Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis

Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disea...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular and cellular cardiology Vol. 88; pp. 1 - 13
Main Authors Basheer, Wassim A., Harris, Brett S., Mentrup, Heather L., Abreha, Measho, Thames, Elizabeth L., Lea, Jessica B., Swing, Deborah A., Copeland, Neal G., Jenkins, Nancy A., Price, Robert L., Matesic, Lydia E.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2015
Subjects
Online AccessGet full text
ISSN0022-2828
1095-8584
1095-8584
DOI10.1016/j.yjmcc.2015.09.004

Cover

Abstract Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies. •Overexpression of the ubiquitin ligase Wwp1 yields sudden cardiac death in mouse.•Chronic overexpression of Wwp1 promotes left ventricular hypertrophy.•The effects of Wwp1 are cardiomyocyte cell autonomous.•Wwp1 associates with and ubiquitylates connexin 43 contributing to arrhythmogenesis.
AbstractList Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and -independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies.
Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8 weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies.
Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies. •Overexpression of the ubiquitin ligase Wwp1 yields sudden cardiac death in mouse.•Chronic overexpression of Wwp1 promotes left ventricular hypertrophy.•The effects of Wwp1 are cardiomyocyte cell autonomous.•Wwp1 associates with and ubiquitylates connexin 43 contributing to arrhythmogenesis.
Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and -independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies.Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and -independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies.
Abstract Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue types. In the heart, GJs mediate electrical coupling between cardiomyocytes and display mislocalization and/or downregulation in cardiac disease (a process known as GJ remodeling), producing an arrhythmogenic substrate. The main constituent of GJs in the ventricular myocardium is Connexin 43 (Cx43), an integral membrane protein that is rapidly turned over and shows decreased expression or function with age. We hypothesized that Wwp1, an ubiquitin ligase whose expression in known to increase in aging-related pathologies, may regulate Cx43 in vivo by targeting it for ubiquitylation and degradation and yield tissue-specific Cx43 loss of function phenotypes. When Wwp1 was globally overexpressed in mice under the control of a β-actin promoter, the highest induction of Wwp1 expression was observed in the heart which was associated with a 90% reduction in cardiac Cx43 protein levels, left ventricular hypertrophy (LVH), and the development of lethal ventricular arrhythmias around 8 weeks of age. This phenotype was completely penetrant in two independent founder lines. Cardiomyocyte-specific overexpression of Wwp1 confirmed that this phenotype was cell autonomous and delineated Cx43-dependent and –independent roles for Wwp1 in arrhythmogenesis and LVH, respectively. Using a cell-based system, it was determined that Wwp1 co-immunoprecipitates with and ubiquitylates Cx43, causing a decrease in the steady state levels of Cx43 protein. These findings offer new mechanistic insights into the regulation of Cx43 which may be exploitable in various gap junctionopathies.
Author Abreha, Measho
Matesic, Lydia E.
Jenkins, Nancy A.
Price, Robert L.
Thames, Elizabeth L.
Basheer, Wassim A.
Copeland, Neal G.
Swing, Deborah A.
Harris, Brett S.
Mentrup, Heather L.
Lea, Jessica B.
AuthorAffiliation d Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
c Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
a Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
b Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
AuthorAffiliation_xml – name: b Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
– name: c Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
– name: d Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
– name: a Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
Author_xml – sequence: 1
  givenname: Wassim A.
  surname: Basheer
  fullname: Basheer, Wassim A.
  organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
– sequence: 2
  givenname: Brett S.
  surname: Harris
  fullname: Harris, Brett S.
  organization: Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
– sequence: 3
  givenname: Heather L.
  surname: Mentrup
  fullname: Mentrup, Heather L.
  organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
– sequence: 4
  givenname: Measho
  surname: Abreha
  fullname: Abreha, Measho
  organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
– sequence: 5
  givenname: Elizabeth L.
  surname: Thames
  fullname: Thames, Elizabeth L.
  organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
– sequence: 6
  givenname: Jessica B.
  surname: Lea
  fullname: Lea, Jessica B.
  organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
– sequence: 7
  givenname: Deborah A.
  surname: Swing
  fullname: Swing, Deborah A.
  organization: Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
– sequence: 8
  givenname: Neal G.
  surname: Copeland
  fullname: Copeland, Neal G.
  organization: Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
– sequence: 9
  givenname: Nancy A.
  surname: Jenkins
  fullname: Jenkins, Nancy A.
  organization: Mouse Cancer Genetics Program, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
– sequence: 10
  givenname: Robert L.
  surname: Price
  fullname: Price, Robert L.
  organization: Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
– sequence: 11
  givenname: Lydia E.
  surname: Matesic
  fullname: Matesic, Lydia E.
  email: lmatesic@biol.sc.edu
  organization: Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26386426$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEYhYNU7Lb6CwSZS29mzedsBrEgi19Q8ELFy5DJvLObdSbZJpm1c-VfN-O2ogXtVQI5zznhPe8ZOnHeAUJPCV4STKoXu-W0G4xZUkzEEtdLjPkDtCC4FqUUkp-gBcaUllRSeYrOYtxhjGvO2CN0SismK06rBfqx1qG1fpi8mRKUcQ_GdtYU_gABrvcBYrTeFb4r0haKsbFXo03WFb3d6AjF1-97UhjvUrDNmCAWyRcB2tGkmcq6tXcOrvOFs0K7ttAhbKe0HfwGHEQbH6OHne4jPLk5z9GXt28-r9-Xlx_ffVi_viyNqKpUgtGiwYwA1R2pakkrwimmbSWZqCtumGgFXnWkloQKQalpamp0LVecyFXTcXaOLo6--7EZoDWQv6x7tQ920GFSXlv194uzW7XxB8UrTjDD2eD5jUHwVyPEpAYbDfS9duDHqMiKUYal5CRLn_2Z9TvkdupZUB8FJvgYA3TK2KTnkeVo2yuC1dyw2qlfDau5YYVrlRvOLLvD3tr_n3p1pCDP-GAhqGgsOAOtDWCSar29h7-4w5veOmt0_w0miDs_BpfrU0RFqrD6NG_evHhEMIzFimaDl_82uDf-J6XZ7CY
CitedBy_id crossref_primary_10_1007_s11626_024_00894_3
crossref_primary_10_1016_j_bbamem_2017_05_018
crossref_primary_10_1016_j_bbcan_2016_02_001
crossref_primary_10_1161_CIRCULATIONAHA_121_054827
crossref_primary_10_1242_jcs_204321
crossref_primary_10_3389_fcvm_2021_815595
crossref_primary_10_3390_ijms22116065
crossref_primary_10_1152_ajpheart_00032_2021
crossref_primary_10_3389_fcvm_2023_1198486
crossref_primary_10_3390_ijms19051428
crossref_primary_10_1002_ajmg_a_61571
crossref_primary_10_1038_s41419_023_06380_0
crossref_primary_10_3390_biology13121046
crossref_primary_10_1007_s00018_024_05165_8
crossref_primary_10_1186_s12860_016_0087_7
crossref_primary_10_1002_iid3_852
crossref_primary_10_1152_ajpheart_00620_2019
crossref_primary_10_1016_j_diff_2017_12_003
crossref_primary_10_1242_jcs_202408
crossref_primary_10_7717_peerj_9849
crossref_primary_10_1007_s11033_024_09290_2
crossref_primary_10_1074_jbc_RA117_001315
crossref_primary_10_3390_ijms19051296
crossref_primary_10_1016_j_bbamcr_2015_10_015
crossref_primary_10_1016_j_bbamem_2017_05_008
crossref_primary_10_3390_ijms241612851
crossref_primary_10_1093_cvr_cvz340
crossref_primary_10_1016_j_biopha_2020_110125
crossref_primary_10_1111_ejn_14198
crossref_primary_10_3389_fcell_2021_739944
crossref_primary_10_1016_j_semcdb_2023_02_008
crossref_primary_10_3390_ijms22094413
crossref_primary_10_1128_MCB_00427_17
crossref_primary_10_1124_pr_115_012062
crossref_primary_10_1161_CIRCEP_115_001357
crossref_primary_10_2174_1389202920666190820142043
crossref_primary_10_1007_s00018_019_03285_0
Cites_doi 10.1523/JNEUROSCI.4474-04.2005
10.1093/cvr/cvn133
10.1007/s00018-011-0871-7
10.1016/j.abb.2011.12.027
10.1074/jbc.M109.082347
10.1113/jphysiol.2004.072108
10.1042/bj2730067
10.1038/nrc2841
10.1007/s00232-012-9448-0
10.1152/ajpheart.00514.2007
10.1074/jbc.M506183200
10.1161/01.RES.0000148664.33695.2a
10.1007/s10555-007-9091-x
10.1161/01.RES.88.3.333
10.1016/j.cellsig.2010.03.005
10.1038/sj.onc.1207885
10.1002/ijc.22653
10.1007/s13277-014-2696-0
10.1126/scisignal.2005096
10.1371/journal.pone.0104709
10.1161/CIRCRESAHA.109.194423
10.1038/sj.onc.1210021
10.1242/jcs.03149
10.1002/humu.20958
10.1161/CIRCULATIONAHA.110.976092
10.1002/jbmr.1938
10.1074/jbc.M402006200
10.1021/pr300790h
10.1016/j.oooo.2013.05.006
10.1016/j.yjmcc.2010.09.009
10.1007/s11248-009-9342-4
10.1016/j.yexcr.2009.10.003
10.1038/nm.3739
10.1016/j.febslet.2013.12.022
10.1371/journal.pone.0061027
10.1161/01.RES.76.3.381
10.1111/j.1432-0436.1992.tb00675.x
10.1016/S0739-7240(01)00128-X
10.1074/jbc.M112.436311
10.1016/j.bbrc.2014.04.117
10.1111/tra.12169
10.1161/01.RES.83.6.629
10.1016/j.biochi.2015.02.020
10.1126/science.7892609
10.1161/hh1301.092687
10.1146/annurev.cellbio.19.110701.154617
10.1161/CIRCRESAHA.108.180042
10.1006/mcne.1998.0677
10.1073/pnas.1412152111
10.1042/BJ20141370
10.1021/bi981310l
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.yjmcc.2015.09.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-8584
EndPage 13
ExternalDocumentID PMC4641030
26386426
10_1016_j_yjmcc_2015_09_004
S0022282815300572
1_s2_0_S0022282815300572
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural NIH HHS
– fundername: NIGMS NIH HHS
  grantid: P20 GM103641
– fundername: NHLBI NIH HHS
  grantid: R01 HL104030
– fundername: NHLBI NIH HHS
  grantid: R01HL104030
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HLW
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LX2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OL0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
WUQ
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
AACTN
AEHWI
AFCTW
AFKWA
AJOXV
AMFUW
RIG
SSU
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
ACLOT
CITATION
~HD
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c566t-eca5b031e2af16982614202d6835964c35d507f198125522cb92ca9874187bf43
IEDL.DBID .~1
ISSN 0022-2828
1095-8584
IngestDate Thu Aug 21 13:52:40 EDT 2025
Sun Sep 28 09:56:15 EDT 2025
Mon Jul 21 05:59:22 EDT 2025
Thu Sep 25 01:05:52 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Fri Feb 23 02:43:03 EST 2024
Sun Feb 23 10:19:51 EST 2025
Tue Aug 26 16:48:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ubiquitin
GJ
PMA
Wwp1
Arrhythmogenesis
E1
E2
Ub
E3
Gap junction
HECT
WGA
ODDD
Connexin
Cx43
RING
HA
WT
Tmx
LVH
ubiquitin ligase
hemagglutinin
oculodentodigital dysplasia
phorbol 12-myristate 13-acetate
Connexin 43
wheat germ agglutinin
tamoxifen
gap junctions
ubiquitin activating enzyme
ubiquitin
homologous to E6-AP carboxy terminus
really interesting new gene
left ventricular hypertrophy
wild type
ubiquitin conjugating enzyme
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-eca5b031e2af16982614202d6835964c35d507f198125522cb92ca9874187bf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present Address: The Methodist Cancer Research Program, The Methodist Hospital Research Institute, Houston, TX 77030, USA
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4641030
PMID 26386426
PQID 1732308841
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4641030
proquest_miscellaneous_1732308841
pubmed_primary_26386426
crossref_citationtrail_10_1016_j_yjmcc_2015_09_004
crossref_primary_10_1016_j_yjmcc_2015_09_004
elsevier_sciencedirect_doi_10_1016_j_yjmcc_2015_09_004
elsevier_clinicalkeyesjournals_1_s2_0_S0022282815300572
elsevier_clinicalkey_doi_10_1016_j_yjmcc_2015_09_004
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of molecular and cellular cardiology
PublicationTitleAlternate J Mol Cell Cardiol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Kristensen, Foster, Naus (bb0065) 2012; 11
Remo, Giovannone, Fishman (bb0015) 2012; 245
Beardslee, Laing, Beyer, Saffitz (bb0020) 1998; 83
Martins-Marques, Catarino, Marques, Matafome, Ribeiro-Rodrigues, Baptista (bb0045) 2015; 112
Martins-Marques, Catarino, Zuzarte, Marques, Matafome, Pereira (bb0050) 2015; 467
Andersson, Winer, Mork, Molkentin, Jaisser (bb0155) 2010; 19
Chen, Sun, Guo, Dong, Sethi, Cheng (bb0170) 2005; 280
Chen, Sun, Guo, Dong, Sethi, Zhou (bb0110) 2007; 26
Laird, Puranam, Revel (bb0030) 1991; 273
Matsui, Nakano, Shao, Gao, Luo, Hong (bb0250) 2008; 103
Girao, Catarino, Pereira (bb0075) 2009; 315
Laird (bb0195) 2014; 588
Su, Lau (bb0040) 2012; 524
Komuro, Imamura, Saitoh, Yoshida, Yamori, Miyazono (bb0090) 2004; 23
Kjenseth, Fykerud, Rivedal, Leithe (bb0035) 2010; 22
Chen, Zhou, Ross, Zhou, Dong (bb0115) 2007; 121
Mund, Lewis, Maslen, Pelham (bb0260) 2014; 111
Zhi, Chen (bb0105) 2012; 69
Fishman, Chugh, Dimarco, Albert, Anderson, Bonow (bb0265) 2010; 122
Jones, Lancaster, Boyett (bb0005) 2004; 560
Leithe, Rivedal (bb0175) 2004; 279
Batra, Kar, Jiang (bb0140) 1818; 2012
Darrow, Laing, Lampe, Saffitz, Beyer (bb0025) 1995; 76
Fromaget, el Aoumari, Gros (bb0210) 1992; 51
Danik, Liu, Zhang, Suk, Morley, Fishman (bb0165) 2004; 95
Sohal, Nghiem, Crackower, Witt, Kimball, Tymitz (bb0185) 2001; 89
Chen, Matesic (bb0085) 2007; 26
Wood, Yuan, Margolis, Colomer, Duan, Kushi (bb0100) 1998; 11
Smyth, Zhang, Sanchez, Lamouille, Vogan, Hesketh (bb0255) 2014; 15
Mosser, Kasanov, Forsberg, Kay, Ney, Bresnick (bb0095) 1998; 37
Zhang, Wu, Ma, Liu, Wu, Zhang (bb0130) 2015; 36
Leykauf, Salek, Bomke, Frech, Lehmann, Durst (bb0080) 2006; 119
Paznekas, Karczeski, Vermeer, Lowry, Delatycki, Laurence (bb0145) 2009; 30
Banerjee, Fuseler, Price, Borg, Baudino (bb0190) 2007; 293
Popovic, Vucic, Dikic (bb0055) 2014; 20
Cheng, Cao, Yuan, Li, Tong (bb0120) 2014; 448
Hicke, Dunn (bb0060) 2003; 19
Reaume, de Sousa, Kulkarni, Langille, Zhu, Davies (bb0200) 1995; 267
Lim, Chew, Tan, Wang, Chung, Zhang (bb0180) 2005; 25
Fouladkou, Lu, Jiang, Zhou, She, Walls (bb0215) 2010; 285
Pfaffl, Georgieva, Georgiev, Ontsouka, Hageleit, Blum (bb0160) 2002; 22
Del Re, Yang, Nakano, Cho, Zhai, Yamamoto (bb0245) 2013; 288
Scicluna, Tanck, Remme, Beekman, Coronel, Wilde (bb0230) 2011; 50
Severs, Bruce, Dupont, Rothery (bb0010) 2008; 80
Naus, Laird (bb0150) 2010; 10
Lin, Hsieh, Chen, Tsai, Chang (bb0125) 2013; 116
Remme, Scicluna, Verkerk, Amin, van Brunschot, Beekman (bb0225) 2009; 104
Shu, Zhang, Boyce, Xing (bb0135) 2013; 28
Yeung, Ho, Yang (bb0235) 2013; 8
Gutstein, Morley, Tamaddon, Vaidya, Schneider, Chen (bb0205) 2001; 88
Molina-Navarro, Trivino, Martinez-Dolz, Lago, Gonzalez-Juanatey, Portoles (bb0220) 2014; 9
Fykerud, Kjenseth, Schink, Sirnes, Bruun, Omori (bb0070) 2012; 125
Wackerhage, Del Re, Judson, Sudol, Sadoshima (bb0240) 2014; 7
Beardslee (10.1016/j.yjmcc.2015.09.004_bb0020) 1998; 83
Lim (10.1016/j.yjmcc.2015.09.004_bb0180) 2005; 25
Danik (10.1016/j.yjmcc.2015.09.004_bb0165) 2004; 95
Remme (10.1016/j.yjmcc.2015.09.004_bb0225) 2009; 104
Chen (10.1016/j.yjmcc.2015.09.004_bb0085) 2007; 26
Smyth (10.1016/j.yjmcc.2015.09.004_bb0255) 2014; 15
Chen (10.1016/j.yjmcc.2015.09.004_bb0170) 2005; 280
Scicluna (10.1016/j.yjmcc.2015.09.004_bb0230) 2011; 50
Chen (10.1016/j.yjmcc.2015.09.004_bb0065) 2012; 11
Martins-Marques (10.1016/j.yjmcc.2015.09.004_bb0045) 2015; 112
Fouladkou (10.1016/j.yjmcc.2015.09.004_bb0215) 2010; 285
Darrow (10.1016/j.yjmcc.2015.09.004_bb0025) 1995; 76
Del Re (10.1016/j.yjmcc.2015.09.004_bb0245) 2013; 288
Fromaget (10.1016/j.yjmcc.2015.09.004_bb0210) 1992; 51
Remo (10.1016/j.yjmcc.2015.09.004_bb0015) 2012; 245
Laird (10.1016/j.yjmcc.2015.09.004_bb0195) 2014; 588
Jones (10.1016/j.yjmcc.2015.09.004_bb0005) 2004; 560
Fykerud (10.1016/j.yjmcc.2015.09.004_bb0070) 2012; 125
Paznekas (10.1016/j.yjmcc.2015.09.004_bb0145) 2009; 30
Banerjee (10.1016/j.yjmcc.2015.09.004_bb0190) 2007; 293
Chen (10.1016/j.yjmcc.2015.09.004_bb0110) 2007; 26
Molina-Navarro (10.1016/j.yjmcc.2015.09.004_bb0220) 2014; 9
Mund (10.1016/j.yjmcc.2015.09.004_bb0260) 2014; 111
Girao (10.1016/j.yjmcc.2015.09.004_bb0075) 2009; 315
Fishman (10.1016/j.yjmcc.2015.09.004_bb0265) 2010; 122
Laird (10.1016/j.yjmcc.2015.09.004_bb0030) 1991; 273
Popovic (10.1016/j.yjmcc.2015.09.004_bb0055) 2014; 20
Sohal (10.1016/j.yjmcc.2015.09.004_bb0185) 2001; 89
Batra (10.1016/j.yjmcc.2015.09.004_bb0140) 1818; 2012
Su (10.1016/j.yjmcc.2015.09.004_bb0040) 2012; 524
Kjenseth (10.1016/j.yjmcc.2015.09.004_bb0035) 2010; 22
Matsui (10.1016/j.yjmcc.2015.09.004_bb0250) 2008; 103
Wackerhage (10.1016/j.yjmcc.2015.09.004_bb0240) 2014; 7
Reaume (10.1016/j.yjmcc.2015.09.004_bb0200) 1995; 267
Zhi (10.1016/j.yjmcc.2015.09.004_bb0105) 2012; 69
Yeung (10.1016/j.yjmcc.2015.09.004_bb0235) 2013; 8
Naus (10.1016/j.yjmcc.2015.09.004_bb0150) 2010; 10
Komuro (10.1016/j.yjmcc.2015.09.004_bb0090) 2004; 23
Severs (10.1016/j.yjmcc.2015.09.004_bb0010) 2008; 80
Lin (10.1016/j.yjmcc.2015.09.004_bb0125) 2013; 116
Leykauf (10.1016/j.yjmcc.2015.09.004_bb0080) 2006; 119
Cheng (10.1016/j.yjmcc.2015.09.004_bb0120) 2014; 448
Gutstein (10.1016/j.yjmcc.2015.09.004_bb0205) 2001; 88
Hicke (10.1016/j.yjmcc.2015.09.004_bb0060) 2003; 19
Martins-Marques (10.1016/j.yjmcc.2015.09.004_bb0050) 2015; 467
Pfaffl (10.1016/j.yjmcc.2015.09.004_bb0160) 2002; 22
Shu (10.1016/j.yjmcc.2015.09.004_bb0135) 2013; 28
Wood (10.1016/j.yjmcc.2015.09.004_bb0100) 1998; 11
Andersson (10.1016/j.yjmcc.2015.09.004_bb0155) 2010; 19
Leithe (10.1016/j.yjmcc.2015.09.004_bb0175) 2004; 279
Zhang (10.1016/j.yjmcc.2015.09.004_bb0130) 2015; 36
Chen (10.1016/j.yjmcc.2015.09.004_bb0115) 2007; 121
Mosser (10.1016/j.yjmcc.2015.09.004_bb0095) 1998; 37
19407241 - Circ Res. 2009 Jun 5;104(11):1283-92
21963408 - Biochim Biophys Acta. 2012 Aug;1818(8):1909-18
25375928 - Nat Med. 2014 Nov;20(11):1242-53
7892609 - Science. 1995 Mar 24;267(5205):1831-4
23553732 - J Bone Miner Res. 2013 Sep;28(9):1925-35
19894134 - Transgenic Res. 2010 Aug;19(4):715-25
22051607 - Cell Mol Life Sci. 2012 May;69(9):1425-34
24792179 - Biochem Biophys Res Commun. 2014 Jun 6;448(3):248-54
17604329 - Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1883-91
18519446 - Cardiovasc Res. 2008 Oct 1;80(1):9-19
9647693 - Mol Cell Neurosci. 1998 Jun;11(3):149-60
19338053 - Hum Mutat. 2009 May;30(5):724-33
20026598 - J Biol Chem. 2010 Feb 26;285(9):6770-80
21147730 - Circulation. 2010 Nov 30;122(22):2335-48
20206687 - Cell Signal. 2010 Sep;22(9):1267-73
22239989 - Arch Biochem Biophys. 2012 Aug 1;524(1):16-22
7859384 - Circ Res. 1995 Mar;76(3):381-7
25293520 - Tumour Biol. 2015 Feb;36(2):787-98
25748165 - Biochimie. 2015 May;112:196-201
15221015 - Oncogene. 2004 Sep 9;23(41):6914-23
20495577 - Nat Rev Cancer. 2010 Jun;10(6):435-41
9753456 - Biochemistry. 1998 Sep 29;37(39):13686-95
25137373 - PLoS One. 2014;9(8):e104709
23106098 - J Proteome Res. 2012 Dec 7;11(12):6134-46
24612377 - Traffic. 2014 Jun;15(6):684-99
15371442 - J Biol Chem. 2004 Nov 26;279(48):50089-96
17726579 - Cancer Metastasis Rev. 2007 Dec;26(3-4):587-604
25385595 - Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16736-41
17330240 - Int J Cancer. 2007 Jul 1;121(1):80-87
18927464 - Circ Res. 2008 Nov 21;103(11):1309-18
11179202 - Circ Res. 2001 Feb 16;88(3):333-9
24434540 - FEBS Lett. 2014 Apr 17;588(8):1339-48
15499029 - Circ Res. 2004 Nov 12;95(10):1035-41
17016436 - Oncogene. 2007 Apr 5;26(16):2386-94
23849376 - Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Aug;116(2):221-31
15728840 - J Neurosci. 2005 Feb 23;25(8):2002-9
22722763 - J Membr Biol. 2012 Jun;245(5-6):275-81
23275380 - J Biol Chem. 2013 Feb 8;288(6):3977-88
20854825 - J Mol Cell Cardiol. 2011 Mar;50(3):380-9
11440973 - Circ Res. 2001 Jul 6;89(1):20-5
23573293 - PLoS One. 2013;8(4):e61027
15308686 - J Physiol. 2004 Oct 15;560(Pt 2):429-37
1846532 - Biochem J. 1991 Jan 1;273(Pt 1):67-72
25605500 - Biochem J. 2015 Apr 15;467(2):231-45
22623726 - J Cell Sci. 2012 Sep 1;125(Pt 17):3966-76
1333424 - Differentiation. 1992 Sep;51(1):9-20
19835873 - Exp Cell Res. 2009 Dec 10;315(20):3587-97
9742058 - Circ Res. 1998 Sep 21;83(6):629-35
16223724 - J Biol Chem. 2005 Dec 16;280(50):41553-61
11900967 - Domest Anim Endocrinol. 2002 Apr;22(2):91-102
14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72
25097035 - Sci Signal. 2014 Aug 5;7(337):re4
16931598 - J Cell Sci. 2006 Sep 1;119(Pt 17):3634-42
References_xml – volume: 25
  start-page: 2002
  year: 2005
  end-page: 2009
  ident: bb0180
  article-title: Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation
  publication-title: J. Neurosci.
– volume: 22
  start-page: 1267
  year: 2010
  end-page: 1273
  ident: bb0035
  article-title: Regulation of gap junction intercellular communication by the ubiquitin system
  publication-title: Cell. Signal.
– volume: 26
  start-page: 587
  year: 2007
  end-page: 604
  ident: bb0085
  article-title: The Nedd4-like family of E3 ubiquitin ligases and cancer
  publication-title: Cancer Metastasis Rev.
– volume: 524
  start-page: 16
  year: 2012
  end-page: 22
  ident: bb0040
  article-title: Ubiquitination, intracellular trafficking, and degradation of connexins
  publication-title: Arch. Biochem. Biophys.
– volume: 245
  start-page: 275
  year: 2012
  end-page: 281
  ident: bb0015
  article-title: Connexin43 cardiac gap junction remodeling: lessons from genetically engineered murine models
  publication-title: J. Membr. Biol.
– volume: 9
  start-page: e104709
  year: 2014
  ident: bb0220
  article-title: Functional networks of nucleocytoplasmic transport-related genes differentiate ischemic and dilated cardiomyopathies. A new therapeutic opportunity
  publication-title: PLoS One
– volume: 112
  start-page: 196
  year: 2015
  end-page: 201
  ident: bb0045
  article-title: Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs
  publication-title: Biochimie
– volume: 315
  start-page: 3587
  year: 2009
  end-page: 3597
  ident: bb0075
  article-title: Eps15 interacts with ubiquitinated Cx43 and mediates its internalization
  publication-title: Exp. Cell Res.
– volume: 80
  start-page: 9
  year: 2008
  end-page: 19
  ident: bb0010
  article-title: Remodelling of gap junctions and connexin expression in diseased myocardium
  publication-title: Cardiovasc. Res.
– volume: 11
  start-page: 149
  year: 1998
  end-page: 160
  ident: bb0100
  article-title: Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins
  publication-title: Mol. Cell. Neurosci.
– volume: 121
  start-page: 80
  year: 2007
  end-page: 87
  ident: bb0115
  article-title: The amplified WWP1 gene is a potential molecular target in breast cancer
  publication-title: Int. J. Cancer
– volume: 267
  start-page: 1831
  year: 1995
  end-page: 1834
  ident: bb0200
  article-title: Cardiac malformation in neonatal mice lacking connexin43
  publication-title: Science (New York, NY)
– volume: 125
  start-page: 3966
  year: 2012
  end-page: 3976
  ident: bb0070
  article-title: Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43
  publication-title: J. Cell Sci.
– volume: 7
  start-page: re4
  year: 2014
  ident: bb0240
  article-title: The Hippo signal transduction network in skeletal and cardiac muscle
  publication-title: Sci. Signal.
– volume: 560
  start-page: 429
  year: 2004
  end-page: 437
  ident: bb0005
  article-title: Ageing-related changes of connexins and conduction within the sinoatrial node
  publication-title: J. Physiol.
– volume: 19
  start-page: 141
  year: 2003
  end-page: 172
  ident: bb0060
  article-title: Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 10
  start-page: 435
  year: 2010
  end-page: 441
  ident: bb0150
  article-title: Implications and challenges of connexin connections to cancer
  publication-title: Nat. Rev. Cancer
– volume: 76
  start-page: 381
  year: 1995
  end-page: 387
  ident: bb0025
  article-title: Expression of multiple connexins in cultured neonatal rat ventricular myocytes
  publication-title: Circ. Res.
– volume: 83
  start-page: 629
  year: 1998
  end-page: 635
  ident: bb0020
  article-title: Rapid turnover of connexin43 in the adult rat heart
  publication-title: Circ. Res.
– volume: 37
  start-page: 13686
  year: 1998
  end-page: 13695
  ident: bb0095
  article-title: Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains
  publication-title: Biochemistry
– volume: 50
  start-page: 380
  year: 2011
  end-page: 389
  ident: bb0230
  article-title: Quantitative trait loci for electrocardiographic parameters and arrhythmia in the mouse
  publication-title: J. Mol. Cell. Cardiol.
– volume: 28
  start-page: 1925
  year: 2013
  end-page: 1935
  ident: bb0135
  article-title: Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration
  publication-title: J. Bone Miner. Res.
– volume: 30
  start-page: 724
  year: 2009
  end-page: 733
  ident: bb0145
  article-title: GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype
  publication-title: Hum. Mutat.
– volume: 103
  start-page: 1309
  year: 2008
  end-page: 1318
  ident: bb0250
  article-title: Lats2 is a negative regulator of myocyte size in the heart
  publication-title: Circ. Res.
– volume: 285
  start-page: 6770
  year: 2010
  end-page: 6780
  ident: bb0215
  article-title: The ubiquitin ligase Nedd4-1 is required for heart development and is a suppressor of thrombospondin-1
  publication-title: J. Biol. Chem.
– volume: 588
  start-page: 1339
  year: 2014
  end-page: 1348
  ident: bb0195
  article-title: Syndromic and non-syndromic disease-linked Cx43 mutations
  publication-title: FEBS Lett.
– volume: 119
  start-page: 3634
  year: 2006
  end-page: 3642
  ident: bb0080
  article-title: Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process
  publication-title: J. Cell Sci.
– volume: 279
  start-page: 50089
  year: 2004
  end-page: 50096
  ident: bb0175
  article-title: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 6134
  year: 2012
  end-page: 6146
  ident: bb0065
  article-title: Association of connexin43 with E3 ubiquitin ligase TRIM21 reveals a mechanism for gap junction phosphodegron control
  publication-title: J. Proteome Res.
– volume: 293
  start-page: H1883
  year: 2007
  end-page: H1891
  ident: bb0190
  article-title: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 8
  year: 2013
  ident: bb0235
  article-title: WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells
  publication-title: PLoS One
– volume: 19
  start-page: 715
  year: 2010
  end-page: 725
  ident: bb0155
  article-title: Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts
  publication-title: Transgenic Res.
– volume: 467
  start-page: 231
  year: 2015
  end-page: 245
  ident: bb0050
  article-title: Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes
  publication-title: Biochem. J.
– volume: 448
  start-page: 248
  year: 2014
  end-page: 254
  ident: bb0120
  article-title: Knockdown of WWP1 inhibits growth and induces apoptosis in hepatoma carcinoma cells through the activation of caspase3 and p53
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 36
  start-page: 787
  year: 2015
  end-page: 798
  ident: bb0130
  article-title: WWP1 as a potential tumor oncogene regulates PTEN-Akt signaling pathway in human gastric carcinoma
  publication-title: Tumour Biol.
– volume: 22
  start-page: 91
  year: 2002
  end-page: 102
  ident: bb0160
  article-title: Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species
  publication-title: Domest. Anim. Endocrinol.
– volume: 88
  start-page: 333
  year: 2001
  end-page: 339
  ident: bb0205
  article-title: Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43
  publication-title: Circ. Res.
– volume: 116
  start-page: 221
  year: 2013
  end-page: 231
  ident: bb0125
  article-title: WWP1 gene is a potential molecular target of human oral cancer
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol.
– volume: 89
  start-page: 20
  year: 2001
  end-page: 25
  ident: bb0185
  article-title: Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein
  publication-title: Circ. Res.
– volume: 51
  start-page: 9
  year: 1992
  end-page: 20
  ident: bb0210
  article-title: Distribution pattern of connexin 43, a gap junctional protein, during the differentiation of mouse heart myocytes
  publication-title: Differentiation; Research in Biological Diversity.
– volume: 20
  start-page: 1242
  year: 2014
  end-page: 1253
  ident: bb0055
  article-title: Ubiquitination in disease pathogenesis and treatment
  publication-title: Nat. Med.
– volume: 95
  start-page: 1035
  year: 2004
  end-page: 1041
  ident: bb0165
  article-title: Modulation of cardiac gap junction expression and arrhythmic susceptibility
  publication-title: Circ. Res.
– volume: 288
  start-page: 3977
  year: 2013
  end-page: 3988
  ident: bb0245
  article-title: Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 2386
  year: 2007
  end-page: 2394
  ident: bb0110
  article-title: Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer
  publication-title: Oncogene
– volume: 273
  start-page: 67
  year: 1991
  end-page: 72
  ident: bb0030
  article-title: Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes
  publication-title: Biochem. J.
– volume: 280
  start-page: 41553
  year: 2005
  end-page: 41561
  ident: bb0170
  article-title: Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells
  publication-title: J. Biol. Chem.
– volume: 111
  start-page: 16736
  year: 2014
  end-page: 16741
  ident: bb0260
  article-title: Peptide and small molecule inhibitors of HECT-type ubiquitin ligases
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 6914
  year: 2004
  end-page: 6923
  ident: bb0090
  article-title: Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1)
  publication-title: Oncogene
– volume: 69
  start-page: 1425
  year: 2012
  end-page: 1434
  ident: bb0105
  article-title: WWP1: a versatile ubiquitin E3 ligase in signaling and diseases
  publication-title: Cell. Mol. Life Sci.
– volume: 15
  start-page: 684
  year: 2014
  end-page: 699
  ident: bb0255
  article-title: A 14–3–3 mode-1 binding motif initiates gap junction internalization during acute cardiac ischemia
  publication-title: Traffic
– volume: 104
  start-page: 1283
  year: 2009
  end-page: 1292
  ident: bb0225
  article-title: Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy
  publication-title: Circ. Res.
– volume: 122
  start-page: 2335
  year: 2010
  end-page: 2348
  ident: bb0265
  article-title: Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop
  publication-title: Circulation
– volume: 2012
  start-page: 1909
  year: 1818
  end-page: 1918
  ident: bb0140
  article-title: Gap junctions and hemichannels in signal transmission, function and development of bone
  publication-title: Biochim. Biophys. Acta
– volume: 25
  start-page: 2002
  year: 2005
  ident: 10.1016/j.yjmcc.2015.09.004_bb0180
  article-title: Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4474-04.2005
– volume: 80
  start-page: 9
  year: 2008
  ident: 10.1016/j.yjmcc.2015.09.004_bb0010
  article-title: Remodelling of gap junctions and connexin expression in diseased myocardium
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvn133
– volume: 69
  start-page: 1425
  year: 2012
  ident: 10.1016/j.yjmcc.2015.09.004_bb0105
  article-title: WWP1: a versatile ubiquitin E3 ligase in signaling and diseases
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-011-0871-7
– volume: 125
  start-page: 3966
  year: 2012
  ident: 10.1016/j.yjmcc.2015.09.004_bb0070
  article-title: Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43
  publication-title: J. Cell Sci.
– volume: 524
  start-page: 16
  year: 2012
  ident: 10.1016/j.yjmcc.2015.09.004_bb0040
  article-title: Ubiquitination, intracellular trafficking, and degradation of connexins
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2011.12.027
– volume: 285
  start-page: 6770
  year: 2010
  ident: 10.1016/j.yjmcc.2015.09.004_bb0215
  article-title: The ubiquitin ligase Nedd4-1 is required for heart development and is a suppressor of thrombospondin-1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.082347
– volume: 560
  start-page: 429
  year: 2004
  ident: 10.1016/j.yjmcc.2015.09.004_bb0005
  article-title: Ageing-related changes of connexins and conduction within the sinoatrial node
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2004.072108
– volume: 273
  start-page: 67
  issue: Pt 1
  year: 1991
  ident: 10.1016/j.yjmcc.2015.09.004_bb0030
  article-title: Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes
  publication-title: Biochem. J.
  doi: 10.1042/bj2730067
– volume: 10
  start-page: 435
  year: 2010
  ident: 10.1016/j.yjmcc.2015.09.004_bb0150
  article-title: Implications and challenges of connexin connections to cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2841
– volume: 245
  start-page: 275
  year: 2012
  ident: 10.1016/j.yjmcc.2015.09.004_bb0015
  article-title: Connexin43 cardiac gap junction remodeling: lessons from genetically engineered murine models
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-012-9448-0
– volume: 293
  start-page: H1883
  year: 2007
  ident: 10.1016/j.yjmcc.2015.09.004_bb0190
  article-title: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00514.2007
– volume: 280
  start-page: 41553
  year: 2005
  ident: 10.1016/j.yjmcc.2015.09.004_bb0170
  article-title: Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M506183200
– volume: 95
  start-page: 1035
  year: 2004
  ident: 10.1016/j.yjmcc.2015.09.004_bb0165
  article-title: Modulation of cardiac gap junction expression and arrhythmic susceptibility
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000148664.33695.2a
– volume: 26
  start-page: 587
  year: 2007
  ident: 10.1016/j.yjmcc.2015.09.004_bb0085
  article-title: The Nedd4-like family of E3 ubiquitin ligases and cancer
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-007-9091-x
– volume: 88
  start-page: 333
  year: 2001
  ident: 10.1016/j.yjmcc.2015.09.004_bb0205
  article-title: Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.88.3.333
– volume: 22
  start-page: 1267
  year: 2010
  ident: 10.1016/j.yjmcc.2015.09.004_bb0035
  article-title: Regulation of gap junction intercellular communication by the ubiquitin system
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2010.03.005
– volume: 23
  start-page: 6914
  year: 2004
  ident: 10.1016/j.yjmcc.2015.09.004_bb0090
  article-title: Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1)
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207885
– volume: 121
  start-page: 80
  year: 2007
  ident: 10.1016/j.yjmcc.2015.09.004_bb0115
  article-title: The amplified WWP1 gene is a potential molecular target in breast cancer
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.22653
– volume: 36
  start-page: 787
  year: 2015
  ident: 10.1016/j.yjmcc.2015.09.004_bb0130
  article-title: WWP1 as a potential tumor oncogene regulates PTEN-Akt signaling pathway in human gastric carcinoma
  publication-title: Tumour Biol.
  doi: 10.1007/s13277-014-2696-0
– volume: 7
  start-page: re4
  year: 2014
  ident: 10.1016/j.yjmcc.2015.09.004_bb0240
  article-title: The Hippo signal transduction network in skeletal and cardiac muscle
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2005096
– volume: 9
  start-page: e104709
  year: 2014
  ident: 10.1016/j.yjmcc.2015.09.004_bb0220
  article-title: Functional networks of nucleocytoplasmic transport-related genes differentiate ischemic and dilated cardiomyopathies. A new therapeutic opportunity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104709
– volume: 104
  start-page: 1283
  year: 2009
  ident: 10.1016/j.yjmcc.2015.09.004_bb0225
  article-title: Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.194423
– volume: 26
  start-page: 2386
  year: 2007
  ident: 10.1016/j.yjmcc.2015.09.004_bb0110
  article-title: Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210021
– volume: 119
  start-page: 3634
  year: 2006
  ident: 10.1016/j.yjmcc.2015.09.004_bb0080
  article-title: Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03149
– volume: 30
  start-page: 724
  year: 2009
  ident: 10.1016/j.yjmcc.2015.09.004_bb0145
  article-title: GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.20958
– volume: 122
  start-page: 2335
  year: 2010
  ident: 10.1016/j.yjmcc.2015.09.004_bb0265
  article-title: Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.976092
– volume: 28
  start-page: 1925
  year: 2013
  ident: 10.1016/j.yjmcc.2015.09.004_bb0135
  article-title: Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1938
– volume: 279
  start-page: 50089
  year: 2004
  ident: 10.1016/j.yjmcc.2015.09.004_bb0175
  article-title: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M402006200
– volume: 11
  start-page: 6134
  year: 2012
  ident: 10.1016/j.yjmcc.2015.09.004_bb0065
  article-title: Association of connexin43 with E3 ubiquitin ligase TRIM21 reveals a mechanism for gap junction phosphodegron control
  publication-title: J. Proteome Res.
  doi: 10.1021/pr300790h
– volume: 116
  start-page: 221
  year: 2013
  ident: 10.1016/j.yjmcc.2015.09.004_bb0125
  article-title: WWP1 gene is a potential molecular target of human oral cancer
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol.
  doi: 10.1016/j.oooo.2013.05.006
– volume: 50
  start-page: 380
  year: 2011
  ident: 10.1016/j.yjmcc.2015.09.004_bb0230
  article-title: Quantitative trait loci for electrocardiographic parameters and arrhythmia in the mouse
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2010.09.009
– volume: 19
  start-page: 715
  year: 2010
  ident: 10.1016/j.yjmcc.2015.09.004_bb0155
  article-title: Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts
  publication-title: Transgenic Res.
  doi: 10.1007/s11248-009-9342-4
– volume: 315
  start-page: 3587
  year: 2009
  ident: 10.1016/j.yjmcc.2015.09.004_bb0075
  article-title: Eps15 interacts with ubiquitinated Cx43 and mediates its internalization
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2009.10.003
– volume: 20
  start-page: 1242
  year: 2014
  ident: 10.1016/j.yjmcc.2015.09.004_bb0055
  article-title: Ubiquitination in disease pathogenesis and treatment
  publication-title: Nat. Med.
  doi: 10.1038/nm.3739
– volume: 588
  start-page: 1339
  year: 2014
  ident: 10.1016/j.yjmcc.2015.09.004_bb0195
  article-title: Syndromic and non-syndromic disease-linked Cx43 mutations
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2013.12.022
– volume: 2012
  start-page: 1909
  year: 1818
  ident: 10.1016/j.yjmcc.2015.09.004_bb0140
  article-title: Gap junctions and hemichannels in signal transmission, function and development of bone
  publication-title: Biochim. Biophys. Acta
– volume: 8
  year: 2013
  ident: 10.1016/j.yjmcc.2015.09.004_bb0235
  article-title: WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061027
– volume: 76
  start-page: 381
  year: 1995
  ident: 10.1016/j.yjmcc.2015.09.004_bb0025
  article-title: Expression of multiple connexins in cultured neonatal rat ventricular myocytes
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.76.3.381
– volume: 51
  start-page: 9
  year: 1992
  ident: 10.1016/j.yjmcc.2015.09.004_bb0210
  article-title: Distribution pattern of connexin 43, a gap junctional protein, during the differentiation of mouse heart myocytes
  publication-title: Differentiation; Research in Biological Diversity.
  doi: 10.1111/j.1432-0436.1992.tb00675.x
– volume: 22
  start-page: 91
  year: 2002
  ident: 10.1016/j.yjmcc.2015.09.004_bb0160
  article-title: Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species
  publication-title: Domest. Anim. Endocrinol.
  doi: 10.1016/S0739-7240(01)00128-X
– volume: 288
  start-page: 3977
  year: 2013
  ident: 10.1016/j.yjmcc.2015.09.004_bb0245
  article-title: Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.436311
– volume: 448
  start-page: 248
  year: 2014
  ident: 10.1016/j.yjmcc.2015.09.004_bb0120
  article-title: Knockdown of WWP1 inhibits growth and induces apoptosis in hepatoma carcinoma cells through the activation of caspase3 and p53
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.04.117
– volume: 15
  start-page: 684
  year: 2014
  ident: 10.1016/j.yjmcc.2015.09.004_bb0255
  article-title: A 14–3–3 mode-1 binding motif initiates gap junction internalization during acute cardiac ischemia
  publication-title: Traffic
  doi: 10.1111/tra.12169
– volume: 83
  start-page: 629
  year: 1998
  ident: 10.1016/j.yjmcc.2015.09.004_bb0020
  article-title: Rapid turnover of connexin43 in the adult rat heart
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.83.6.629
– volume: 112
  start-page: 196
  year: 2015
  ident: 10.1016/j.yjmcc.2015.09.004_bb0045
  article-title: Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2015.02.020
– volume: 267
  start-page: 1831
  year: 1995
  ident: 10.1016/j.yjmcc.2015.09.004_bb0200
  article-title: Cardiac malformation in neonatal mice lacking connexin43
  publication-title: Science (New York, NY)
  doi: 10.1126/science.7892609
– volume: 89
  start-page: 20
  year: 2001
  ident: 10.1016/j.yjmcc.2015.09.004_bb0185
  article-title: Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein
  publication-title: Circ. Res.
  doi: 10.1161/hh1301.092687
– volume: 19
  start-page: 141
  year: 2003
  ident: 10.1016/j.yjmcc.2015.09.004_bb0060
  article-title: Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.19.110701.154617
– volume: 103
  start-page: 1309
  year: 2008
  ident: 10.1016/j.yjmcc.2015.09.004_bb0250
  article-title: Lats2 is a negative regulator of myocyte size in the heart
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.180042
– volume: 11
  start-page: 149
  year: 1998
  ident: 10.1016/j.yjmcc.2015.09.004_bb0100
  article-title: Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1006/mcne.1998.0677
– volume: 111
  start-page: 16736
  year: 2014
  ident: 10.1016/j.yjmcc.2015.09.004_bb0260
  article-title: Peptide and small molecule inhibitors of HECT-type ubiquitin ligases
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1412152111
– volume: 467
  start-page: 231
  year: 2015
  ident: 10.1016/j.yjmcc.2015.09.004_bb0050
  article-title: Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes
  publication-title: Biochem. J.
  doi: 10.1042/BJ20141370
– volume: 37
  start-page: 13686
  year: 1998
  ident: 10.1016/j.yjmcc.2015.09.004_bb0095
  article-title: Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains
  publication-title: Biochemistry
  doi: 10.1021/bi981310l
– reference: 25385595 - Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16736-41
– reference: 19835873 - Exp Cell Res. 2009 Dec 10;315(20):3587-97
– reference: 11179202 - Circ Res. 2001 Feb 16;88(3):333-9
– reference: 1333424 - Differentiation. 1992 Sep;51(1):9-20
– reference: 22051607 - Cell Mol Life Sci. 2012 May;69(9):1425-34
– reference: 14570567 - Annu Rev Cell Dev Biol. 2003;19:141-72
– reference: 16223724 - J Biol Chem. 2005 Dec 16;280(50):41553-61
– reference: 18519446 - Cardiovasc Res. 2008 Oct 1;80(1):9-19
– reference: 23553732 - J Bone Miner Res. 2013 Sep;28(9):1925-35
– reference: 25097035 - Sci Signal. 2014 Aug 5;7(337):re4
– reference: 16931598 - J Cell Sci. 2006 Sep 1;119(Pt 17):3634-42
– reference: 15221015 - Oncogene. 2004 Sep 9;23(41):6914-23
– reference: 22239989 - Arch Biochem Biophys. 2012 Aug 1;524(1):16-22
– reference: 15308686 - J Physiol. 2004 Oct 15;560(Pt 2):429-37
– reference: 15728840 - J Neurosci. 2005 Feb 23;25(8):2002-9
– reference: 7892609 - Science. 1995 Mar 24;267(5205):1831-4
– reference: 9753456 - Biochemistry. 1998 Sep 29;37(39):13686-95
– reference: 22722763 - J Membr Biol. 2012 Jun;245(5-6):275-81
– reference: 18927464 - Circ Res. 2008 Nov 21;103(11):1309-18
– reference: 20495577 - Nat Rev Cancer. 2010 Jun;10(6):435-41
– reference: 23106098 - J Proteome Res. 2012 Dec 7;11(12):6134-46
– reference: 22623726 - J Cell Sci. 2012 Sep 1;125(Pt 17):3966-76
– reference: 25293520 - Tumour Biol. 2015 Feb;36(2):787-98
– reference: 11440973 - Circ Res. 2001 Jul 6;89(1):20-5
– reference: 1846532 - Biochem J. 1991 Jan 1;273(Pt 1):67-72
– reference: 17016436 - Oncogene. 2007 Apr 5;26(16):2386-94
– reference: 9742058 - Circ Res. 1998 Sep 21;83(6):629-35
– reference: 19407241 - Circ Res. 2009 Jun 5;104(11):1283-92
– reference: 19894134 - Transgenic Res. 2010 Aug;19(4):715-25
– reference: 24792179 - Biochem Biophys Res Commun. 2014 Jun 6;448(3):248-54
– reference: 9647693 - Mol Cell Neurosci. 1998 Jun;11(3):149-60
– reference: 17726579 - Cancer Metastasis Rev. 2007 Dec;26(3-4):587-604
– reference: 11900967 - Domest Anim Endocrinol. 2002 Apr;22(2):91-102
– reference: 23573293 - PLoS One. 2013;8(4):e61027
– reference: 20854825 - J Mol Cell Cardiol. 2011 Mar;50(3):380-9
– reference: 23849376 - Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Aug;116(2):221-31
– reference: 25605500 - Biochem J. 2015 Apr 15;467(2):231-45
– reference: 20026598 - J Biol Chem. 2010 Feb 26;285(9):6770-80
– reference: 7859384 - Circ Res. 1995 Mar;76(3):381-7
– reference: 15499029 - Circ Res. 2004 Nov 12;95(10):1035-41
– reference: 23275380 - J Biol Chem. 2013 Feb 8;288(6):3977-88
– reference: 25748165 - Biochimie. 2015 May;112:196-201
– reference: 19338053 - Hum Mutat. 2009 May;30(5):724-33
– reference: 21147730 - Circulation. 2010 Nov 30;122(22):2335-48
– reference: 20206687 - Cell Signal. 2010 Sep;22(9):1267-73
– reference: 21963408 - Biochim Biophys Acta. 2012 Aug;1818(8):1909-18
– reference: 25375928 - Nat Med. 2014 Nov;20(11):1242-53
– reference: 17604329 - Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1883-91
– reference: 24434540 - FEBS Lett. 2014 Apr 17;588(8):1339-48
– reference: 25137373 - PLoS One. 2014;9(8):e104709
– reference: 15371442 - J Biol Chem. 2004 Nov 26;279(48):50089-96
– reference: 24612377 - Traffic. 2014 Jun;15(6):684-99
– reference: 17330240 - Int J Cancer. 2007 Jul 1;121(1):80-87
SSID ssj0009433
Score 2.3536994
Snippet Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all tissue...
Abstract Gap junctions (GJ) are intercellular channels composed of connexin subunits that play a critical role in a diverse number of cellular processes in all...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Actins - genetics
Actins - metabolism
Animals
Arrhythmias, Cardiac - genetics
Arrhythmias, Cardiac - metabolism
Arrhythmias, Cardiac - pathology
Arrhythmogenesis
Cardiovascular
Connexin
Connexin 43 - genetics
Connexin 43 - metabolism
Disease Models, Animal
Female
Gap junction
Gap Junctions - metabolism
Gap Junctions - pathology
Gene Expression Regulation
Heart Ventricles - metabolism
Heart Ventricles - pathology
Hypertrophy, Left Ventricular - genetics
Hypertrophy, Left Ventricular - metabolism
Hypertrophy, Left Ventricular - pathology
Male
Mice
Mice, Transgenic
Myocardium - metabolism
Myocardium - pathology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Phenotype
Promoter Regions, Genetic
Proteasome Endopeptidase Complex - metabolism
Protein Stability
Proteolysis
Signal Transduction
Ubiquitin
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Wwp1
Title Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0022282815300572
https://www.clinicalkey.es/playcontent/1-s2.0-S0022282815300572
https://dx.doi.org/10.1016/j.yjmcc.2015.09.004
https://www.ncbi.nlm.nih.gov/pubmed/26386426
https://www.proquest.com/docview/1732308841
https://pubmed.ncbi.nlm.nih.gov/PMC4641030
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamISFe0PhdBpOReCSsdhwnfpyqTYWKPSCm7c2KE2fNtCalSbX1Zfzru3OcQtk0JJ6SNLbi5s53n-Pv7gj5mCYqMsPEBlzIMBBxGgdKMEyEzHkR8hx8viPIHsvxifh6Fp1tkVEfC4O0Sm_7O5vurLX_Zd-_zf15WWKML3694AnMWQypRDssRIy6_vnmN81Dia6cPLLWsXWfechxvFYXswzzGLLIJTv11dru8U530effJMo_vNLRDnnq4SQ96Eb8jGzZ6jl5_M1vmL8gv0aObzpb1dmqtQHGVSI3iCJx0157EmxF64ICEKRLU_5clm1Z0cvyHNwbPb2aM-rY7FgWyza0rekCk72iOCm0czyZazgRIU2rnKaLxXTVTmf1OdrQsnlJTo4Of4zGga-5EGQA7NrAZinILmSWpwWTChYfTPAhzyUgNSVFFkY5IMiCKQAGEWC3zCiepSrBJDixKUT4imxXdWXfEMp4YblUYRanuGvMDIuTwuYGfKUBmGAGhPfvWmc-ITnWxbjUPfPsQjsBaRSQHioNAhqQT-tO8y4fx8PNRS9E3YeagnHU4C8e7hbf1802foI3mumG66G-o4QDItc9N_T434_80OuYhhmO2zZpZeslPCoOYZ2YJIINyOtO59Z_nYP5hBWkhAFvaOO6AWYP37xTlVOXRVxIgSXm3v7vgHfJE7zq4jLfke12sbTvAaC1Zs_NwD3y6ODLZHyMx8n308ktKRM84w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIQEvaPxcNwZG4pGw2nGc-BFVmwpse9rE3iwncdZMa1KaVFtf4F_nznEKZdOQeKsaW0lz57vP9XffEfLeJCpKh4kNuJBhIGITB0owFELmvAh5DjnfEWRP5PhMfDmPzjfIqK-FQVqlj_1dTHfR2n-z79_m_qwsscYX_73gCaxZLKmEOPxAoEeBU3_88ZvnoUTXTx5p6zi8lx5yJK_l5TRDIUMWObVT367tjvR0G37-zaL8Iy0dbpEnHk_ST90jPyUbtnpGHh77E_Pn5OfIEU6nyzpbtjbAwkokB1Fkbtobz4KtaF1QQIJ0kZbfF2VbVvSqvID8Rr9dzxh1dHbsi2Ub2tZ0jmqvaE8K4xxR5gY-iJCaKqdmPp8s28m0vsAgWjYvyNnhweloHPimC0EGyK4NbGbAeCGz3BRMKth9MMGHPJcA1ZQUWRjlACELpgAZRADeslTxzKgEVXDitBDhS7JZ1ZXdJpTxwnKpwiw2eGzMUhYnhc1TSJYp4IR0QHj_rnXmFcmxMcaV7qlnl9oZSKOB9FBpMNCAfFhNmnWCHPcPF70RdV9rCtFRQ8K4f1p81zTb-BXeaKYbrof6lhcOiFzNXHPkf9_yXe9jGpY4ntuYytYLuFUcwkYxSQQbkFedz61-Oof4CVtICQ-85o2rASgfvn6lKidORlxIgT3mdv73gd-SR-PT4yN99Pnk6y55jFe6Is3XZLOdL-weoLU2feNW4y8s7TzR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiomyocyte-specific+overexpression+of+the+ubiquitin+ligase+Wwp1+contributes+to+reduction+in+Connexin+43+and+arrhythmogenesis&rft.jtitle=Journal+of+molecular+and+cellular+cardiology&rft.au=Basheer%2C+Wassim+A&rft.au=Harris%2C+Brett+S&rft.au=Mentrup%2C+Heather+L&rft.au=Abreha%2C+Measho&rft.date=2015-11-01&rft.issn=0022-2828&rft.volume=88&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2Fj.yjmcc.2015.09.004&rft.externalDBID=ECK1-s2.0-S0022282815300572&rft.externalDocID=1_s2_0_S0022282815300572
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00222828%2FS0022282815X00113%2Fcov150h.gif