The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments
This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questio...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 369; no. 1955; pp. 4577 - 4590 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
28.11.2011
The Royal Society Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 1364-503X 1471-2962 |
DOI | 10.1098/rsta.2011.0230 |
Cover
Abstract | This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided. |
---|---|
AbstractList | This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided. This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided. This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided. |
Author | Quaresima, Valentina Muthalib, Makii Ferrari, Marco |
Author_xml | – sequence: 1 givenname: Marco surname: Ferrari fullname: Ferrari, Marco – sequence: 2 givenname: Makii surname: Muthalib fullname: Muthalib, Makii – sequence: 3 givenname: Valentina surname: Quaresima fullname: Quaresima, Valentina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22006907$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctrFjEUxYNU7EO37pTsXM1nHpN5uCvFFxQK9RPchXzJnTZfZ5IxyRTGv96M0yJW2lVuuL9zDpx7jA6cd4DQa0o2lLTN-xCT2jBC6YYwTp6hI1rWtGBtxQ7yzKuyEIT_OETHMe5JxirBXqBDxgipWlIfoW57DXiKgH2HHahQWNcFFcDgOIJOwUftxxlbhydnYElzxrorHG-gh6R6PExR94DH6zla3_ur-QMOoMElbOAWej8OeY4v0fNO9RFe3b0n6Punj9uzL8X5xeevZ6fnhRZVlQpthGBludO1Jg0FQSpCiaF01yjDTbkrGTAj6roDVeu2FgtBNect7WijOeMn6N3qOwb_c4KY5GCjhr5XDvwUZdO2lFNW8ky-vSOn3QBGjsEOKszyvpoMlCugcwkxQCe1TSpZ71JQtpeUyOUCculELheQywWybPNAdu_8qICvguDnXI3XFtIs934KLn8fV908pbr8tj295VVraSuEJA2nRPCGlvKXHVervJQ2xgnkH-Rf-__T3qxp-5h8-NsVJ6JmhPPfBG7Hyw |
CitedBy_id | crossref_primary_10_1080_17461391_2020_1749312 crossref_primary_10_1109_JSEN_2024_3488513 crossref_primary_10_1007_s00431_022_04490_z crossref_primary_10_1111_cpf_12837 crossref_primary_10_3390_s21093072 crossref_primary_10_3390_sci3030032 crossref_primary_10_1589_jpts_26_1283 crossref_primary_10_1136_bmjopen_2023_081883 crossref_primary_10_1007_s00421_024_05427_0 crossref_primary_10_7717_peerj_4393 crossref_primary_10_1152_japplphysiol_00244_2018 crossref_primary_10_1016_j_artres_2016_09_001 crossref_primary_10_1007_s00421_022_05117_9 crossref_primary_10_52082_jssm_2021_684 crossref_primary_10_1016_j_mvr_2015_11_004 crossref_primary_10_1080_02640414_2016_1183809 crossref_primary_10_1049_iet_wss_2017_0064 crossref_primary_10_1007_s00421_012_2427_4 crossref_primary_10_1111_cpf_12269 crossref_primary_10_1371_journal_pone_0120338 crossref_primary_10_1109_TIM_2022_3198472 crossref_primary_10_3389_fphys_2022_1006993 crossref_primary_10_1371_journal_pone_0220192 crossref_primary_10_1371_journal_pone_0150201 crossref_primary_10_1152_ajpregu_00290_2018 crossref_primary_10_1364_BOE_8_000223 crossref_primary_10_3389_fphys_2021_695569 crossref_primary_10_1371_journal_pone_0163733 crossref_primary_10_1111_cpf_12738 crossref_primary_10_1038_srep32037 crossref_primary_10_3389_fphys_2023_1155037 crossref_primary_10_1080_09593985_2024_2364802 crossref_primary_10_23736_S0393_3660_20_04449_6 crossref_primary_10_4236_crcm_2024_1312064 crossref_primary_10_1142_S0219519416500512 crossref_primary_10_3390_jfmk4020029 crossref_primary_10_1109_JSEN_2018_2794969 crossref_primary_10_1089_neu_2018_6208 crossref_primary_10_1152_japplphysiol_00319_2012 crossref_primary_10_1364_JOSAA_523194 crossref_primary_10_1152_japplphysiol_00656_2018 crossref_primary_10_1152_japplphysiol_01003_2014 crossref_primary_10_1364_BOE_9_002365 crossref_primary_10_3389_fnhum_2017_00456 crossref_primary_10_1113_EP088764 crossref_primary_10_1255_jnirs_1152 crossref_primary_10_2196_10970 crossref_primary_10_1089_neu_2020_7086 crossref_primary_10_1016_j_medin_2013_12_004 crossref_primary_10_1136_bmjsem_2015_000062 crossref_primary_10_1177_0003319712447889 crossref_primary_10_1007_s11307_018_1244_5 crossref_primary_10_3389_fphys_2022_942954 crossref_primary_10_1007_s00520_017_4036_6 crossref_primary_10_1159_000447456 crossref_primary_10_1088_1755_1315_252_2_022021 crossref_primary_10_1111_micc_12136 crossref_primary_10_1155_2012_676303 crossref_primary_10_1117_1_JBO_28_7_075002 crossref_primary_10_1002_jbio_202400204 crossref_primary_10_1152_japplphysiol_00166_2018 crossref_primary_10_1007_s11517_019_02077_9 crossref_primary_10_1109_TBME_2020_2988438 crossref_primary_10_3389_fspor_2019_00006 crossref_primary_10_33155_j_ramd_2017_007_003 crossref_primary_10_1109_MSMC_2023_3299431 crossref_primary_10_1007_s00421_021_04779_1 crossref_primary_10_1117_1_JBO_21_9_091312 crossref_primary_10_1007_s00421_018_4006_9 crossref_primary_10_1136_thoraxjnl_2020_215135 crossref_primary_10_1117_1_JBO_21_9_091314 crossref_primary_10_1038_s41598_020_60029_y crossref_primary_10_1002_nbm_4246 crossref_primary_10_1364_BOE_5_004053 crossref_primary_10_3389_fphys_2020_00371 crossref_primary_10_1007_s40846_016_0114_3 crossref_primary_10_1152_japplphysiol_00148_2022 crossref_primary_10_1007_s00421_020_04518_y crossref_primary_10_3390_s25072018 crossref_primary_10_3389_fspor_2020_00047 crossref_primary_10_3389_fpsyg_2022_825322 crossref_primary_10_1364_BOE_6_000309 crossref_primary_10_1177_17534666231186732 crossref_primary_10_1152_japplphysiol_00918_2014 crossref_primary_10_1255_jnirs_977 crossref_primary_10_3389_fphys_2019_00404 crossref_primary_10_1111_iwj_14333 crossref_primary_10_1117_1_JBO_21_9_091302 crossref_primary_10_1255_jnirs_979 crossref_primary_10_1007_s00421_024_05524_0 crossref_primary_10_1177_0018720818769261 crossref_primary_10_1117_1_JBO_21_9_091305 crossref_primary_10_1088_1361_6579_aa5dd5 crossref_primary_10_1002_ejsc_12242 crossref_primary_10_7600_jpfsm_2_203 crossref_primary_10_1255_jnirs_973 crossref_primary_10_1016_j_resp_2013_05_014 crossref_primary_10_1080_00913847_2020_1796182 crossref_primary_10_1152_japplphysiol_00324_2019 crossref_primary_10_1113_EP086537 crossref_primary_10_1002_mus_24476 crossref_primary_10_3389_fphys_2020_615977 crossref_primary_10_3389_fphys_2019_00407 crossref_primary_10_1117_1_JBO_19_12_127002 crossref_primary_10_3389_fphys_2018_01078 crossref_primary_10_2478_hukin_2020_0028 crossref_primary_10_1038_ijo_2016_43 crossref_primary_10_1177_0003702815620562 crossref_primary_10_1117_1_JBO_24_7_075003 crossref_primary_10_1016_j_mvr_2015_12_007 crossref_primary_10_1007_s00421_014_3019_2 crossref_primary_10_4081_mrm_2020_702 crossref_primary_10_1255_jnirs_963 crossref_primary_10_1007_s10877_013_9507_9 crossref_primary_10_1111_sms_12487 crossref_primary_10_1152_japplphysiol_00207_2017 crossref_primary_10_3389_fphys_2024_1441239 crossref_primary_10_1186_s12576_020_00742_5 crossref_primary_10_1117_1_JBO_21_6_066012 crossref_primary_10_1152_ajpregu_00318_2020 crossref_primary_10_1038_srep01358 crossref_primary_10_1007_s00421_012_2460_3 crossref_primary_10_1016_j_ejvs_2021_05_035 crossref_primary_10_1111_cpf_12796 crossref_primary_10_14814_phy2_13570 crossref_primary_10_1152_japplphysiol_01138_2018 crossref_primary_10_1080_09593985_2019_1652945 crossref_primary_10_1002_jbio_202100180 crossref_primary_10_1002_mrm_24669 crossref_primary_10_1111_cpf_12426 crossref_primary_10_3389_fphot_2022_908931 crossref_primary_10_1113_expphysiol_2014_081265 crossref_primary_10_3390_biology11071073 crossref_primary_10_14814_phy2_13673 crossref_primary_10_1117_1_JBO_28_12_125004 crossref_primary_10_1007_s00421_021_04694_5 crossref_primary_10_23736_S0022_4707_23_14806_7 crossref_primary_10_1007_s40279_022_01748_2 crossref_primary_10_1016_j_microrel_2018_06_017 crossref_primary_10_1088_1361_6579_aa60b7 crossref_primary_10_1016_j_diabet_2016_12_002 crossref_primary_10_3389_fvets_2023_1243325 crossref_primary_10_1177_2047487316661615 crossref_primary_10_1183_23120541_00083_2019 crossref_primary_10_1016_j_jshs_2024_03_003 crossref_primary_10_3389_fphys_2025_1542394 crossref_primary_10_1007_s00421_023_05297_y crossref_primary_10_1113_jphysiol_2014_274456 crossref_primary_10_1371_journal_pone_0281885 crossref_primary_10_7717_peerj_9785 crossref_primary_10_1007_s40279_023_01987_x crossref_primary_10_1007_s00421_014_3070_z crossref_primary_10_1109_JSEN_2022_3216351 crossref_primary_10_1007_s11332_012_0114_9 crossref_primary_10_1080_05704928_2017_1324877 crossref_primary_10_1016_j_optcom_2020_126579 crossref_primary_10_1186_ar4079 crossref_primary_10_1016_j_archger_2017_03_001 crossref_primary_10_1088_0967_3334_35_3_471 crossref_primary_10_1038_s41598_022_05863_y crossref_primary_10_1080_00207454_2018_1518906 crossref_primary_10_1152_japplphysiol_00344_2019 crossref_primary_10_1186_s42490_020_0036_6 crossref_primary_10_1080_02640414_2016_1245436 crossref_primary_10_3390_oxygen4030016 crossref_primary_10_1371_journal_pone_0162914 crossref_primary_10_1038_s41598_019_52428_7 crossref_primary_10_1088_1361_6579_ac9452 crossref_primary_10_1089_met_2020_0111 crossref_primary_10_1152_japplphysiol_00952_2020 crossref_primary_10_1098_rsta_2011_0302 crossref_primary_10_1152_japplphysiol_00105_2021 crossref_primary_10_1016_j_medine_2013_12_004 crossref_primary_10_1371_journal_pone_0085219 crossref_primary_10_3390_s22218238 crossref_primary_10_1364_BOE_7_000264 crossref_primary_10_5937_timsact15_32840 crossref_primary_10_1002_acs_2991 crossref_primary_10_1093_ehjcr_yty123 crossref_primary_10_1016_j_nmd_2017_03_002 crossref_primary_10_1007_s00421_021_04666_9 crossref_primary_10_1016_j_scispo_2022_03_014 crossref_primary_10_1123_ijspp_2018_0077 crossref_primary_10_1080_09500340_2018_1512670 crossref_primary_10_1142_S1793545816500565 crossref_primary_10_3390_s22145165 crossref_primary_10_1152_ajpregu_00203_2017 crossref_primary_10_1111_sms_12673 crossref_primary_10_1002_aisy_202200351 crossref_primary_10_1155_2019_3750495 crossref_primary_10_3389_fspor_2022_864825 crossref_primary_10_1016_j_cmpb_2017_12_006 crossref_primary_10_1117_1_JBO_23_1_015007 crossref_primary_10_1007_s00421_017_3710_1 crossref_primary_10_1152_ajpheart_00474_2016 crossref_primary_10_3389_fneur_2023_1121323 crossref_primary_10_1161_CIRCULATIONAHA_114_012957 crossref_primary_10_1007_s00520_021_06178_w crossref_primary_10_1152_ajpregu_00151_2015 crossref_primary_10_1364_BOE_428207 crossref_primary_10_1080_15412555_2018_1560402 crossref_primary_10_3390_app10103512 crossref_primary_10_1007_s10877_021_00648_6 crossref_primary_10_1155_2018_8965858 crossref_primary_10_1080_00140139_2021_1963490 crossref_primary_10_3233_BSI_160149 crossref_primary_10_33549_physiolres_933612 crossref_primary_10_1080_13102818_2018_1446763 crossref_primary_10_1177_1071181319631088 crossref_primary_10_1002_phy2_179 crossref_primary_10_14814_phy2_13032 crossref_primary_10_14814_phy2_14240 crossref_primary_10_1007_s00421_016_3490_z crossref_primary_10_1007_s00421_024_05654_5 crossref_primary_10_1152_ajpregu_00429_2015 crossref_primary_10_1007_s00421_021_04738_w crossref_primary_10_4236_ojanes_2014_46020 crossref_primary_10_1152_japplphysiol_00585_2017 crossref_primary_10_7717_peerj_5026 crossref_primary_10_1016_j_jvs_2021_08_082 crossref_primary_10_3390_s22051758 crossref_primary_10_1038_s41598_020_63297_w crossref_primary_10_1109_JPROC_2016_2577518 crossref_primary_10_1007_s00421_012_2323_y crossref_primary_10_1002_adma_201403560 crossref_primary_10_3233_BSI_150117 crossref_primary_10_1152_ajpheart_00782_2013 crossref_primary_10_1080_02640414_2025_2457859 crossref_primary_10_1016_j_resp_2024_104283 crossref_primary_10_1007_s00421_022_05054_7 crossref_primary_10_1016_j_hrtlng_2020_06_013 crossref_primary_10_1016_j_jcjd_2020_02_007 crossref_primary_10_1007_s00421_021_04861_8 crossref_primary_10_1016_j_physbeh_2022_113915 |
Cites_doi | 10.1016/j.neuroimage.2010.10.058 10.1063/1.1322578 10.1007/s00421-010-1653-x 10.1007/978-1-4419-1241-1_26 10.1007/s00421-007-0573-x 10.1007/978-1-4419-1241-1_32 10.1016/j.jelekin.2007.07.010 10.1152/japplphysiol.01160.2007 10.1088/0031-9155/49/5/003 10.1016/j.ergon.2009.12.003 10.1366/000370207781269819 10.1007/S00421-007-0568-7 10.1152/ajpregu.00048.2009 10.1117/1.3184425 10.1113/jphysiol.2008.162768 10.1088/0031-9155/46/4/315 10.1034/j.1600-0838.2001.110404.x 10.1016/j.resp.2006.08.009 10.1007/s00421-010-1596-2 10.1139/h04-033 10.1152/japplphysiol.00627.2007 10.1152/japplphysiol.00314.2009 10.1088/0967-3334/31/9/014 10.1117/1.2804899 10.1364/BOE.1.000748 10.1152/japplphysiol.00849.2007 10.1063/1.2219732 10.1016/j.pneurobio.2010.06.002 10.1117/1.2805437 10.1117/1.3309746 10.1364/OE.16.018173 10.1139/h08-048 10.1113/expphysiol.2009.050344 10.2478/s11772-008-0011-6 10.1007/s00421-010-1797-8 10.1113/expphysiol.2008.044651 10.1117/12.727854 10.1007/s00421-009-1263-7 10.1152/japplphysiol.00215.2009 10.1152/ajpregu.00225.2010 10.1152/japplphysiol.01297.2009 10.1152/japplphysiol.91625.2008 10.1364/OE.16.010323 10.1098/rstb.1997.0049 10.1249/mss.0b013e3181453476 10.1152/japplphysiol.90828.2008 |
ContentType | Journal Article |
Copyright | COPYRIGHT © 2011 The Royal Society This journal is © 2011 The Royal Society |
Copyright_xml | – notice: COPYRIGHT © 2011 The Royal Society – notice: This journal is © 2011 The Royal Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1098/rsta.2011.0230 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Physics |
DocumentTitleAlternate | Review. NIRS and muscle oxygenation physiology |
EISSN | 1471-2962 |
EndPage | 4590 |
ExternalDocumentID | 22006907 10_1098_rsta_2011_0230 23057203 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -~X 0R~ 18M 2WC 4.4 5VS AACGO AANCE AAWIL ABBHK ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACHIC ACIWK ACMTB ACNCT ACQIA ACRPL ACTMH ADBBV ADNMO ADODI ADQXQ ADULT AEUPB AEXZC AFFNX AFVYC AGLNM AGPVY AGQPQ AIHAF AJZGM ALMA_UNASSIGNED_HOLDINGS ALMYZ ALRMG AQVQM BGBPD BTFSW DCCCD DIK DQDLB DSRWC EBS ECEWR EJD F5P FEDTE H13 HH5 HQ6 HTVGU HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JST KQ8 MRS MV1 NSAHA O9- OK1 P2P RRY SA0 TN5 TR2 V1E W8F XSW YNT ~02 ABPTK ABXXB ADZLD AELPN AFXKK DNJUQ DOOOF DWIUU EFSUC JSODD K-O OP1 RHF AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c566t-cd55244bc7c081e506010d11b8ad3d4b42e2d577fea7c975e5061c3391f18c323 |
ISSN | 1364-503X |
IngestDate | Thu Jul 10 18:55:01 EDT 2025 Thu Apr 03 07:24:37 EDT 2025 Tue Jul 01 01:48:16 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Wed Jan 17 02:37:35 EST 2024 Tue May 24 16:17:50 EDT 2022 Thu Jul 03 21:32:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1955 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c566t-cd55244bc7c081e506010d11b8ad3d4b42e2d577fea7c975e5061c3391f18c323 |
Notes | Theo Murphy Meeting Issue 'Illuminating the future of biomedical optics' organized and edited by Clare Elwell, Christina Kolyva, Paul Beard, Chris Cooper, Jeremy Hebden and Elizabeth Hillman ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.openaccessrepository.it/record/144350 |
PMID | 22006907 |
PQID | 899131243 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | royalsociety_journals_10_1098_rsta_2011_0230 royalsociety_journals_RSTAv369i1955_0831053814_zip_rsta_369_issue_1955_rsta_2011_0230_rsta_2011_0230 crossref_citationtrail_10_1098_rsta_2011_0230 crossref_primary_10_1098_rsta_2011_0230 jstor_primary_23057203 pubmed_primary_22006907 proquest_miscellaneous_899131243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20111128 2011-11-28 2011-Nov-28 |
PublicationDateYYYYMMDD | 2011-11-28 |
PublicationDate_xml | – month: 11 year: 2011 text: 20111128 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
PublicationTitleAbbrev | Proc. R. Soc. A |
PublicationTitleAlternate | Philos Trans A Math Phys Eng Sci |
PublicationYear | 2011 |
Publisher | The Royal Society The Royal Society Publishing |
Publisher_xml | – name: The Royal Society – name: The Royal Society Publishing |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_32_2 doi: 10.1016/j.neuroimage.2010.10.058 – ident: e_1_3_2_34_2 doi: 10.1063/1.1322578 – ident: e_1_3_2_10_2 doi: 10.1007/s00421-010-1653-x – ident: e_1_3_2_16_2 doi: 10.1007/978-1-4419-1241-1_26 – ident: e_1_3_2_24_2 doi: 10.1007/s00421-007-0573-x – ident: e_1_3_2_41_2 doi: 10.1007/978-1-4419-1241-1_32 – ident: e_1_3_2_11_2 doi: 10.1016/j.jelekin.2007.07.010 – ident: e_1_3_2_26_2 doi: 10.1152/japplphysiol.01160.2007 – ident: e_1_3_2_42_2 doi: 10.1088/0031-9155/49/5/003 – ident: e_1_3_2_22_2 doi: 10.1016/j.ergon.2009.12.003 – ident: e_1_3_2_38_2 doi: 10.1366/000370207781269819 – ident: e_1_3_2_29_2 doi: 10.1007/S00421-007-0568-7 – ident: e_1_3_2_13_2 doi: 10.1152/ajpregu.00048.2009 – ident: e_1_3_2_36_2 doi: 10.1117/1.3184425 – ident: e_1_3_2_27_2 doi: 10.1113/jphysiol.2008.162768 – ident: e_1_3_2_47_2 doi: 10.1088/0031-9155/46/4/315 – ident: e_1_3_2_4_2 doi: 10.1034/j.1600-0838.2001.110404.x – ident: e_1_3_2_28_2 doi: 10.1016/j.resp.2006.08.009 – ident: e_1_3_2_43_2 doi: 10.1007/s00421-010-1596-2 – ident: e_1_3_2_3_2 doi: 10.1139/h04-033 – ident: e_1_3_2_23_2 doi: 10.1152/japplphysiol.00627.2007 – ident: e_1_3_2_14_2 doi: 10.1152/japplphysiol.00314.2009 – ident: e_1_3_2_8_2 doi: 10.1088/0967-3334/31/9/014 – ident: e_1_3_2_6_2 doi: 10.1117/1.2804899 – ident: e_1_3_2_37_2 doi: 10.1364/BOE.1.000748 – ident: e_1_3_2_44_2 doi: 10.1152/japplphysiol.00849.2007 – ident: e_1_3_2_46_2 doi: 10.1063/1.2219732 – ident: e_1_3_2_33_2 doi: 10.1016/j.pneurobio.2010.06.002 – ident: e_1_3_2_5_2 doi: 10.1117/1.2805437 – ident: e_1_3_2_9_2 doi: 10.1117/1.3309746 – ident: e_1_3_2_17_2 doi: 10.1364/OE.16.018173 – ident: e_1_3_2_21_2 doi: 10.1139/h08-048 – ident: e_1_3_2_39_2 doi: 10.1113/expphysiol.2009.050344 – ident: e_1_3_2_18_2 doi: 10.2478/s11772-008-0011-6 – ident: e_1_3_2_45_2 doi: 10.1007/s00421-010-1797-8 – ident: e_1_3_2_20_2 doi: 10.1113/expphysiol.2008.044651 – ident: e_1_3_2_35_2 doi: 10.1117/12.727854 – ident: e_1_3_2_30_2 doi: 10.1007/s00421-009-1263-7 – ident: e_1_3_2_15_2 doi: 10.1152/japplphysiol.00215.2009 – ident: e_1_3_2_40_2 doi: 10.1152/ajpregu.00225.2010 – ident: e_1_3_2_12_2 doi: 10.1152/japplphysiol.01297.2009 – ident: e_1_3_2_25_2 doi: 10.1152/japplphysiol.91625.2008 – ident: e_1_3_2_19_2 doi: 10.1364/OE.16.010323 – ident: e_1_3_2_2_2 doi: 10.1098/rstb.1997.0049 – ident: e_1_3_2_7_2 doi: 10.1249/mss.0b013e3181453476 – ident: e_1_3_2_31_2 doi: 10.1152/japplphysiol.90828.2008 |
SSID | ssj0011652 |
Score | 2.5264955 |
SecondaryResourceType | review_article |
Snippet | This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status... |
SourceID | proquest pubmed crossref royalsociety jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4577 |
SubjectTerms | Arm Blood flow Calibration Chemical desaturation Hemodynamics Humans Imaging Instrumentation Kinetics Muscle Metabolism Muscle Oxy-Haemoglobin Saturation Muscle Oxygenation Muscle, Skeletal - pathology Muscle, Skeletal - physiology Muscles Near-Infrared Imaging Near-Infrared Spectroscopy Oxygen - chemistry Oxygen - metabolism Oxygen Consumption - physiology Oxyhemoglobins - metabolism Physiology Review Signal Processing, Computer-Assisted Skeletal Muscle Spectroscopy Spectroscopy, Near-Infrared - methods Spectroscopy, Near-Infrared - trends Time Factors Tissue oxygenation |
Title | The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments |
URI | https://www.jstor.org/stable/23057203 https://royalsocietypublishing.org/doi/full/10.1098/rsta.2011.0230 https://www.ncbi.nlm.nih.gov/pubmed/22006907 https://www.proquest.com/docview/899131243 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0FqKkOCAaKGwvOQDEqCSkoedjbmtEKhCKuKxRb1ZieMVUWl2tUk49Ne5MGM7L9hKlEvkOLPexON5eDwPQp4xoZhmeQ6LNwo9aGgvE0p4Sc55qgWLsxztkMcf46MT9uGUn04mvwZeS02dHaqLrXEl_4NV6AO8YpTsFTDbDQod0Ab8whUwDNd_xnFjjfElrFgPxtwYh3ITP4l5KldrE9fXjEJYqjOQNRgEed5UMKK1btiolWh-ACwQ_QPy3puoGmqwn9raBwa7dV9uvGrdDaxFonUHxTMIUzLkEPkS7MsPjEn_uEsXayoOOAuLbaMtX_d5Eg-clO4jVTTWpi9cqJFa9Yum_g7bisw-OCuK3qqLUVbFuVGUv6UoaF3V8NbggR53QRtA3obMjT-kN9gNGHkUM4_7ptYwyDnbB4LYC8WY-0e2Uky7zAXnA3bOuKsxo92tLW36l9jxBYZSIB5dUtjQHTaNU3nbA_9EIqBEQImA18j1cAaKH3oUfO6PwILYlIvqPqTLOJq8Hv_RSKOyTrXbtkugWW1w2io7awMtanGH3HbbHzq3a3mXTHS5R24NkmLCXb80qj1yw7goY2vXiaGKvnC50l_eJUvAEwUSoKslHZEAHZIALUo6IgHakgC1JEB7EnhDLQHQIQHcIyfv3y3eHnmudIinYH9SewpYDSiumZop0Hk1ZtEM_DwIsiTNo5xlLNRhDshd6nSmxIwjRKCiSATLIFFRGO2TnXJV6geE8tBPQdItw1wJprnIhI6zIGbaTwXjqT8lXjv9Urm8-lje5Yfcju4ped7Br21GmUsh9w02OzDo4-g2MSW0Ra8EaYBHfGmpV00lE9juRaCyA8h9i_b-x6HJSj6bklfDdSAdP6sufYl8O_iXr4v5T6CeAmlGmoKFoDwFTF4UazsGPJSGrKQBGY_7x-3Dq73VI3KzZw2PyU69afQT2B3U2VNDRb8BpXoVrg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+near-infrared+spectroscopy+in+understanding+skeletal+muscle+physiology%3A+recent+developments&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Ferrari%2C+Marco&rft.au=Muthalib%2C+Makii&rft.au=Quaresima%2C+Valentina&rft.date=2011-11-28&rft.pub=The+Royal+Society+Publishing&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=369&rft.issue=1955&rft.spage=4577&rft.epage=4590&rft_id=info:doi/10.1098%2Frsta.2011.0230&rft.externalDocID=10_1098_rsta_2011_0230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon |