Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm

The immune system’s overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphobla...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 3; p. 404
Main Authors Abd El-Ghany, Sameh, Elmogy, Mohammed, El-Aziz, A. A. Abd
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics13030404

Cover

Abstract The immune system’s overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model’s average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model’s average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models.
AbstractList The immune system’s overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model’s average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model’s average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models.
The immune system's overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model's average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model's average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models.The immune system's overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model's average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model's average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models.
Audience Academic
Author El-Aziz, A. A. Abd
Elmogy, Mohammed
Abd El-Ghany, Sameh
AuthorAffiliation 1 Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 42421, Saudi Arabia
2 Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt
AuthorAffiliation_xml – name: 2 Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt
– name: 1 Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 42421, Saudi Arabia
Author_xml – sequence: 1
  givenname: Sameh
  orcidid: 0000-0001-6888-5114
  surname: Abd El-Ghany
  fullname: Abd El-Ghany, Sameh
– sequence: 2
  givenname: Mohammed
  orcidid: 0000-0002-2504-6051
  surname: Elmogy
  fullname: Elmogy, Mohammed
– sequence: 3
  givenname: A. A. Abd
  orcidid: 0000-0003-4846-101X
  surname: El-Aziz
  fullname: El-Aziz, A. A. Abd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36766509$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaW_AAlF4sIlxY6_L0i72wKVVnCAni3HsVOvEnuxk6L99zhsKd2qEjgHW34zkzfz_LI48sGbongNwTlCArxvnep8SKPTCSKAAAb4WXFSA0YqjCE_enA-Ls5S2oC8BES8Ji-KY0QZpQSIk8KvwrCdRhOrhWtNW17sdV0qv-3SaIbShlgu-xDmUjIqmVReJ-e78tJap53x4xczVktULnOtLYMvVXmx82pwulwbFf2MXfRdiG68GV4Vz63qkzm720-L64-X31efq_XXT1erxbrShNKxIpwrRAVsuICkbhhU0BKjAEOwsdkroIg21goIuNaGWc6gAIATQjAWmYJOi6u9bhvURm6jG1TcyaCc_H0RYidVzOH1RgKNRMMaqrVGGGrMbUtRzYBBHAECedbCe63Jb9Xup-r7e0EI5DwN-cQ0Mu3DnradmsG0OicVVX_Qy2HFuxvZhVuZDSCBZg_v7gRi-DGZNMrBJW36XnkTpiRrxgjNjdK5xbePoJswRZ8TnlGYY0aw-IvqVPbtvA35v3oWlQuGc99QsDqjzp9A5a81eab5FVqX7w8Ibx4avXf455FlgNgDdAwpRWOldqMaXZh9u_4fKaJH3P_J_hfq0Pms
CitedBy_id crossref_primary_10_1016_j_inffus_2023_101859
crossref_primary_10_3390_app14177501
crossref_primary_10_1016_j_bspc_2023_105905
crossref_primary_10_3390_diagnostics14222497
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_70700_bjea_1556633
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_1109_ACCESS_2025_3542609
crossref_primary_10_17798_bitlisfen_1376817
crossref_primary_10_3390_electronics13163174
Cites_doi 10.1016/j.bspc.2018.01.020
10.3390/diagnostics12010016
10.1109/WACV.2017.58
10.1016/j.bspc.2021.102690
10.1007/s12194-017-0406-5
10.3390/app112210662
10.1016/j.media.2020.101661
10.1155/2021/5557168
10.1155/2022/5140148
10.4103/2228-7477.150428
10.1016/j.imu.2021.100794
10.3390/diagnostics10121064
10.1146/annurev-bioeng-071516-044442
10.1109/ACCESS.2021.3051085
10.1016/j.engappai.2018.04.024
10.3389/fncom.2022.1083649
10.1109/CVPR.2018.00474
10.1016/j.jbusres.2020.09.068
10.1109/ACCESS.2018.2836950
10.1155/2011/212174
10.1109/ICSMC.2012.6377703
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics13030404
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Research Library (ProQuest)
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_0c39b7b6ccc341c48fd63270e3830518
10.3390/diagnostics13030404
PMC9913935
A743031972
36766509
10_3390_diagnostics13030404
Genre Journal Article
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GrantInformation_xml – fundername: Al Jouf University
  grantid: DSR-2021-02-0206
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c566t-588a3691b89152b71a1f5ea0731bf0400636bff9108cce7f87190085554499153
IEDL.DBID M48
ISSN 2075-4418
IngestDate Fri Oct 03 12:39:27 EDT 2025
Sun Oct 26 04:17:04 EDT 2025
Tue Sep 30 17:16:54 EDT 2025
Thu Oct 02 09:14:37 EDT 2025
Mon Jun 30 04:31:51 EDT 2025
Tue Jun 17 21:18:38 EDT 2025
Mon Oct 20 17:18:16 EDT 2025
Thu Jan 02 22:53:36 EST 2025
Thu Oct 16 04:31:17 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords learning rate (LR)
deep learning
malaria parasite
EfficientNet-B3
computer-aided diagnostic (CAD)
acute lymphoblastic leukemia (ALL)
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-588a3691b89152b71a1f5ea0731bf0400636bff9108cce7f87190085554499153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2504-6051
0000-0001-6888-5114
0000-0003-4846-101X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics13030404
PMID 36766509
PQID 2774847549
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_0c39b7b6ccc341c48fd63270e3830518
unpaywall_primary_10_3390_diagnostics13030404
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913935
proquest_miscellaneous_2775627068
proquest_journals_2774847549
gale_infotracmisc_A743031972
gale_infotracacademiconefile_A743031972
pubmed_primary_36766509
crossref_citationtrail_10_3390_diagnostics13030404
crossref_primary_10_3390_diagnostics13030404
PublicationCentury 2000
PublicationDate 20230122
PublicationDateYYYYMMDD 2023-01-22
PublicationDate_xml – month: 1
  year: 2023
  text: 20230122
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mondal (ref_4) 2021; 27
Khandekar (ref_21) 2021; 68
Almadhor (ref_22) 2022; 16
Xin (ref_14) 2018; 6
Abir (ref_1) 2022; 2022
Laosai (ref_5) 2018; 44
ref_11
ref_10
ref_30
Vogado (ref_6) 2018; 72
Shen (ref_16) 2017; 19
ref_19
ref_18
ref_17
Alhichri (ref_27) 2021; 9
Suzuki (ref_15) 2017; 10
Amin (ref_12) 2015; 5
ref_25
ref_24
ref_23
Shrestha (ref_13) 2021; 123
Johny (ref_20) 2021; 2021
Gehlot (ref_2) 2020; 61
ref_3
ref_28
ref_26
ref_9
ref_8
Torkamana (ref_29) 2011; 34
ref_7
References_xml – ident: ref_7
– ident: ref_9
– ident: ref_30
– volume: 44
  start-page: 127
  year: 2018
  ident: ref_5
  article-title: Classification of Acute Leukemia Using Medical-Knowledge-Based Morphology and CD Marker
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2018.01.020
– ident: ref_24
  doi: 10.3390/diagnostics12010016
– ident: ref_3
– ident: ref_26
– ident: ref_17
  doi: 10.1109/WACV.2017.58
– volume: 68
  start-page: 102690
  year: 2021
  ident: ref_21
  article-title: Automated Blast Cell Detection for Acute Lymphoblastic Leukemia Diagnosis
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.102690
– volume: 10
  start-page: 257
  year: 2017
  ident: ref_15
  article-title: Overview of Deep Learning in Medical Imaging
  publication-title: Radiol. Phys. Technol.
  doi: 10.1007/s12194-017-0406-5
– ident: ref_11
  doi: 10.3390/app112210662
– ident: ref_18
– volume: 61
  start-page: 101661
  year: 2020
  ident: ref_2
  article-title: SDCT-auxNetθ: DCT Augmented Stain Deconvolutional CNN with Auxiliary Classifier For Cancer Diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101661
– volume: 2021
  start-page: 5557168
  year: 2021
  ident: ref_20
  article-title: Dynamic Learning Rate in Deep CNN Model for Metastasis Detection and Classification of Histopathology Images
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/5557168
– ident: ref_8
– ident: ref_25
– volume: 2022
  start-page: 5140148
  year: 2022
  ident: ref_1
  article-title: Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer Learning Method
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/5140148
– volume: 5
  start-page: 49
  year: 2015
  ident: ref_12
  article-title: Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images using K-Means Clustering and Support Vector Machine Classifier
  publication-title: J. Med. Signals Sens.
  doi: 10.4103/2228-7477.150428
– volume: 27
  start-page: 100794
  year: 2021
  ident: ref_4
  article-title: Ensemble of Convolutional Neural Networks to Diagnose Acute Lymphoblastic Leukemia from Microscopic Images
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2021.100794
– ident: ref_23
  doi: 10.3390/diagnostics10121064
– volume: 19
  start-page: 221
  year: 2017
  ident: ref_16
  article-title: Deep Learning in Medical Image Analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 9
  start-page: 14078
  year: 2021
  ident: ref_27
  article-title: Classification of Remote Sensing Images Using Efficientnet-B3 CNN Model with Attention
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051085
– volume: 72
  start-page: 415
  year: 2018
  ident: ref_6
  article-title: Leukemia Diagnosis in Blood Slides using Transfer Learning in Cnns and Svm for Classification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.024
– volume: 16
  start-page: 1083649
  year: 2022
  ident: ref_22
  article-title: An Efficient Computer Vision-Based Approach for Acute Lymphoblastic Leukemia Prediction
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2022.1083649
– ident: ref_28
  doi: 10.1109/CVPR.2018.00474
– ident: ref_19
– volume: 123
  start-page: 588
  year: 2021
  ident: ref_13
  article-title: Augmenting Organizational Decision-Making with Deep Learning Algorithms: Principles, Promises, and Challenges
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2020.09.068
– volume: 6
  start-page: 35365
  year: 2018
  ident: ref_14
  article-title: Machine Learning and Deep Learning Methods for Cybersecurity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2836950
– volume: 34
  start-page: 235
  year: 2011
  ident: ref_29
  article-title: An Approach for Leukemia Classification Based on Cooperative Game Theory
  publication-title: Anal. Cell. Pathol.
  doi: 10.1155/2011/212174
– ident: ref_10
  doi: 10.1109/ICSMC.2012.6377703
SSID ssj0000913825
Score 2.4032235
Snippet The immune system’s overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood...
The immune system's overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 404
SubjectTerms Accuracy
acute lymphoblastic leukemia (ALL)
Algorithms
Annealing
Blood
Blood diseases
Blood platelets
Bone marrow
Cancer
computer-aided diagnostic (CAD)
Computer-aided medical diagnosis
Datasets
deep learning
Diagnosis
Disease
EfficientNet-B3
Immune system
learning rate (LR)
Leukemia
Machine learning
malaria parasite
Methods
Morphology
Neural networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8SZQkJGQuBB1105i-7hLW1VI7YlKvUXx2G5XWrJVN6uq_74zdjbaAAIOXHeclR_fjGeSmW8Y-6QFeOHB5FIDleQEmZugbV4F4UoIUnlL9c6nZ9XJefHtorzYafVFOWGJHjht3MEEpLHKVgCABhcKHVwlhZp4DK0QULHMd6LNTjAVbbAhbr0y0QxJjOsPXMpcI-5jMtuI3WJ0FUXG_l_t8s7F9HPS5KNNe93c3TbL5c6NdPyUPeldST5LS3jGHvj2OXt42n8sf8HabceGfLZw3vHDNLfFmieaco7-Kp9T4jqK4meaNY8ZBPwo8krgDM58l88ln6PM8VXLG36YOtjznpf1ks-Wl6ubRXf14yU7Pz76_vUk79sr5IA-XJeXWjeyMlOrDV7iVk2baSh9gzo_tYF0u5KVDQH9CQ3gVcDQysS0trLAMAkt5Su2165a_4ZxDItAOzygpgxoBKxxoGyDf63AAVRFxsR2p2voucepBcayxhiEjqf-zfFk7Mvw0HWi3vjz8Dkd4TCUeLPjD4imukdT_Tc0ZewzAaAm7cYJQtMXKeAyiSernqHDRXVfSmRsfzQStRLG4i2E6t4qrGuhiLlVYUiesY-DmJ6kTLfWrzZxDLqkalLhXF4nxA1LInY9YjzMmBphcbTmsaRdXEXOcEP0r7LMWD6g9l829e3_2NR37LFA15BeXAmxz_a6m41_j65cZz9Erb0HENhGyw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbxMxDLdGJwEviG8OBgoSEi-c1iZ3l7sHhFrWaUJahRCT9na6OElXqVy7tdXEf499X-wATbzWucpJbMdO7J8B3qUSnXSYhSpFLsnxKsx8asLESxujV9oZrnc-nSUnZ9GX8_h8D2ZtLQynVbY2sTLUdoV8R34oNaNeagpnPq0vQ-4axa-rbQuNommtYD9WEGN3YF8yMtYA9ifT2ddv3a0Lo2BSTFTDDymK9w9tndHGmMhszkmmo94RVSH5_22vbxxYfyZT3tuV6-LndbFc3jipjh_Cg8bFFONaJh7Bnisfw93T5hH9CZRtJ4dwvLDOiqOat8VG1PDlgvxYMeGEdiJVzzcbUWUWiGmFN0EczNw2nCgxIZoVq1IU4qjubC8avNa5GC_ntHzbix9P4ex4-v3zSdi0XQiRfLttGKdpoZJsZNKMDnejR8XIx64gWzAynnU-UYnxnvyMFNFpTyFXVqW7xRGFT2RBn8GgXJXuBQgKlzC1qKIi9mQcTGZRm4L-WqNFTKIAZLvSOTaY5NwaY5lTbMLbk_9jewL40H20riE5bh8-4S3shjKedvXD6mqeN-qZD1FlRpsEkZgdYZR6myiph44CeDJbaQDvWQBy1npiEIumeIGmyfhZ-ZgcMa4H0zKAg95I0lbsk1sRyhtrscl_y3YAbzsyf8kZcKVb7aox5KrqYUK8PK8lrpsSo-4xEmIAuieLvTn3KeXiosISzxgWVsUBhJ3U_s-ivrx9Gq_gviRnkK-qpDyAwfZq516T87Y1bxqN_AXKfUWc
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk4AXvj8CAxkJiReyNHESO0-oZZsmpFU8UGk8RfHF7iK6tGpT0PjruUvcahkIAa-9c-VLzr-7c84_M_ZGRWAiA5kvFNCRHCv8zCrtpzYqE7BCGk3nnU8n6ck0_niWnLkNt7Vrq8RSvGpBOsJ45mO8VkEoAhHEwzhYlvb9N7eT1DbQqxAj5k22lyaYiw_Y3nTyafSFbpTbju2ohgTW9kHZda8R_zFBN_pv3AtHLWv_r9h8JThdb5y8vamXxeX3Yj6_EpWO77F8a0_XjPL1YNPoA_hxjerx_w2-z-66hJWPOg97wG6Y-iG7deo-yT9i9fZeCH9Ulabkh5311Zp3ZOgcs2I-pvZ4FLUfg9a87VPgRy17Bdo4MY0_FnyMspIval7ww8u6uKiAO_bXGR_NZ4tV1ZxfPGbT46PPH058d4mDD5gpNn6iVCHSLNQqw1RBy7AIbWIKRJZQW0KQVKTaWsxaFICRFgu4rG2eS2IsxhCPn7BBvajNM8ax-AJVgoiLxCLU6KwEqQv8awklQBp7LNq-yxwcwzldtDHPsdIhB8h_4wAee7cbtOwIPv6sPiYn2akSO3f7w2I1y91iz4cgMi11CoCTDSFWtkxFJIdGKITXUHnsLblYThiCE4TCHYVAM4mNKx_ha6bTZTLy2H5PE9c-9MVbJ80d9qzzSBI_rMTC32Ovd2IaSf10tVlsWh1MfOUwxbk87Xx6ZxJx-BGvosdkz9t7NvcldXXeMpNnRDIrEo_5u3XxNw_1-T_qv2B3Isw1aScsivbZoFltzEvMDRv9ygHAT56rX9Q
  priority: 102
  providerName: Unpaywall
Title Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/36766509
https://www.proquest.com/docview/2774847549
https://www.proquest.com/docview/2775627068
https://pubmed.ncbi.nlm.nih.gov/PMC9913935
https://www.mdpi.com/2075-4418/13/3/404/pdf?version=1674381355
https://doaj.org/article/0c39b7b6ccc341c48fd63270e3830518
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTQJeEN8ERmUkJF4ItM6HnQeEGtZpQmo1ISqNpyh27K5SSEY_BPvvuXPSaIGB9ppzorN9n875dwCvJdeGG534gdR0JccGfmKl8mPLi0jbQBhF952ns_hkHn4-i872YNcVtV3A9bWpHfWTmq_Kd79-XH5Ehf9AGSem7O-LpiiNYI3JIqNYhrfgAF1VQr0cpm2870xzQpB7VNbI0VX6GArIBonoX9_peSsH6v-36b7iu_6sq7yzrS7yy595WV5xWsf34V4bbbJxIx4PYM9UD-H2tP2f_giqXVMHf7wsTMGOGt6Wa9YgmTMMaVlKte1Icn9y1swVGbCJg55ADmZm46cBS5FWsLpiOTtqmtyzFrp1wcblol4tN-ffH8P8ePL104nfdmDwNYZ5Gz-SMg_iZKRkgn5eiVE-spHJ0SyMlCX1j4NYWYshh9TaCIvZV-Iq36IQMyk0pk9gv6or8wwYZk5aFjoI88iinVBJoYXK8dNCF1rHoQd8t9KZbuHJqUtGmWGaQtuTXbM9HrztXrpo0Dn-PzylLeyGErS2e1CvFlmrqdlQB4kSKtYamR3pUNoiDrgYGszl0YJJD96QAGQkksigztt7DDhNgtLKxhiT0dUwwT047I1ExdV98k6Esp3cZ1wQuKvArN2DVx2Z3qRiuMrUWzcGo1YxjJGXp43EdVMiAD4CRfRA9GSxN-c-pVqeO1jxhBBig8gDv5Pamyzq8xuvxwu4yzFEpAMszg9hf7PampcY0m3UAA7Syez0y8AdiQyc0uKz-ex0_O036QpOtw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWK8IL4XGGAkEC9Ea-wkdh4m1LJOHVsrhDZpbyE5O12lLi1rq6n_HH8bd_liATTxsteck9i5y33Yd79j7J0WYIWFyJUaqCQnk26U6dQNM2ECyKSyKdU7D0fh4Mz_ch6cb7CfdS0MpVXWOrFQ1GYGtEe-JxShXioMZz7Nf7jUNYpOV-sWGknVWsHsFxBjVWHHsV1fYwi32D86QH6_F-Kwf_p54FZdBlxAV2bpBlonMoy8VEdoy1LlJV4W2ARF30szEvFQhmmWoVnVAFZlGGFERXZX4GO04FHXCDQBW770Iwz-tnr90ddvzS4PoW5iDFbCHUkZdfZMmUFHGMxkPvAFfsskFp0D_rYPNwzkn8mb26t8nqyvk-n0hmU8fMgeVC4t75Yy-Iht2PwxuzesDu2fsLzuHOF2J8YaflDObbLgJVw6R7-Z9yiBHknFcdGCF5kMvF_gW-AMRnbp9iTvIc3wWc4TfrDOk8sJ8Aofdsy70zGya3lx-ZSd3QkDnrHNfJbbHcYxPANtQPpJkKEySiMDKk3w0QoMQOg7TNRfOoYKA51acUxjjIWIPfE_2OOwj81N8xIC5PbhPWJhM5Twu4sLs6txXKmDuAMySlUaAuBkPfB1ZkIpVMdKjQrY0w77QAIQk5bBCUJSFUvgMgmvK-6i40f1Z0o4bLc1ErUDtMm1CMWVdlrEv_8lh71tyHQnZdzldrYqxqBrrDohzuV5KXHNkgjlj5AXHaZasthac5uSTy4K7PKIYGhl4DC3kdr_-agvbl_GG7Y9OB2exCdHo-OX7L5AR5S2yYTYZZvLq5V9hY7jMn1d_Z2cfb9rhfALsY1_eA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTRq8IL4JDDASiBeiNnYSOw8TammrjbFqQkzaW3Acu6vUpWVtNfVf5K_iLnHCAmjiZa89J7Vz5_uw735HyFvJtGFGJz6XGktyLPcTKzM_tiyPtOXCZFjvfDyOD07Dz2fR2Rb5WdfCYFplrRNLRZ3PNZ6Rd5hA1EsB4UzHurSIk8Ho4-KHjx2k8Ka1bqehXJuFfL-EG3NFHkdmcwXh3HL_cAC8f8fYaPjt04HvOg74GtyalR9JqXicBJlMwK5lIlCBjYyCbRBkFsU95nFmLZhYqbURFqKNpMz0ikKIHALsIAHmYAcvv0BJ7PSH45OvzYkPInBCPFZBH3GedDt5lU2HeMxoSuAPwpZ5LLsI_G0rrhnLPxM576yLhdpcqdnsmpUc3Sf3nHtLe5U8PiBbpnhIdo_dBf4jUtRdJPzeNDc5HVRzmy5pBZ1OwYemfUymB1J5dbSkZVYDHZZYFzCDsVn5fU77QMvpvKCKDjaFuphq6rBiJ7Q3mwC7VucXj8nprTDgCdku5oV5RiiEalrmmocqsqCYsiTXIlPwaqFzrePQI6z-0ql2eOjYlmOWQlyE7En_wR6PfGgeWlRwIDcP7yMLm6GI5V3-ML-cpE41pF3Nk0xksdYw2UCH0uYxZ6JruARlHEiPvEcBSFHjwAS1coUTsEzE7kp74ARiLZpgHtlrjQRNodvkWoRSp6mW6e995ZE3DRmfxOy7wszX5Rhwk0U3hrk8rSSuWRIi_iEKo0dESxZba25Tiul5iWOeICQtjzziN1L7Px_1-c3LeE12QTGkXw7HRy_IXQY-KZ6YMbZHtleXa_MSfMhV9sptTkq-37Y--AWrYoOn
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk4AXvj8CAxkJiReyNHESO0-oZZsmpFU8UGk8RfHF7iK6tGpT0PjruUvcahkIAa-9c-VLzr-7c84_M_ZGRWAiA5kvFNCRHCv8zCrtpzYqE7BCGk3nnU8n6ck0_niWnLkNt7Vrq8RSvGpBOsJ45mO8VkEoAhHEwzhYlvb9N7eT1DbQqxAj5k22lyaYiw_Y3nTyafSFbpTbju2ohgTW9kHZda8R_zFBN_pv3AtHLWv_r9h8JThdb5y8vamXxeX3Yj6_EpWO77F8a0_XjPL1YNPoA_hxjerx_w2-z-66hJWPOg97wG6Y-iG7deo-yT9i9fZeCH9Ulabkh5311Zp3ZOgcs2I-pvZ4FLUfg9a87VPgRy17Bdo4MY0_FnyMspIval7ww8u6uKiAO_bXGR_NZ4tV1ZxfPGbT46PPH058d4mDD5gpNn6iVCHSLNQqw1RBy7AIbWIKRJZQW0KQVKTaWsxaFICRFgu4rG2eS2IsxhCPn7BBvajNM8ax-AJVgoiLxCLU6KwEqQv8awklQBp7LNq-yxwcwzldtDHPsdIhB8h_4wAee7cbtOwIPv6sPiYn2akSO3f7w2I1y91iz4cgMi11CoCTDSFWtkxFJIdGKITXUHnsLblYThiCE4TCHYVAM4mNKx_ha6bTZTLy2H5PE9c-9MVbJ80d9qzzSBI_rMTC32Ovd2IaSf10tVlsWh1MfOUwxbk87Xx6ZxJx-BGvosdkz9t7NvcldXXeMpNnRDIrEo_5u3XxNw_1-T_qv2B3Isw1aScsivbZoFltzEvMDRv9ygHAT56rX9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-Aided+Diagnosis+System+for+Blood+Diseases+Using+EfficientNet-B3+Based+on+a+Dynamic+Learning+Algorithm&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Abd+El-Ghany%2C+Sameh&rft.au=Elmogy%2C+Mohammed&rft.au=El-Aziz%2C+Abd&rft.date=2023-01-22&rft.pub=MDPI+AG&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Fdiagnostics13030404&rft.externalDocID=A743031972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon