep;28(9):1925-35 19894134 - Transgenic Res. 2010 Aug;19(4):715-25 22051607 - Cell Mol Life Sci. 2012 May;69(9):1425-34 24792179 - Biochem Biophys Res Commun. 2014 Jun 6;448(3):248-54 17604329 - Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1883-91 18519446 - Cardiovasc Res. 2008 Oct 1;80(1):9-19 9647693 - Mol Cell Neurosci. 1998 Jun;11(3):149-60 19338053 - Hum Mutat. 2009 May;30(5):724-33 20026598 - J Biol Chem. 2010 Feb 26;285(9):6770-80 21147730 - Circulation. 2010 Nov 30;122(22):2335-48 20206687 - Cell Signal. 2010 Sep;22(9):1267-73 22239989 - Arch Biochem Biophys. 2012 Aug 1;524(1):16-22 7859384 - Circ Res. 1995 Mar;76(3):381-7 25293520 - Tumour Biol. 2015 Feb;36(2):787-98 25748165 - Biochimie. 2015 May;112:196-201 15221015 - Oncogene. 2004 Sep 9;23(41):6914-23 20495577 - Nat Rev Cancer. 2010 Jun;10(6):435-41 9753456 - Biochemistry. 1998 Sep 29;37(39):13686-95 25137373 - PLoS One. 2014;9(8):e104709 23106098 - J Proteome Res. 2012 Dec 7;11(12):6134-46 24612377 - Traffic. 2014 Jun;15(6):684-99 15371442 - J Biol Chem. 2004 Nov 26;279(48):50089-96 17726579 - Cancer Metastasis Rev. 2007 Dec;26(3-4):587-604 25385595 - Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16736-41 17330240 - Int J Cancer. 2007 Jul 1;121(1):80-87 18927464 - Circ Res. 2008 Nov 21;103(11):1309-18 11179202 - Circ Res. 2001 Feb 16;88(3):333-9 24434540 - FEBS Lett. 2014 Apr 17;588(8):1339-48 15499029 - Circ Res. 2004 Nov 12;95(10):1035-41 17016436 - Oncogene. 2007 Apr 5;26(16):2386-94 23849376 - Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Aug;116(2):221-31 15728840 - J Neurosci. 2005 Feb 23;25(8):2002-9 22722763 - J Membr Biol. 2012 Jun;245(5-6):275-81 23275380 - J Biol Chem. 2013 Feb 8;288(6):3977-88 20854825 - J Mol Cell Cardiol. 2011 Mar;50(3):380-9 11440973 - Circ Res. 2001 Jul 6;89(1):20-5 23573293 - PLoS One. 2013;8(4):e61027 15308686 - J Physiol. 2004 Oct 15;560(Pt 2):429-37 1846532 - Biochem J. 1991 Jan 1;273(Pt 1):67-72 25605500 - Biochem J. 2015 Apr 15;467(2):231-45 22623726 - J Cell Sci. 2012 Sep 1;125(Pt 17):3966-76 1333424 - Differentiation. 1992 Sep;51(1):9-20 19835873 - Exp Cell Res. 2009 Dec 10;315(20):3587-97 9742058 - Circ Res. 1998 Sep 21;83(6):629-35 16223724 - J Biol Chem. 2005 Dec 16;280(50):41553-61 11900967 - Domest Anim Endocrinol. 2002 Apr;22(2):91-102 14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72 25097035 - Sci Signal. 2014 Aug 5;7(337):re4 16931598 - J Cell Sci. 2006 Sep 1;119(Pt 17):3634-42 |
References_xml | – volume: 25 start-page: 2002 year: 2005 end-page: 2009 ident: bb0180 article-title: Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation publication-title: J. Neurosci. – volume: 22 start-page: 1267 year: 2010 end-page: 1273 ident: bb0035 article-title: Regulation of gap junction intercellular communication by the ubiquitin system publication-title: Cell. Signal. – volume: 26 start-page: 587 year: 2007 end-page: 604 ident: bb0085 article-title: The Nedd4-like family of E3 ubiquitin ligases and cancer publication-title: Cancer Metastasis Rev. – volume: 524 start-page: 16 year: 2012 end-page: 22 ident: bb0040 article-title: Ubiquitination, intracellular trafficking, and degradation of connexins publication-title: Arch. Biochem. Biophys. – volume: 245 start-page: 275 year: 2012 end-page: 281 ident: bb0015 article-title: Connexin43 cardiac gap junction remodeling: lessons from genetically engineered murine models publication-title: J. Membr. Biol. – volume: 9 start-page: e104709 year: 2014 ident: bb0220 article-title: Functional networks of nucleocytoplasmic transport-related genes differentiate ischemic and dilated cardiomyopathies. A new therapeutic opportunity publication-title: PLoS One – volume: 112 start-page: 196 year: 2015 end-page: 201 ident: bb0045 article-title: Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs publication-title: Biochimie – volume: 315 start-page: 3587 year: 2009 end-page: 3597 ident: bb0075 article-title: Eps15 interacts with ubiquitinated Cx43 and mediates its internalization publication-title: Exp. Cell Res. – volume: 80 start-page: 9 year: 2008 end-page: 19 ident: bb0010 article-title: Remodelling of gap junctions and connexin expression in diseased myocardium publication-title: Cardiovasc. Res. – volume: 11 start-page: 149 year: 1998 end-page: 160 ident: bb0100 article-title: Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins publication-title: Mol. Cell. Neurosci. – volume: 121 start-page: 80 year: 2007 end-page: 87 ident: bb0115 article-title: The amplified WWP1 gene is a potential molecular target in breast cancer publication-title: Int. J. Cancer – volume: 267 start-page: 1831 year: 1995 end-page: 1834 ident: bb0200 article-title: Cardiac malformation in neonatal mice lacking connexin43 publication-title: Science (New York, NY) – volume: 125 start-page: 3966 year: 2012 end-page: 3976 ident: bb0070 article-title: Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43 publication-title: J. Cell Sci. – volume: 7 start-page: re4 year: 2014 ident: bb0240 article-title: The Hippo signal transduction network in skeletal and cardiac muscle publication-title: Sci. Signal. – volume: 560 start-page: 429 year: 2004 end-page: 437 ident: bb0005 article-title: Ageing-related changes of connexins and conduction within the sinoatrial node publication-title: J. Physiol. – volume: 19 start-page: 141 year: 2003 end-page: 172 ident: bb0060 article-title: Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins publication-title: Annu. Rev. Cell Dev. Biol. – volume: 10 start-page: 435 year: 2010 end-page: 441 ident: bb0150 article-title: Implications and challenges of connexin connections to cancer publication-title: Nat. Rev. Cancer – volume: 76 start-page: 381 year: 1995 end-page: 387 ident: bb0025 article-title: Expression of multiple connexins in cultured neonatal rat ventricular myocytes publication-title: Circ. Res. – volume: 83 start-page: 629 year: 1998 end-page: 635 ident: bb0020 article-title: Rapid turnover of connexin43 in the adult rat heart publication-title: Circ. Res. – volume: 37 start-page: 13686 year: 1998 end-page: 13695 ident: bb0095 article-title: Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains publication-title: Biochemistry – volume: 50 start-page: 380 year: 2011 end-page: 389 ident: bb0230 article-title: Quantitative trait loci for electrocardiographic parameters and arrhythmia in the mouse publication-title: J. Mol. Cell. Cardiol. – volume: 28 start-page: 1925 year: 2013 end-page: 1935 ident: bb0135 article-title: Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration publication-title: J. Bone Miner. Res. – volume: 30 start-page: 724 year: 2009 end-page: 733 ident: bb0145 article-title: GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype publication-title: Hum. Mutat. – volume: 103 start-page: 1309 year: 2008 end-page: 1318 ident: bb0250 article-title: Lats2 is a negative regulator of myocyte size in the heart publication-title: Circ. Res. – volume: 285 start-page: 6770 year: 2010 end-page: 6780 ident: bb0215 article-title: The ubiquitin ligase Nedd4-1 is required for heart development and is a suppressor of thrombospondin-1 publication-title: J. Biol. Chem. – volume: 588 start-page: 1339 year: 2014 end-page: 1348 ident: bb0195 article-title: Syndromic and non-syndromic disease-linked Cx43 mutations publication-title: FEBS Lett. – volume: 119 start-page: 3634 year: 2006 end-page: 3642 ident: bb0080 article-title: Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process publication-title: J. Cell Sci. – volume: 279 start-page: 50089 year: 2004 end-page: 50096 ident: bb0175 article-title: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment publication-title: J. Biol. Chem. – volume: 11 start-page: 6134 year: 2012 end-page: 6146 ident: bb0065 article-title: Association of connexin43 with E3 ubiquitin ligase TRIM21 reveals a mechanism for gap junction phosphodegron control publication-title: J. Proteome Res. – volume: 293 start-page: H1883 year: 2007 end-page: H1891 ident: bb0190 article-title: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 8 year: 2013 ident: bb0235 article-title: WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells publication-title: PLoS One – volume: 19 start-page: 715 year: 2010 end-page: 725 ident: bb0155 article-title: Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts publication-title: Transgenic Res. – volume: 467 start-page: 231 year: 2015 end-page: 245 ident: bb0050 article-title: Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes publication-title: Biochem. J. – volume: 448 start-page: 248 year: 2014 end-page: 254 ident: bb0120 article-title: Knockdown of WWP1 inhibits growth and induces apoptosis in hepatoma carcinoma cells through the activation of caspase3 and p53 publication-title: Biochem. Biophys. Res. Commun. – volume: 36 start-page: 787 year: 2015 end-page: 798 ident: bb0130 article-title: WWP1 as a potential tumor oncogene regulates PTEN-Akt signaling pathway in human gastric carcinoma publication-title: Tumour Biol. – volume: 22 start-page: 91 year: 2002 end-page: 102 ident: bb0160 article-title: Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species publication-title: Domest. Anim. Endocrinol. – volume: 88 start-page: 333 year: 2001 end-page: 339 ident: bb0205 article-title: Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43 publication-title: Circ. Res. – volume: 116 start-page: 221 year: 2013 end-page: 231 ident: bb0125 article-title: WWP1 gene is a potential molecular target of human oral cancer publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol. – volume: 89 start-page: 20 year: 2001 end-page: 25 ident: bb0185 article-title: Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein publication-title: Circ. Res. – volume: 51 start-page: 9 year: 1992 end-page: 20 ident: bb0210 article-title: Distribution pattern of connexin 43, a gap junctional protein, during the differentiation of mouse heart myocytes publication-title: Differentiation; Research in Biological Diversity. – volume: 20 start-page: 1242 year: 2014 end-page: 1253 ident: bb0055 article-title: Ubiquitination in disease pathogenesis and treatment publication-title: Nat. Med. – volume: 95 start-page: 1035 year: 2004 end-page: 1041 ident: bb0165 article-title: Modulation of cardiac gap junction expression and arrhythmic susceptibility publication-title: Circ. Res. – volume: 288 start-page: 3977 year: 2013 end-page: 3988 ident: bb0245 article-title: Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury publication-title: J. Biol. Chem. – volume: 26 start-page: 2386 year: 2007 end-page: 2394 ident: bb0110 article-title: Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer publication-title: Oncogene – volume: 273 start-page: 67 year: 1991 end-page: 72 ident: bb0030 article-title: Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes publication-title: Biochem. J. – volume: 280 start-page: 41553 year: 2005 end-page: 41561 ident: bb0170 article-title: Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells publication-title: J. Biol. Chem. – volume: 111 start-page: 16736 year: 2014 end-page: 16741 ident: bb0260 article-title: Peptide and small molecule inhibitors of HECT-type ubiquitin ligases publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 6914 year: 2004 end-page: 6923 ident: bb0090 article-title: Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1) publication-title: Oncogene – volume: 69 start-page: 1425 year: 2012 end-page: 1434 ident: bb0105 article-title: WWP1: a versatile ubiquitin E3 ligase in signaling and diseases publication-title: Cell. Mol. Life Sci. – volume: 15 start-page: 684 year: 2014 end-page: 699 ident: bb0255 article-title: A 14–3–3 mode-1 binding motif initiates gap junction internalization during acute cardiac ischemia publication-title: Traffic – volume: 104 start-page: 1283 year: 2009 end-page: 1292 ident: bb0225 article-title: Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy publication-title: Circ. Res. – volume: 122 start-page: 2335 year: 2010 end-page: 2348 ident: bb0265 article-title: Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop publication-title: Circulation – volume: 2012 start-page: 1909 year: 1818 end-page: 1918 ident: bb0140 article-title: Gap junctions and hemichannels in signal transmission, function and development of bone publication-title: Biochim. Biophys. Acta – volume: 25 start-page: 2002 year: 2005 ident: 10.1016/j.yjmcc.2015.09.004_bb0180 article-title: Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4474-04.2005 – volume: 80 start-page: 9 year: 2008 ident: 10.1016/j.yjmcc.2015.09.004_bb0010 article-title: Remodelling of gap junctions and connexin expression in diseased myocardium publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvn133 – volume: 69 start-page: 1425 year: 2012 ident: 10.1016/j.yjmcc.2015.09.004_bb0105 article-title: WWP1: a versatile ubiquitin E3 ligase in signaling and diseases publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-011-0871-7 – volume: 125 start-page: 3966 year: 2012 ident: 10.1016/j.yjmcc.2015.09.004_bb0070 article-title: Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43 publication-title: J. Cell Sci. – volume: 524 start-page: 16 year: 2012 ident: 10.1016/j.yjmcc.2015.09.004_bb0040 article-title: Ubiquitination, intracellular trafficking, and degradation of connexins publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2011.12.027 – volume: 285 start-page: 6770 year: 2010 ident: 10.1016/j.yjmcc.2015.09.004_bb0215 article-title: The ubiquitin ligase Nedd4-1 is required for heart development and is a suppressor of thrombospondin-1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.082347 – volume: 560 start-page: 429 year: 2004 ident: 10.1016/j.yjmcc.2015.09.004_bb0005 article-title: Ageing-related changes of connexins and conduction within the sinoatrial node publication-title: J. Physiol. doi: 10.1113/jphysiol.2004.072108 – volume: 273 start-page: 67 issue: Pt 1 year: 1991 ident: 10.1016/j.yjmcc.2015.09.004_bb0030 article-title: Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes publication-title: Biochem. J. doi: 10.1042/bj2730067 – volume: 10 start-page: 435 year: 2010 ident: 10.1016/j.yjmcc.2015.09.004_bb0150 article-title: Implications and challenges of connexin connections to cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2841 – volume: 245 start-page: 275 year: 2012 ident: 10.1016/j.yjmcc.2015.09.004_bb0015 article-title: Connexin43 cardiac gap junction remodeling: lessons from genetically engineered murine models publication-title: J. Membr. Biol. doi: 10.1007/s00232-012-9448-0 – volume: 293 start-page: H1883 year: 2007 ident: 10.1016/j.yjmcc.2015.09.004_bb0190 article-title: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00514.2007 – volume: 280 start-page: 41553 year: 2005 ident: 10.1016/j.yjmcc.2015.09.004_bb0170 article-title: Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M506183200 – volume: 95 start-page: 1035 year: 2004 ident: 10.1016/j.yjmcc.2015.09.004_bb0165 article-title: Modulation of cardiac gap junction expression and arrhythmic susceptibility publication-title: Circ. Res. doi: 10.1161/01.RES.0000148664.33695.2a – volume: 26 start-page: 587 year: 2007 ident: 10.1016/j.yjmcc.2015.09.004_bb0085 article-title: The Nedd4-like family of E3 ubiquitin ligases and cancer publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-007-9091-x – volume: 88 start-page: 333 year: 2001 ident: 10.1016/j.yjmcc.2015.09.004_bb0205 article-title: Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43 publication-title: Circ. Res. doi: 10.1161/01.RES.88.3.333 – volume: 22 start-page: 1267 year: 2010 ident: 10.1016/j.yjmcc.2015.09.004_bb0035 article-title: Regulation of gap junction intercellular communication by the ubiquitin system publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2010.03.005 – volume: 23 start-page: 6914 year: 2004 ident: 10.1016/j.yjmcc.2015.09.004_bb0090 article-title: Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1) publication-title: Oncogene doi: 10.1038/sj.onc.1207885 – volume: 121 start-page: 80 year: 2007 ident: 10.1016/j.yjmcc.2015.09.004_bb0115 article-title: The amplified WWP1 gene is a potential molecular target in breast cancer publication-title: Int. J. Cancer doi: 10.1002/ijc.22653 – volume: 36 start-page: 787 year: 2015 ident: 10.1016/j.yjmcc.2015.09.004_bb0130 article-title: WWP1 as a potential tumor oncogene regulates PTEN-Akt signaling pathway in human gastric carcinoma publication-title: Tumour Biol. doi: 10.1007/s13277-014-2696-0 – volume: 7 start-page: re4 year: 2014 ident: 10.1016/j.yjmcc.2015.09.004_bb0240 article-title: The Hippo signal transduction network in skeletal and cardiac muscle publication-title: Sci. Signal. doi: 10.1126/scisignal.2005096 – volume: 9 start-page: e104709 year: 2014 ident: 10.1016/j.yjmcc.2015.09.004_bb0220 article-title: Functional networks of nucleocytoplasmic transport-related genes differentiate ischemic and dilated cardiomyopathies. A new therapeutic opportunity publication-title: PLoS One doi: 10.1371/journal.pone.0104709 – volume: 104 start-page: 1283 year: 2009 ident: 10.1016/j.yjmcc.2015.09.004_bb0225 article-title: Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.194423 – volume: 26 start-page: 2386 year: 2007 ident: 10.1016/j.yjmcc.2015.09.004_bb0110 article-title: Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer publication-title: Oncogene doi: 10.1038/sj.onc.1210021 – volume: 119 start-page: 3634 year: 2006 ident: 10.1016/j.yjmcc.2015.09.004_bb0080 article-title: Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process publication-title: J. Cell Sci. doi: 10.1242/jcs.03149 – volume: 30 start-page: 724 year: 2009 ident: 10.1016/j.yjmcc.2015.09.004_bb0145 article-title: GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype publication-title: Hum. Mutat. doi: 10.1002/humu.20958 – volume: 122 start-page: 2335 year: 2010 ident: 10.1016/j.yjmcc.2015.09.004_bb0265 article-title: Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.976092 – volume: 28 start-page: 1925 year: 2013 ident: 10.1016/j.yjmcc.2015.09.004_bb0135 article-title: Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1938 – volume: 279 start-page: 50089 year: 2004 ident: 10.1016/j.yjmcc.2015.09.004_bb0175 article-title: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment publication-title: J. Biol. Chem. doi: 10.1074/jbc.M402006200 – volume: 11 start-page: 6134 year: 2012 ident: 10.1016/j.yjmcc.2015.09.004_bb0065 article-title: Association of connexin43 with E3 ubiquitin ligase TRIM21 reveals a mechanism for gap junction phosphodegron control publication-title: J. Proteome Res. doi: 10.1021/pr300790h – volume: 116 start-page: 221 year: 2013 ident: 10.1016/j.yjmcc.2015.09.004_bb0125 article-title: WWP1 gene is a potential molecular target of human oral cancer publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol. doi: 10.1016/j.oooo.2013.05.006 – volume: 50 start-page: 380 year: 2011 ident: 10.1016/j.yjmcc.2015.09.004_bb0230 article-title: Quantitative trait loci for electrocardiographic parameters and arrhythmia in the mouse publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2010.09.009 – volume: 19 start-page: 715 year: 2010 ident: 10.1016/j.yjmcc.2015.09.004_bb0155 article-title: Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts publication-title: Transgenic Res. doi: 10.1007/s11248-009-9342-4 – volume: 315 start-page: 3587 year: 2009 ident: 10.1016/j.yjmcc.2015.09.004_bb0075 article-title: Eps15 interacts with ubiquitinated Cx43 and mediates its internalization publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2009.10.003 – volume: 20 start-page: 1242 year: 2014 ident: 10.1016/j.yjmcc.2015.09.004_bb0055 article-title: Ubiquitination in disease pathogenesis and treatment publication-title: Nat. Med. doi: 10.1038/nm.3739 – volume: 588 start-page: 1339 year: 2014 ident: 10.1016/j.yjmcc.2015.09.004_bb0195 article-title: Syndromic and non-syndromic disease-linked Cx43 mutations publication-title: FEBS Lett. doi: 10.1016/j.febslet.2013.12.022 – volume: 2012 start-page: 1909 year: 1818 ident: 10.1016/j.yjmcc.2015.09.004_bb0140 article-title: Gap junctions and hemichannels in signal transmission, function and development of bone publication-title: Biochim. Biophys. Acta – volume: 8 year: 2013 ident: 10.1016/j.yjmcc.2015.09.004_bb0235 article-title: WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells publication-title: PLoS One doi: 10.1371/journal.pone.0061027 – volume: 76 start-page: 381 year: 1995 ident: 10.1016/j.yjmcc.2015.09.004_bb0025 article-title: Expression of multiple connexins in cultured neonatal rat ventricular myocytes publication-title: Circ. Res. doi: 10.1161/01.RES.76.3.381 – volume: 51 start-page: 9 year: 1992 ident: 10.1016/j.yjmcc.2015.09.004_bb0210 article-title: Distribution pattern of connexin 43, a gap junctional protein, during the differentiation of mouse heart myocytes publication-title: Differentiation; Research in Biological Diversity. doi: 10.1111/j.1432-0436.1992.tb00675.x – volume: 22 start-page: 91 year: 2002 ident: 10.1016/j.yjmcc.2015.09.004_bb0160 article-title: Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species publication-title: Domest. Anim. Endocrinol. doi: 10.1016/S0739-7240(01)00128-X – volume: 288 start-page: 3977 year: 2013 ident: 10.1016/j.yjmcc.2015.09.004_bb0245 article-title: Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.436311 – volume: 448 start-page: 248 year: 2014 ident: 10.1016/j.yjmcc.2015.09.004_bb0120 article-title: Knockdown of WWP1 inhibits growth and induces apoptosis in hepatoma carcinoma cells through the activation of caspase3 and p53 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.04.117 – volume: 15 start-page: 684 year: 2014 ident: 10.1016/j.yjmcc.2015.09.004_bb0255 article-title: A 14–3–3 mode-1 binding motif initiates gap junction internalization during acute cardiac ischemia publication-title: Traffic doi: 10.1111/tra.12169 – volume: 83 start-page: 629 year: 1998 ident: 10.1016/j.yjmcc.2015.09.004_bb0020 article-title: Rapid turnover of connexin43 in the adult rat heart publication-title: Circ. Res. doi: 10.1161/01.RES.83.6.629 – volume: 112 start-page: 196 year: 2015 ident: 10.1016/j.yjmcc.2015.09.004_bb0045 article-title: Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs publication-title: Biochimie doi: 10.1016/j.biochi.2015.02.020 – volume: 267 start-page: 1831 year: 1995 ident: 10.1016/j.yjmcc.2015.09.004_bb0200 article-title: Cardiac malformation in neonatal mice lacking connexin43 publication-title: Science (New York, NY) doi: 10.1126/science.7892609 – volume: 89 start-page: 20 year: 2001 ident: 10.1016/j.yjmcc.2015.09.004_bb0185 article-title: Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein publication-title: Circ. Res. doi: 10.1161/hh1301.092687 – volume: 19 start-page: 141 year: 2003 ident: 10.1016/j.yjmcc.2015.09.004_bb0060 article-title: Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.19.110701.154617 – volume: 103 start-page: 1309 year: 2008 ident: 10.1016/j.yjmcc.2015.09.004_bb0250 article-title: Lats2 is a negative regulator of myocyte size in the heart publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.180042 – volume: 11 start-page: 149 year: 1998 ident: 10.1016/j.yjmcc.2015.09.004_bb0100 article-title: Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins publication-title: Mol. Cell. Neurosci. doi: 10.1006/mcne.1998.0677 – volume: 111 start-page: 16736 year: 2014 ident: 10.1016/j.yjmcc.2015.09.004_bb0260 article-title: Peptide and small molecule inhibitors of HECT-type ubiquitin ligases publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1412152111 – volume: 467 start-page: 231 year: 2015 ident: 10.1016/j.yjmcc.2015.09.004_bb0050 article-title: Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes publication-title: Biochem. J. doi: 10.1042/BJ20141370 – volume: 37 start-page: 13686 year: 1998 ident: 10.1016/j.yjmcc.2015.09.004_bb0095 article-title: Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains publication-title: Biochemistry doi: 10.1021/bi981310l – reference: 25385595 - Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16736-41 – reference: 19835873 - Exp Cell Res. 2009 Dec 10;315(20):3587-97 – reference: 11179202 - Circ Res. 2001 Feb 16;88(3):333-9 – reference: 1333424 - Differentiation. 1992 Sep;51(1):9-20 – reference: 22051607 - Cell Mol Life Sci. 2012 May;69(9):1425-34 – reference: 14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72 – reference: 16223724 - J Biol Chem. 2005 Dec 16;280(50):41553-61 – reference: 18519446 - Cardiovasc Res. 2008 Oct 1;80(1):9-19 – reference: 23553732 - J Bone Miner Res. 2013 Sep;28(9):1925-35 – reference: 25097035 - Sci Signal. 2014 Aug 5;7(337):re4 – reference: 16931598 - J Cell Sci. 2006 Sep 1;119(Pt 17):3634-42 – reference: 15221015 - Oncogene. 2004 Sep 9;23(41):6914-23 – reference: 22239989 - Arch Biochem Biophys. 2012 Aug 1;524(1):16-22 – reference: 15308686 - J Physiol. 2004 Oct 15;560(Pt 2):429-37 – reference: 15728840 - J Neurosci. 2005 Feb 23;25(8):2002-9 – reference: 7892609 - Science. 1995 Mar 24;267(5205):1831-4 – reference: 9753456 - Biochemistry. 1998 Sep 29;37(39):13686-95 – reference: 22722763 - J Membr Biol. 2012 Jun;245(5-6):275-81 – reference: 18927464 - Circ Res. 2008 Nov 21;103(11):1309-18 – reference: 20495577 - Nat Rev Cancer. 2010 Jun;10(6):435-41 – reference: 23106098 - J Proteome Res. 2012 Dec 7;11(12):6134-46 – reference: 22623726 - J Cell Sci. 2012 Sep 1;125(Pt 17):3966-76 – reference: 25293520 - Tumour Biol. 2015 Feb;36(2):787-98 – reference: 11440973 - Circ Res. 2001 Jul 6;89(1):20-5 – reference: 1846532 - Biochem J. 1991 Jan 1;273(Pt 1):67-72 – reference: 17016436 - Oncogene. 2007 Apr 5;26(16):2386-94 – reference: 9742058 - Circ Res. 1998 Sep 21;83(6):629-35 – reference: 19407241 - Circ Res. 2009 Jun 5;104(11):1283-92 – reference: 19894134 - Transgenic Res. 2010 Aug;19(4):715-25 – reference: 24792179 - Biochem Biophys Res Commun. 2014 Jun 6;448(3):248-54 – reference: 9647693 - Mol Cell Neurosci. 1998 Jun;11(3):149-60 – reference: 17726579 - Cancer Metastasis Rev. 2007 Dec;26(3-4):587-604 – reference: 11900967 - Domest Anim Endocrinol. 2002 Apr;22(2):91-102 – reference: 23573293 - PLoS One. 2013;8(4):e61027 – reference: 20854825 - J Mol Cell Cardiol. 2011 Mar;50(3):380-9 – reference: 23849376 - Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Aug;116(2):221-31 – reference: 25605500 - Biochem J. 2015 Apr 15;467(2):231-45 – reference: 20026598 - J Biol Chem. 2010 Feb 26;285(9):6770-80 – reference: 7859384 - Circ Res. 1995 Mar;76(3):381-7 – reference: 15499029 - Circ Res. 2004 Nov 12;95(10):1035-41 – reference: 23275380 - J Biol Chem. 2013 Feb 8;288(6):3977-88 – reference: 25748165 - Biochimie. 2015 May;112:196-201 – reference: 19338053 - Hum Mutat. 2009 May;30(5):724-33 – reference: 21147730 - Circulation. 2010 Nov 30;122(22):2335-48 – reference: 20206687 - Cell Signal. 2010 Sep;22(9):1267-73 – reference: 21963408 - Biochim Biophys Acta. 2012 Aug;1818(8):1909-18 – reference: 25375928 - Nat Med. 2014 Nov;20(11):1242-53 – reference: 17604329 - Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1883-91 – reference: 24434540 - FEBS Lett. 2014 Apr 17;588(8):1339-48 – reference: 25137373 - PLoS One. 2014;9(8):e104709 – reference: 15371442 - J Biol Chem. 2004 Nov 26;279(48):50089-96 – reference: 24612377 - Traffic. 2014 Jun;15(6):684-99 – reference: 17330240 - Int J Cancer. 2007 Jul 1;121(1):80-87 |
SSID | ssj0009433 |
Score | 2.3536994 |
Snippet | Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue... Abstract Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Actins - genetics Actins - metabolism Animals Arrhythmias, Cardiac - genetics Arrhythmias, Cardiac - metabolism Arrhythmias, Cardiac - pathology Arrhythmogenesis Cardiovascular Connexin Connexin 43 - genetics Connexin 43 - metabolism Disease Models, Animal Female Gap junction Gap Junctions - metabolism Gap Junctions - pathology Gene Expression Regulation Heart Ventricles - metabolism Heart Ventricles - pathology Hypertrophy, Left Ventricular - genetics Hypertrophy, Left Ventricular - metabolism Hypertrophy, Left Ventricular - pathology Male Mice Mice, Transgenic Myocardium - metabolism Myocardium - pathology Myocytes, Cardiac - metabolism Myocytes, Cardiac - pathology Phenotype Promoter Regions, Genetic Proteasome Endopeptidase Complex - metabolism Protein Stability Proteolysis Signal Transduction Ubiquitin Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination Wwp1 |
Title | Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0022282815300572 https://www.clinicalkey.es/playcontent/1-s2.0-S0022282815300572 https://dx.doi.org/10.1016/j.yjmcc.2015.09.004 https://www.ncbi.nlm.nih.gov/pubmed/26386426 https://www.proquest.com/docview/1732308841 https://pubmed.ncbi.nlm.nih.gov/PMC4641030 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamISFe0PhdBpOReCSsdhwnfpyqTYWKPSCm7c2KE2fNtCalSbX1Zfzru3OcQtk0JJ6SNLbi5s53n-Pv7gj5mCYqMsPEBlzIMBBxGgdKMEyEzHkR8hx8viPIHsvxifh6Fp1tkVEfC4O0Sm_7O5vurLX_Zd-_zf15WWKML3694AnMWQypRDssRIy6_vnmN81Dia6cPLLWsXWfechxvFYXswzzGLLIJTv11dru8U530effJMo_vNLRDnnq4SQ96Eb8jGzZ6jl5_M1vmL8gv0aObzpb1dmqtQHGVSI3iCJx0157EmxF64ICEKRLU_5clm1Z0cvyHNwbPb2aM-rY7FgWyza0rekCk72iOCm0czyZazgRIU2rnKaLxXTVTmf1OdrQsnlJTo4Of4zGga-5EGQA7NrAZinILmSWpwWTChYfTPAhzyUgNSVFFkY5IMiCKQAGEWC3zCiepSrBJDixKUT4imxXdWXfEMp4YblUYRanuGvMDIuTwuYGfKUBmGAGhPfvWmc-ITnWxbjUPfPsQjsBaRSQHioNAhqQT-tO8y4fx8PNRS9E3YeagnHU4C8e7hbf1802foI3mumG66G-o4QDItc9N_T434_80OuYhhmO2zZpZeslPCoOYZ2YJIINyOtO59Z_nYP5hBWkhAFvaOO6AWYP37xTlVOXRVxIgSXm3v7vgHfJE7zq4jLfke12sbTvAaC1Zs_NwD3y6ODLZHyMx8n308ktKRM84w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIQEvaPxcNwZG4pGw2nGc-BFVmwpse9rE3iwncdZMa1KaVFtf4F_nznEKZdOQeKsaW0lz57vP9XffEfLeJCpKh4kNuJBhIGITB0owFELmvAh5DjnfEWRP5PhMfDmPzjfIqK-FQVqlj_1dTHfR2n-z79_m_qwsscYX_73gCaxZLKmEOPxAoEeBU3_88ZvnoUTXTx5p6zi8lx5yJK_l5TRDIUMWObVT367tjvR0G37-zaL8Iy0dbpEnHk_ST90jPyUbtnpGHh77E_Pn5OfIEU6nyzpbtjbAwkokB1Fkbtobz4KtaF1QQIJ0kZbfF2VbVvSqvID8Rr9dzxh1dHbsi2Ub2tZ0jmqvaE8K4xxR5gY-iJCaKqdmPp8s28m0vsAgWjYvyNnhweloHPimC0EGyK4NbGbAeCGz3BRMKth9MMGHPJcA1ZQUWRjlACELpgAZRADeslTxzKgEVXDitBDhS7JZ1ZXdJpTxwnKpwiw2eGzMUhYnhc1TSJYp4IR0QHj_rnXmFcmxMcaV7qlnl9oZSKOB9FBpMNCAfFhNmnWCHPcPF70RdV9rCtFRQ8K4f1p81zTb-BXeaKYbrof6lhcOiFzNXHPkf9_yXe9jGpY4ntuYytYLuFUcwkYxSQQbkFedz61-Oof4CVtICQ-85o2rASgfvn6lKidORlxIgT3mdv73gd-SR-PT4yN99Pnk6y55jFe6Is3XZLOdL-weoLU2feNW4y8s7TzR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiomyocyte-specific+overexpression+of+the+ubiquitin+ligase+Wwp1+contributes+to+reduction+in+Connexin+43+and+arrhythmogenesis&rft.jtitle=Journal+of+molecular+and+cellular+cardiology&rft.au=Basheer%2C+Wassim+A&rft.au=Harris%2C+Brett+S&rft.au=Mentrup%2C+Heather+L&rft.au=Abreha%2C+Measho&rft.date=2015-11-01&rft.issn=0022-2828&rft.volume=88&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2Fj.yjmcc.2015.09.004&rft.externalDBID=ECK1-s2.0-S0022282815300572&rft.externalDocID=1_s2_0_S0022282815300572 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00222828%2FS0022282815X00113%2Fcov150h.gif |