Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome
Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artifi...
Saved in:
| Published in | EBioMedicine Vol. 37; pp. 91 - 100 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.11.2018
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2352-3964 2352-3964 |
| DOI | 10.1016/j.ebiom.2018.10.042 |
Cover
| Abstract | Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks.
From 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set.
Promising accuracies (84·6% to 92·4%) and AUCs (0·921–0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML.
Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests.
This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103–2314-B-002-185-MY2) of Taiwan. |
|---|---|
| AbstractList | Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks.
From 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set.
Promising accuracies (84·6% to 92·4%) and AUCs (0·921–0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML.
Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests.
This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103–2314-B-002-185-MY2) of Taiwan. AbstractBackgroundMulticolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks. MethodsFrom 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set. FindingsPromising accuracies (84·6% to 92·4%) and AUCs (0·921–0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML. InterpretationThrough large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. FundThis work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103–2314-B-002-185-MY2) of Taiwan. Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks.BACKGROUNDMulticolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks.From 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set.METHODSFrom 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set.Promising accuracies (84·6% to 92·4%) and AUCs (0·921-0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML.FINDINGSPromising accuracies (84·6% to 92·4%) and AUCs (0·921-0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML.Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. FUND: This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103-2314-B-002-185-MY2) of Taiwan.INTERPRETATIONThrough large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. FUND: This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103-2314-B-002-185-MY2) of Taiwan. Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, current manual interpretation suffers from drawbacks of time consuming and interpreter idiosyncrasy. Artificial intelligence (AI), with the expertise in assisting repetitive or complex analysis, represents a potential solution for these drawbacks. From 2009 to 2016, 5333 MFC data from 1742 AML or MDS patients were collected. The 287 MFC data at post-induction were selected as the outcome set for clinical outcome validation. The rest were 4:1 randomized into the training set (n = 4039) and the validation set (n = 1007). AI algorithm learned a multi-dimensional MFC phenotype from the training set and input it to support vector machine (SVM) classifier after Gaussian mixture model (GMM) modeling, and the performance was evaluated in The validation set. Promising accuracies (84·6% to 92·4%) and AUCs (0·921-0·950) were achieved by the developed algorithms. Interestingly, the algorithm from even one testing tube achieved similar performance. The clinical significance was validated in the outcome set, and normal MFC interpreted by the AI predicted better progression-free survival (10·9 vs 4·9 months, p < 0·0001) and overall survival (13·6 vs 6·5 months, p < 0·0001) for AML. Through large-scaled clinical validation, we showed that AI algorithms can produce efficient and clinically-relevant MFC analysis. This approach also possesses a great advantage of the ability to integrate other clinical tests. FUND: This work was supported by the Ministry of Science and Technology (107-2634-F-007-006 and 103-2314-B-002-185-MY2) of Taiwan. |
| Author | Li, Chi-Cheng Lee, Chi-Chun Lin, Chien-Ting Ko, Bor-Sheng Wang, Yu-Fen Huang, Tai-Chung Hsu, Szu-Chun Liu, Jia-Hau Tang, Jih-Luh Li, Jeng-Lin Tsai, Cheng-Hong Huang, Shang-Yi Chou, Wen-Chien Hou, Hsin-An Wu, Shang-Ju Weng, Pei-Fang Huang, Huai-Hsuan Yao, Ming Tien, Hwei-Fang |
| AuthorAffiliation | b Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan c Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan d Center of Stem Cell and Precision Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan f Joint Research Center for AI Technology and All Vista Healthcare, Ministry of Science and Technology, Taiwan e Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan a Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan |
| AuthorAffiliation_xml | – name: e Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan – name: a Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – name: f Joint Research Center for AI Technology and All Vista Healthcare, Ministry of Science and Technology, Taiwan – name: d Center of Stem Cell and Precision Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan – name: b Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan – name: c Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan |
| Author_xml | – sequence: 1 givenname: Bor-Sheng orcidid: 0000-0002-7965-7579 surname: Ko fullname: Ko, Bor-Sheng organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 2 givenname: Yu-Fen surname: Wang fullname: Wang, Yu-Fen organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan – sequence: 3 givenname: Jeng-Lin surname: Li fullname: Li, Jeng-Lin organization: Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan – sequence: 4 givenname: Chi-Cheng surname: Li fullname: Li, Chi-Cheng organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan – sequence: 5 givenname: Pei-Fang surname: Weng fullname: Weng, Pei-Fang organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan – sequence: 6 givenname: Szu-Chun surname: Hsu fullname: Hsu, Szu-Chun organization: Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 7 givenname: Hsin-An surname: Hou fullname: Hou, Hsin-An organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 8 givenname: Huai-Hsuan surname: Huang fullname: Huang, Huai-Hsuan organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 9 givenname: Ming surname: Yao fullname: Yao, Ming organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 10 givenname: Chien-Ting surname: Lin fullname: Lin, Chien-Ting organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan – sequence: 11 givenname: Jia-Hau surname: Liu fullname: Liu, Jia-Hau organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan – sequence: 12 givenname: Cheng-Hong surname: Tsai fullname: Tsai, Cheng-Hong organization: Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan – sequence: 13 givenname: Tai-Chung surname: Huang fullname: Huang, Tai-Chung organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 14 givenname: Shang-Ju surname: Wu fullname: Wu, Shang-Ju organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 15 givenname: Shang-Yi surname: Huang fullname: Huang, Shang-Yi organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 16 givenname: Wen-Chien surname: Chou fullname: Chou, Wen-Chien organization: Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 17 givenname: Hwei-Fang surname: Tien fullname: Tien, Hwei-Fang organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan – sequence: 18 givenname: Chi-Chun orcidid: 0000-0003-0186-4321 surname: Lee fullname: Lee, Chi-Chun email: cclee@ee.nthu.edu.tw organization: Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan – sequence: 19 givenname: Jih-Luh surname: Tang fullname: Tang, Jih-Luh email: tangjh@ntu.edu.tw organization: Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30361063$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUl1v0zAUjdAQG2O_AAn5kZcWO068RAikqeJLmsQD8Gw59m17O8cuttMqf4rfiEPLGEhoe7J17jnnJj7naXHivIOieM7onFEmXm3m0KHv5yVlTUbmtCofFWclr8sZb0V1cud-WlzEuKGUsrrKYPOkOOWUC0YFPyt-LCw61MrakeyURaMSGNIrvUYHxIIKDt2KKLvyAdO6J0sfiIEEOk14gIhmUJYYjKAiRLLPLNIPNqH2NnOX1u-JHpPvIYWRKKfsGDESdETpIQHpR7AeTd413ECPKlPMATRj3FoVsxOJozMhWzwrHi-VjXBxPM-Lb-_ffV18nF1__vBpcXU907UQaSaWmnPGFatV3ZU1mI5XTSkuy2UetEKYrrtUnclgzTRcskbTtutonac1Fx3w86I6-A5uq8Z9fh65DdirMEpG5ZSA3MhfCcgpgQnMCWTZ24NsO3Q9GA0uBfVH6hXKvycO13Lld1KUTVU3VTZ4eTQI_vsAMckeowZrlQM_RFmyUrSM8rbN1Bd3d90u-Z1tJvADQQcfY4DlA3-h_UelMamEfvpgtPdo3xy0kKPZIQQZNYLTYDDkwkjj8WHPd6vXx3bewAhx44eQ6xMlk7GUVH6ZKj41nDWcVoJOBq__b3Dv-p_fOxJo |
| CitedBy_id | crossref_primary_10_3389_fmed_2024_1487234 crossref_primary_10_3390_hemato6010006 crossref_primary_10_1002_cyto_a_24191 crossref_primary_10_1097_CCO_0000000000000607 crossref_primary_10_1093_bioinformatics_btad585 crossref_primary_10_1038_s41598_021_03902_8 crossref_primary_10_3390_cancers16081503 crossref_primary_10_3390_cancers17030483 crossref_primary_10_1002_eji_201970107 crossref_primary_10_3390_hemato2010008 crossref_primary_10_2196_36490 crossref_primary_10_1111_bjh_16915 crossref_primary_10_1002_cyto_a_23906 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2023046674 crossref_primary_10_1002_cyto_b_22108 crossref_primary_10_1038_s41388_021_01861_y crossref_primary_10_1111_ijlh_14033 crossref_primary_10_1002_cyto_b_22230 crossref_primary_10_1182_bloodadvances_2020002997 crossref_primary_10_1007_s00761_022_01153_4 crossref_primary_10_3389_fonc_2021_700234 crossref_primary_10_3390_diagnostics12040827 crossref_primary_10_3389_fonc_2023_1164017 crossref_primary_10_1093_ajcp_aqab166 crossref_primary_10_1038_s41375_022_01647_5 crossref_primary_10_1186_s12885_022_09621_1 crossref_primary_10_1002_cyto_b_22120 crossref_primary_10_3390_cancers16223855 crossref_primary_10_1093_jalm_jfac108 crossref_primary_10_1182_bloodadvances_2020003738 crossref_primary_10_3233_CBM_190899 crossref_primary_10_1002_med_21731 crossref_primary_10_1007_s11899_020_00575_4 crossref_primary_10_1016_S2352_3026_20_30121_6 crossref_primary_10_1002_ajh_26666 crossref_primary_10_3390_cancers14010188 crossref_primary_10_3390_applbiosci3010002 crossref_primary_10_1093_ajcp_aqab076 crossref_primary_10_1016_j_jtha_2024_05_017 crossref_primary_10_1053_j_semdp_2023_02_004 crossref_primary_10_61969_jai_1469589 crossref_primary_10_3389_fmed_2023_1227168 crossref_primary_10_3390_jcm9061714 crossref_primary_10_1002_cyto_b_22177 crossref_primary_10_3390_diagnostics14040420 crossref_primary_10_1016_j_blre_2022_101019 crossref_primary_10_3390_cancers12061684 crossref_primary_10_1007_s10544_022_00627_x crossref_primary_10_1016_j_cll_2023_04_009 crossref_primary_10_1016_j_compeleceng_2024_109446 crossref_primary_10_1136_jclinpath_2021_208127 crossref_primary_10_3390_vaccines8010138 crossref_primary_10_1109_JBHI_2022_3175514 crossref_primary_10_3389_fonc_2023_1173701 crossref_primary_10_1038_s43856_024_00700_x crossref_primary_10_1093_ajcp_aqab148 |
| Cites_doi | 10.1002/cyto.a.22810 10.1186/1471-2105-15-314 10.1007/s00277-018-3330-9 10.1002/cyto.a.22445 10.1002/eji.201545774 10.1182/blood.V126.23.2593.2593 10.1038/leu.2013.236 10.1109/TBME.2016.2590950 10.1182/blood-2009-12-258178 10.1182/blood-2016-08-733196 10.1200/JCO.2013.49.1753 10.1016/j.immuni.2015.04.006 10.1002/cyto.a.20901 10.1186/1471-2105-7-282 10.1016/j.metabol.2017.01.011 10.1002/cyto.a.22446 10.1016/j.tibtech.2013.04.008 10.1200/JCO.2012.45.9628 10.18632/oncotarget.12430 10.1182/blood-2014-05-577593 10.1038/sj.leu.2403138 10.1016/j.patcog.2016.04.004 10.1182/blood-2012-02-408336 10.1038/nri3158 10.1038/nature22985 10.1016/j.leukres.2014.08.012 10.1182/blood-2017-09-801498 10.1182/asheducation-2014.1.222 10.1002/cytob.21140 10.1007/978-3-319-56154-7_48 10.1200/JCO.2014.59.1339 10.1038/nmeth.2365 10.3390/jcm6060057 10.1038/nature21056 10.1001/jama.2016.17216 10.1007/s00063-005-1122-1 10.1002/cytob.21134 10.3390/jcm5030033 10.1002/cyto.a.22626 10.1016/0165-4608(95)00084-4 10.1001/jama.2016.17563 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors The Authors Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. 2018 The Authors 2018 |
| Copyright_xml | – notice: 2018 The Authors – notice: The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2018 The Authors 2018 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.ebiom.2018.10.042 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2352-3964 |
| EndPage | 100 |
| ExternalDocumentID | 10.1016/j.ebiom.2018.10.042 PMC6284584 30361063 10_1016_j_ebiom_2018_10_042 S2352396418304602 1_s2_0_S2352396418304602 |
| Genre | Clinical Trial Validation Study Journal Article |
| GroupedDBID | .1- .FO 0R~ 4.4 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAMRU AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M48 O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c566t-6fc3313a15a5b25edb3482672ffc3966dbb7abd34851ce718c09bb05fc3536be3 |
| IEDL.DBID | UNPAY |
| ISSN | 2352-3964 |
| IngestDate | Wed Oct 29 12:00:11 EDT 2025 Tue Sep 30 17:00:24 EDT 2025 Fri Sep 05 12:23:20 EDT 2025 Thu Apr 03 06:58:50 EDT 2025 Wed Oct 01 01:05:57 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Sun Apr 06 06:53:03 EDT 2025 Sun Feb 23 10:19:34 EST 2025 Tue Aug 26 16:43:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Minimal residual disease Multicolor flow cytometry Acute myeloid leukemia Artificial intelligence Myelodysplastic syndrome |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c566t-6fc3313a15a5b25edb3482672ffc3966dbb7abd34851ce718c09bb05fc3536be3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0003-0186-4321 0000-0002-7965-7579 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.thelancet.com/article/S2352396418304602/pdf |
| PMID | 30361063 |
| PQID | 2126910399 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ebiom_2018_10_042 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6284584 proquest_miscellaneous_2126910399 pubmed_primary_30361063 crossref_primary_10_1016_j_ebiom_2018_10_042 crossref_citationtrail_10_1016_j_ebiom_2018_10_042 elsevier_sciencedirect_doi_10_1016_j_ebiom_2018_10_042 elsevier_clinicalkeyesjournals_1_s2_0_S2352396418304602 elsevier_clinicalkey_doi_10_1016_j_ebiom_2018_10_042 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | EBioMedicine |
| PublicationTitleAlternate | EBioMedicine |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Saultz, Garzon (bb0005) 2016; 5 Köhnke, Rechkemmer, Bücklein (bb0235) 2015; 126 Takenga, Dworzak, Diem (bb0155) 2017; 10209 Terwijn, van Putten, Kelder (bb0035) 2013; 31 Mair, Hartmann, Mrdjen, Tosevski, Krieg, Becher (bb0130) 2016; 46 Lugli, Roederer, Cossarizza (bb0080) 2010; 77 Naim, Datta, Rebhahn, Cavenaugh, Mosmann, Sharma (bb0135) 2014; 85 Maecker, McCoy, Nussenblatt (bb0215) 2012; 12 Shouval, Labopin, Bondi (bb0115) 2015; 33 Loken, Alonzo, Pardo (bb0020) 2012; 120 Zeijlemaker, Gratama, Schuurhuis (bb0075) 2014; 86 Mosna, Capelli, Gottardi (bb0055) 2017; 6 Vedaldi, Fulkerson (bb0200) 2010 Mitchell (bb0095) 2006 Aghaeepour, Finak, Flow (bb0060) 2013; 10 Gulshan, Peng, Coram (bb0120) 2016; 316 Schuurhuis, Heuser, Freeman (bb0015) 2018; 131 Kern, Haferlach (bb0030) 2005; 100 Witten, Frank, Hall, Pal (bb0085) 2016 Rajwa, Wallace, Griffiths, Dundar (bb0165) 2017; 64 Wong, Bressler (bb0125) 2016; 316 Grimwade, Freeman (bb0025) 2014; 124 Coltoff, Houldsworth, Keyzner, Renteria, Mascarenhas (bb0010) 2018; 97 Reiter, Rota, Kleber, Diem, Groeneveld-Krentz, Dworzak (bb0230) 2016; 60 Hassan, Ruusuvuori, Latonen, Huttunen (bb0250) 2015; 14 Toedling, Rhein, Ratei, Karawajew, Spang (bb0150) 2006; 7 R Core Team (2017) (bb0210) Bishop (bb0090) 2006 Venditti, Maurillo, Buccisano (bb0045) 2003; 17 Sorensen, Baumgart, Durek, Grutzkau, Haupl (bb0145) 2015; 87 Esteva, Kuprel, Novoa (bb0105) 2017; 542 Ni, Hu, Zheng (bb0160) 2016; 7 Freeman, Virgo, Couzens (bb0040) 2013; 31 Tien, Wang, Lin (bb0180) 1995; 84 Brinkman, Aghaeepour, Finak, Gottardo, Mosmann, Scheuermann (bb0170) 2016; 89 Hamet, Tremblay (bb0100) 2017; 69S Loken (bb0070) 2014; 86 Mosmann, Naim, Rebhahn (bb0140) 2014; 85 Buitinck, Louppe, Blondel (bb0205) 2013 Corinna Cortes aVV (bb0195) 1995; 20.3 Kvistborg, Gouttefangeas, Aghaeepour (bb0240) 2015; 42 Esteva, Kuprel, Novoa (bb0110) 2017; 546 Chou, Tang, Hou (bb0185) 2014; 38 Pedreira, Costa, Lecrevisse, van Dongen, Orfao, Euroflow (bb0220) 2013; 31 Hou, Lin, Chou (bb0190) 2014; 28 Dundar, Akova, Yerebakan, Rajwa (bb0225) 2014; 15 Perronnin, Dance (bb0245) 2007 Dohner, Estey, Grimwade (bb0175) 2017; 129 Buccisano, Maurillo, Spagnoli (bb0050) 2010; 116 Grimwade, Freeman (bb0065) 2014; 2014 Hou (10.1016/j.ebiom.2018.10.042_bb0190) 2014; 28 Vedaldi (10.1016/j.ebiom.2018.10.042_bb0200) 2010 Corinna Cortes aVV (10.1016/j.ebiom.2018.10.042_bb0195) 1995; 20.3 Gulshan (10.1016/j.ebiom.2018.10.042_bb0120) 2016; 316 Mosmann (10.1016/j.ebiom.2018.10.042_bb0140) 2014; 85 Sorensen (10.1016/j.ebiom.2018.10.042_bb0145) 2015; 87 Terwijn (10.1016/j.ebiom.2018.10.042_bb0035) 2013; 31 Bishop (10.1016/j.ebiom.2018.10.042_bb0090) 2006 Perronnin (10.1016/j.ebiom.2018.10.042_bb0245) 2007 Wong (10.1016/j.ebiom.2018.10.042_bb0125) 2016; 316 Mosna (10.1016/j.ebiom.2018.10.042_bb0055) 2017; 6 Coltoff (10.1016/j.ebiom.2018.10.042_bb0010) 2018; 97 Kern (10.1016/j.ebiom.2018.10.042_bb0030) 2005; 100 Pedreira (10.1016/j.ebiom.2018.10.042_bb0220) 2013; 31 Venditti (10.1016/j.ebiom.2018.10.042_bb0045) 2003; 17 Ni (10.1016/j.ebiom.2018.10.042_bb0160) 2016; 7 Reiter (10.1016/j.ebiom.2018.10.042_bb0230) 2016; 60 Loken (10.1016/j.ebiom.2018.10.042_bb0070) 2014; 86 Grimwade (10.1016/j.ebiom.2018.10.042_bb0025) 2014; 124 Esteva (10.1016/j.ebiom.2018.10.042_bb0105) 2017; 542 Tien (10.1016/j.ebiom.2018.10.042_bb0180) 1995; 84 Brinkman (10.1016/j.ebiom.2018.10.042_bb0170) 2016; 89 Naim (10.1016/j.ebiom.2018.10.042_bb0135) 2014; 85 Schuurhuis (10.1016/j.ebiom.2018.10.042_bb0015) 2018; 131 Takenga (10.1016/j.ebiom.2018.10.042_bb0155) 2017; 10209 Maecker (10.1016/j.ebiom.2018.10.042_bb0215) 2012; 12 Rajwa (10.1016/j.ebiom.2018.10.042_bb0165) 2017; 64 Buitinck (10.1016/j.ebiom.2018.10.042_bb0205) 2013 Grimwade (10.1016/j.ebiom.2018.10.042_bb0065) 2014; 2014 Mitchell (10.1016/j.ebiom.2018.10.042_bb0095) 2006 Saultz (10.1016/j.ebiom.2018.10.042_bb0005) 2016; 5 Shouval (10.1016/j.ebiom.2018.10.042_bb0115) 2015; 33 Kvistborg (10.1016/j.ebiom.2018.10.042_bb0240) 2015; 42 Loken (10.1016/j.ebiom.2018.10.042_bb0020) 2012; 120 Zeijlemaker (10.1016/j.ebiom.2018.10.042_bb0075) 2014; 86 Witten (10.1016/j.ebiom.2018.10.042_bb0085) 2016 Chou (10.1016/j.ebiom.2018.10.042_bb0185) 2014; 38 Köhnke (10.1016/j.ebiom.2018.10.042_bb0235) 2015; 126 Hamet (10.1016/j.ebiom.2018.10.042_bb0100) 2017; 69S Freeman (10.1016/j.ebiom.2018.10.042_bb0040) 2013; 31 Lugli (10.1016/j.ebiom.2018.10.042_bb0080) 2010; 77 Buccisano (10.1016/j.ebiom.2018.10.042_bb0050) 2010; 116 Dohner (10.1016/j.ebiom.2018.10.042_bb0175) 2017; 129 Esteva (10.1016/j.ebiom.2018.10.042_bb0110) 2017; 546 Toedling (10.1016/j.ebiom.2018.10.042_bb0150) 2006; 7 Aghaeepour (10.1016/j.ebiom.2018.10.042_bb0060) 2013; 10 Mair (10.1016/j.ebiom.2018.10.042_bb0130) 2016; 46 Hassan (10.1016/j.ebiom.2018.10.042_bb0250) 2015; 14 R Core Team (2017) (10.1016/j.ebiom.2018.10.042_bb0210) Dundar (10.1016/j.ebiom.2018.10.042_bb0225) 2014; 15 |
| References_xml | – year: 2013 ident: bb0205 article-title: API design for machine learning software: experiences from the scikit-learn project publication-title: European conference on machine learning and principles and practices of knowledge discovery in databases – volume: 85 start-page: 408 year: 2014 end-page: 421 ident: bb0135 article-title: SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design publication-title: Cytometry A – volume: 7 start-page: 71915 year: 2016 end-page: 71921 ident: bb0160 article-title: Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine publication-title: Oncotarget – ident: bb0210 article-title: R: A language and environment for statistical computing: R foundation for statistical computing – volume: 31 start-page: 4123 year: 2013 end-page: 4131 ident: bb0040 article-title: Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia publication-title: J Clin Oncol – start-page: 1469 year: 2010 end-page: 1472 ident: bb0200 article-title: Vlfeat: An open and portable library of computer vision algorithms. Proceedings of the 18th ACM international conference on Multimedia; Firenze, Italy. 1874249: ACM – volume: 31 start-page: 3889 year: 2013 end-page: 3897 ident: bb0035 article-title: High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study publication-title: J Clin Oncol – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: bb0120 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 2014 start-page: 222 year: 2014 end-page: 233 ident: bb0065 article-title: Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for "prime time"? publication-title: Hematology Am Soc Hematol Educ Program – volume: 7 start-page: 282 year: 2006 ident: bb0150 article-title: Automated in-silico detection of cell populations in flow cytometry readouts and its application to leukemia disease monitoring publication-title: BMC Bioinform – volume: 10 start-page: 228 year: 2013 end-page: 238 ident: bb0060 article-title: Critical assessment of automated flow cytometry data analysis techniques publication-title: Nat Methods – volume: 14 start-page: 75 year: 2015 end-page: 85 ident: bb0250 article-title: Flow cytometry-based classification in cancer research: A view on feature selection publication-title: Cancer Inform – volume: 86 start-page: 3 year: 2014 end-page: 14 ident: bb0075 article-title: Tumor heterogeneity makes AML a "moving target" for detection of residual disease publication-title: Cytometry B Clin Cytom – year: 2006 ident: bb0095 article-title: The discipline of machine learning. School of Computer Science, Carnegie Mellon University – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bb0105 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 131 start-page: 1275 year: 2018 end-page: 1291 ident: bb0015 article-title: Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party publication-title: Blood – volume: 6 start-page: 57 year: 2017 ident: bb0055 article-title: Minimal residual disease in acute myeloid leukemia: Still a work in progress? publication-title: J Clin Med – year: 2006 ident: bb0090 article-title: Pattern recognition and machine learning: Springer-Verlag New York – volume: 100 start-page: 54 year: 2005 end-page: 59 ident: bb0030 article-title: Quantification of minimal residual disease by multiparameter flow cytometry in acute myeloid leukemia. From diagnosis to prognosis publication-title: Med Klin (Munich) – volume: 12 start-page: 191 year: 2012 end-page: 200 ident: bb0215 article-title: Standardizing immunophenotyping for the human immunology project publication-title: Nat Rev Immunol – year: 2016 ident: bb0085 article-title: Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann – volume: 124 start-page: 3345 year: 2014 end-page: 3355 ident: bb0025 article-title: Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for "prime time"? publication-title: Blood – volume: 33 start-page: 3144 year: 2015 end-page: 3151 ident: bb0115 article-title: Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: A European group for blood and marrow transplantation acute leukemia working party retrospective data mining study publication-title: J Clin Oncol – volume: 60 start-page: 1029 year: 2016 end-page: 1040 ident: bb0230 article-title: Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures publication-title: Pattern Recog – volume: 10209 start-page: 537 year: 2017 end-page: 548 ident: bb0155 article-title: A clinical tool for automated flow cytometry based on machine learning methods publication-title: Lecture notes in computer science – volume: 17 start-page: 2178 year: 2003 end-page: 2182 ident: bb0045 article-title: Pretransplant minimal residual disease level predicts clinical outcome in patients with acute myeloid leukemia receiving high-dose chemotherapy and autologous stem cell transplantation publication-title: Leukemia – volume: 120 start-page: 1581 year: 2012 end-page: 1588 ident: bb0020 article-title: Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children's Oncology Group publication-title: Blood – volume: 89 start-page: 13 year: 2016 end-page: 15 ident: bb0170 article-title: Automated analysis of flow cytometry data comes of age publication-title: Cytometry A – volume: 20.3 start-page: 273 year: 1995 end-page: 297 ident: bb0195 article-title: Support-vector networks. Machine learning – volume: 31 start-page: 415 year: 2013 end-page: 425 ident: bb0220 article-title: Overview of clinical flow cytometry data analysis: Recent advances and future challenges publication-title: Trends Biotechnol – start-page: 1 year: 2007 end-page: 8 ident: bb0245 article-title: Fisher kernels on visual vocabularies for image categorization. 2007 IEEE Conference on Computer Vision and Pattern Recognition; Minneapolis, MN – volume: 85 start-page: 422 year: 2014 end-page: 433 ident: bb0140 article-title: SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation publication-title: Cytometry A – volume: 69S start-page: S36 year: 2017 end-page: S40 ident: bb0100 article-title: Artificial intelligence in medicine publication-title: Metabolism – volume: 46 start-page: 34 year: 2016 end-page: 43 ident: bb0130 article-title: The end of gating? An introduction to automated analysis of high dimensional cytometry data publication-title: Eur J Immunol – volume: 77 start-page: 705 year: 2010 end-page: 713 ident: bb0080 article-title: Data analysis in flow cytometry: The future just started publication-title: Cytometry A – volume: 86 start-page: 15 year: 2014 end-page: 17 ident: bb0070 article-title: Residual disease in AML, a target that can move in more than one direction publication-title: Cytometry B Clin Cytom – volume: 546 start-page: 686 year: 2017 ident: bb0110 article-title: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 15 start-page: 314 year: 2014 ident: bb0225 article-title: A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects publication-title: BMC Bioinform – volume: 64 start-page: 1089 year: 2017 end-page: 1098 ident: bb0165 article-title: Automated assessment of disease progression in acute myeloid leukemia by probabilistic analysis of flow cytometry data publication-title: IEEE Trans Biomed Eng – volume: 97 start-page: 1155 year: 2018 end-page: 1167 ident: bb0010 article-title: Role of minimal residual disease in the management of acute myeloid leukemia—a case-based discussion publication-title: Ann Hematol – volume: 84 start-page: 60 year: 1995 end-page: 68 ident: bb0180 article-title: Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia. A study of 235 Chinese patients in Taiwan publication-title: Cancer Genet Cytogenet – volume: 28 start-page: 50 year: 2014 end-page: 58 ident: bb0190 article-title: Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia publication-title: Leukemia – volume: 129 start-page: 424 year: 2017 end-page: 447 ident: bb0175 article-title: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel publication-title: Blood – volume: 38 start-page: 1278 year: 2014 end-page: 1284 ident: bb0185 article-title: Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations publication-title: Leuk Res – volume: 126 year: 2015 ident: bb0235 article-title: Improved detection of minimal residual disease by flow cytometry in AML by combining manual gating and visne clustering publication-title: Blood – volume: 316 start-page: 2366 year: 2016 end-page: 2367 ident: bb0125 article-title: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening publication-title: JAMA – volume: 5 start-page: 33 year: 2016 ident: bb0005 article-title: Acute myeloid leukemia: A concise review publication-title: J Clin Med – volume: 116 start-page: 2295 year: 2010 end-page: 2303 ident: bb0050 article-title: Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia publication-title: Blood – volume: 42 start-page: 591 year: 2015 end-page: 592 ident: bb0240 article-title: Thinking outside the gate: single-cell assessments in multiple dimensions publication-title: Immunity – volume: 87 start-page: 603 year: 2015 end-page: 615 ident: bb0145 article-title: ImmunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets publication-title: Cytometry A – volume: 89 start-page: 13 year: 2016 ident: 10.1016/j.ebiom.2018.10.042_bb0170 article-title: Automated analysis of flow cytometry data comes of age publication-title: Cytometry A doi: 10.1002/cyto.a.22810 – volume: 15 start-page: 314 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0225 article-title: A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects publication-title: BMC Bioinform doi: 10.1186/1471-2105-15-314 – volume: 97 start-page: 1155 year: 2018 ident: 10.1016/j.ebiom.2018.10.042_bb0010 article-title: Role of minimal residual disease in the management of acute myeloid leukemia—a case-based discussion publication-title: Ann Hematol doi: 10.1007/s00277-018-3330-9 – volume: 85 start-page: 422 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0140 article-title: SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation publication-title: Cytometry A doi: 10.1002/cyto.a.22445 – year: 2013 ident: 10.1016/j.ebiom.2018.10.042_bb0205 article-title: API design for machine learning software: experiences from the scikit-learn project – volume: 46 start-page: 34 year: 2016 ident: 10.1016/j.ebiom.2018.10.042_bb0130 article-title: The end of gating? An introduction to automated analysis of high dimensional cytometry data publication-title: Eur J Immunol doi: 10.1002/eji.201545774 – year: 2006 ident: 10.1016/j.ebiom.2018.10.042_bb0095 – volume: 126 year: 2015 ident: 10.1016/j.ebiom.2018.10.042_bb0235 article-title: Improved detection of minimal residual disease by flow cytometry in AML by combining manual gating and visne clustering publication-title: Blood doi: 10.1182/blood.V126.23.2593.2593 – volume: 28 start-page: 50 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0190 article-title: Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia publication-title: Leukemia doi: 10.1038/leu.2013.236 – volume: 64 start-page: 1089 year: 2017 ident: 10.1016/j.ebiom.2018.10.042_bb0165 article-title: Automated assessment of disease progression in acute myeloid leukemia by probabilistic analysis of flow cytometry data publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2590950 – ident: 10.1016/j.ebiom.2018.10.042_bb0210 – volume: 116 start-page: 2295 year: 2010 ident: 10.1016/j.ebiom.2018.10.042_bb0050 article-title: Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia publication-title: Blood doi: 10.1182/blood-2009-12-258178 – volume: 129 start-page: 424 year: 2017 ident: 10.1016/j.ebiom.2018.10.042_bb0175 article-title: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel publication-title: Blood doi: 10.1182/blood-2016-08-733196 – volume: 31 start-page: 4123 year: 2013 ident: 10.1016/j.ebiom.2018.10.042_bb0040 article-title: Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia publication-title: J Clin Oncol doi: 10.1200/JCO.2013.49.1753 – volume: 42 start-page: 591 year: 2015 ident: 10.1016/j.ebiom.2018.10.042_bb0240 article-title: Thinking outside the gate: single-cell assessments in multiple dimensions publication-title: Immunity doi: 10.1016/j.immuni.2015.04.006 – volume: 77 start-page: 705 year: 2010 ident: 10.1016/j.ebiom.2018.10.042_bb0080 article-title: Data analysis in flow cytometry: The future just started publication-title: Cytometry A doi: 10.1002/cyto.a.20901 – volume: 7 start-page: 282 year: 2006 ident: 10.1016/j.ebiom.2018.10.042_bb0150 article-title: Automated in-silico detection of cell populations in flow cytometry readouts and its application to leukemia disease monitoring publication-title: BMC Bioinform doi: 10.1186/1471-2105-7-282 – volume: 69S start-page: S36 year: 2017 ident: 10.1016/j.ebiom.2018.10.042_bb0100 article-title: Artificial intelligence in medicine publication-title: Metabolism doi: 10.1016/j.metabol.2017.01.011 – start-page: 1469 year: 2010 ident: 10.1016/j.ebiom.2018.10.042_bb0200 – volume: 85 start-page: 408 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0135 article-title: SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design publication-title: Cytometry A doi: 10.1002/cyto.a.22446 – volume: 31 start-page: 415 year: 2013 ident: 10.1016/j.ebiom.2018.10.042_bb0220 article-title: Overview of clinical flow cytometry data analysis: Recent advances and future challenges publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2013.04.008 – volume: 31 start-page: 3889 year: 2013 ident: 10.1016/j.ebiom.2018.10.042_bb0035 article-title: High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study publication-title: J Clin Oncol doi: 10.1200/JCO.2012.45.9628 – volume: 7 start-page: 71915 year: 2016 ident: 10.1016/j.ebiom.2018.10.042_bb0160 article-title: Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine publication-title: Oncotarget doi: 10.18632/oncotarget.12430 – volume: 124 start-page: 3345 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0025 article-title: Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for "prime time"? publication-title: Blood doi: 10.1182/blood-2014-05-577593 – volume: 17 start-page: 2178 year: 2003 ident: 10.1016/j.ebiom.2018.10.042_bb0045 article-title: Pretransplant minimal residual disease level predicts clinical outcome in patients with acute myeloid leukemia receiving high-dose chemotherapy and autologous stem cell transplantation publication-title: Leukemia doi: 10.1038/sj.leu.2403138 – volume: 60 start-page: 1029 year: 2016 ident: 10.1016/j.ebiom.2018.10.042_bb0230 article-title: Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures publication-title: Pattern Recog doi: 10.1016/j.patcog.2016.04.004 – volume: 120 start-page: 1581 year: 2012 ident: 10.1016/j.ebiom.2018.10.042_bb0020 article-title: Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children's Oncology Group publication-title: Blood doi: 10.1182/blood-2012-02-408336 – volume: 12 start-page: 191 year: 2012 ident: 10.1016/j.ebiom.2018.10.042_bb0215 article-title: Standardizing immunophenotyping for the human immunology project publication-title: Nat Rev Immunol doi: 10.1038/nri3158 – volume: 546 start-page: 686 year: 2017 ident: 10.1016/j.ebiom.2018.10.042_bb0110 article-title: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature22985 – volume: 38 start-page: 1278 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0185 article-title: Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations publication-title: Leuk Res doi: 10.1016/j.leukres.2014.08.012 – volume: 131 start-page: 1275 year: 2018 ident: 10.1016/j.ebiom.2018.10.042_bb0015 article-title: Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party publication-title: Blood doi: 10.1182/blood-2017-09-801498 – volume: 2014 start-page: 222 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0065 article-title: Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for "prime time"? publication-title: Hematology Am Soc Hematol Educ Program doi: 10.1182/asheducation-2014.1.222 – volume: 86 start-page: 15 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0070 article-title: Residual disease in AML, a target that can move in more than one direction publication-title: Cytometry B Clin Cytom doi: 10.1002/cytob.21140 – start-page: 1 year: 2007 ident: 10.1016/j.ebiom.2018.10.042_bb0245 – volume: 10209 start-page: 537 year: 2017 ident: 10.1016/j.ebiom.2018.10.042_bb0155 article-title: A clinical tool for automated flow cytometry based on machine learning methods doi: 10.1007/978-3-319-56154-7_48 – volume: 33 start-page: 3144 year: 2015 ident: 10.1016/j.ebiom.2018.10.042_bb0115 article-title: Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: A European group for blood and marrow transplantation acute leukemia working party retrospective data mining study publication-title: J Clin Oncol doi: 10.1200/JCO.2014.59.1339 – volume: 20.3 start-page: 273 year: 1995 ident: 10.1016/j.ebiom.2018.10.042_bb0195 – volume: 10 start-page: 228 year: 2013 ident: 10.1016/j.ebiom.2018.10.042_bb0060 article-title: Critical assessment of automated flow cytometry data analysis techniques publication-title: Nat Methods doi: 10.1038/nmeth.2365 – volume: 6 start-page: 57 issue: 6 year: 2017 ident: 10.1016/j.ebiom.2018.10.042_bb0055 article-title: Minimal residual disease in acute myeloid leukemia: Still a work in progress? publication-title: J Clin Med doi: 10.3390/jcm6060057 – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.ebiom.2018.10.042_bb0105 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 316 start-page: 2402 year: 2016 ident: 10.1016/j.ebiom.2018.10.042_bb0120 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 100 start-page: 54 year: 2005 ident: 10.1016/j.ebiom.2018.10.042_bb0030 article-title: Quantification of minimal residual disease by multiparameter flow cytometry in acute myeloid leukemia. From diagnosis to prognosis publication-title: Med Klin (Munich) doi: 10.1007/s00063-005-1122-1 – volume: 14 start-page: 75 year: 2015 ident: 10.1016/j.ebiom.2018.10.042_bb0250 article-title: Flow cytometry-based classification in cancer research: A view on feature selection publication-title: Cancer Inform – volume: 86 start-page: 3 year: 2014 ident: 10.1016/j.ebiom.2018.10.042_bb0075 article-title: Tumor heterogeneity makes AML a "moving target" for detection of residual disease publication-title: Cytometry B Clin Cytom doi: 10.1002/cytob.21134 – volume: 5 start-page: 33 issue: 3 year: 2016 ident: 10.1016/j.ebiom.2018.10.042_bb0005 article-title: Acute myeloid leukemia: A concise review publication-title: J Clin Med doi: 10.3390/jcm5030033 – year: 2016 ident: 10.1016/j.ebiom.2018.10.042_bb0085 – year: 2006 ident: 10.1016/j.ebiom.2018.10.042_bb0090 – volume: 87 start-page: 603 year: 2015 ident: 10.1016/j.ebiom.2018.10.042_bb0145 article-title: ImmunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets publication-title: Cytometry A doi: 10.1002/cyto.a.22626 – volume: 84 start-page: 60 year: 1995 ident: 10.1016/j.ebiom.2018.10.042_bb0180 article-title: Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia. A study of 235 Chinese patients in Taiwan publication-title: Cancer Genet Cytogenet doi: 10.1016/0165-4608(95)00084-4 – volume: 316 start-page: 2366 year: 2016 ident: 10.1016/j.ebiom.2018.10.042_bb0125 article-title: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening publication-title: JAMA doi: 10.1001/jama.2016.17563 |
| SSID | ssj0001542358 |
| Score | 2.404695 |
| Snippet | Multicolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia (AML) and... AbstractBackgroundMulticolor flow cytometry (MFC) analysis is widely used to identify minimal residual disease (MRD) after treatment for acute myeloid leukemia... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 91 |
| SubjectTerms | Acute myeloid leukemia Advanced Basic Science Artificial intelligence Disease-Free Survival Female Flow Cytometry Humans Internal Medicine Leukemia, Myeloid, Acute - blood Leukemia, Myeloid, Acute - mortality Leukemia, Myeloid, Acute - therapy Machine Learning Male Minimal residual disease Multicolor flow cytometry Myelodysplastic syndrome Myelodysplastic Syndromes - blood Myelodysplastic Syndromes - mortality Myelodysplastic Syndromes - therapy Neoplasm, Residual Predictive Value of Tests Research paper Survival Rate |
| SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxJvlJSNxJNXmnRwQQoiqQioXWKk3y44nbSCPJQ-V_Cl-IzOJHai6FMRxHTvZZL7YnzMz3zD2Uskct8k5OOQtdAIF4Mg88x1kph4kuEAFGX0aOP4YHW2CDyfhyR6zVVHNA-x2bu2ontSmLQ--fxvf4Av_-lesFlCuOsVpJQcUqhXgnHwNl6qUajkcG74_pw0HlBo6FZwLPcdPo8AqEe0-z59Wq8ts9HJQ5Y2h3srxXJblbyvW4W12y1BN_nbGxh22B_Vddn0uPjneYz-MJGhZjhzhVtDWX_NqCq4EbqpJnHJZnjZt0Z9VHOkt10BOB2rHbfqUx8WNi6fj9EmXTwGKpITd8rxsznk29k0FfTtyaeRPeFFzmQ098GqEsik0Xmv4ClUhsYueG_XYbZHW45m4lVS4zzaH7z-_O3JM9QYnQ4rYOxGa3Hd96YYyVF4IWpGOThR7OR7ATZZWKpZKY2PoZoBLZLZOlVqHeDT0IwX-A7ZfNzU8YjyBJNIyTYGkg3QayzTLE_B9cOO1RlCtmGetJDIjbU4VNkphY9i-iMm0gkxLjWjaFXu1DNrOyh5Xdw-s-YVNWsVpViAQrx4W7xoGnUW6cEXnibX4RIgkQOIcS85qHBktIw0bmlnO3y_5wqJT4FxBDiBZQzN0AmlKlJLvP12xhzNal1snKuMiX8U_fAHHSwfSIb94pC7OJj3yCCkO8tgVcxbE_8sTffy_N_iE3aRfc0boU7bftwM8Q2rYq-fT6_4TmoJnXw priority: 102 providerName: Scholars Portal |
| Title | Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2352396418304602 https://www.clinicalkey.es/playcontent/1-s2.0-S2352396418304602 https://dx.doi.org/10.1016/j.ebiom.2018.10.042 https://www.ncbi.nlm.nih.gov/pubmed/30361063 https://www.proquest.com/docview/2126910399 https://pubmed.ncbi.nlm.nih.gov/PMC6284584 http://www.thelancet.com/article/S2352396418304602/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-3964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542358 issn: 2352-3964 databaseCode: KQ8 dateStart: 20141101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-3964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542358 issn: 2352-3964 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-3964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542358 issn: 2352-3964 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-3964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542358 issn: 2352-3964 databaseCode: AKRWK dateStart: 20141101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2352-3964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542358 issn: 2352-3964 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2352-3964 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0001542358 issn: 2352-3964 databaseCode: M48 dateStart: 20141101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbKVgheylkIl4zEI9lu7uSxQlQVqBUIVpQny44nbWiO1SZRlf4ofiMzuUS1UOiLpbXHySYZez7bM98w9kbJBJfJCZh0Wmi6CsCUSeyYiExtCNFAuTFtDRwd-4dL98OJd7LFxiyO5FWJwCfr4n-7iXp4gXtfbIQKTuS7qIN0mGfvrXRyi237HmLwGdteHn_a_95lkvNsk-RGiqHOmQsomJ0cucI5-XK59t_M0CbM3PSWvNMUK9leyCz7zRQd3GPfxoCe3gPlfN7Uah5fbvI73vAp77OdAZ3y_V7uAduC4iG73eerbB-xnwOLaJa1HDU0pd0CzfPOHxP4kIDilMvstFyn9VnOERFzDXROQfW4su9Cv_hwKlRx2gXmnU8jkWeveZKVFzxu6zKHet1yOTCm8LTgMm5q4HkLWZlqvFdzDnkqUUT3lbqtVrgSwCvxkYXhMVsevP_67tAcEj6YMaLK2vRRSxzLkZYnPWV7oBVR7_iBnWADrsu0UoFUGis9Kwa0qvEiUmrhYavn-AqcXTYrygKeMh5C6GsZRUBsQzoKZBQnITgOWMFCox4azB6_v4gHNnRKypGJ0e3th-iURpDSUCUqjcHeTp1WPRnI9eLuqFhijHPFmVmgsbq-W_CnblANs0slLFHZYiE2lMVg_tRzAFA9MPr3LV-Pei9weqEzI1lA2VQCkY0fkbtAZLAn_TiYHp3Qj4UQF__wlREyCRB1-dWWIj3rKMx9REUIfQ1mTmPpf97osxvKP2d36VcfO_qCzep1Ay8RRNbqVbf5guXHzyGWRy6W_RzyC2KNeZM |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVggu5U3DS0biSLabd3KsEFWFRIUEK8rJsuNJG5rHapOoCj-K38hM4qyoFgo9xh4nm-x4_Nkz8w1jb5TMcJucgU3eQttXALbMUs9GZOpCjAuUn9LRwMeT8HjpfzgNTnfYVMWRoioR-BRD_u9gqM0HPPjsIlTwktBHHSRnnnuw0tktthsGiMFnbHd58unw21BJLnBtkpsohoZgLqBkdgrkiucUy-W7f1uGtmHmdrTkna5ayf5SFsVvS9HRPfZ1SugZI1Au5l2r5umPbX7HG77lfbZn0Ck_HOUesB2oHrLbY73K_hH7aVhEi6LnqKE5nRZoXg7xmMBNAYozLouzep235yVHRMw1kJ-C2nFnP6R-ceMVajidAvMhppHIs9c8K-pLnvZtXUK77rk0jCk8r7hMuxZ42UNR5xqf1V1AmUsU0WOj7psV7gTwTnxiYXjMlkfvv7w7tk3BBztFVNnaIWqJ53jSCWSg3AC0IuqdMHIz7MB9mVYqkkpjY-CkgKtqukiUWgTYG3ihAu8Jm1V1BfuMxxCHWiYJENuQTiKZpFkMngdOtNCohxZzp_9fpIYNnYpyFGIKe_suBqURpDTUiEpjsbebQauRDOR6cX9SLDHluaJlFrhYXT8s-tMwaIx1aYQjGlcsxJayWCzcjDQAagRG_37k60nvBZoX8hnJCuquEYhswoTCBRKLPR3nwebVCf04CHHxB1-ZIRsBoi6_2lPl5wOFeYioCKGvxezNXPqfL_rshvLP2V26GnNHX7BZu-7gJYLIVr0yFuMX91F2zw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+validated+machine+learning+algorithm+for+detecting+residual+diseases+with+multicolor+flow+cytometry+analysis+in+acute+myeloid+leukemia+and+myelodysplastic+syndrome&rft.jtitle=EBioMedicine&rft.au=Ko%2C+Bor-Sheng&rft.au=Wang%2C+Yu-Fen&rft.au=Li%2C+Jeng-Lin&rft.au=Li%2C+Chi-Cheng&rft.date=2018-11-01&rft.pub=Elsevier+B.V&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=37&rft.spage=91&rft.epage=100&rft_id=info:doi/10.1016%2Fj.ebiom.2018.10.042&rft.externalDocID=S2352396418304602 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2FS2352396418X00127%2Fcov150h.gif |