Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome

Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artifi...

Full description

Saved in:
Bibliographic Details
Published inEBioMedicine Vol. 37; pp. 91 - 100
Main Authors Ko, Bor-Sheng, Wang, Yu-Fen, Li, Jeng-Lin, Li, Chi-Cheng, Weng, Pei-Fang, Hsu, Szu-Chun, Hou, Hsin-An, Huang, Huai-Hsuan, Yao, Ming, Lin, Chien-Ting, Liu, Jia-Hau, Tsai, Cheng-Hong, Huang, Tai-Chung, Wu, Shang-Ju, Huang, Shang-Yi, Chou, Wen-Chien, Tien, Hwei-Fang, Lee, Chi-Chun, Tang, Jih-Luh
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2018
Elsevier
Subjects
Online AccessGet full text
ISSN2352-3964
2352-3964
DOI10.1016/j.ebiom.2018.10.042

Cover

Abstract Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks. From 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set. Promising accuracies (84·6% to 92·4%) and AUCs (0·921–0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML. Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103–2314-B-002-185-MY2) of Taiwan.
AbstractList Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks. From 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set. Promising accuracies (84·6% to 92·4%) and AUCs (0·921–0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML. Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103–2314-B-002-185-MY2) of Taiwan.
AbstractBackgroundMulticolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks. MethodsFrom 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set. FindingsPromising accuracies (84·6% to 92·4%) and AUCs (0·921–0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML. InterpretationThrough large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. FundThis work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103–2314-B-002-185-MY2) of Taiwan.
Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks.BACKGROUNDMulticolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks.From 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set.METHODSFrom 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set.Promising accuracies (84·6% to 92·4%) and AUCs (0·921-0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML.FINDINGSPromising accuracies (84·6% to 92·4%) and AUCs (0·921-0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML.Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. FUND: This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103-2314-B-002-185-MY2) of Taiwan.INTERPRETATIONThrough large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. FUND: This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103-2314-B-002-185-MY2) of Taiwan.
Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks. From 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set. Promising accuracies (84·6% to 92·4%) and AUCs (0·921-0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML. Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. FUND: This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103-2314-B-002-185-MY2) of Taiwan.
Author Li, Chi-Cheng
Lee, Chi-Chun
Lin, Chien-Ting
Ko, Bor-Sheng
Wang, Yu-Fen
Huang, Tai-Chung
Hsu, Szu-Chun
Liu, Jia-Hau
Tang, Jih-Luh
Li, Jeng-Lin
Tsai, Cheng-Hong
Huang, Shang-Yi
Chou, Wen-Chien
Hou, Hsin-An
Wu, Shang-Ju
Weng, Pei-Fang
Huang, Huai-Hsuan
Yao, Ming
Tien, Hwei-Fang
AuthorAffiliation b Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
c Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
d Center of Stem Cell and Precision Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
f Joint Research Center for AI Technology and All Vista Healthcare, Ministry of Science and Technology, Taiwan
e Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
a Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
AuthorAffiliation_xml – name: e Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
– name: a Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– name: f Joint Research Center for AI Technology and All Vista Healthcare, Ministry of Science and Technology, Taiwan
– name: d Center of Stem Cell and Precision Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
– name: b Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
– name: c Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
Author_xml – sequence: 1
  givenname: Bor-Sheng
  orcidid: 0000-0002-7965-7579
  surname: Ko
  fullname: Ko, Bor-Sheng
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 2
  givenname: Yu-Fen
  surname: Wang
  fullname: Wang, Yu-Fen
  organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Jeng-Lin
  surname: Li
  fullname: Li, Jeng-Lin
  organization: Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 4
  givenname: Chi-Cheng
  surname: Li
  fullname: Li, Chi-Cheng
  organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
– sequence: 5
  givenname: Pei-Fang
  surname: Weng
  fullname: Weng, Pei-Fang
  organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
– sequence: 6
  givenname: Szu-Chun
  surname: Hsu
  fullname: Hsu, Szu-Chun
  organization: Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 7
  givenname: Hsin-An
  surname: Hou
  fullname: Hou, Hsin-An
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 8
  givenname: Huai-Hsuan
  surname: Huang
  fullname: Huang, Huai-Hsuan
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 9
  givenname: Ming
  surname: Yao
  fullname: Yao, Ming
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 10
  givenname: Chien-Ting
  surname: Lin
  fullname: Lin, Chien-Ting
  organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
– sequence: 11
  givenname: Jia-Hau
  surname: Liu
  fullname: Liu, Jia-Hau
  organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
– sequence: 12
  givenname: Cheng-Hong
  surname: Tsai
  fullname: Tsai, Cheng-Hong
  organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
– sequence: 13
  givenname: Tai-Chung
  surname: Huang
  fullname: Huang, Tai-Chung
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 14
  givenname: Shang-Ju
  surname: Wu
  fullname: Wu, Shang-Ju
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 15
  givenname: Shang-Yi
  surname: Huang
  fullname: Huang, Shang-Yi
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 16
  givenname: Wen-Chien
  surname: Chou
  fullname: Chou, Wen-Chien
  organization: Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 17
  givenname: Hwei-Fang
  surname: Tien
  fullname: Tien, Hwei-Fang
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 18
  givenname: Chi-Chun
  orcidid: 0000-0003-0186-4321
  surname: Lee
  fullname: Lee, Chi-Chun
  email: cclee@ee.nthu.edu.tw
  organization: Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 19
  givenname: Jih-Luh
  surname: Tang
  fullname: Tang, Jih-Luh
  email: tangjh@ntu.edu.tw
  organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30361063$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1v0zAUjdAQG2O_AAn5kZcWO068RAikqeJLmsQD8Gw59m17O8cuttMqf4rfiEPLGEhoe7J17jnnJj7naXHivIOieM7onFEmXm3m0KHv5yVlTUbmtCofFWclr8sZb0V1cud-WlzEuKGUsrrKYPOkOOWUC0YFPyt-LCw61MrakeyURaMSGNIrvUYHxIIKDt2KKLvyAdO6J0sfiIEEOk14gIhmUJYYjKAiRLLPLNIPNqH2NnOX1u-JHpPvIYWRKKfsGDESdETpIQHpR7AeTd413ECPKlPMATRj3FoVsxOJozMhWzwrHi-VjXBxPM-Lb-_ffV18nF1__vBpcXU907UQaSaWmnPGFatV3ZU1mI5XTSkuy2UetEKYrrtUnclgzTRcskbTtutonac1Fx3w86I6-A5uq8Z9fh65DdirMEpG5ZSA3MhfCcgpgQnMCWTZ24NsO3Q9GA0uBfVH6hXKvycO13Lld1KUTVU3VTZ4eTQI_vsAMckeowZrlQM_RFmyUrSM8rbN1Bd3d90u-Z1tJvADQQcfY4DlA3-h_UelMamEfvpgtPdo3xy0kKPZIQQZNYLTYDDkwkjj8WHPd6vXx3bewAhx44eQ6xMlk7GUVH6ZKj41nDWcVoJOBq__b3Dv-p_fOxJo
CitedBy_id crossref_primary_10_3389_fmed_2024_1487234
crossref_primary_10_3390_hemato6010006
crossref_primary_10_1002_cyto_a_24191
crossref_primary_10_1097_CCO_0000000000000607
crossref_primary_10_1093_bioinformatics_btad585
crossref_primary_10_1038_s41598_021_03902_8
crossref_primary_10_3390_cancers16081503
crossref_primary_10_3390_cancers17030483
crossref_primary_10_1002_eji_201970107
crossref_primary_10_3390_hemato2010008
crossref_primary_10_2196_36490
crossref_primary_10_1111_bjh_16915
crossref_primary_10_1002_cyto_a_23906
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2023046674
crossref_primary_10_1002_cyto_b_22108
crossref_primary_10_1038_s41388_021_01861_y
crossref_primary_10_1111_ijlh_14033
crossref_primary_10_1002_cyto_b_22230
crossref_primary_10_1182_bloodadvances_2020002997
crossref_primary_10_1007_s00761_022_01153_4
crossref_primary_10_3389_fonc_2021_700234
crossref_primary_10_3390_diagnostics12040827
crossref_primary_10_3389_fonc_2023_1164017
crossref_primary_10_1093_ajcp_aqab166
crossref_primary_10_1038_s41375_022_01647_5
crossref_primary_10_1186_s12885_022_09621_1
crossref_primary_10_1002_cyto_b_22120
crossref_primary_10_3390_cancers16223855
crossref_primary_10_1093_jalm_jfac108
crossref_primary_10_1182_bloodadvances_2020003738
crossref_primary_10_3233_CBM_190899
crossref_primary_10_1002_med_21731
crossref_primary_10_1007_s11899_020_00575_4
crossref_primary_10_1016_S2352_3026_20_30121_6
crossref_primary_10_1002_ajh_26666
crossref_primary_10_3390_cancers14010188
crossref_primary_10_3390_applbiosci3010002
crossref_primary_10_1093_ajcp_aqab076
crossref_primary_10_1016_j_jtha_2024_05_017
crossref_primary_10_1053_j_semdp_2023_02_004
crossref_primary_10_61969_jai_1469589
crossref_primary_10_3389_fmed_2023_1227168
crossref_primary_10_3390_jcm9061714
crossref_primary_10_1002_cyto_b_22177
crossref_primary_10_3390_diagnostics14040420
crossref_primary_10_1016_j_blre_2022_101019
crossref_primary_10_3390_cancers12061684
crossref_primary_10_1007_s10544_022_00627_x
crossref_primary_10_1016_j_cll_2023_04_009
crossref_primary_10_1016_j_compeleceng_2024_109446
crossref_primary_10_1136_jclinpath_2021_208127
crossref_primary_10_3390_vaccines8010138
crossref_primary_10_1109_JBHI_2022_3175514
crossref_primary_10_3389_fonc_2023_1173701
crossref_primary_10_1038_s43856_024_00700_x
crossref_primary_10_1093_ajcp_aqab148
Cites_doi 10.1002/cyto.a.22810
10.1186/1471-2105-15-314
10.1007/s00277-018-3330-9
10.1002/cyto.a.22445
10.1002/eji.201545774
10.1182/blood.V126.23.2593.2593
10.1038/leu.2013.236
10.1109/TBME.2016.2590950
10.1182/blood-2009-12-258178
10.1182/blood-2016-08-733196
10.1200/JCO.2013.49.1753
10.1016/j.immuni.2015.04.006
10.1002/cyto.a.20901
10.1186/1471-2105-7-282
10.1016/j.metabol.2017.01.011
10.1002/cyto.a.22446
10.1016/j.tibtech.2013.04.008
10.1200/JCO.2012.45.9628
10.18632/oncotarget.12430
10.1182/blood-2014-05-577593
10.1038/sj.leu.2403138
10.1016/j.patcog.2016.04.004
10.1182/blood-2012-02-408336
10.1038/nri3158
10.1038/nature22985
10.1016/j.leukres.2014.08.012
10.1182/blood-2017-09-801498
10.1182/asheducation-2014.1.222
10.1002/cytob.21140
10.1007/978-3-319-56154-7_48
10.1200/JCO.2014.59.1339
10.1038/nmeth.2365
10.3390/jcm6060057
10.1038/nature21056
10.1001/jama.2016.17216
10.1007/s00063-005-1122-1
10.1002/cytob.21134
10.3390/jcm5030033
10.1002/cyto.a.22626
10.1016/0165-4608(95)00084-4
10.1001/jama.2016.17563
ContentType Journal Article
Copyright 2018 The Authors
The Authors
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.ebiom.2018.10.042
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2352-3964
EndPage 100
ExternalDocumentID 10.1016/j.ebiom.2018.10.042
PMC6284584
30361063
10_1016_j_ebiom_2018_10_042
S2352396418304602
1_s2_0_S2352396418304602
Genre Clinical Trial
Validation Study
Journal Article
GroupedDBID .1-
.FO
0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M48
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c566t-6fc3313a15a5b25edb3482672ffc3966dbb7abd34851ce718c09bb05fc3536be3
IEDL.DBID UNPAY
ISSN 2352-3964
IngestDate Wed Oct 29 12:00:11 EDT 2025
Tue Sep 30 17:00:24 EDT 2025
Fri Sep 05 12:23:20 EDT 2025
Thu Apr 03 06:58:50 EDT 2025
Wed Oct 01 01:05:57 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Sun Apr 06 06:53:03 EDT 2025
Sun Feb 23 10:19:34 EST 2025
Tue Aug 26 16:43:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Minimal residual disease
Multicolor flow cytometry
Acute myeloid leukemia
Artificial intelligence
Myelodysplastic syndrome
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-6fc3313a15a5b25edb3482672ffc3966dbb7abd34851ce718c09bb05fc3536be3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-0186-4321
0000-0002-7965-7579
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.thelancet.com/article/S2352396418304602/pdf
PMID 30361063
PQID 2126910399
PQPubID 23479
PageCount 10
ParticipantIDs unpaywall_primary_10_1016_j_ebiom_2018_10_042
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6284584
proquest_miscellaneous_2126910399
pubmed_primary_30361063
crossref_primary_10_1016_j_ebiom_2018_10_042
crossref_citationtrail_10_1016_j_ebiom_2018_10_042
elsevier_sciencedirect_doi_10_1016_j_ebiom_2018_10_042
elsevier_clinicalkeyesjournals_1_s2_0_S2352396418304602
elsevier_clinicalkey_doi_10_1016_j_ebiom_2018_10_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle EBioMedicine
PublicationTitleAlternate EBioMedicine
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Saultz, Garzon (bb0005) 2016; 5
Köhnke, Rechkemmer, Bücklein (bb0235) 2015; 126
Takenga, Dworzak, Diem (bb0155) 2017; 10209
Terwijn, van Putten, Kelder (bb0035) 2013; 31
Mair, Hartmann, Mrdjen, Tosevski, Krieg, Becher (bb0130) 2016; 46
Lugli, Roederer, Cossarizza (bb0080) 2010; 77
Naim, Datta, Rebhahn, Cavenaugh, Mosmann, Sharma (bb0135) 2014; 85
Maecker, McCoy, Nussenblatt (bb0215) 2012; 12
Shouval, Labopin, Bondi (bb0115) 2015; 33
Loken, Alonzo, Pardo (bb0020) 2012; 120
Zeijlemaker, Gratama, Schuurhuis (bb0075) 2014; 86
Mosna, Capelli, Gottardi (bb0055) 2017; 6
Vedaldi, Fulkerson (bb0200) 2010
Mitchell (bb0095) 2006
Aghaeepour, Finak, Flow (bb0060) 2013; 10
Gulshan, Peng, Coram (bb0120) 2016; 316
Schuurhuis, Heuser, Freeman (bb0015) 2018; 131
Kern, Haferlach (bb0030) 2005; 100
Witten, Frank, Hall, Pal (bb0085) 2016
Rajwa, Wallace, Griffiths, Dundar (bb0165) 2017; 64
Wong, Bressler (bb0125) 2016; 316
Grimwade, Freeman (bb0025) 2014; 124
Coltoff, Houldsworth, Keyzner, Renteria, Mascarenhas (bb0010) 2018; 97
Reiter, Rota, Kleber, Diem, Groeneveld-Krentz, Dworzak (bb0230) 2016; 60
Hassan, Ruusuvuori, Latonen, Huttunen (bb0250) 2015; 14
Toedling, Rhein, Ratei, Karawajew, Spang (bb0150) 2006; 7
R Core Team (2017) (bb0210)
Bishop (bb0090) 2006
Venditti, Maurillo, Buccisano (bb0045) 2003; 17
Sorensen, Baumgart, Durek, Grutzkau, Haupl (bb0145) 2015; 87
Esteva, Kuprel, Novoa (bb0105) 2017; 542
Ni, Hu, Zheng (bb0160) 2016; 7
Freeman, Virgo, Couzens (bb0040) 2013; 31
Tien, Wang, Lin (bb0180) 1995; 84
Brinkman, Aghaeepour, Finak, Gottardo, Mosmann, Scheuermann (bb0170) 2016; 89
Hamet, Tremblay (bb0100) 2017; 69S
Loken (bb0070) 2014; 86
Mosmann, Naim, Rebhahn (bb0140) 2014; 85
Buitinck, Louppe, Blondel (bb0205) 2013
Corinna Cortes aVV (bb0195) 1995; 20.3
Kvistborg, Gouttefangeas, Aghaeepour (bb0240) 2015; 42
Esteva, Kuprel, Novoa (bb0110) 2017; 546
Chou, Tang, Hou (bb0185) 2014; 38
Pedreira, Costa, Lecrevisse, van Dongen, Orfao, Euroflow (bb0220) 2013; 31
Hou, Lin, Chou (bb0190) 2014; 28
Dundar, Akova, Yerebakan, Rajwa (bb0225) 2014; 15
Perronnin, Dance (bb0245) 2007
Dohner, Estey, Grimwade (bb0175) 2017; 129
Buccisano, Maurillo, Spagnoli (bb0050) 2010; 116
Grimwade, Freeman (bb0065) 2014; 2014
Hou (10.1016/j.ebiom.2018.10.042_bb0190) 2014; 28
Vedaldi (10.1016/j.ebiom.2018.10.042_bb0200) 2010
Corinna Cortes aVV (10.1016/j.ebiom.2018.10.042_bb0195) 1995; 20.3
Gulshan (10.1016/j.ebiom.2018.10.042_bb0120) 2016; 316
Mosmann (10.1016/j.ebiom.2018.10.042_bb0140) 2014; 85
Sorensen (10.1016/j.ebiom.2018.10.042_bb0145) 2015; 87
Terwijn (10.1016/j.ebiom.2018.10.042_bb0035) 2013; 31
Bishop (10.1016/j.ebiom.2018.10.042_bb0090) 2006
Perronnin (10.1016/j.ebiom.2018.10.042_bb0245) 2007
Wong (10.1016/j.ebiom.2018.10.042_bb0125) 2016; 316
Mosna (10.1016/j.ebiom.2018.10.042_bb0055) 2017; 6
Coltoff (10.1016/j.ebiom.2018.10.042_bb0010) 2018; 97
Kern (10.1016/j.ebiom.2018.10.042_bb0030) 2005; 100
Pedreira (10.1016/j.ebiom.2018.10.042_bb0220) 2013; 31
Venditti (10.1016/j.ebiom.2018.10.042_bb0045) 2003; 17
Ni (10.1016/j.ebiom.2018.10.042_bb0160) 2016; 7
Reiter (10.1016/j.ebiom.2018.10.042_bb0230) 2016; 60
Loken (10.1016/j.ebiom.2018.10.042_bb0070) 2014; 86
Grimwade (10.1016/j.ebiom.2018.10.042_bb0025) 2014; 124
Esteva (10.1016/j.ebiom.2018.10.042_bb0105) 2017; 542
Tien (10.1016/j.ebiom.2018.10.042_bb0180) 1995; 84
Brinkman (10.1016/j.ebiom.2018.10.042_bb0170) 2016; 89
Naim (10.1016/j.ebiom.2018.10.042_bb0135) 2014; 85
Schuurhuis (10.1016/j.ebiom.2018.10.042_bb0015) 2018; 131
Takenga (10.1016/j.ebiom.2018.10.042_bb0155) 2017; 10209
Maecker (10.1016/j.ebiom.2018.10.042_bb0215) 2012; 12
Rajwa (10.1016/j.ebiom.2018.10.042_bb0165) 2017; 64
Buitinck (10.1016/j.ebiom.2018.10.042_bb0205) 2013
Grimwade (10.1016/j.ebiom.2018.10.042_bb0065) 2014; 2014
Mitchell (10.1016/j.ebiom.2018.10.042_bb0095) 2006
Saultz (10.1016/j.ebiom.2018.10.042_bb0005) 2016; 5
Shouval (10.1016/j.ebiom.2018.10.042_bb0115) 2015; 33
Kvistborg (10.1016/j.ebiom.2018.10.042_bb0240) 2015; 42
Loken (10.1016/j.ebiom.2018.10.042_bb0020) 2012; 120
Zeijlemaker (10.1016/j.ebiom.2018.10.042_bb0075) 2014; 86
Witten (10.1016/j.ebiom.2018.10.042_bb0085) 2016
Chou (10.1016/j.ebiom.2018.10.042_bb0185) 2014; 38
Köhnke (10.1016/j.ebiom.2018.10.042_bb0235) 2015; 126
Hamet (10.1016/j.ebiom.2018.10.042_bb0100) 2017; 69S
Freeman (10.1016/j.ebiom.2018.10.042_bb0040) 2013; 31
Lugli (10.1016/j.ebiom.2018.10.042_bb0080) 2010; 77
Buccisano (10.1016/j.ebiom.2018.10.042_bb0050) 2010; 116
Dohner (10.1016/j.ebiom.2018.10.042_bb0175) 2017; 129
Esteva (10.1016/j.ebiom.2018.10.042_bb0110) 2017; 546
Toedling (10.1016/j.ebiom.2018.10.042_bb0150) 2006; 7
Aghaeepour (10.1016/j.ebiom.2018.10.042_bb0060) 2013; 10
Mair (10.1016/j.ebiom.2018.10.042_bb0130) 2016; 46
Hassan (10.1016/j.ebiom.2018.10.042_bb0250) 2015; 14
R Core Team (2017) (10.1016/j.ebiom.2018.10.042_bb0210)
Dundar (10.1016/j.ebiom.2018.10.042_bb0225) 2014; 15
References_xml – year: 2013
  ident: bb0205
  article-title: API design for machine learning software: experiences from the scikit-learn project
  publication-title: European conference on machine learning and principles and practices of knowledge discovery in databases
– volume: 85
  start-page: 408
  year: 2014
  end-page: 421
  ident: bb0135
  article-title: SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design
  publication-title: Cytometry A
– volume: 7
  start-page: 71915
  year: 2016
  end-page: 71921
  ident: bb0160
  article-title: Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine
  publication-title: Oncotarget
– ident: bb0210
  article-title: R: A language and environment for statistical computing: R foundation for statistical computing
– volume: 31
  start-page: 4123
  year: 2013
  end-page: 4131
  ident: bb0040
  article-title: Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia
  publication-title: J Clin Oncol
– start-page: 1469
  year: 2010
  end-page: 1472
  ident: bb0200
  article-title: Vlfeat: An open and portable library of computer vision algorithms. Proceedings of the 18th ACM international conference on Multimedia; Firenze, Italy. 1874249: ACM
– volume: 31
  start-page: 3889
  year: 2013
  end-page: 3897
  ident: bb0035
  article-title: High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study
  publication-title: J Clin Oncol
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bb0120
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 2014
  start-page: 222
  year: 2014
  end-page: 233
  ident: bb0065
  article-title: Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for "prime time"?
  publication-title: Hematology Am Soc Hematol Educ Program
– volume: 7
  start-page: 282
  year: 2006
  ident: bb0150
  article-title: Automated in-silico detection of cell populations in flow cytometry readouts and its application to leukemia disease monitoring
  publication-title: BMC Bioinform
– volume: 10
  start-page: 228
  year: 2013
  end-page: 238
  ident: bb0060
  article-title: Critical assessment of automated flow cytometry data analysis techniques
  publication-title: Nat Methods
– volume: 14
  start-page: 75
  year: 2015
  end-page: 85
  ident: bb0250
  article-title: Flow cytometry-based classification in cancer research: A view on feature selection
  publication-title: Cancer Inform
– volume: 86
  start-page: 3
  year: 2014
  end-page: 14
  ident: bb0075
  article-title: Tumor heterogeneity makes AML a "moving target" for detection of residual disease
  publication-title: Cytometry B Clin Cytom
– year: 2006
  ident: bb0095
  article-title: The discipline of machine learning. School of Computer Science, Carnegie Mellon University
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bb0105
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 131
  start-page: 1275
  year: 2018
  end-page: 1291
  ident: bb0015
  article-title: Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party
  publication-title: Blood
– volume: 6
  start-page: 57
  year: 2017
  ident: bb0055
  article-title: Minimal residual disease in acute myeloid leukemia: Still a work in progress?
  publication-title: J Clin Med
– year: 2006
  ident: bb0090
  article-title: Pattern recognition and machine learning: Springer-Verlag New York
– volume: 100
  start-page: 54
  year: 2005
  end-page: 59
  ident: bb0030
  article-title: Quantification of minimal residual disease by multiparameter flow cytometry in acute myeloid leukemia. From diagnosis to prognosis
  publication-title: Med Klin (Munich)
– volume: 12
  start-page: 191
  year: 2012
  end-page: 200
  ident: bb0215
  article-title: Standardizing immunophenotyping for the human immunology project
  publication-title: Nat Rev Immunol
– year: 2016
  ident: bb0085
  article-title: Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann
– volume: 124
  start-page: 3345
  year: 2014
  end-page: 3355
  ident: bb0025
  article-title: Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for "prime time"?
  publication-title: Blood
– volume: 33
  start-page: 3144
  year: 2015
  end-page: 3151
  ident: bb0115
  article-title: Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: A European group for blood and marrow transplantation acute leukemia working party retrospective data mining study
  publication-title: J Clin Oncol
– volume: 60
  start-page: 1029
  year: 2016
  end-page: 1040
  ident: bb0230
  article-title: Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures
  publication-title: Pattern Recog
– volume: 10209
  start-page: 537
  year: 2017
  end-page: 548
  ident: bb0155
  article-title: A clinical tool for automated flow cytometry based on machine learning methods
  publication-title: Lecture notes in computer science
– volume: 17
  start-page: 2178
  year: 2003
  end-page: 2182
  ident: bb0045
  article-title: Pretransplant minimal residual disease level predicts clinical outcome in patients with acute myeloid leukemia receiving high-dose chemotherapy and autologous stem cell transplantation
  publication-title: Leukemia
– volume: 120
  start-page: 1581
  year: 2012
  end-page: 1588
  ident: bb0020
  article-title: Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children's Oncology Group
  publication-title: Blood
– volume: 89
  start-page: 13
  year: 2016
  end-page: 15
  ident: bb0170
  article-title: Automated analysis of flow cytometry data comes of age
  publication-title: Cytometry A
– volume: 20.3
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0195
  article-title: Support-vector networks. Machine learning
– volume: 31
  start-page: 415
  year: 2013
  end-page: 425
  ident: bb0220
  article-title: Overview of clinical flow cytometry data analysis: Recent advances and future challenges
  publication-title: Trends Biotechnol
– start-page: 1
  year: 2007
  end-page: 8
  ident: bb0245
  article-title: Fisher kernels on visual vocabularies for image categorization. 2007 IEEE Conference on Computer Vision and Pattern Recognition; Minneapolis, MN
– volume: 85
  start-page: 422
  year: 2014
  end-page: 433
  ident: bb0140
  article-title: SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation
  publication-title: Cytometry A
– volume: 69S
  start-page: S36
  year: 2017
  end-page: S40
  ident: bb0100
  article-title: Artificial intelligence in medicine
  publication-title: Metabolism
– volume: 46
  start-page: 34
  year: 2016
  end-page: 43
  ident: bb0130
  article-title: The end of gating? An introduction to automated analysis of high dimensional cytometry data
  publication-title: Eur J Immunol
– volume: 77
  start-page: 705
  year: 2010
  end-page: 713
  ident: bb0080
  article-title: Data analysis in flow cytometry: The future just started
  publication-title: Cytometry A
– volume: 86
  start-page: 15
  year: 2014
  end-page: 17
  ident: bb0070
  article-title: Residual disease in AML, a target that can move in more than one direction
  publication-title: Cytometry B Clin Cytom
– volume: 546
  start-page: 686
  year: 2017
  ident: bb0110
  article-title: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 15
  start-page: 314
  year: 2014
  ident: bb0225
  article-title: A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects
  publication-title: BMC Bioinform
– volume: 64
  start-page: 1089
  year: 2017
  end-page: 1098
  ident: bb0165
  article-title: Automated assessment of disease progression in acute myeloid leukemia by probabilistic analysis of flow cytometry data
  publication-title: IEEE Trans Biomed Eng
– volume: 97
  start-page: 1155
  year: 2018
  end-page: 1167
  ident: bb0010
  article-title: Role of minimal residual disease in the management of acute myeloid leukemia—a case-based discussion
  publication-title: Ann Hematol
– volume: 84
  start-page: 60
  year: 1995
  end-page: 68
  ident: bb0180
  article-title: Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia. A study of 235 Chinese patients in Taiwan
  publication-title: Cancer Genet Cytogenet
– volume: 28
  start-page: 50
  year: 2014
  end-page: 58
  ident: bb0190
  article-title: Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia
  publication-title: Leukemia
– volume: 129
  start-page: 424
  year: 2017
  end-page: 447
  ident: bb0175
  article-title: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
  publication-title: Blood
– volume: 38
  start-page: 1278
  year: 2014
  end-page: 1284
  ident: bb0185
  article-title: Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations
  publication-title: Leuk Res
– volume: 126
  year: 2015
  ident: bb0235
  article-title: Improved detection of minimal residual disease by flow cytometry in AML by combining manual gating and visne clustering
  publication-title: Blood
– volume: 316
  start-page: 2366
  year: 2016
  end-page: 2367
  ident: bb0125
  article-title: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening
  publication-title: JAMA
– volume: 5
  start-page: 33
  year: 2016
  ident: bb0005
  article-title: Acute myeloid leukemia: A concise review
  publication-title: J Clin Med
– volume: 116
  start-page: 2295
  year: 2010
  end-page: 2303
  ident: bb0050
  article-title: Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia
  publication-title: Blood
– volume: 42
  start-page: 591
  year: 2015
  end-page: 592
  ident: bb0240
  article-title: Thinking outside the gate: single-cell assessments in multiple dimensions
  publication-title: Immunity
– volume: 87
  start-page: 603
  year: 2015
  end-page: 615
  ident: bb0145
  article-title: ImmunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets
  publication-title: Cytometry A
– volume: 89
  start-page: 13
  year: 2016
  ident: 10.1016/j.ebiom.2018.10.042_bb0170
  article-title: Automated analysis of flow cytometry data comes of age
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22810
– volume: 15
  start-page: 314
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0225
  article-title: A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-15-314
– volume: 97
  start-page: 1155
  year: 2018
  ident: 10.1016/j.ebiom.2018.10.042_bb0010
  article-title: Role of minimal residual disease in the management of acute myeloid leukemia—a case-based discussion
  publication-title: Ann Hematol
  doi: 10.1007/s00277-018-3330-9
– volume: 85
  start-page: 422
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0140
  article-title: SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22445
– year: 2013
  ident: 10.1016/j.ebiom.2018.10.042_bb0205
  article-title: API design for machine learning software: experiences from the scikit-learn project
– volume: 46
  start-page: 34
  year: 2016
  ident: 10.1016/j.ebiom.2018.10.042_bb0130
  article-title: The end of gating? An introduction to automated analysis of high dimensional cytometry data
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201545774
– year: 2006
  ident: 10.1016/j.ebiom.2018.10.042_bb0095
– volume: 126
  year: 2015
  ident: 10.1016/j.ebiom.2018.10.042_bb0235
  article-title: Improved detection of minimal residual disease by flow cytometry in AML by combining manual gating and visne clustering
  publication-title: Blood
  doi: 10.1182/blood.V126.23.2593.2593
– volume: 28
  start-page: 50
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0190
  article-title: Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2013.236
– volume: 64
  start-page: 1089
  year: 2017
  ident: 10.1016/j.ebiom.2018.10.042_bb0165
  article-title: Automated assessment of disease progression in acute myeloid leukemia by probabilistic analysis of flow cytometry data
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2590950
– ident: 10.1016/j.ebiom.2018.10.042_bb0210
– volume: 116
  start-page: 2295
  year: 2010
  ident: 10.1016/j.ebiom.2018.10.042_bb0050
  article-title: Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia
  publication-title: Blood
  doi: 10.1182/blood-2009-12-258178
– volume: 129
  start-page: 424
  year: 2017
  ident: 10.1016/j.ebiom.2018.10.042_bb0175
  article-title: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
  publication-title: Blood
  doi: 10.1182/blood-2016-08-733196
– volume: 31
  start-page: 4123
  year: 2013
  ident: 10.1016/j.ebiom.2018.10.042_bb0040
  article-title: Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2013.49.1753
– volume: 42
  start-page: 591
  year: 2015
  ident: 10.1016/j.ebiom.2018.10.042_bb0240
  article-title: Thinking outside the gate: single-cell assessments in multiple dimensions
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.04.006
– volume: 77
  start-page: 705
  year: 2010
  ident: 10.1016/j.ebiom.2018.10.042_bb0080
  article-title: Data analysis in flow cytometry: The future just started
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20901
– volume: 7
  start-page: 282
  year: 2006
  ident: 10.1016/j.ebiom.2018.10.042_bb0150
  article-title: Automated in-silico detection of cell populations in flow cytometry readouts and its application to leukemia disease monitoring
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-7-282
– volume: 69S
  start-page: S36
  year: 2017
  ident: 10.1016/j.ebiom.2018.10.042_bb0100
  article-title: Artificial intelligence in medicine
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2017.01.011
– start-page: 1469
  year: 2010
  ident: 10.1016/j.ebiom.2018.10.042_bb0200
– volume: 85
  start-page: 408
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0135
  article-title: SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22446
– volume: 31
  start-page: 415
  year: 2013
  ident: 10.1016/j.ebiom.2018.10.042_bb0220
  article-title: Overview of clinical flow cytometry data analysis: Recent advances and future challenges
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2013.04.008
– volume: 31
  start-page: 3889
  year: 2013
  ident: 10.1016/j.ebiom.2018.10.042_bb0035
  article-title: High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.45.9628
– volume: 7
  start-page: 71915
  year: 2016
  ident: 10.1016/j.ebiom.2018.10.042_bb0160
  article-title: Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12430
– volume: 124
  start-page: 3345
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0025
  article-title: Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for "prime time"?
  publication-title: Blood
  doi: 10.1182/blood-2014-05-577593
– volume: 17
  start-page: 2178
  year: 2003
  ident: 10.1016/j.ebiom.2018.10.042_bb0045
  article-title: Pretransplant minimal residual disease level predicts clinical outcome in patients with acute myeloid leukemia receiving high-dose chemotherapy and autologous stem cell transplantation
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2403138
– volume: 60
  start-page: 1029
  year: 2016
  ident: 10.1016/j.ebiom.2018.10.042_bb0230
  article-title: Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures
  publication-title: Pattern Recog
  doi: 10.1016/j.patcog.2016.04.004
– volume: 120
  start-page: 1581
  year: 2012
  ident: 10.1016/j.ebiom.2018.10.042_bb0020
  article-title: Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children's Oncology Group
  publication-title: Blood
  doi: 10.1182/blood-2012-02-408336
– volume: 12
  start-page: 191
  year: 2012
  ident: 10.1016/j.ebiom.2018.10.042_bb0215
  article-title: Standardizing immunophenotyping for the human immunology project
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3158
– volume: 546
  start-page: 686
  year: 2017
  ident: 10.1016/j.ebiom.2018.10.042_bb0110
  article-title: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature22985
– volume: 38
  start-page: 1278
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0185
  article-title: Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2014.08.012
– volume: 131
  start-page: 1275
  year: 2018
  ident: 10.1016/j.ebiom.2018.10.042_bb0015
  article-title: Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party
  publication-title: Blood
  doi: 10.1182/blood-2017-09-801498
– volume: 2014
  start-page: 222
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0065
  article-title: Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for "prime time"?
  publication-title: Hematology Am Soc Hematol Educ Program
  doi: 10.1182/asheducation-2014.1.222
– volume: 86
  start-page: 15
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0070
  article-title: Residual disease in AML, a target that can move in more than one direction
  publication-title: Cytometry B Clin Cytom
  doi: 10.1002/cytob.21140
– start-page: 1
  year: 2007
  ident: 10.1016/j.ebiom.2018.10.042_bb0245
– volume: 10209
  start-page: 537
  year: 2017
  ident: 10.1016/j.ebiom.2018.10.042_bb0155
  article-title: A clinical tool for automated flow cytometry based on machine learning methods
  doi: 10.1007/978-3-319-56154-7_48
– volume: 33
  start-page: 3144
  year: 2015
  ident: 10.1016/j.ebiom.2018.10.042_bb0115
  article-title: Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: A European group for blood and marrow transplantation acute leukemia working party retrospective data mining study
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.59.1339
– volume: 20.3
  start-page: 273
  year: 1995
  ident: 10.1016/j.ebiom.2018.10.042_bb0195
– volume: 10
  start-page: 228
  year: 2013
  ident: 10.1016/j.ebiom.2018.10.042_bb0060
  article-title: Critical assessment of automated flow cytometry data analysis techniques
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2365
– volume: 6
  start-page: 57
  issue: 6
  year: 2017
  ident: 10.1016/j.ebiom.2018.10.042_bb0055
  article-title: Minimal residual disease in acute myeloid leukemia: Still a work in progress?
  publication-title: J Clin Med
  doi: 10.3390/jcm6060057
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.ebiom.2018.10.042_bb0105
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 316
  start-page: 2402
  year: 2016
  ident: 10.1016/j.ebiom.2018.10.042_bb0120
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 100
  start-page: 54
  year: 2005
  ident: 10.1016/j.ebiom.2018.10.042_bb0030
  article-title: Quantification of minimal residual disease by multiparameter flow cytometry in acute myeloid leukemia. From diagnosis to prognosis
  publication-title: Med Klin (Munich)
  doi: 10.1007/s00063-005-1122-1
– volume: 14
  start-page: 75
  year: 2015
  ident: 10.1016/j.ebiom.2018.10.042_bb0250
  article-title: Flow cytometry-based classification in cancer research: A view on feature selection
  publication-title: Cancer Inform
– volume: 86
  start-page: 3
  year: 2014
  ident: 10.1016/j.ebiom.2018.10.042_bb0075
  article-title: Tumor heterogeneity makes AML a "moving target" for detection of residual disease
  publication-title: Cytometry B Clin Cytom
  doi: 10.1002/cytob.21134
– volume: 5
  start-page: 33
  issue: 3
  year: 2016
  ident: 10.1016/j.ebiom.2018.10.042_bb0005
  article-title: Acute myeloid leukemia: A concise review
  publication-title: J Clin Med
  doi: 10.3390/jcm5030033
– year: 2016
  ident: 10.1016/j.ebiom.2018.10.042_bb0085
– year: 2006
  ident: 10.1016/j.ebiom.2018.10.042_bb0090
– volume: 87
  start-page: 603
  year: 2015
  ident: 10.1016/j.ebiom.2018.10.042_bb0145
  article-title: ImmunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22626
– volume: 84
  start-page: 60
  year: 1995
  ident: 10.1016/j.ebiom.2018.10.042_bb0180
  article-title: Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia. A study of 235 Chinese patients in Taiwan
  publication-title: Cancer Genet Cytogenet
  doi: 10.1016/0165-4608(95)00084-4
– volume: 316
  start-page: 2366
  year: 2016
  ident: 10.1016/j.ebiom.2018.10.042_bb0125
  article-title: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening
  publication-title: JAMA
  doi: 10.1001/jama.2016.17563
SSID ssj0001542358
Score 2.404695
Snippet Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and...
AbstractBackgroundMulticolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 91
SubjectTerms Acute myeloid leukemia
Advanced Basic Science
Artificial intelligence
Disease-Free Survival
Female
Flow Cytometry
Humans
Internal Medicine
Leukemia, Myeloid, Acute - blood
Leukemia, Myeloid, Acute - mortality
Leukemia, Myeloid, Acute - therapy
Machine Learning
Male
Minimal residual disease
Multicolor flow cytometry
Myelodysplastic syndrome
Myelodysplastic Syndromes - blood
Myelodysplastic Syndromes - mortality
Myelodysplastic Syndromes - therapy
Neoplasm, Residual
Predictive Value of Tests
Research paper
Survival Rate
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxJvlJSNxJNXmnRwQQoiqQioXWKk3y44nbSCPJQ-V_Cl-IzOJHai6FMRxHTvZZL7YnzMz3zD2Uskct8k5OOQtdAIF4Mg88x1kph4kuEAFGX0aOP4YHW2CDyfhyR6zVVHNA-x2bu2ontSmLQ--fxvf4Av_-lesFlCuOsVpJQcUqhXgnHwNl6qUajkcG74_pw0HlBo6FZwLPcdPo8AqEe0-z59Wq8ts9HJQ5Y2h3srxXJblbyvW4W12y1BN_nbGxh22B_Vddn0uPjneYz-MJGhZjhzhVtDWX_NqCq4EbqpJnHJZnjZt0Z9VHOkt10BOB2rHbfqUx8WNi6fj9EmXTwGKpITd8rxsznk29k0FfTtyaeRPeFFzmQ098GqEsik0Xmv4ClUhsYueG_XYbZHW45m4lVS4zzaH7z-_O3JM9QYnQ4rYOxGa3Hd96YYyVF4IWpGOThR7OR7ATZZWKpZKY2PoZoBLZLZOlVqHeDT0IwX-A7ZfNzU8YjyBJNIyTYGkg3QayzTLE_B9cOO1RlCtmGetJDIjbU4VNkphY9i-iMm0gkxLjWjaFXu1DNrOyh5Xdw-s-YVNWsVpViAQrx4W7xoGnUW6cEXnibX4RIgkQOIcS85qHBktIw0bmlnO3y_5wqJT4FxBDiBZQzN0AmlKlJLvP12xhzNal1snKuMiX8U_fAHHSwfSIb94pC7OJj3yCCkO8tgVcxbE_8sTffy_N_iE3aRfc0boU7bftwM8Q2rYq-fT6_4TmoJnXw
  priority: 102
  providerName: Scholars Portal
Title Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2352396418304602
https://www.clinicalkey.es/playcontent/1-s2.0-S2352396418304602
https://dx.doi.org/10.1016/j.ebiom.2018.10.042
https://www.ncbi.nlm.nih.gov/pubmed/30361063
https://www.proquest.com/docview/2126910399
https://pubmed.ncbi.nlm.nih.gov/PMC6284584
http://www.thelancet.com/article/S2352396418304602/pdf
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-3964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: KQ8
  dateStart: 20141101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-3964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-3964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-3964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: AKRWK
  dateStart: 20141101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2352-3964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2352-3964
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: M48
  dateStart: 20141101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbKVgheylkIl4zEI9lu7uSxQlQVqBUIVpQny44nbWiO1SZRlf4ofiMzuUS1UOiLpbXHySYZez7bM98w9kbJBJfJCZh0Wmi6CsCUSeyYiExtCNFAuTFtDRwd-4dL98OJd7LFxiyO5FWJwCfr4n-7iXp4gXtfbIQKTuS7qIN0mGfvrXRyi237HmLwGdteHn_a_95lkvNsk-RGiqHOmQsomJ0cucI5-XK59t_M0CbM3PSWvNMUK9leyCz7zRQd3GPfxoCe3gPlfN7Uah5fbvI73vAp77OdAZ3y_V7uAduC4iG73eerbB-xnwOLaJa1HDU0pd0CzfPOHxP4kIDilMvstFyn9VnOERFzDXROQfW4su9Cv_hwKlRx2gXmnU8jkWeveZKVFzxu6zKHet1yOTCm8LTgMm5q4HkLWZlqvFdzDnkqUUT3lbqtVrgSwCvxkYXhMVsevP_67tAcEj6YMaLK2vRRSxzLkZYnPWV7oBVR7_iBnWADrsu0UoFUGis9Kwa0qvEiUmrhYavn-AqcXTYrygKeMh5C6GsZRUBsQzoKZBQnITgOWMFCox4azB6_v4gHNnRKypGJ0e3th-iURpDSUCUqjcHeTp1WPRnI9eLuqFhijHPFmVmgsbq-W_CnblANs0slLFHZYiE2lMVg_tRzAFA9MPr3LV-Pei9weqEzI1lA2VQCkY0fkbtAZLAn_TiYHp3Qj4UQF__wlREyCRB1-dWWIj3rKMx9REUIfQ1mTmPpf97osxvKP2d36VcfO_qCzep1Ay8RRNbqVbf5guXHzyGWRy6W_RzyC2KNeZM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVggu5U3DS0biSLabd3KsEFWFRIUEK8rJsuNJG5rHapOoCj-K38hM4qyoFgo9xh4nm-x4_Nkz8w1jb5TMcJucgU3eQttXALbMUs9GZOpCjAuUn9LRwMeT8HjpfzgNTnfYVMWRoioR-BRD_u9gqM0HPPjsIlTwktBHHSRnnnuw0tktthsGiMFnbHd58unw21BJLnBtkpsohoZgLqBkdgrkiucUy-W7f1uGtmHmdrTkna5ayf5SFsVvS9HRPfZ1SugZI1Au5l2r5umPbX7HG77lfbZn0Ck_HOUesB2oHrLbY73K_hH7aVhEi6LnqKE5nRZoXg7xmMBNAYozLouzep235yVHRMw1kJ-C2nFnP6R-ceMVajidAvMhppHIs9c8K-pLnvZtXUK77rk0jCk8r7hMuxZ42UNR5xqf1V1AmUsU0WOj7psV7gTwTnxiYXjMlkfvv7w7tk3BBztFVNnaIWqJ53jSCWSg3AC0IuqdMHIz7MB9mVYqkkpjY-CkgKtqukiUWgTYG3ihAu8Jm1V1BfuMxxCHWiYJENuQTiKZpFkMngdOtNCohxZzp_9fpIYNnYpyFGIKe_suBqURpDTUiEpjsbebQauRDOR6cX9SLDHluaJlFrhYXT8s-tMwaIx1aYQjGlcsxJayWCzcjDQAagRG_37k60nvBZoX8hnJCuquEYhswoTCBRKLPR3nwebVCf04CHHxB1-ZIRsBoi6_2lPl5wOFeYioCKGvxezNXPqfL_rshvLP2V26GnNHX7BZu-7gJYLIVr0yFuMX91F2zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+validated+machine+learning+algorithm+for+detecting+residual+diseases+with+multicolor+flow+cytometry+analysis+in+acute+myeloid+leukemia+and+myelodysplastic+syndrome&rft.jtitle=EBioMedicine&rft.au=Ko%2C+Bor-Sheng&rft.au=Wang%2C+Yu-Fen&rft.au=Li%2C+Jeng-Lin&rft.au=Li%2C+Chi-Cheng&rft.date=2018-11-01&rft.pub=Elsevier+B.V&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=37&rft.spage=91&rft.epage=100&rft_id=info:doi/10.1016%2Fj.ebiom.2018.10.042&rft.externalDocID=S2352396418304602
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2FS2352396418X00127%2Fcov150h.gif