Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm
The immune system’s overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphobla...
Saved in:
| Published in | Diagnostics (Basel) Vol. 13; no. 3; p. 404 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
22.01.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4418 2075-4418 |
| DOI | 10.3390/diagnostics13030404 |
Cover
| Abstract | The immune system’s overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model’s average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model’s average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models. |
|---|---|
| AbstractList | The immune system’s overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model’s average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model’s average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models. The immune system's overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model's average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model's average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models.The immune system's overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood cancers and is one of the primary causes of death worldwide. The most well-known type of leukemia found in the human bone marrow is acute lymphoblastic leukemia (ALL). It is a disease that affects the bone marrow and kills white blood cells. Better treatment and a higher likelihood of survival can be helped by early and precise cancer detection. As a result, doctors can use computer-aided diagnostic (CAD) models to detect early leukemia effectively. In this research, we proposed a classification model based on the EfficientNet-B3 convolutional neural network (CNN) model to distinguish ALL as an automated model that automatically changes the learning rate (LR). We set up a custom LR that compared the loss value and training accuracy at the beginning of each epoch. We evaluated the proposed model on the C-NMC_Leukemia dataset. The dataset was pre-processed with normalization and balancing. The proposed model was evaluated and compared with recent classifiers. The proposed model's average precision, recall, specificity, accuracy, and Disc similarity coefficient (DSC) were 98.29%, 97.83%, 97.82%, 98.31%, and 98.05%, respectively. Moreover, the proposed model was used to examine microscopic images of the blood to identify the malaria parasite. Our proposed model's average precision, recall, specificity, accuracy, and DSC were 97.69%, 97.68%, 97.67%, 97.68%, and 97.68%, respectively. Therefore, the evaluation of the proposed model showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing models. |
| Audience | Academic |
| Author | El-Aziz, A. A. Abd Elmogy, Mohammed Abd El-Ghany, Sameh |
| AuthorAffiliation | 1 Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 42421, Saudi Arabia 2 Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt |
| AuthorAffiliation_xml | – name: 2 Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt – name: 1 Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 42421, Saudi Arabia |
| Author_xml | – sequence: 1 givenname: Sameh orcidid: 0000-0001-6888-5114 surname: Abd El-Ghany fullname: Abd El-Ghany, Sameh – sequence: 2 givenname: Mohammed orcidid: 0000-0002-2504-6051 surname: Elmogy fullname: Elmogy, Mohammed – sequence: 3 givenname: A. A. Abd orcidid: 0000-0003-4846-101X surname: El-Aziz fullname: El-Aziz, A. A. Abd |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36766509$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUjFARLaW_AAlF4sIlxY6_L0i72wKVVnCAni3HsVOvEnuxk6L99zhsKd2qEjgHW34zkzfz_LI48sGbongNwTlCArxvnep8SKPTCSKAAAb4WXFSA0YqjCE_enA-Ls5S2oC8BES8Ji-KY0QZpQSIk8KvwrCdRhOrhWtNW17sdV0qv-3SaIbShlgu-xDmUjIqmVReJ-e78tJap53x4xczVktULnOtLYMvVXmx82pwulwbFf2MXfRdiG68GV4Vz63qkzm720-L64-X31efq_XXT1erxbrShNKxIpwrRAVsuICkbhhU0BKjAEOwsdkroIg21goIuNaGWc6gAIATQjAWmYJOi6u9bhvURm6jG1TcyaCc_H0RYidVzOH1RgKNRMMaqrVGGGrMbUtRzYBBHAECedbCe63Jb9Xup-r7e0EI5DwN-cQ0Mu3DnradmsG0OicVVX_Qy2HFuxvZhVuZDSCBZg_v7gRi-DGZNMrBJW36XnkTpiRrxgjNjdK5xbePoJswRZ8TnlGYY0aw-IvqVPbtvA35v3oWlQuGc99QsDqjzp9A5a81eab5FVqX7w8Ibx4avXf455FlgNgDdAwpRWOldqMaXZh9u_4fKaJH3P_J_hfq0Pms |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2023_101859 crossref_primary_10_3390_app14177501 crossref_primary_10_1016_j_bspc_2023_105905 crossref_primary_10_3390_diagnostics14222497 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_70700_bjea_1556633 crossref_primary_10_1016_j_eswa_2024_124838 crossref_primary_10_1109_ACCESS_2025_3542609 crossref_primary_10_17798_bitlisfen_1376817 crossref_primary_10_3390_electronics13163174 |
| Cites_doi | 10.1016/j.bspc.2018.01.020 10.3390/diagnostics12010016 10.1109/WACV.2017.58 10.1016/j.bspc.2021.102690 10.1007/s12194-017-0406-5 10.3390/app112210662 10.1016/j.media.2020.101661 10.1155/2021/5557168 10.1155/2022/5140148 10.4103/2228-7477.150428 10.1016/j.imu.2021.100794 10.3390/diagnostics10121064 10.1146/annurev-bioeng-071516-044442 10.1109/ACCESS.2021.3051085 10.1016/j.engappai.2018.04.024 10.3389/fncom.2022.1083649 10.1109/CVPR.2018.00474 10.1016/j.jbusres.2020.09.068 10.1109/ACCESS.2018.2836950 10.1155/2011/212174 10.1109/ICSMC.2012.6377703 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/diagnostics13030404 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library Research Library (ProQuest) Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_0c39b7b6ccc341c48fd63270e3830518 10.3390/diagnostics13030404 PMC9913935 A743031972 36766509 10_3390_diagnostics13030404 |
| Genre | Journal Article |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GrantInformation_xml | – fundername: Al Jouf University grantid: DSR-2021-02-0206 |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c566t-588a3691b89152b71a1f5ea0731bf0400636bff9108cce7f87190085554499153 |
| IEDL.DBID | M48 |
| ISSN | 2075-4418 |
| IngestDate | Fri Oct 03 12:39:27 EDT 2025 Sun Oct 26 04:17:04 EDT 2025 Tue Sep 30 17:16:54 EDT 2025 Thu Oct 02 09:14:37 EDT 2025 Mon Jun 30 04:31:51 EDT 2025 Tue Jun 17 21:18:38 EDT 2025 Mon Oct 20 17:18:16 EDT 2025 Thu Jan 02 22:53:36 EST 2025 Thu Oct 16 04:31:17 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | learning rate (LR) deep learning malaria parasite EfficientNet-B3 computer-aided diagnostic (CAD) acute lymphoblastic leukemia (ALL) |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c566t-588a3691b89152b71a1f5ea0731bf0400636bff9108cce7f87190085554499153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2504-6051 0000-0001-6888-5114 0000-0003-4846-101X |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/diagnostics13030404 |
| PMID | 36766509 |
| PQID | 2774847549 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0c39b7b6ccc341c48fd63270e3830518 unpaywall_primary_10_3390_diagnostics13030404 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913935 proquest_miscellaneous_2775627068 proquest_journals_2774847549 gale_infotracmisc_A743031972 gale_infotracacademiconefile_A743031972 pubmed_primary_36766509 crossref_citationtrail_10_3390_diagnostics13030404 crossref_primary_10_3390_diagnostics13030404 |
| PublicationCentury | 2000 |
| PublicationDate | 20230122 |
| PublicationDateYYYYMMDD | 2023-01-22 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230122 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationTitleAlternate | Diagnostics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Mondal (ref_4) 2021; 27 Khandekar (ref_21) 2021; 68 Almadhor (ref_22) 2022; 16 Xin (ref_14) 2018; 6 Abir (ref_1) 2022; 2022 Laosai (ref_5) 2018; 44 ref_11 ref_10 ref_30 Vogado (ref_6) 2018; 72 Shen (ref_16) 2017; 19 ref_19 ref_18 ref_17 Alhichri (ref_27) 2021; 9 Suzuki (ref_15) 2017; 10 Amin (ref_12) 2015; 5 ref_25 ref_24 ref_23 Shrestha (ref_13) 2021; 123 Johny (ref_20) 2021; 2021 Gehlot (ref_2) 2020; 61 ref_3 ref_28 ref_26 ref_9 ref_8 Torkamana (ref_29) 2011; 34 ref_7 |
| References_xml | – ident: ref_7 – ident: ref_9 – ident: ref_30 – volume: 44 start-page: 127 year: 2018 ident: ref_5 article-title: Classification of Acute Leukemia Using Medical-Knowledge-Based Morphology and CD Marker publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2018.01.020 – ident: ref_24 doi: 10.3390/diagnostics12010016 – ident: ref_3 – ident: ref_26 – ident: ref_17 doi: 10.1109/WACV.2017.58 – volume: 68 start-page: 102690 year: 2021 ident: ref_21 article-title: Automated Blast Cell Detection for Acute Lymphoblastic Leukemia Diagnosis publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.102690 – volume: 10 start-page: 257 year: 2017 ident: ref_15 article-title: Overview of Deep Learning in Medical Imaging publication-title: Radiol. Phys. Technol. doi: 10.1007/s12194-017-0406-5 – ident: ref_11 doi: 10.3390/app112210662 – ident: ref_18 – volume: 61 start-page: 101661 year: 2020 ident: ref_2 article-title: SDCT-auxNetθ: DCT Augmented Stain Deconvolutional CNN with Auxiliary Classifier For Cancer Diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101661 – volume: 2021 start-page: 5557168 year: 2021 ident: ref_20 article-title: Dynamic Learning Rate in Deep CNN Model for Metastasis Detection and Classification of Histopathology Images publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/5557168 – ident: ref_8 – ident: ref_25 – volume: 2022 start-page: 5140148 year: 2022 ident: ref_1 article-title: Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer Learning Method publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/5140148 – volume: 5 start-page: 49 year: 2015 ident: ref_12 article-title: Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images using K-Means Clustering and Support Vector Machine Classifier publication-title: J. Med. Signals Sens. doi: 10.4103/2228-7477.150428 – volume: 27 start-page: 100794 year: 2021 ident: ref_4 article-title: Ensemble of Convolutional Neural Networks to Diagnose Acute Lymphoblastic Leukemia from Microscopic Images publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2021.100794 – ident: ref_23 doi: 10.3390/diagnostics10121064 – volume: 19 start-page: 221 year: 2017 ident: ref_16 article-title: Deep Learning in Medical Image Analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 9 start-page: 14078 year: 2021 ident: ref_27 article-title: Classification of Remote Sensing Images Using Efficientnet-B3 CNN Model with Attention publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051085 – volume: 72 start-page: 415 year: 2018 ident: ref_6 article-title: Leukemia Diagnosis in Blood Slides using Transfer Learning in Cnns and Svm for Classification publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.024 – volume: 16 start-page: 1083649 year: 2022 ident: ref_22 article-title: An Efficient Computer Vision-Based Approach for Acute Lymphoblastic Leukemia Prediction publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2022.1083649 – ident: ref_28 doi: 10.1109/CVPR.2018.00474 – ident: ref_19 – volume: 123 start-page: 588 year: 2021 ident: ref_13 article-title: Augmenting Organizational Decision-Making with Deep Learning Algorithms: Principles, Promises, and Challenges publication-title: J. Bus. Res. doi: 10.1016/j.jbusres.2020.09.068 – volume: 6 start-page: 35365 year: 2018 ident: ref_14 article-title: Machine Learning and Deep Learning Methods for Cybersecurity publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2836950 – volume: 34 start-page: 235 year: 2011 ident: ref_29 article-title: An Approach for Leukemia Classification Based on Cooperative Game Theory publication-title: Anal. Cell. Pathol. doi: 10.1155/2011/212174 – ident: ref_10 doi: 10.1109/ICSMC.2012.6377703 |
| SSID | ssj0000913825 |
| Score | 2.4032235 |
| Snippet | The immune system’s overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood... The immune system's overproduction of white blood cells (WBCs) results in the most common blood cancer, leukemia. It accounts for about 25% of childhood... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 404 |
| SubjectTerms | Accuracy acute lymphoblastic leukemia (ALL) Algorithms Annealing Blood Blood diseases Blood platelets Bone marrow Cancer computer-aided diagnostic (CAD) Computer-aided medical diagnosis Datasets deep learning Diagnosis Disease EfficientNet-B3 Immune system learning rate (LR) Leukemia Machine learning malaria parasite Methods Morphology Neural networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8SZQkJGQuBB1105i-7hLW1VI7YlKvUXx2G5XWrJVN6uq_74zdjbaAAIOXHeclR_fjGeSmW8Y-6QFeOHB5FIDleQEmZugbV4F4UoIUnlL9c6nZ9XJefHtorzYafVFOWGJHjht3MEEpLHKVgCABhcKHVwlhZp4DK0QULHMd6LNTjAVbbAhbr0y0QxJjOsPXMpcI-5jMtuI3WJ0FUXG_l_t8s7F9HPS5KNNe93c3TbL5c6NdPyUPeldST5LS3jGHvj2OXt42n8sf8HabceGfLZw3vHDNLfFmieaco7-Kp9T4jqK4meaNY8ZBPwo8krgDM58l88ln6PM8VXLG36YOtjznpf1ks-Wl6ubRXf14yU7Pz76_vUk79sr5IA-XJeXWjeyMlOrDV7iVk2baSh9gzo_tYF0u5KVDQH9CQ3gVcDQysS0trLAMAkt5Su2165a_4ZxDItAOzygpgxoBKxxoGyDf63AAVRFxsR2p2voucepBcayxhiEjqf-zfFk7Mvw0HWi3vjz8Dkd4TCUeLPjD4imukdT_Tc0ZewzAaAm7cYJQtMXKeAyiSernqHDRXVfSmRsfzQStRLG4i2E6t4qrGuhiLlVYUiesY-DmJ6kTLfWrzZxDLqkalLhXF4nxA1LInY9YjzMmBphcbTmsaRdXEXOcEP0r7LMWD6g9l829e3_2NR37LFA15BeXAmxz_a6m41_j65cZz9Erb0HENhGyw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbxMxDLdGJwEviG8OBgoSEi-c1iZ3l7sHhFrWaUJahRCT9na6OElXqVy7tdXEf499X-wATbzWucpJbMdO7J8B3qUSnXSYhSpFLsnxKsx8asLESxujV9oZrnc-nSUnZ9GX8_h8D2ZtLQynVbY2sTLUdoV8R34oNaNeagpnPq0vQ-4axa-rbQuNommtYD9WEGN3YF8yMtYA9ifT2ddv3a0Lo2BSTFTDDymK9w9tndHGmMhszkmmo94RVSH5_22vbxxYfyZT3tuV6-LndbFc3jipjh_Cg8bFFONaJh7Bnisfw93T5hH9CZRtJ4dwvLDOiqOat8VG1PDlgvxYMeGEdiJVzzcbUWUWiGmFN0EczNw2nCgxIZoVq1IU4qjubC8avNa5GC_ntHzbix9P4ex4-v3zSdi0XQiRfLttGKdpoZJsZNKMDnejR8XIx64gWzAynnU-UYnxnvyMFNFpTyFXVqW7xRGFT2RBn8GgXJXuBQgKlzC1qKIi9mQcTGZRm4L-WqNFTKIAZLvSOTaY5NwaY5lTbMLbk_9jewL40H20riE5bh8-4S3shjKedvXD6mqeN-qZD1FlRpsEkZgdYZR6myiph44CeDJbaQDvWQBy1npiEIumeIGmyfhZ-ZgcMa4H0zKAg95I0lbsk1sRyhtrscl_y3YAbzsyf8kZcKVb7aox5KrqYUK8PK8lrpsSo-4xEmIAuieLvTn3KeXiosISzxgWVsUBhJ3U_s-ivrx9Gq_gviRnkK-qpDyAwfZq516T87Y1bxqN_AXKfUWc priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk4AXvj8CAxkJiReyNHESO0-oZZsmpFU8UGk8RfHF7iK6tGpT0PjruUvcahkIAa-9c-VLzr-7c84_M_ZGRWAiA5kvFNCRHCv8zCrtpzYqE7BCGk3nnU8n6ck0_niWnLkNt7Vrq8RSvGpBOsJ45mO8VkEoAhHEwzhYlvb9N7eT1DbQqxAj5k22lyaYiw_Y3nTyafSFbpTbju2ohgTW9kHZda8R_zFBN_pv3AtHLWv_r9h8JThdb5y8vamXxeX3Yj6_EpWO77F8a0_XjPL1YNPoA_hxjerx_w2-z-66hJWPOg97wG6Y-iG7deo-yT9i9fZeCH9Ulabkh5311Zp3ZOgcs2I-pvZ4FLUfg9a87VPgRy17Bdo4MY0_FnyMspIval7ww8u6uKiAO_bXGR_NZ4tV1ZxfPGbT46PPH058d4mDD5gpNn6iVCHSLNQqw1RBy7AIbWIKRJZQW0KQVKTaWsxaFICRFgu4rG2eS2IsxhCPn7BBvajNM8ax-AJVgoiLxCLU6KwEqQv8awklQBp7LNq-yxwcwzldtDHPsdIhB8h_4wAee7cbtOwIPv6sPiYn2akSO3f7w2I1y91iz4cgMi11CoCTDSFWtkxFJIdGKITXUHnsLblYThiCE4TCHYVAM4mNKx_ha6bTZTLy2H5PE9c-9MVbJ80d9qzzSBI_rMTC32Ovd2IaSf10tVlsWh1MfOUwxbk87Xx6ZxJx-BGvosdkz9t7NvcldXXeMpNnRDIrEo_5u3XxNw_1-T_qv2B3Isw1aScsivbZoFltzEvMDRv9ygHAT56rX9Q priority: 102 providerName: Unpaywall |
| Title | Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36766509 https://www.proquest.com/docview/2774847549 https://www.proquest.com/docview/2775627068 https://pubmed.ncbi.nlm.nih.gov/PMC9913935 https://www.mdpi.com/2075-4418/13/3/404/pdf?version=1674381355 https://doaj.org/article/0c39b7b6ccc341c48fd63270e3830518 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTQJeEN8ERmUkJF4ItM6HnQeEGtZpQmo1ISqNpyh27K5SSEY_BPvvuXPSaIGB9ppzorN9n875dwCvJdeGG534gdR0JccGfmKl8mPLi0jbQBhF952ns_hkHn4-i872YNcVtV3A9bWpHfWTmq_Kd79-XH5Ehf9AGSem7O-LpiiNYI3JIqNYhrfgAF1VQr0cpm2870xzQpB7VNbI0VX6GArIBonoX9_peSsH6v-36b7iu_6sq7yzrS7yy595WV5xWsf34V4bbbJxIx4PYM9UD-H2tP2f_giqXVMHf7wsTMGOGt6Wa9YgmTMMaVlKte1Icn9y1swVGbCJg55ADmZm46cBS5FWsLpiOTtqmtyzFrp1wcblol4tN-ffH8P8ePL104nfdmDwNYZ5Gz-SMg_iZKRkgn5eiVE-spHJ0SyMlCX1j4NYWYshh9TaCIvZV-Iq36IQMyk0pk9gv6or8wwYZk5aFjoI88iinVBJoYXK8dNCF1rHoQd8t9KZbuHJqUtGmWGaQtuTXbM9HrztXrpo0Dn-PzylLeyGErS2e1CvFlmrqdlQB4kSKtYamR3pUNoiDrgYGszl0YJJD96QAGQkksigztt7DDhNgtLKxhiT0dUwwT047I1ExdV98k6Esp3cZ1wQuKvArN2DVx2Z3qRiuMrUWzcGo1YxjJGXp43EdVMiAD4CRfRA9GSxN-c-pVqeO1jxhBBig8gDv5Pamyzq8xuvxwu4yzFEpAMszg9hf7PampcY0m3UAA7Syez0y8AdiQyc0uKz-ex0_O036QpOtw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWK8IL4XGGAkEC9Ea-wkdh4m1LJOHVsrhDZpbyE5O12lLi1rq6n_HH8bd_liATTxsteck9i5y33Yd79j7J0WYIWFyJUaqCQnk26U6dQNM2ECyKSyKdU7D0fh4Mz_ch6cb7CfdS0MpVXWOrFQ1GYGtEe-JxShXioMZz7Nf7jUNYpOV-sWGknVWsHsFxBjVWHHsV1fYwi32D86QH6_F-Kwf_p54FZdBlxAV2bpBlonMoy8VEdoy1LlJV4W2ARF30szEvFQhmmWoVnVAFZlGGFERXZX4GO04FHXCDQBW770Iwz-tnr90ddvzS4PoW5iDFbCHUkZdfZMmUFHGMxkPvAFfsskFp0D_rYPNwzkn8mb26t8nqyvk-n0hmU8fMgeVC4t75Yy-Iht2PwxuzesDu2fsLzuHOF2J8YaflDObbLgJVw6R7-Z9yiBHknFcdGCF5kMvF_gW-AMRnbp9iTvIc3wWc4TfrDOk8sJ8Aofdsy70zGya3lx-ZSd3QkDnrHNfJbbHcYxPANtQPpJkKEySiMDKk3w0QoMQOg7TNRfOoYKA51acUxjjIWIPfE_2OOwj81N8xIC5PbhPWJhM5Twu4sLs6txXKmDuAMySlUaAuBkPfB1ZkIpVMdKjQrY0w77QAIQk5bBCUJSFUvgMgmvK-6i40f1Z0o4bLc1ErUDtMm1CMWVdlrEv_8lh71tyHQnZdzldrYqxqBrrDohzuV5KXHNkgjlj5AXHaZasthac5uSTy4K7PKIYGhl4DC3kdr_-agvbl_GG7Y9OB2exCdHo-OX7L5AR5S2yYTYZZvLq5V9hY7jMn1d_Z2cfb9rhfALsY1_eA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTRq8IL4JDDASiBeiNnYSOw8TammrjbFqQkzaW3Acu6vUpWVtNfVf5K_iLnHCAmjiZa89J7Vz5_uw735HyFvJtGFGJz6XGktyLPcTKzM_tiyPtOXCZFjvfDyOD07Dz2fR2Rb5WdfCYFplrRNLRZ3PNZ6Rd5hA1EsB4UzHurSIk8Ho4-KHjx2k8Ka1bqehXJuFfL-EG3NFHkdmcwXh3HL_cAC8f8fYaPjt04HvOg74GtyalR9JqXicBJlMwK5lIlCBjYyCbRBkFsU95nFmLZhYqbURFqKNpMz0ikKIHALsIAHmYAcvv0BJ7PSH45OvzYkPInBCPFZBH3GedDt5lU2HeMxoSuAPwpZ5LLsI_G0rrhnLPxM576yLhdpcqdnsmpUc3Sf3nHtLe5U8PiBbpnhIdo_dBf4jUtRdJPzeNDc5HVRzmy5pBZ1OwYemfUymB1J5dbSkZVYDHZZYFzCDsVn5fU77QMvpvKCKDjaFuphq6rBiJ7Q3mwC7VucXj8nprTDgCdku5oV5RiiEalrmmocqsqCYsiTXIlPwaqFzrePQI6z-0ql2eOjYlmOWQlyE7En_wR6PfGgeWlRwIDcP7yMLm6GI5V3-ML-cpE41pF3Nk0xksdYw2UCH0uYxZ6JruARlHEiPvEcBSFHjwAS1coUTsEzE7kp74ARiLZpgHtlrjQRNodvkWoRSp6mW6e995ZE3DRmfxOy7wszX5Rhwk0U3hrk8rSSuWRIi_iEKo0dESxZba25Tiul5iWOeICQtjzziN1L7Px_1-c3LeE12QTGkXw7HRy_IXQY-KZ6YMbZHtleXa_MSfMhV9sptTkq-37Y--AWrYoOn |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegk4AXvj8CAxkJiReyNHESO0-oZZsmpFU8UGk8RfHF7iK6tGpT0PjruUvcahkIAa-9c-VLzr-7c84_M_ZGRWAiA5kvFNCRHCv8zCrtpzYqE7BCGk3nnU8n6ck0_niWnLkNt7Vrq8RSvGpBOsJ45mO8VkEoAhHEwzhYlvb9N7eT1DbQqxAj5k22lyaYiw_Y3nTyafSFbpTbju2ohgTW9kHZda8R_zFBN_pv3AtHLWv_r9h8JThdb5y8vamXxeX3Yj6_EpWO77F8a0_XjPL1YNPoA_hxjerx_w2-z-66hJWPOg97wG6Y-iG7deo-yT9i9fZeCH9Ulabkh5311Zp3ZOgcs2I-pvZ4FLUfg9a87VPgRy17Bdo4MY0_FnyMspIval7ww8u6uKiAO_bXGR_NZ4tV1ZxfPGbT46PPH058d4mDD5gpNn6iVCHSLNQqw1RBy7AIbWIKRJZQW0KQVKTaWsxaFICRFgu4rG2eS2IsxhCPn7BBvajNM8ax-AJVgoiLxCLU6KwEqQv8awklQBp7LNq-yxwcwzldtDHPsdIhB8h_4wAee7cbtOwIPv6sPiYn2akSO3f7w2I1y91iz4cgMi11CoCTDSFWtkxFJIdGKITXUHnsLblYThiCE4TCHYVAM4mNKx_ha6bTZTLy2H5PE9c-9MVbJ80d9qzzSBI_rMTC32Ovd2IaSf10tVlsWh1MfOUwxbk87Xx6ZxJx-BGvosdkz9t7NvcldXXeMpNnRDIrEo_5u3XxNw_1-T_qv2B3Isw1aScsivbZoFltzEvMDRv9ygHAT56rX9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-Aided+Diagnosis+System+for+Blood+Diseases+Using+EfficientNet-B3+Based+on+a+Dynamic+Learning+Algorithm&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Abd+El-Ghany%2C+Sameh&rft.au=Elmogy%2C+Mohammed&rft.au=El-Aziz%2C+Abd&rft.date=2023-01-22&rft.pub=MDPI+AG&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Fdiagnostics13030404&rft.externalDocID=A743031972 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |