A novel approach to automatic sleep stage classification using forehead electrophysiological signals

Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment. In this paper, we propose a novel autom...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 8; no. 12; p. e12136
Main Authors Guo, Hengyan, Di, Yang, An, Xingwei, Wang, Zhongpeng, Ming, Dong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2405-8440
2405-8440
DOI10.1016/j.heliyon.2022.e12136

Cover

Abstract Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment. In this paper, we propose a novel automatic sleep scoring system based on forehead electrophysiological signals that is more effective and convenient than other systems. We extract 3 channel signals from the forehead, named forehead electroencephalogram 1 (Fh1), forehead electroencephalogram 2 (Fh2), and forehead center electrooculogram (Fhz). Spectral features, statistical features, and entropy features are extracted using the discrete wavelet transform (DWT) method. Light gradient boosting machine (LGB), random forest (RF), and support vector machine (SVM) are employed to classify four stages: awake, light sleep (LS), deep sleep (DS), and rapid eye movement (REM). The performance of the proposed method is validated using databases of the Sleep-EDFX and our Own-data, which include polysomnograms (PSGs) and forehead signals of 28 subjects. The overall classification accuracy of using the combination of Fh1, Fh2, and Fhz can reach up to 90.25% accuracy with a kappa coefficient of 0.857. The proposed method could provide state-of-art multichannel sleep stage scoring performance with higher portability. This will facilitate the application of long-term monitoring of sleep quality in the future. Sleep stages; Light gradient boosting machine (LGB); Forehead electrophysiological signal; Electrooculogram (EOG); Discrete wavelet transform (DWT).
AbstractList Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment.BackgroundSleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment.In this paper, we propose a novel automatic sleep scoring system based on forehead electrophysiological signals that is more effective and convenient than other systems. We extract 3 channel signals from the forehead, named forehead electroencephalogram 1 (Fh1), forehead electroencephalogram 2 (Fh2), and forehead center electrooculogram (Fhz). Spectral features, statistical features, and entropy features are extracted using the discrete wavelet transform (DWT) method. Light gradient boosting machine (LGB), random forest (RF), and support vector machine (SVM) are employed to classify four stages: awake, light sleep (LS), deep sleep (DS), and rapid eye movement (REM).MethodIn this paper, we propose a novel automatic sleep scoring system based on forehead electrophysiological signals that is more effective and convenient than other systems. We extract 3 channel signals from the forehead, named forehead electroencephalogram 1 (Fh1), forehead electroencephalogram 2 (Fh2), and forehead center electrooculogram (Fhz). Spectral features, statistical features, and entropy features are extracted using the discrete wavelet transform (DWT) method. Light gradient boosting machine (LGB), random forest (RF), and support vector machine (SVM) are employed to classify four stages: awake, light sleep (LS), deep sleep (DS), and rapid eye movement (REM).The performance of the proposed method is validated using databases of the Sleep-EDFX and our Own-data, which include polysomnograms (PSGs) and forehead signals of 28 subjects. The overall classification accuracy of using the combination of Fh1, Fh2, and Fhz can reach up to 90.25% accuracy with a kappa coefficient of 0.857.ResultThe performance of the proposed method is validated using databases of the Sleep-EDFX and our Own-data, which include polysomnograms (PSGs) and forehead signals of 28 subjects. The overall classification accuracy of using the combination of Fh1, Fh2, and Fhz can reach up to 90.25% accuracy with a kappa coefficient of 0.857.The proposed method could provide state-of-art multichannel sleep stage scoring performance with higher portability. This will facilitate the application of long-term monitoring of sleep quality in the future.ConclusionsThe proposed method could provide state-of-art multichannel sleep stage scoring performance with higher portability. This will facilitate the application of long-term monitoring of sleep quality in the future.
Sleep stages; Light gradient boosting machine (LGB); Forehead electrophysiological signal; Electrooculogram (EOG); Discrete wavelet transform (DWT).
Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment. In this paper, we propose a novel automatic sleep scoring system based on forehead electrophysiological signals that is more effective and convenient than other systems. We extract 3 channel signals from the forehead, named forehead electroencephalogram 1 (Fh1), forehead electroencephalogram 2 (Fh2), and forehead center electrooculogram (Fhz). Spectral features, statistical features, and entropy features are extracted using the discrete wavelet transform (DWT) method. Light gradient boosting machine (LGB), random forest (RF), and support vector machine (SVM) are employed to classify four stages: awake, light sleep (LS), deep sleep (DS), and rapid eye movement (REM). The performance of the proposed method is validated using databases of the Sleep-EDFX and our Own-data, which include polysomnograms (PSGs) and forehead signals of 28 subjects. The overall classification accuracy of using the combination of Fh1, Fh2, and Fhz can reach up to 90.25% accuracy with a kappa coefficient of 0.857. The proposed method could provide state-of-art multichannel sleep stage scoring performance with higher portability. This will facilitate the application of long-term monitoring of sleep quality in the future.
Background: Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment. Method: In this paper, we propose a novel automatic sleep scoring system based on forehead electrophysiological signals that is more effective and convenient than other systems. We extract 3 channel signals from the forehead, named forehead electroencephalogram 1 (Fh1), forehead electroencephalogram 2 (Fh2), and forehead center electrooculogram (Fhz). Spectral features, statistical features, and entropy features are extracted using the discrete wavelet transform (DWT) method. Light gradient boosting machine (LGB), random forest (RF), and support vector machine (SVM) are employed to classify four stages: awake, light sleep (LS), deep sleep (DS), and rapid eye movement (REM). Result: The performance of the proposed method is validated using databases of the Sleep-EDFX and our Own-data, which include polysomnograms (PSGs) and forehead signals of 28 subjects. The overall classification accuracy of using the combination of Fh1, Fh2, and Fhz can reach up to 90.25% accuracy with a kappa coefficient of 0.857. Conclusions: The proposed method could provide state-of-art multichannel sleep stage scoring performance with higher portability. This will facilitate the application of long-term monitoring of sleep quality in the future.
Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment. In this paper, we propose a novel automatic sleep scoring system based on forehead electrophysiological signals that is more effective and convenient than other systems. We extract 3 channel signals from the forehead, named forehead electroencephalogram 1 (Fh1), forehead electroencephalogram 2 (Fh2), and forehead center electrooculogram (Fhz). Spectral features, statistical features, and entropy features are extracted using the discrete wavelet transform (DWT) method. Light gradient boosting machine (LGB), random forest (RF), and support vector machine (SVM) are employed to classify four stages: awake, light sleep (LS), deep sleep (DS), and rapid eye movement (REM). The performance of the proposed method is validated using databases of the Sleep-EDFX and our Own-data, which include polysomnograms (PSGs) and forehead signals of 28 subjects. The overall classification accuracy of using the combination of Fh1, Fh2, and Fhz can reach up to 90.25% accuracy with a kappa coefficient of 0.857. The proposed method could provide state-of-art multichannel sleep stage scoring performance with higher portability. This will facilitate the application of long-term monitoring of sleep quality in the future. Sleep stages; Light gradient boosting machine (LGB); Forehead electrophysiological signal; Electrooculogram (EOG); Discrete wavelet transform (DWT).
Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods generally have the problems of poor model generalization ability and non-portable acquisition equipment. In this paper, we propose a novel automatic sleep scoring system based on forehead electrophysiological signals that is more effective and convenient than other systems. We extract 3 channel signals from the forehead, named forehead electroencephalogram 1 (Fh1), forehead electroencephalogram 2 (Fh2), and forehead center electrooculogram (Fhz). Spectral features, statistical features, and entropy features are extracted using the discrete wavelet transform (DWT) method. Light gradient boosting machine (LGB), random forest (RF), and support vector machine (SVM) are employed to classify four stages: awake, light sleep (LS), deep sleep (DS), and rapid eye movement (REM). The performance of the proposed method is validated using databases of the Sleep-EDFX and our Own-data, which include polysomnograms (PSGs) and forehead signals of 28 subjects. The overall classification accuracy of using the combination of Fh1, Fh2, and Fhz can reach up to 90.25% accuracy with a kappa coefficient of 0.857. The proposed method could provide state-of-art multichannel sleep stage scoring performance with higher portability. This will facilitate the application of long-term monitoring of sleep quality in the future.
ArticleNumber e12136
Author An, Xingwei
Ming, Dong
Di, Yang
Wang, Zhongpeng
Guo, Hengyan
Author_xml – sequence: 1
  givenname: Hengyan
  orcidid: 0000-0002-9376-1516
  surname: Guo
  fullname: Guo, Hengyan
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Yang
  surname: Di
  fullname: Di, Yang
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Xingwei
  orcidid: 0000-0002-5417-508X
  surname: An
  fullname: An, Xingwei
  email: Anxingwei@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Zhongpeng
  surname: Wang
  fullname: Wang, Zhongpeng
  email: tunerl_wzp1@tju.edu.cn
  organization: Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Dong
  surname: Ming
  fullname: Ming, Dong
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36590566$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVARLaU_AZQjl10cO3YcIYGqio9KlbjA2Zp1xlmvvHawk6323-NtlqrlspzG8rz39GbevC7OfPBYFG8rsqxIJT5slmt0dh_8khJKl1jRiokXxQWtCV_IuiZnT97nxVVKG0JIxaVoG_aqOGeCt4QLcVF016UPO3QlDEMMoNflGEqYxrCF0eoyOcShTCP0WGoHKVljde4EX07J-r40IeIaoSvRoR5jGNb7ZIMLfYa5Mtneg0tvipcmF7w61svi19cvP2--L-5-fLu9ub5b6OxlXFSik0JIoAabVctox7qWtcI0rBZ0xbVsKBNdLQi2hneaai51Q1pOAKQ0INhlcTvrdgE2aoh2C3GvAlj18BFiryDmsRwqw4zQLTFaCqx127QSoMaKNwgNcmaylpi1Jj_A_h6cexSsiDqkoDbqmII6pKDmFDLx00wcptUWO41-jOCeuXne8Xat-rBTBxOV5Fng_VEght8TplFtbdLoHHgMU1JUspo2kkp6GtqIbFSyts7Qd09tPfr5ewoZ8HEG6BhSimiUtuND1NmldSen5v-w_3dbn2ce5rvYWYwqaYteY2djPqgcnD2h8Ad1ffg9
CitedBy_id crossref_primary_10_31466_kfbd_1246482
crossref_primary_10_1007_s13369_024_09623_0
crossref_primary_10_1007_s13534_023_00299_3
crossref_primary_10_1016_j_heliyon_2025_e42122
crossref_primary_10_1016_j_sleep_2024_03_024
Cites_doi 10.3390/ijerph16040599
10.5664/jcsm.2172
10.1016/j.cmpb.2016.12.015
10.1109/TIM.2018.2799059
10.1016/j.cmpb.2019.04.032
10.1109/JBHI.2018.2842919
10.1016/j.jneumeth.2016.07.012
10.1016/j.bspc.2013.12.003
10.1016/j.eswa.2013.06.023
10.1016/j.compbiomed.2018.08.022
10.1109/TIM.2012.2187242
10.1016/j.smrv.2011.06.003
10.1016/j.biopsycho.2012.10.010
10.5664/jcsm.6618
10.1109/JBHI.2014.2303991
10.1016/j.bspc.2015.09.002
10.1016/j.neucom.2012.11.003
10.3389/fnins.2014.00263
10.3390/s141017915
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.heliyon.2022.e12136
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_f3f6c90fc86e4c9798aa4e157ea7e53f
10.1016/j.heliyon.2022.e12136
PMC9798185
36590566
10_1016_j_heliyon_2022_e12136
S2405844022034247
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
0SF
AACTN
NCXOZ
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c566t-16d8668a2fe7b932d3d9396f73462b5c87236d460e9f5dc2c58c70950aa88fa63
IEDL.DBID UNPAY
ISSN 2405-8440
IngestDate Tue Oct 14 18:51:24 EDT 2025
Sun Oct 26 02:20:53 EDT 2025
Thu Aug 21 18:40:17 EDT 2025
Fri Aug 22 20:34:49 EDT 2025
Fri Jul 11 10:11:09 EDT 2025
Thu Jan 02 22:54:02 EST 2025
Thu Oct 09 00:39:50 EDT 2025
Thu Apr 24 22:50:33 EDT 2025
Sat Oct 25 17:33:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Forehead electrophysiological signal
Sleep stages
Electrooculogram (EOG)
Discrete wavelet transform (DWT)
Light gradient boosting machine (LGB)
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-16d8668a2fe7b932d3d9396f73462b5c87236d460e9f5dc2c58c70950aa88fa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Hengyan Guo and Yang Di are the co-first authors.
ORCID 0000-0002-9376-1516
0000-0002-5417-508X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.heliyon.2022.e12136
PMID 36590566
PQID 2760168394
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f3f6c90fc86e4c9798aa4e157ea7e53f
unpaywall_primary_10_1016_j_heliyon_2022_e12136
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9798185
proquest_miscellaneous_2834278282
proquest_miscellaneous_2760168394
pubmed_primary_36590566
crossref_citationtrail_10_1016_j_heliyon_2022_e12136
crossref_primary_10_1016_j_heliyon_2022_e12136
elsevier_sciencedirect_doi_10_1016_j_heliyon_2022_e12136
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhu, Li, Wen (bib27) 2014; 18
Faust, Razaghi, Barika, Ciaccio, Acharya (bib3) 2019; 176
Hassan, Mohammed (bib19) 2016; 24
Mora, Fernandes, Herrera, Castillo, Merelo, Rojas (bib17) 2010
Alickovic, Subasi (bib1) 2018; 67
Phan, Kaare (bib20) 2022
Horne (bib7) 2013; 92
Liang, Kuo, Hu, Pan, Wang (bib15) 2012; 61
Zhang, Gao, Zhu, Zheng, Lu (bib26) 2015
Zarei, Asl (bib25) 2019; 23
Ke, Meng, Finley (bib11) 2017; 30
Rahman, Bhuiyan, Hassan (bib21) 2018; 102
Yildirim, Baloglu, Acharya (bib24) 2019; 16
Hassan, Bhuiyan (bib5) 2017; 140
Khalighi, Sousa, Pires, Nunes (bib12) 2013; 40
Berry, Budhiraja, Gottlieb, Gozal, Iber, Kapur (bib2) 2012; 8
Hassan, Bhuiyan (bib4) 2016; 271
Ronzhina, Janoušek, Kolářová, Nováková, Honzík, Provazník (bib22) 2012; 16
Motamedi-Fakhr, Moshrefi-Torbati, Hill, Hill, White (bib18) 2014; 10
Xue-Qin Huo, Zheng, Lu (bib23) 2016
Hao-Yu Cai, Ma, Shi, Lu (bib6) 2011
Phan, Do, Do, Vu (bib10) 2013
Levendowski, Ferini-Strambi, Gamaldo (bib14) 2017; 13
Lee, Lee, Chung (bib13) 2014; 14
Hsu, Yang, Wang, Hsu (bib8) 2013; 104
Huang, Lin, Ko, Liu, Su, Lin (bib9) 2014; 8
Berry (10.1016/j.heliyon.2022.e12136_bib2) 2012; 8
Khalighi (10.1016/j.heliyon.2022.e12136_bib12) 2013; 40
Ronzhina (10.1016/j.heliyon.2022.e12136_bib22) 2012; 16
Horne (10.1016/j.heliyon.2022.e12136_bib7) 2013; 92
Xue-Qin Huo (10.1016/j.heliyon.2022.e12136_bib23) 2016
Hassan (10.1016/j.heliyon.2022.e12136_bib19) 2016; 24
Liang (10.1016/j.heliyon.2022.e12136_bib15) 2012; 61
Levendowski (10.1016/j.heliyon.2022.e12136_bib14) 2017; 13
Hsu (10.1016/j.heliyon.2022.e12136_bib8) 2013; 104
Zhu (10.1016/j.heliyon.2022.e12136_bib27) 2014; 18
Phan (10.1016/j.heliyon.2022.e12136_bib10) 2013
Zarei (10.1016/j.heliyon.2022.e12136_bib25) 2019; 23
Huang (10.1016/j.heliyon.2022.e12136_bib9) 2014; 8
Hassan (10.1016/j.heliyon.2022.e12136_bib4) 2016; 271
Zhang (10.1016/j.heliyon.2022.e12136_bib26) 2015
Motamedi-Fakhr (10.1016/j.heliyon.2022.e12136_bib18) 2014; 10
Rahman (10.1016/j.heliyon.2022.e12136_bib21) 2018; 102
Hao-Yu Cai (10.1016/j.heliyon.2022.e12136_bib6) 2011
Yildirim (10.1016/j.heliyon.2022.e12136_bib24) 2019; 16
Hassan (10.1016/j.heliyon.2022.e12136_bib5) 2017; 140
Ke (10.1016/j.heliyon.2022.e12136_bib11) 2017; 30
Alickovic (10.1016/j.heliyon.2022.e12136_bib1) 2018; 67
Lee (10.1016/j.heliyon.2022.e12136_bib13) 2014; 14
Mora (10.1016/j.heliyon.2022.e12136_bib17) 2010
Faust (10.1016/j.heliyon.2022.e12136_bib3) 2019; 176
Phan (10.1016/j.heliyon.2022.e12136_bib20) 2022
References_xml – volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib19
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process Control
– volume: 8
  year: 2014
  ident: bib9
  article-title: Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels
  publication-title: Front. Neurosci.
– start-page: 3075
  year: 2011
  end-page: 3078
  ident: bib6
  article-title: A novel method for EOG features extraction from the forehead
  publication-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 104
  start-page: 105
  year: 2013
  end-page: 114
  ident: bib8
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
– volume: 92
  start-page: 152
  year: 2013
  end-page: 168
  ident: bib7
  article-title: Why REM sleep? Clues beyond the laboratory in a more challenging world
  publication-title: Biol. Psychol.
– start-page: 707
  year: 2015
  end-page: 710
  ident: bib26
  article-title: A novel approach to driving fatigue detection using forehead EOG
  publication-title: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)
– volume: 271
  start-page: 107
  year: 2016
  end-page: 118
  ident: bib4
  article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Methods
– volume: 16
  start-page: 599
  year: 2019
  ident: bib24
  article-title: A deep learning model for automated sleep stages classification using PSG signals
  publication-title: IJERPH
– volume: 67
  start-page: 1258
  year: 2018
  end-page: 1265
  ident: bib1
  article-title: Ensemble SVM method for automatic sleep stage classification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 8
  start-page: 597
  year: 2012
  end-page: 619
  ident: bib2
  article-title: Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events: deliberations of the sleep apnea definitions task force of the American Academy of sleep medicine
  publication-title: J. Clin. Sleep Med.
– volume: 14
  start-page: 17915
  year: 2014
  end-page: 17936
  ident: bib13
  article-title: Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals
  publication-title: Sensors
– volume: 18
  start-page: 1813
  year: 2014
  end-page: 1821
  ident: bib27
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 30
  year: 2017
  ident: bib11
  article-title: Lightgbm: a highly efficient gradient boosting decision tree[J]
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 140
  start-page: 201
  year: 2017
  end-page: 210
  ident: bib5
  article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Methods Progr. Biomed.
– volume: 40
  start-page: 7046
  year: 2013
  end-page: 7059
  ident: bib12
  article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels
  publication-title: Expert Syst. Appl.
– volume: 102
  start-page: 211
  year: 2018
  end-page: 220
  ident: bib21
  article-title: Sleep stage classification using single-channel EOG
  publication-title: Comput. Biol. Med.
– volume: 16
  start-page: 251
  year: 2012
  end-page: 263
  ident: bib22
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
– start-page: 126
  year: 2010
  end-page: 131
  ident: bib17
  article-title: Sleeping with ants, SVMs, multilayer perceptrons, and SOMs
  publication-title: 2010 10th International Conference on Intelligent Systems Design and Applications
– volume: 23
  start-page: 1011
  year: 2019
  end-page: 1021
  ident: bib25
  article-title: Automatic detection of obstructive sleep apnea using wavelet transform and entropy-based features from single-lead ECG signal
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 10
  start-page: 21
  year: 2014
  end-page: 33
  ident: bib18
  article-title: Signal processing techniques applied to human sleep EEG signals—a review
  publication-title: Biomed. Signal Process Control
– volume: 61
  start-page: 1649
  year: 2012
  end-page: 1657
  ident: bib15
  article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 13
  start-page: 791
  year: 2017
  end-page: 803
  ident: bib14
  article-title: The accuracy, night-to-night variability, and stability of frontopolar sleep electroencephalography biomarkers[J]
  publication-title: J. Clin. Sleep Med.
– volume: 176
  start-page: 81
  year: 2019
  end-page: 91
  ident: bib3
  article-title: A review of automated sleep stage scoring based on physiological signals for the new millennia
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 897
  year: 2016
  end-page: 904
  ident: bib23
  article-title: Driving fatigue detection with fusion of EEG and forehead EOG
  publication-title: 2016 International Joint Conference on Neural Networks (IJCNN)
– start-page: 5025
  year: 2013
  end-page: 5028
  ident: bib10
  article-title: Metric learning for automatic sleep stage classification
  publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– year: 2022
  ident: bib20
  article-title: Automatic Sleep Staging of EEG Signals: Recent Development, Challenges, and Future Directions
– volume: 16
  start-page: 599
  year: 2019
  ident: 10.1016/j.heliyon.2022.e12136_bib24
  article-title: A deep learning model for automated sleep stages classification using PSG signals
  publication-title: IJERPH
  doi: 10.3390/ijerph16040599
– volume: 8
  start-page: 597
  year: 2012
  ident: 10.1016/j.heliyon.2022.e12136_bib2
  article-title: Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events: deliberations of the sleep apnea definitions task force of the American Academy of sleep medicine
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.2172
– volume: 140
  start-page: 201
  year: 2017
  ident: 10.1016/j.heliyon.2022.e12136_bib5
  article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.12.015
– volume: 67
  start-page: 1258
  year: 2018
  ident: 10.1016/j.heliyon.2022.e12136_bib1
  article-title: Ensemble SVM method for automatic sleep stage classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2799059
– volume: 176
  start-page: 81
  year: 2019
  ident: 10.1016/j.heliyon.2022.e12136_bib3
  article-title: A review of automated sleep stage scoring based on physiological signals for the new millennia
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.04.032
– volume: 23
  start-page: 1011
  year: 2019
  ident: 10.1016/j.heliyon.2022.e12136_bib25
  article-title: Automatic detection of obstructive sleep apnea using wavelet transform and entropy-based features from single-lead ECG signal
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2842919
– volume: 271
  start-page: 107
  year: 2016
  ident: 10.1016/j.heliyon.2022.e12136_bib4
  article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.07.012
– volume: 30
  year: 2017
  ident: 10.1016/j.heliyon.2022.e12136_bib11
  article-title: Lightgbm: a highly efficient gradient boosting decision tree[J]
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 3075
  year: 2011
  ident: 10.1016/j.heliyon.2022.e12136_bib6
  article-title: A novel method for EOG features extraction from the forehead
– volume: 10
  start-page: 21
  year: 2014
  ident: 10.1016/j.heliyon.2022.e12136_bib18
  article-title: Signal processing techniques applied to human sleep EEG signals—a review
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2013.12.003
– volume: 40
  start-page: 7046
  year: 2013
  ident: 10.1016/j.heliyon.2022.e12136_bib12
  article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.023
– start-page: 707
  year: 2015
  ident: 10.1016/j.heliyon.2022.e12136_bib26
  article-title: A novel approach to driving fatigue detection using forehead EOG
– volume: 102
  start-page: 211
  year: 2018
  ident: 10.1016/j.heliyon.2022.e12136_bib21
  article-title: Sleep stage classification using single-channel EOG
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.08.022
– start-page: 5025
  year: 2013
  ident: 10.1016/j.heliyon.2022.e12136_bib10
  article-title: Metric learning for automatic sleep stage classification
– volume: 61
  start-page: 1649
  year: 2012
  ident: 10.1016/j.heliyon.2022.e12136_bib15
  article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2012.2187242
– volume: 16
  start-page: 251
  year: 2012
  ident: 10.1016/j.heliyon.2022.e12136_bib22
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2011.06.003
– volume: 92
  start-page: 152
  year: 2013
  ident: 10.1016/j.heliyon.2022.e12136_bib7
  article-title: Why REM sleep? Clues beyond the laboratory in a more challenging world
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2012.10.010
– volume: 13
  start-page: 791
  issue: 6
  year: 2017
  ident: 10.1016/j.heliyon.2022.e12136_bib14
  article-title: The accuracy, night-to-night variability, and stability of frontopolar sleep electroencephalography biomarkers[J]
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.6618
– volume: 18
  start-page: 1813
  year: 2014
  ident: 10.1016/j.heliyon.2022.e12136_bib27
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2303991
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.heliyon.2022.e12136_bib19
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2015.09.002
– volume: 104
  start-page: 105
  year: 2013
  ident: 10.1016/j.heliyon.2022.e12136_bib8
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.003
– year: 2022
  ident: 10.1016/j.heliyon.2022.e12136_bib20
– start-page: 897
  year: 2016
  ident: 10.1016/j.heliyon.2022.e12136_bib23
  article-title: Driving fatigue detection with fusion of EEG and forehead EOG
– volume: 8
  year: 2014
  ident: 10.1016/j.heliyon.2022.e12136_bib9
  article-title: Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00263
– start-page: 126
  year: 2010
  ident: 10.1016/j.heliyon.2022.e12136_bib17
  article-title: Sleeping with ants, SVMs, multilayer perceptrons, and SOMs
– volume: 14
  start-page: 17915
  year: 2014
  ident: 10.1016/j.heliyon.2022.e12136_bib13
  article-title: Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals
  publication-title: Sensors
  doi: 10.3390/s141017915
SSID ssj0001586973
Score 2.2475646
Snippet Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging methods...
Sleep stages; Light gradient boosting machine (LGB); Forehead electrophysiological signal; Electrooculogram (EOG); Discrete wavelet transform (DWT).
Background: Sleep stage scoring is very important for the effective diagnosis and intervention of sleep disorders. However, the current automatic sleep staging...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12136
SubjectTerms Discrete wavelet transform (DWT)
electroencephalography
Electrooculogram (EOG)
electrophysiology
entropy
eyes
Forehead electrophysiological signal
Light gradient boosting machine (LGB)
sleep
Sleep stages
support vector machines
wavelet
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8Sa8ZCSu2c0mfh4LoqqQyolKvVmOM263ipIVzYL675nJY9moEsuBaxLbsuez54s9_oaxj1oDyFKt0hBFSEWlbepXgXJoIHlFH2vyijb0z76p03Px9UJe7KX6opiwQR54GLhlLKIKNovBKBDBamu8F7CSGrwGWURafTNj936mhvvBRtn-eBk9lkyNENmf6zvL68UV1OvblvRP83wBJGumZo6p1--f-ae7_PNuGOWDbbPxt798Xe_5qJPH7NFILvnx0Kkn7B40T9n9s_H4_BmrjnnT_oSaT0rivGu533Ztr9vKb2qADUe6eAk8EKumMKLecpzC4y85ElzAxbviY_KcfltkWj05hYIgmJ-z85Mv3z-fpmOahTQgl-vSlaqMUsbnEXSJdK4qKltYFXUhVF7KYHReqEqoDGyUVciDNEEjM8u8NyZ6VbxgR03bwCvGSdCLjOORVQmhdYnkThrrZVxFBAQkTExj7MKoQU6pMGo3BZtdu9E0jkzjBtMkbLErthlEOA4V-EQG3H1MGtr9A0SWG5HlDiErYWYyvxvpyEAzsKr1ofY_THBxOF3pDMY30G5vXE4xSApZqfjLN6agBCj4M5ywlwPEdj0plLTIWbEFPQPfrKvzN836qpcNpx4iO0vYcgfTfxvN1_9jNN-wh1TlEAn0lh11P7bwDvlcV77vp-5vT9BKOQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A novel approach to automatic sleep stage classification using forehead electrophysiological signals
URI https://dx.doi.org/10.1016/j.heliyon.2022.e12136
https://www.ncbi.nlm.nih.gov/pubmed/36590566
https://www.proquest.com/docview/2760168394
https://www.proquest.com/docview/2834278282
https://pubmed.ncbi.nlm.nih.gov/PMC9798185
https://doi.org/10.1016/j.heliyon.2022.e12136
https://doaj.org/article/f3f6c90fc86e4c9798aa4e157ea7e53f
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: KQ8
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DIK
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: AKRWK
  dateStart: 20150901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lj9MwEIct6ErAhfcjPFZG4prSJH7lWBCrFdJWHKi0nCzHsXcLUVKxCWj565lJnEJYxC7HtnHTsWfir_b4N4S8ktI5Xogktp7ZmJUyj01isYYGwCvMsSotcUH_aCUO1-z9MT8Oh9XxLMxk_77Pwzp11ea8QanSNJ07VCAT18me4IDeM7K3Xn1YfsICcgAesWJs8euUzt_bTuafXqZ_Mg1dxMyL2ZI3u3przr-bqvptKjq4Q1ajEUMGypd51xZz--MPfccrW3mX3A5QSpeDF90j11x9n9w4CtvuD0i5pHXzzVV0VCCnbUNN1za93is9q5zbUsDME0ct0jimH_UjTjGt_oQCGDt46Jc0FN3pl1PGpy7FFBIIgodkffDu49vDOJRniC0wYBsnolRCKJN6JwvAwDIr8ywXXmZMpAW3SqaZKJlYuNzz0qaWKyuB6BbGKOWNyB6RWd3U7gmhKATGXMIN0BhjUhYAhVzlhvvEgyO5iLBx0LQN2uVYQqPSY5LaZx16UGMP6qEHIzLfNdsO4h2XNXiDHrG7GLW3-zdgsHQIZe0zL2y-8FYJx2wuc2UM_njpjHQ88xFRoz_pgDEDnsBXbS67_8vR_zSEOe7dmNo13ZlOMXdJAM2yf1yjMiycAn-iI_J48NmdJRkEDLAu3EFOvHli6vSTenPay42jhUB1EXm98_ur9ebT_27xjNzCV0O60HMya7927gVAX1vs94sl-yHgfwIiNlcy
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Lb9QwEIct2ErAhfcjvGQkrlk2iV85LoiqQuqKAyuVk-U4drslSlY0AZW_npnEWQhFtBw3Gyc79kz8bTz-DSGvpXSOFyKJrWc2ZqXMY5NYrKEB8ApzrEpLfKF_uBIHa_bhiB-Fzeq4F2ayft_nYZ24anPeoFRpms4dKpCJ62RPcEDvGdlbrz4uP2MBOQCPWDG2-LVL5-9tJ_NPL9M_mYYuYubFbMmbXb01599NVf02Fe3fIavRiCED5cu8a4u5_fGHvuOVrbxLbgcopcvBi-6Ra66-T24chmX3B6Rc0rr55io6KpDTtqGma5te75WeVc5tKWDmsaMWaRzTj_oRp5hWf0wBjB089Esaiu70r1PGpy7FFBIIgodkvf_-07uDOJRniC0wYBsnolRCKJN6JwvAwDIr8ywXXmZMpAW3SqaZKJlYuNzz0qaWKyuB6BbGKOWNyB6RWd3U7gmhKATGXMIN0BhjUhYAhVzlhvvEgyO5iLBx0LQN2uVYQqPSY5LaqQ49qLEH9dCDEZnvmm0H8Y7LGrxFj9idjNrb_QEYLB1CWfvMC5svvFXCMZvLXBmDP146Ix3PfETU6E86YMyAJ3CpzWX3fzX6n4Ywx7UbU7umO9Mp5i4JoFn2j3NUhoVT4E90RB4PPruzJIOAAdaFO8iJN09MnX5Tb056uXG0EKguIm92fn-13nz63y2ekVv4aUgXek5m7dfOvQDoa4uXIdR_Ahy3Vj0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+to+automatic+sleep+stage+classification+using+forehead+electrophysiological+signals&rft.jtitle=Heliyon&rft.au=Guo%2C+Hengyan&rft.au=Di%2C+Yang&rft.au=An%2C+Xingwei&rft.au=Wang%2C+Zhongpeng&rft.date=2022-12-01&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=8&rft.issue=12&rft.spage=e12136&rft_id=info:doi/10.1016%2Fj.heliyon.2022.e12136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_heliyon_2022_e12136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon