The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments

This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questio...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 369; no. 1955; pp. 4577 - 4590
Main Authors Ferrari, Marco, Muthalib, Makii, Quaresima, Valentina
Format Journal Article
LanguageEnglish
Published England The Royal Society 28.11.2011
The Royal Society Publishing
Subjects
Online AccessGet full text
ISSN1364-503X
1471-2962
DOI10.1098/rsta.2011.0230

Cover

Abstract This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.
AbstractList This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.
This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.
This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.
Author Quaresima, Valentina
Muthalib, Makii
Ferrari, Marco
Author_xml – sequence: 1
  givenname: Marco
  surname: Ferrari
  fullname: Ferrari, Marco
– sequence: 2
  givenname: Makii
  surname: Muthalib
  fullname: Muthalib, Makii
– sequence: 3
  givenname: Valentina
  surname: Quaresima
  fullname: Quaresima, Valentina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22006907$$D View this record in MEDLINE/PubMed
BookMark eNp9kctrFjEUxYNU7EO37pTsXM1nHpN5uCvFFxQK9RPchXzJnTZfZ5IxyRTGv96M0yJW2lVuuL9zDpx7jA6cd4DQa0o2lLTN-xCT2jBC6YYwTp6hI1rWtGBtxQ7yzKuyEIT_OETHMe5JxirBXqBDxgipWlIfoW57DXiKgH2HHahQWNcFFcDgOIJOwUftxxlbhydnYElzxrorHG-gh6R6PExR94DH6zla3_ur-QMOoMElbOAWej8OeY4v0fNO9RFe3b0n6Punj9uzL8X5xeevZ6fnhRZVlQpthGBludO1Jg0FQSpCiaF01yjDTbkrGTAj6roDVeu2FgtBNect7WijOeMn6N3qOwb_c4KY5GCjhr5XDvwUZdO2lFNW8ky-vSOn3QBGjsEOKszyvpoMlCugcwkxQCe1TSpZ71JQtpeUyOUCculELheQywWybPNAdu_8qICvguDnXI3XFtIs934KLn8fV908pbr8tj295VVraSuEJA2nRPCGlvKXHVervJQ2xgnkH-Rf-__T3qxp-5h8-NsVJ6JmhPPfBG7Hyw
CitedBy_id crossref_primary_10_1080_17461391_2020_1749312
crossref_primary_10_1109_JSEN_2024_3488513
crossref_primary_10_1007_s00431_022_04490_z
crossref_primary_10_1111_cpf_12837
crossref_primary_10_3390_s21093072
crossref_primary_10_3390_sci3030032
crossref_primary_10_1589_jpts_26_1283
crossref_primary_10_1136_bmjopen_2023_081883
crossref_primary_10_1007_s00421_024_05427_0
crossref_primary_10_7717_peerj_4393
crossref_primary_10_1152_japplphysiol_00244_2018
crossref_primary_10_1016_j_artres_2016_09_001
crossref_primary_10_1007_s00421_022_05117_9
crossref_primary_10_52082_jssm_2021_684
crossref_primary_10_1016_j_mvr_2015_11_004
crossref_primary_10_1080_02640414_2016_1183809
crossref_primary_10_1049_iet_wss_2017_0064
crossref_primary_10_1007_s00421_012_2427_4
crossref_primary_10_1111_cpf_12269
crossref_primary_10_1371_journal_pone_0120338
crossref_primary_10_1109_TIM_2022_3198472
crossref_primary_10_3389_fphys_2022_1006993
crossref_primary_10_1371_journal_pone_0220192
crossref_primary_10_1371_journal_pone_0150201
crossref_primary_10_1152_ajpregu_00290_2018
crossref_primary_10_1364_BOE_8_000223
crossref_primary_10_3389_fphys_2021_695569
crossref_primary_10_1371_journal_pone_0163733
crossref_primary_10_1111_cpf_12738
crossref_primary_10_1038_srep32037
crossref_primary_10_3389_fphys_2023_1155037
crossref_primary_10_1080_09593985_2024_2364802
crossref_primary_10_23736_S0393_3660_20_04449_6
crossref_primary_10_4236_crcm_2024_1312064
crossref_primary_10_1142_S0219519416500512
crossref_primary_10_3390_jfmk4020029
crossref_primary_10_1109_JSEN_2018_2794969
crossref_primary_10_1089_neu_2018_6208
crossref_primary_10_1152_japplphysiol_00319_2012
crossref_primary_10_1364_JOSAA_523194
crossref_primary_10_1152_japplphysiol_00656_2018
crossref_primary_10_1152_japplphysiol_01003_2014
crossref_primary_10_1364_BOE_9_002365
crossref_primary_10_3389_fnhum_2017_00456
crossref_primary_10_1113_EP088764
crossref_primary_10_1255_jnirs_1152
crossref_primary_10_2196_10970
crossref_primary_10_1089_neu_2020_7086
crossref_primary_10_1016_j_medin_2013_12_004
crossref_primary_10_1136_bmjsem_2015_000062
crossref_primary_10_1177_0003319712447889
crossref_primary_10_1007_s11307_018_1244_5
crossref_primary_10_3389_fphys_2022_942954
crossref_primary_10_1007_s00520_017_4036_6
crossref_primary_10_1159_000447456
crossref_primary_10_1088_1755_1315_252_2_022021
crossref_primary_10_1111_micc_12136
crossref_primary_10_1155_2012_676303
crossref_primary_10_1117_1_JBO_28_7_075002
crossref_primary_10_1002_jbio_202400204
crossref_primary_10_1152_japplphysiol_00166_2018
crossref_primary_10_1007_s11517_019_02077_9
crossref_primary_10_1109_TBME_2020_2988438
crossref_primary_10_3389_fspor_2019_00006
crossref_primary_10_33155_j_ramd_2017_007_003
crossref_primary_10_1109_MSMC_2023_3299431
crossref_primary_10_1007_s00421_021_04779_1
crossref_primary_10_1117_1_JBO_21_9_091312
crossref_primary_10_1007_s00421_018_4006_9
crossref_primary_10_1136_thoraxjnl_2020_215135
crossref_primary_10_1117_1_JBO_21_9_091314
crossref_primary_10_1038_s41598_020_60029_y
crossref_primary_10_1002_nbm_4246
crossref_primary_10_1364_BOE_5_004053
crossref_primary_10_3389_fphys_2020_00371
crossref_primary_10_1007_s40846_016_0114_3
crossref_primary_10_1152_japplphysiol_00148_2022
crossref_primary_10_1007_s00421_020_04518_y
crossref_primary_10_3390_s25072018
crossref_primary_10_3389_fspor_2020_00047
crossref_primary_10_3389_fpsyg_2022_825322
crossref_primary_10_1364_BOE_6_000309
crossref_primary_10_1177_17534666231186732
crossref_primary_10_1152_japplphysiol_00918_2014
crossref_primary_10_1255_jnirs_977
crossref_primary_10_3389_fphys_2019_00404
crossref_primary_10_1111_iwj_14333
crossref_primary_10_1117_1_JBO_21_9_091302
crossref_primary_10_1255_jnirs_979
crossref_primary_10_1007_s00421_024_05524_0
crossref_primary_10_1177_0018720818769261
crossref_primary_10_1117_1_JBO_21_9_091305
crossref_primary_10_1088_1361_6579_aa5dd5
crossref_primary_10_1002_ejsc_12242
crossref_primary_10_7600_jpfsm_2_203
crossref_primary_10_1255_jnirs_973
crossref_primary_10_1016_j_resp_2013_05_014
crossref_primary_10_1080_00913847_2020_1796182
crossref_primary_10_1152_japplphysiol_00324_2019
crossref_primary_10_1113_EP086537
crossref_primary_10_1002_mus_24476
crossref_primary_10_3389_fphys_2020_615977
crossref_primary_10_3389_fphys_2019_00407
crossref_primary_10_1117_1_JBO_19_12_127002
crossref_primary_10_3389_fphys_2018_01078
crossref_primary_10_2478_hukin_2020_0028
crossref_primary_10_1038_ijo_2016_43
crossref_primary_10_1177_0003702815620562
crossref_primary_10_1117_1_JBO_24_7_075003
crossref_primary_10_1016_j_mvr_2015_12_007
crossref_primary_10_1007_s00421_014_3019_2
crossref_primary_10_4081_mrm_2020_702
crossref_primary_10_1255_jnirs_963
crossref_primary_10_1007_s10877_013_9507_9
crossref_primary_10_1111_sms_12487
crossref_primary_10_1152_japplphysiol_00207_2017
crossref_primary_10_3389_fphys_2024_1441239
crossref_primary_10_1186_s12576_020_00742_5
crossref_primary_10_1117_1_JBO_21_6_066012
crossref_primary_10_1152_ajpregu_00318_2020
crossref_primary_10_1038_srep01358
crossref_primary_10_1007_s00421_012_2460_3
crossref_primary_10_1016_j_ejvs_2021_05_035
crossref_primary_10_1111_cpf_12796
crossref_primary_10_14814_phy2_13570
crossref_primary_10_1152_japplphysiol_01138_2018
crossref_primary_10_1080_09593985_2019_1652945
crossref_primary_10_1002_jbio_202100180
crossref_primary_10_1002_mrm_24669
crossref_primary_10_1111_cpf_12426
crossref_primary_10_3389_fphot_2022_908931
crossref_primary_10_1113_expphysiol_2014_081265
crossref_primary_10_3390_biology11071073
crossref_primary_10_14814_phy2_13673
crossref_primary_10_1117_1_JBO_28_12_125004
crossref_primary_10_1007_s00421_021_04694_5
crossref_primary_10_23736_S0022_4707_23_14806_7
crossref_primary_10_1007_s40279_022_01748_2
crossref_primary_10_1016_j_microrel_2018_06_017
crossref_primary_10_1088_1361_6579_aa60b7
crossref_primary_10_1016_j_diabet_2016_12_002
crossref_primary_10_3389_fvets_2023_1243325
crossref_primary_10_1177_2047487316661615
crossref_primary_10_1183_23120541_00083_2019
crossref_primary_10_1016_j_jshs_2024_03_003
crossref_primary_10_3389_fphys_2025_1542394
crossref_primary_10_1007_s00421_023_05297_y
crossref_primary_10_1113_jphysiol_2014_274456
crossref_primary_10_1371_journal_pone_0281885
crossref_primary_10_7717_peerj_9785
crossref_primary_10_1007_s40279_023_01987_x
crossref_primary_10_1007_s00421_014_3070_z
crossref_primary_10_1109_JSEN_2022_3216351
crossref_primary_10_1007_s11332_012_0114_9
crossref_primary_10_1080_05704928_2017_1324877
crossref_primary_10_1016_j_optcom_2020_126579
crossref_primary_10_1186_ar4079
crossref_primary_10_1016_j_archger_2017_03_001
crossref_primary_10_1088_0967_3334_35_3_471
crossref_primary_10_1038_s41598_022_05863_y
crossref_primary_10_1080_00207454_2018_1518906
crossref_primary_10_1152_japplphysiol_00344_2019
crossref_primary_10_1186_s42490_020_0036_6
crossref_primary_10_1080_02640414_2016_1245436
crossref_primary_10_3390_oxygen4030016
crossref_primary_10_1371_journal_pone_0162914
crossref_primary_10_1038_s41598_019_52428_7
crossref_primary_10_1088_1361_6579_ac9452
crossref_primary_10_1089_met_2020_0111
crossref_primary_10_1152_japplphysiol_00952_2020
crossref_primary_10_1098_rsta_2011_0302
crossref_primary_10_1152_japplphysiol_00105_2021
crossref_primary_10_1016_j_medine_2013_12_004
crossref_primary_10_1371_journal_pone_0085219
crossref_primary_10_3390_s22218238
crossref_primary_10_1364_BOE_7_000264
crossref_primary_10_5937_timsact15_32840
crossref_primary_10_1002_acs_2991
crossref_primary_10_1093_ehjcr_yty123
crossref_primary_10_1016_j_nmd_2017_03_002
crossref_primary_10_1007_s00421_021_04666_9
crossref_primary_10_1016_j_scispo_2022_03_014
crossref_primary_10_1123_ijspp_2018_0077
crossref_primary_10_1080_09500340_2018_1512670
crossref_primary_10_1142_S1793545816500565
crossref_primary_10_3390_s22145165
crossref_primary_10_1152_ajpregu_00203_2017
crossref_primary_10_1111_sms_12673
crossref_primary_10_1002_aisy_202200351
crossref_primary_10_1155_2019_3750495
crossref_primary_10_3389_fspor_2022_864825
crossref_primary_10_1016_j_cmpb_2017_12_006
crossref_primary_10_1117_1_JBO_23_1_015007
crossref_primary_10_1007_s00421_017_3710_1
crossref_primary_10_1152_ajpheart_00474_2016
crossref_primary_10_3389_fneur_2023_1121323
crossref_primary_10_1161_CIRCULATIONAHA_114_012957
crossref_primary_10_1007_s00520_021_06178_w
crossref_primary_10_1152_ajpregu_00151_2015
crossref_primary_10_1364_BOE_428207
crossref_primary_10_1080_15412555_2018_1560402
crossref_primary_10_3390_app10103512
crossref_primary_10_1007_s10877_021_00648_6
crossref_primary_10_1155_2018_8965858
crossref_primary_10_1080_00140139_2021_1963490
crossref_primary_10_3233_BSI_160149
crossref_primary_10_33549_physiolres_933612
crossref_primary_10_1080_13102818_2018_1446763
crossref_primary_10_1177_1071181319631088
crossref_primary_10_1002_phy2_179
crossref_primary_10_14814_phy2_13032
crossref_primary_10_14814_phy2_14240
crossref_primary_10_1007_s00421_016_3490_z
crossref_primary_10_1007_s00421_024_05654_5
crossref_primary_10_1152_ajpregu_00429_2015
crossref_primary_10_1007_s00421_021_04738_w
crossref_primary_10_4236_ojanes_2014_46020
crossref_primary_10_1152_japplphysiol_00585_2017
crossref_primary_10_7717_peerj_5026
crossref_primary_10_1016_j_jvs_2021_08_082
crossref_primary_10_3390_s22051758
crossref_primary_10_1038_s41598_020_63297_w
crossref_primary_10_1109_JPROC_2016_2577518
crossref_primary_10_1007_s00421_012_2323_y
crossref_primary_10_1002_adma_201403560
crossref_primary_10_3233_BSI_150117
crossref_primary_10_1152_ajpheart_00782_2013
crossref_primary_10_1080_02640414_2025_2457859
crossref_primary_10_1016_j_resp_2024_104283
crossref_primary_10_1007_s00421_022_05054_7
crossref_primary_10_1016_j_hrtlng_2020_06_013
crossref_primary_10_1016_j_jcjd_2020_02_007
crossref_primary_10_1007_s00421_021_04861_8
crossref_primary_10_1016_j_physbeh_2022_113915
Cites_doi 10.1016/j.neuroimage.2010.10.058
10.1063/1.1322578
10.1007/s00421-010-1653-x
10.1007/978-1-4419-1241-1_26
10.1007/s00421-007-0573-x
10.1007/978-1-4419-1241-1_32
10.1016/j.jelekin.2007.07.010
10.1152/japplphysiol.01160.2007
10.1088/0031-9155/49/5/003
10.1016/j.ergon.2009.12.003
10.1366/000370207781269819
10.1007/S00421-007-0568-7
10.1152/ajpregu.00048.2009
10.1117/1.3184425
10.1113/jphysiol.2008.162768
10.1088/0031-9155/46/4/315
10.1034/j.1600-0838.2001.110404.x
10.1016/j.resp.2006.08.009
10.1007/s00421-010-1596-2
10.1139/h04-033
10.1152/japplphysiol.00627.2007
10.1152/japplphysiol.00314.2009
10.1088/0967-3334/31/9/014
10.1117/1.2804899
10.1364/BOE.1.000748
10.1152/japplphysiol.00849.2007
10.1063/1.2219732
10.1016/j.pneurobio.2010.06.002
10.1117/1.2805437
10.1117/1.3309746
10.1364/OE.16.018173
10.1139/h08-048
10.1113/expphysiol.2009.050344
10.2478/s11772-008-0011-6
10.1007/s00421-010-1797-8
10.1113/expphysiol.2008.044651
10.1117/12.727854
10.1007/s00421-009-1263-7
10.1152/japplphysiol.00215.2009
10.1152/ajpregu.00225.2010
10.1152/japplphysiol.01297.2009
10.1152/japplphysiol.91625.2008
10.1364/OE.16.010323
10.1098/rstb.1997.0049
10.1249/mss.0b013e3181453476
10.1152/japplphysiol.90828.2008
ContentType Journal Article
Copyright COPYRIGHT © 2011 The Royal Society
This journal is © 2011 The Royal Society
Copyright_xml – notice: COPYRIGHT © 2011 The Royal Society
– notice: This journal is © 2011 The Royal Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1098/rsta.2011.0230
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
DocumentTitleAlternate Review. NIRS and muscle oxygenation physiology
EISSN 1471-2962
EndPage 4590
ExternalDocumentID 22006907
10_1098_rsta_2011_0230
23057203
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-~X
0R~
18M
2WC
4.4
5VS
AACGO
AANCE
AAWIL
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACHIC
ACIWK
ACMTB
ACNCT
ACQIA
ACRPL
ACTMH
ADBBV
ADNMO
ADODI
ADQXQ
ADULT
AEUPB
AEXZC
AFFNX
AFVYC
AGLNM
AGPVY
AGQPQ
AIHAF
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
ALRMG
AQVQM
BGBPD
BTFSW
DCCCD
DIK
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
H13
HH5
HQ6
HTVGU
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
P2P
RRY
SA0
TN5
TR2
V1E
W8F
XSW
YNT
~02
ABPTK
ABXXB
ADZLD
AELPN
AFXKK
DNJUQ
DOOOF
DWIUU
EFSUC
JSODD
K-O
OP1
RHF
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c566t-cd55244bc7c081e506010d11b8ad3d4b42e2d577fea7c975e5061c3391f18c323
ISSN 1364-503X
IngestDate Thu Jul 10 18:55:01 EDT 2025
Thu Apr 03 07:24:37 EDT 2025
Tue Jul 01 01:48:16 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Wed Jan 17 02:37:35 EST 2024
Tue May 24 16:17:50 EDT 2022
Thu Jul 03 21:32:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1955
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-cd55244bc7c081e506010d11b8ad3d4b42e2d577fea7c975e5061c3391f18c323
Notes Theo Murphy Meeting Issue 'Illuminating the future of biomedical optics' organized and edited by Clare Elwell, Christina Kolyva, Paul Beard, Chris Cooper, Jeremy Hebden and Elizabeth Hillman
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.openaccessrepository.it/record/144350
PMID 22006907
PQID 899131243
PQPubID 23479
PageCount 14
ParticipantIDs royalsociety_journals_10_1098_rsta_2011_0230
royalsociety_journals_RSTAv369i1955_0831053814_zip_rsta_369_issue_1955_rsta_2011_0230_rsta_2011_0230
crossref_citationtrail_10_1098_rsta_2011_0230
crossref_primary_10_1098_rsta_2011_0230
jstor_primary_23057203
pubmed_primary_22006907
proquest_miscellaneous_899131243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20111128
2011-11-28
2011-Nov-28
PublicationDateYYYYMMDD 2011-11-28
PublicationDate_xml – month: 11
  year: 2011
  text: 20111128
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationTitleAbbrev Proc. R. Soc. A
PublicationTitleAlternate Philos Trans A Math Phys Eng Sci
PublicationYear 2011
Publisher The Royal Society
The Royal Society Publishing
Publisher_xml – name: The Royal Society
– name: The Royal Society Publishing
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_32_2
  doi: 10.1016/j.neuroimage.2010.10.058
– ident: e_1_3_2_34_2
  doi: 10.1063/1.1322578
– ident: e_1_3_2_10_2
  doi: 10.1007/s00421-010-1653-x
– ident: e_1_3_2_16_2
  doi: 10.1007/978-1-4419-1241-1_26
– ident: e_1_3_2_24_2
  doi: 10.1007/s00421-007-0573-x
– ident: e_1_3_2_41_2
  doi: 10.1007/978-1-4419-1241-1_32
– ident: e_1_3_2_11_2
  doi: 10.1016/j.jelekin.2007.07.010
– ident: e_1_3_2_26_2
  doi: 10.1152/japplphysiol.01160.2007
– ident: e_1_3_2_42_2
  doi: 10.1088/0031-9155/49/5/003
– ident: e_1_3_2_22_2
  doi: 10.1016/j.ergon.2009.12.003
– ident: e_1_3_2_38_2
  doi: 10.1366/000370207781269819
– ident: e_1_3_2_29_2
  doi: 10.1007/S00421-007-0568-7
– ident: e_1_3_2_13_2
  doi: 10.1152/ajpregu.00048.2009
– ident: e_1_3_2_36_2
  doi: 10.1117/1.3184425
– ident: e_1_3_2_27_2
  doi: 10.1113/jphysiol.2008.162768
– ident: e_1_3_2_47_2
  doi: 10.1088/0031-9155/46/4/315
– ident: e_1_3_2_4_2
  doi: 10.1034/j.1600-0838.2001.110404.x
– ident: e_1_3_2_28_2
  doi: 10.1016/j.resp.2006.08.009
– ident: e_1_3_2_43_2
  doi: 10.1007/s00421-010-1596-2
– ident: e_1_3_2_3_2
  doi: 10.1139/h04-033
– ident: e_1_3_2_23_2
  doi: 10.1152/japplphysiol.00627.2007
– ident: e_1_3_2_14_2
  doi: 10.1152/japplphysiol.00314.2009
– ident: e_1_3_2_8_2
  doi: 10.1088/0967-3334/31/9/014
– ident: e_1_3_2_6_2
  doi: 10.1117/1.2804899
– ident: e_1_3_2_37_2
  doi: 10.1364/BOE.1.000748
– ident: e_1_3_2_44_2
  doi: 10.1152/japplphysiol.00849.2007
– ident: e_1_3_2_46_2
  doi: 10.1063/1.2219732
– ident: e_1_3_2_33_2
  doi: 10.1016/j.pneurobio.2010.06.002
– ident: e_1_3_2_5_2
  doi: 10.1117/1.2805437
– ident: e_1_3_2_9_2
  doi: 10.1117/1.3309746
– ident: e_1_3_2_17_2
  doi: 10.1364/OE.16.018173
– ident: e_1_3_2_21_2
  doi: 10.1139/h08-048
– ident: e_1_3_2_39_2
  doi: 10.1113/expphysiol.2009.050344
– ident: e_1_3_2_18_2
  doi: 10.2478/s11772-008-0011-6
– ident: e_1_3_2_45_2
  doi: 10.1007/s00421-010-1797-8
– ident: e_1_3_2_20_2
  doi: 10.1113/expphysiol.2008.044651
– ident: e_1_3_2_35_2
  doi: 10.1117/12.727854
– ident: e_1_3_2_30_2
  doi: 10.1007/s00421-009-1263-7
– ident: e_1_3_2_15_2
  doi: 10.1152/japplphysiol.00215.2009
– ident: e_1_3_2_40_2
  doi: 10.1152/ajpregu.00225.2010
– ident: e_1_3_2_12_2
  doi: 10.1152/japplphysiol.01297.2009
– ident: e_1_3_2_25_2
  doi: 10.1152/japplphysiol.91625.2008
– ident: e_1_3_2_19_2
  doi: 10.1364/OE.16.010323
– ident: e_1_3_2_2_2
  doi: 10.1098/rstb.1997.0049
– ident: e_1_3_2_7_2
  doi: 10.1249/mss.0b013e3181453476
– ident: e_1_3_2_31_2
  doi: 10.1152/japplphysiol.90828.2008
SSID ssj0011652
Score 2.5264955
SecondaryResourceType review_article
Snippet This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status...
SourceID proquest
pubmed
crossref
royalsociety
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4577
SubjectTerms Arm
Blood flow
Calibration
Chemical desaturation
Hemodynamics
Humans
Imaging
Instrumentation
Kinetics
Muscle Metabolism
Muscle Oxy-Haemoglobin Saturation
Muscle Oxygenation
Muscle, Skeletal - pathology
Muscle, Skeletal - physiology
Muscles
Near-Infrared Imaging
Near-Infrared Spectroscopy
Oxygen - chemistry
Oxygen - metabolism
Oxygen Consumption - physiology
Oxyhemoglobins - metabolism
Physiology
Review
Signal Processing, Computer-Assisted
Skeletal Muscle
Spectroscopy
Spectroscopy, Near-Infrared - methods
Spectroscopy, Near-Infrared - trends
Time Factors
Tissue oxygenation
Title The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments
URI https://www.jstor.org/stable/23057203
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2011.0230
https://www.ncbi.nlm.nih.gov/pubmed/22006907
https://www.proquest.com/docview/899131243
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0FqKkOCAaKGwvOQDEqCSkoedjbmtEKhCKuKxRb1ZieMVUWl2tUk49Ne5MGM7L9hKlEvkOLPexON5eDwPQp4xoZhmeQ6LNwo9aGgvE0p4Sc55qgWLsxztkMcf46MT9uGUn04mvwZeS02dHaqLrXEl_4NV6AO8YpTsFTDbDQod0Ab8whUwDNd_xnFjjfElrFgPxtwYh3ITP4l5KldrE9fXjEJYqjOQNRgEed5UMKK1btiolWh-ACwQ_QPy3puoGmqwn9raBwa7dV9uvGrdDaxFonUHxTMIUzLkEPkS7MsPjEn_uEsXayoOOAuLbaMtX_d5Eg-clO4jVTTWpi9cqJFa9Yum_g7bisw-OCuK3qqLUVbFuVGUv6UoaF3V8NbggR53QRtA3obMjT-kN9gNGHkUM4_7ptYwyDnbB4LYC8WY-0e2Uky7zAXnA3bOuKsxo92tLW36l9jxBYZSIB5dUtjQHTaNU3nbA_9EIqBEQImA18j1cAaKH3oUfO6PwILYlIvqPqTLOJq8Hv_RSKOyTrXbtkugWW1w2io7awMtanGH3HbbHzq3a3mXTHS5R24NkmLCXb80qj1yw7goY2vXiaGKvnC50l_eJUvAEwUSoKslHZEAHZIALUo6IgHakgC1JEB7EnhDLQHQIQHcIyfv3y3eHnmudIinYH9SewpYDSiumZop0Hk1ZtEM_DwIsiTNo5xlLNRhDshd6nSmxIwjRKCiSATLIFFRGO2TnXJV6geE8tBPQdItw1wJprnIhI6zIGbaTwXjqT8lXjv9Urm8-lje5Yfcju4ped7Br21GmUsh9w02OzDo4-g2MSW0Ra8EaYBHfGmpV00lE9juRaCyA8h9i_b-x6HJSj6bklfDdSAdP6sufYl8O_iXr4v5T6CeAmlGmoKFoDwFTF4UazsGPJSGrKQBGY_7x-3Dq73VI3KzZw2PyU69afQT2B3U2VNDRb8BpXoVrg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+near-infrared+spectroscopy+in+understanding+skeletal+muscle+physiology%3A+recent+developments&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Ferrari%2C+Marco&rft.au=Muthalib%2C+Makii&rft.au=Quaresima%2C+Valentina&rft.date=2011-11-28&rft.pub=The+Royal+Society+Publishing&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=369&rft.issue=1955&rft.spage=4577&rft.epage=4590&rft_id=info:doi/10.1098%2Frsta.2011.0230&rft.externalDocID=10_1098_rsta_2011_0230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon