The Assembly-Activating Protein Promotes Stability and Interactions between AAV’s Viral Proteins to Nucleate Capsid Assembly

The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanis...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 23; no. 6; pp. 1817 - 1830
Main Authors Maurer, Anna C., Pacouret, Simon, Cepeda Diaz, Ana Karla, Blake, Jessica, Andres-Mateos, Eva, Vandenberghe, Luk H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.05.2018
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2018.04.026

Cover

Abstract The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. [Display omitted] •Dependence on AAP for capsid assembly varies widely across 21 AAV variants•AAP-dependent capsid proteins are subject to multiple rapid degradation pathways•AAP promotes interactions between capsid proteins•Specific capsid residues at trimer interface influence dependence on AAP Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated.
AbstractList The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. : Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. Keywords: AAV, AAP, adeno-associated virus, capsid assembly, manufacturing, capsid, vector engineering, structure-function, gene therapy
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. In Brief: Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated.
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral cofactor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. [Display omitted] •Dependence on AAP for capsid assembly varies widely across 21 AAV variants•AAP-dependent capsid proteins are subject to multiple rapid degradation pathways•AAP promotes interactions between capsid proteins•Specific capsid residues at trimer interface influence dependence on AAP Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated.
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.
Author Cepeda Diaz, Ana Karla
Vandenberghe, Luk H.
Blake, Jessica
Maurer, Anna C.
Pacouret, Simon
Andres-Mateos, Eva
AuthorAffiliation 1 Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
2 Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
3 INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
4 Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
5 The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
AuthorAffiliation_xml – name: 5 The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
– name: 4 Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
– name: 3 INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
– name: 1 Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
– name: 2 Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
Author_xml – sequence: 1
  givenname: Anna C.
  surname: Maurer
  fullname: Maurer, Anna C.
  organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
– sequence: 2
  givenname: Simon
  surname: Pacouret
  fullname: Pacouret, Simon
  organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
– sequence: 3
  givenname: Ana Karla
  surname: Cepeda Diaz
  fullname: Cepeda Diaz, Ana Karla
  organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
– sequence: 4
  givenname: Jessica
  surname: Blake
  fullname: Blake, Jessica
  organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
– sequence: 5
  givenname: Eva
  surname: Andres-Mateos
  fullname: Andres-Mateos, Eva
  organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
– sequence: 6
  givenname: Luk H.
  surname: Vandenberghe
  fullname: Vandenberghe, Luk H.
  email: luk_vandenberghe@meei.harvard.edu
  organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29742436$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-01847150$$DView record in HAL
BookMark eNqFks1uEzEQx1eoiH7QN0DIRw4k2F6vd5cD0iqiNFIESJReLa89mzjatYPtBOWCeA1ejyfBIUnV9gC-jGXP_ObjP-fZiXUWsuwFwWOCCX-zHCvoPazGFJNqjNkYU_4kO6OUkBGhrDy5dz_NLkNY4nQ4JqRmz7JTWpeMspyfZT9uFoCaEGBo--2oUdFsZDR2jj57F8HYnR3SLaAvUbamN3GLpNVoaiN4mdydDaiF-B3Aoqa5_f3zV0C3xsv-SAgoOvRxrXqQEdBEroLRdxmfZ0872Qe4PNiL7OvV-5vJ9Wj26cN00sxGquA8jggnAK0krcKd5IyXHc-7lqm2KCrSKVwR4LkmstBtmXqjmpZFrnTRsbbsgNX5RTbdc7WTS7HyZpB-K5w04u-D83MhfTSpSKFrLnOMVYd5zaBSUvOupYolm8uKsMR6t2et1u0AWoGNqd0H0Ic_1izE3G1EUVd5XlUJ8HoPWDwKu25mIg0M_CCSrKwkBd6Q5P7qkM-7b2sIUQwmJPl7acGtg6A4LzEnpNy1-fJ-aXfwo97J4e3eQXkXgodOKBPlTsVUqekFwWK3X2Ip9vsldvslMBNpv1IwexR85P8n7DAvSAJvDHgRlAGrQBsPKiYFzL8BfwC9pO7t
CitedBy_id crossref_primary_10_1128_jvi_00633_24
crossref_primary_10_3390_v12060662
crossref_primary_10_1016_j_ymthe_2023_10_001
crossref_primary_10_1089_hum_2020_069
crossref_primary_10_1002_bit_28562
crossref_primary_10_1177_1535676019899502
crossref_primary_10_1186_s43141_023_00518_5
crossref_primary_10_1016_j_ymthe_2023_12_015
crossref_primary_10_1016_j_omtm_2019_11_014
crossref_primary_10_1038_s41598_019_54928_y
crossref_primary_10_1089_hum_2022_119
crossref_primary_10_1016_j_pep_2024_106502
crossref_primary_10_1016_j_bpj_2020_12_018
crossref_primary_10_3390_v13071336
crossref_primary_10_1016_j_drudis_2023_103610
crossref_primary_10_3390_v16081215
crossref_primary_10_1016_j_biotechadv_2024_108322
crossref_primary_10_1016_j_xcrm_2022_100803
crossref_primary_10_1128_JVI_02013_18
crossref_primary_10_3389_fcvm_2022_952755
crossref_primary_10_1002_biot_202200450
crossref_primary_10_1002_med_22036
crossref_primary_10_14336_AD_2021_0517
crossref_primary_10_1089_hum_2019_041
crossref_primary_10_1016_j_heliyon_2023_e15071
crossref_primary_10_1089_hum_2018_085
crossref_primary_10_1111_brv_12718
crossref_primary_10_3390_microorganisms12020384
crossref_primary_10_1016_j_biotechadv_2021_107764
crossref_primary_10_1021_acsnano_5c01498
crossref_primary_10_1007_s00335_024_10099_4
crossref_primary_10_1016_j_omtm_2019_08_015
crossref_primary_10_1038_s41598_021_01220_7
crossref_primary_10_3390_v16010051
crossref_primary_10_3390_v15051174
crossref_primary_10_1038_s41467_021_21935_5
crossref_primary_10_1016_j_biotechadv_2024_108370
crossref_primary_10_1128_mbio_03528_22
crossref_primary_10_1128_jvi_00093_23
crossref_primary_10_3390_ijms252212081
Cites_doi 10.1016/j.ymthe.2017.04.001
10.1099/0022-1317-83-5-973
10.1038/gt.2008.170
10.1016/j.virol.2008.08.027
10.1128/JVI.74.18.8635-8647.2000
10.1038/nrg3742
10.1099/0022-1317-78-6-1453
10.1128/JVI.07232-11
10.1089/hgtb.2012.195
10.1038/mt.2015.173
10.1128/JVI.78.6.3110-3122.2004
10.1038/nbt.1515
10.1128/JVI.01304-07
10.1128/JVI.02660-13
10.1128/jvi.76.5.2043-2053.2002
10.2174/1566523054065057
10.1073/pnas.1001673107
10.1128/JVI.00448-12
10.1128/JVI.01675-12
10.1038/nature16465
10.1128/JVI.01198-17
10.1128/JVI.77.20.11072-11081.2003
10.1128/JVI.05359-11
10.1128/JVI.78.12.6381-6388.2004
10.1128/JVI.01980-16
10.1128/JVI.71.2.1341-1352.1997
10.1016/j.celrep.2015.07.019
10.1128/JVI.80.2.810-820.2006
10.1128/JVI.03125-14
10.1128/JVI.02723-05
10.1128/JVI.80.2.821-834.2006
10.1128/JVI.69.9.5311-5319.1995
10.1128/JVI.00282-12
10.1038/nbt.3781
10.1089/hgtb.2012.194
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.celrep.2018.04.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1830
ExternalDocumentID oai_doaj_org_article_d96a300cf0694e8cad6fb2c4ad63a814
PMC5983388
oai_HAL_inserm_01847150v1
29742436
10_1016_j_celrep_2018_04_026
S2211124718305552
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: P30 EY003790
– fundername: NIH HHS
  grantid: DP1 OD008267
– fundername: NEI NIH HHS
  grantid: DP1 EY023177
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c566t-161eeba1bc0fa6467f63fb4cb5581fc081e63d1a5db72972d2753cd5f4b7fe493
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Wed Aug 27 01:29:22 EDT 2025
Tue Sep 30 16:53:27 EDT 2025
Fri Sep 12 12:48:57 EDT 2025
Fri Sep 05 13:55:21 EDT 2025
Thu Apr 03 07:02:29 EDT 2025
Tue Jul 01 02:58:55 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Wed May 17 01:19:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords AAP
AAV
capsid assembly
capsid
manufacturing
structure-function
gene therapy
adeno-associated virus
vector engineering
vector
engineering
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-161eeba1bc0fa6467f63fb4cb5581fc081e63d1a5db72972d2753cd5f4b7fe493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5983388
Lead Contact
ORCID 0000-0002-3508-4924
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124718305552
PMID 29742436
PQID 2037061179
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_d96a300cf0694e8cad6fb2c4ad63a814
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5983388
hal_primary_oai_HAL_inserm_01847150v1
proquest_miscellaneous_2037061179
pubmed_primary_29742436
crossref_citationtrail_10_1016_j_celrep_2018_04_026
crossref_primary_10_1016_j_celrep_2018_04_026
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_04_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-08
PublicationDateYYYYMMDD 2018-05-08
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Naumer, Sonntag, Schmidt, Nieto, Panke, Davey, Popa-Wagner, Kleinschmidt (bib19) 2012; 86
Grieger, Snowdy, Samulski (bib11) 2006; 80
Popa-Wagner, Porwal, Kann, Reuss, Weimer, Florin, Kleinschmidt (bib23) 2012; 86
Grosse, Penaud-Budloo, Herrmann, Börner, Fakhiri, Laketa, Krämer, Wiedtke, Gunkel, Ménard (bib13) 2017; 91
Wistuba, Weger, Kern, Kleinschmidt (bib30) 1995; 69
Kotterman, Schaffer (bib15) 2014; 15
Sonntag, Köther, Schmidt, Weghofer, Raupp, Nieto, Kuck, Gerlach, Böttcher, Müller (bib26) 2011; 85
Wu, Xiao, Conlon, Hughes, Agbandje-McKenna, Ferkol, Flotte, Muzyczka (bib32) 2000; 74
Wistuba, Kern, Weger, Grimm, Kleinschmidt (bib31) 1997; 71
Kern, Schmidt, Leder, Müller, Wobus, Bettinger, Von der Lieth, King, Kleinschmidt (bib14) 2003; 77
Lochrie, Tatsuno, Christie, McDonnell, Zhou, Surosky, Pierce, Colosi (bib17) 2006; 80
DiMattia, Nam, Van Vliet, Mitchell, Bennett, Gurda, McKenna, Olson, Sinkovits, Potter (bib3) 2012; 86
Nicolson, Samulski (bib20) 2014; 88
Girod, Wobus, Zádori, Ried, Leike, Tijssen, Kleinschmidt, Hallek (bib10) 2002; 83
Foust, Nurre, Montgomery, Hernandez, Chan, Kaspar (bib6) 2009; 27
Sen, Gadkari, Sudha, Gabriel, Kumar, Selot, Samuel, Rajalingam, Ramya, Nair (bib24) 2013; 24
Bell, Gurda, Van Vliet, Agbandje-McKenna, Wilson (bib1) 2012; 86
Earley, Powers, Adachi, Baumgart, Meyer, Xie, Chapman, Nakai (bib5) 2017; 91
Zhong, Li, Jayandharan, Mah, Govindasamy, Agbandje-McKenna, Herzog, Weigel-Van Aken, Hobbs, Zolotukhin (bib34) 2008; 381
Pillay, Meyer, Puschnik, Davulcu, Diep, Ishikawa, Jae, Wosen, Nagamine, Chapman, Carette (bib22) 2016; 530
Landegger, Pan, Askew, Wassmer, Gluck, Galvin, Taylor, Forge, Stankovic, Holt, Vandenberghe (bib16) 2017; 35
Zinn, Pacouret, Khaychuk, Turunen, Carvalho, Andres-Mateos, Shah, Shelke, Maurer, Plovie (bib35) 2015; 12
Earley, Kawano, Adachi, Sun, Dai, Nakai (bib4) 2015; 89
Gao, Vandenberghe, Wilson (bib9) 2005; 5
Yan, Zak, Luxton, Ritchie, Bantel-Schaal, Engelhardt (bib33) 2002; 76
Bleker, Pawlita, Kleinschmidt (bib2) 2006; 80
Pacouret, Bouzelha, Shelke, Andres-Mateos, Xiao, Maurer, Mevel, Turunen, Barungi, Penaud-Budloo (bib21) 2017; 25
Thomas, Storm, Huang, Kay (bib28) 2004; 78
Vandenberghe, Wilson, Gao (bib29) 2009; 16
Grimm, Zolotukhin (bib12) 2015; 23
Nam, Lane, Padron, Gurda, McKenna, Kohlbrenner, Aslanidi, Byrne, Muzyczka, Zolotukhin, Agbandje-McKenna (bib18) 2007; 81
Gabriel, Hareendran, Sen, Gadkari, Sudha, Selot, Hussain, Dhaksnamoorthy, Samuel, Srinivasan (bib7) 2013; 24
Steinbach, Wistuba, Bock, Kleinschmidt (bib27) 1997; 78
Sonntag, Schmidt, Kleinschmidt (bib25) 2010; 107
Gao, Vandenberghe, Alvira, Lu, Calcedo, Zhou, Wilson (bib8) 2004; 78
Nam (10.1016/j.celrep.2018.04.026_bib18) 2007; 81
Gabriel (10.1016/j.celrep.2018.04.026_bib7) 2013; 24
Sonntag (10.1016/j.celrep.2018.04.026_bib25) 2010; 107
Wu (10.1016/j.celrep.2018.04.026_bib32) 2000; 74
Landegger (10.1016/j.celrep.2018.04.026_bib16) 2017; 35
Bell (10.1016/j.celrep.2018.04.026_bib1) 2012; 86
Naumer (10.1016/j.celrep.2018.04.026_bib19) 2012; 86
Wistuba (10.1016/j.celrep.2018.04.026_bib31) 1997; 71
Kotterman (10.1016/j.celrep.2018.04.026_bib15) 2014; 15
Thomas (10.1016/j.celrep.2018.04.026_bib28) 2004; 78
Earley (10.1016/j.celrep.2018.04.026_bib4) 2015; 89
Steinbach (10.1016/j.celrep.2018.04.026_bib27) 1997; 78
Foust (10.1016/j.celrep.2018.04.026_bib6) 2009; 27
Sen (10.1016/j.celrep.2018.04.026_bib24) 2013; 24
Grieger (10.1016/j.celrep.2018.04.026_bib11) 2006; 80
Yan (10.1016/j.celrep.2018.04.026_bib33) 2002; 76
Pillay (10.1016/j.celrep.2018.04.026_bib22) 2016; 530
Gao (10.1016/j.celrep.2018.04.026_bib8) 2004; 78
Wistuba (10.1016/j.celrep.2018.04.026_bib30) 1995; 69
Zhong (10.1016/j.celrep.2018.04.026_bib34) 2008; 381
Vandenberghe (10.1016/j.celrep.2018.04.026_bib29) 2009; 16
Gao (10.1016/j.celrep.2018.04.026_bib9) 2005; 5
Grimm (10.1016/j.celrep.2018.04.026_bib12) 2015; 23
Grosse (10.1016/j.celrep.2018.04.026_bib13) 2017; 91
Pacouret (10.1016/j.celrep.2018.04.026_bib21) 2017; 25
DiMattia (10.1016/j.celrep.2018.04.026_bib3) 2012; 86
Girod (10.1016/j.celrep.2018.04.026_bib10) 2002; 83
Lochrie (10.1016/j.celrep.2018.04.026_bib17) 2006; 80
Popa-Wagner (10.1016/j.celrep.2018.04.026_bib23) 2012; 86
Kern (10.1016/j.celrep.2018.04.026_bib14) 2003; 77
Sonntag (10.1016/j.celrep.2018.04.026_bib26) 2011; 85
Earley (10.1016/j.celrep.2018.04.026_bib5) 2017; 91
Bleker (10.1016/j.celrep.2018.04.026_bib2) 2006; 80
Zinn (10.1016/j.celrep.2018.04.026_bib35) 2015; 12
Nicolson (10.1016/j.celrep.2018.04.026_bib20) 2014; 88
References_xml – volume: 91
  year: 2017
  ident: bib13
  article-title: Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells
  publication-title: J. Virol.
– volume: 85
  start-page: 12686
  year: 2011
  end-page: 12697
  ident: bib26
  article-title: The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes
  publication-title: J. Virol.
– volume: 69
  start-page: 5311
  year: 1995
  end-page: 5319
  ident: bib30
  article-title: Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins
  publication-title: J. Virol.
– volume: 35
  start-page: 280
  year: 2017
  end-page: 284
  ident: bib16
  article-title: A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear
  publication-title: Nat. Biotechnol.
– volume: 24
  start-page: 104
  year: 2013
  end-page: 116
  ident: bib24
  article-title: Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo
  publication-title: Hum. Gene Ther. Methods
– volume: 86
  start-page: 6947
  year: 2012
  end-page: 6958
  ident: bib3
  article-title: Structural insight into the unique properties of adeno-associated virus serotype 9
  publication-title: J. Virol.
– volume: 80
  start-page: 810
  year: 2006
  end-page: 820
  ident: bib2
  article-title: Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging
  publication-title: J. Virol.
– volume: 78
  start-page: 1453
  year: 1997
  end-page: 1462
  ident: bib27
  article-title: Assembly of adeno-associated virus type 2 capsids in vitro
  publication-title: J. Gen. Virol.
– volume: 76
  start-page: 2043
  year: 2002
  end-page: 2053
  ident: bib33
  article-title: Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors
  publication-title: J. Virol.
– volume: 78
  start-page: 6381
  year: 2004
  end-page: 6388
  ident: bib8
  article-title: Clades of Adeno-associated viruses are widely disseminated in human tissues
  publication-title: J. Virol.
– volume: 86
  start-page: 9163
  year: 2012
  end-page: 9174
  ident: bib23
  article-title: Impact of VP1-specific protein sequence motifs on adeno-associated virus type 2 intracellular trafficking and nuclear entry
  publication-title: J. Virol.
– volume: 88
  start-page: 4132
  year: 2014
  end-page: 4144
  ident: bib20
  article-title: Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus
  publication-title: J. Virol.
– volume: 74
  start-page: 8635
  year: 2000
  end-page: 8647
  ident: bib32
  article-title: Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism
  publication-title: J. Virol.
– volume: 86
  start-page: 13038
  year: 2012
  end-page: 13048
  ident: bib19
  article-title: Properties of the adeno-associated virus assembly-activating protein
  publication-title: J. Virol.
– volume: 24
  start-page: 80
  year: 2013
  end-page: 93
  ident: bib7
  article-title: Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo
  publication-title: Hum. Gene Ther. Methods
– volume: 107
  start-page: 10220
  year: 2010
  end-page: 10225
  ident: bib25
  article-title: A viral assembly factor promotes AAV2 capsid formation in the nucleolus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 77
  start-page: 11072
  year: 2003
  end-page: 11081
  ident: bib14
  article-title: Identification of a heparin-binding motif on adeno-associated virus type 2 capsids
  publication-title: J. Virol.
– volume: 83
  start-page: 973
  year: 2002
  end-page: 978
  ident: bib10
  article-title: The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity
  publication-title: J. Gen. Virol.
– volume: 23
  start-page: 1819
  year: 2015
  end-page: 1831
  ident: bib12
  article-title: E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution
  publication-title: Mol. Ther.
– volume: 16
  start-page: 311
  year: 2009
  end-page: 319
  ident: bib29
  article-title: Tailoring the AAV vector capsid for gene therapy
  publication-title: Gene Ther.
– volume: 25
  start-page: 1375
  year: 2017
  end-page: 1386
  ident: bib21
  article-title: AAV-ID: A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations
  publication-title: Mol. Ther.
– volume: 80
  start-page: 821
  year: 2006
  end-page: 834
  ident: bib17
  article-title: Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization
  publication-title: J. Virol.
– volume: 80
  start-page: 5199
  year: 2006
  end-page: 5210
  ident: bib11
  article-title: Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly
  publication-title: J. Virol.
– volume: 12
  start-page: 1056
  year: 2015
  end-page: 1068
  ident: bib35
  article-title: In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector
  publication-title: Cell Rep.
– volume: 530
  start-page: 108
  year: 2016
  end-page: 112
  ident: bib22
  article-title: An essential receptor for adeno-associated virus infection
  publication-title: Nature
– volume: 89
  start-page: 3038
  year: 2015
  end-page: 3048
  ident: bib4
  article-title: Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein
  publication-title: J. Virol.
– volume: 27
  start-page: 59
  year: 2009
  end-page: 65
  ident: bib6
  article-title: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes
  publication-title: Nat. Biotechnol.
– volume: 78
  start-page: 3110
  year: 2004
  end-page: 3122
  ident: bib28
  article-title: Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors
  publication-title: J. Virol.
– volume: 71
  start-page: 1341
  year: 1997
  end-page: 1352
  ident: bib31
  article-title: Subcellular compartmentalization of adeno-associated virus type 2 assembly
  publication-title: J. Virol.
– volume: 15
  start-page: 445
  year: 2014
  end-page: 451
  ident: bib15
  article-title: Engineering adeno-associated viruses for clinical gene therapy
  publication-title: Nat. Rev. Genet.
– volume: 5
  start-page: 285
  year: 2005
  end-page: 297
  ident: bib9
  article-title: New recombinant serotypes of AAV vectors
  publication-title: Curr. Gene Ther.
– volume: 381
  start-page: 194
  year: 2008
  end-page: 202
  ident: bib34
  article-title: Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression
  publication-title: Virology
– volume: 86
  start-page: 7326
  year: 2012
  end-page: 7333
  ident: bib1
  article-title: Identification of the galactose binding domain of the adeno-associated virus serotype 9 capsid
  publication-title: J. Virol.
– volume: 91
  year: 2017
  ident: bib5
  article-title: Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11
  publication-title: J. Virol.
– volume: 81
  start-page: 12260
  year: 2007
  end-page: 12271
  ident: bib18
  article-title: Structure of adeno-associated virus serotype 8, a gene therapy vector
  publication-title: J. Virol.
– volume: 25
  start-page: 1375
  year: 2017
  ident: 10.1016/j.celrep.2018.04.026_bib21
  article-title: AAV-ID: A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.04.001
– volume: 83
  start-page: 973
  year: 2002
  ident: 10.1016/j.celrep.2018.04.026_bib10
  article-title: The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-83-5-973
– volume: 16
  start-page: 311
  year: 2009
  ident: 10.1016/j.celrep.2018.04.026_bib29
  article-title: Tailoring the AAV vector capsid for gene therapy
  publication-title: Gene Ther.
  doi: 10.1038/gt.2008.170
– volume: 381
  start-page: 194
  year: 2008
  ident: 10.1016/j.celrep.2018.04.026_bib34
  article-title: Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression
  publication-title: Virology
  doi: 10.1016/j.virol.2008.08.027
– volume: 74
  start-page: 8635
  year: 2000
  ident: 10.1016/j.celrep.2018.04.026_bib32
  article-title: Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.18.8635-8647.2000
– volume: 15
  start-page: 445
  year: 2014
  ident: 10.1016/j.celrep.2018.04.026_bib15
  article-title: Engineering adeno-associated viruses for clinical gene therapy
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3742
– volume: 78
  start-page: 1453
  year: 1997
  ident: 10.1016/j.celrep.2018.04.026_bib27
  article-title: Assembly of adeno-associated virus type 2 capsids in vitro
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-78-6-1453
– volume: 86
  start-page: 6947
  year: 2012
  ident: 10.1016/j.celrep.2018.04.026_bib3
  article-title: Structural insight into the unique properties of adeno-associated virus serotype 9
  publication-title: J. Virol.
  doi: 10.1128/JVI.07232-11
– volume: 24
  start-page: 104
  year: 2013
  ident: 10.1016/j.celrep.2018.04.026_bib24
  article-title: Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo
  publication-title: Hum. Gene Ther. Methods
  doi: 10.1089/hgtb.2012.195
– volume: 23
  start-page: 1819
  year: 2015
  ident: 10.1016/j.celrep.2018.04.026_bib12
  article-title: E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.173
– volume: 78
  start-page: 3110
  year: 2004
  ident: 10.1016/j.celrep.2018.04.026_bib28
  article-title: Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.6.3110-3122.2004
– volume: 27
  start-page: 59
  year: 2009
  ident: 10.1016/j.celrep.2018.04.026_bib6
  article-title: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1515
– volume: 81
  start-page: 12260
  year: 2007
  ident: 10.1016/j.celrep.2018.04.026_bib18
  article-title: Structure of adeno-associated virus serotype 8, a gene therapy vector
  publication-title: J. Virol.
  doi: 10.1128/JVI.01304-07
– volume: 88
  start-page: 4132
  year: 2014
  ident: 10.1016/j.celrep.2018.04.026_bib20
  article-title: Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus
  publication-title: J. Virol.
  doi: 10.1128/JVI.02660-13
– volume: 76
  start-page: 2043
  year: 2002
  ident: 10.1016/j.celrep.2018.04.026_bib33
  article-title: Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors
  publication-title: J. Virol.
  doi: 10.1128/jvi.76.5.2043-2053.2002
– volume: 5
  start-page: 285
  year: 2005
  ident: 10.1016/j.celrep.2018.04.026_bib9
  article-title: New recombinant serotypes of AAV vectors
  publication-title: Curr. Gene Ther.
  doi: 10.2174/1566523054065057
– volume: 107
  start-page: 10220
  year: 2010
  ident: 10.1016/j.celrep.2018.04.026_bib25
  article-title: A viral assembly factor promotes AAV2 capsid formation in the nucleolus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1001673107
– volume: 86
  start-page: 7326
  year: 2012
  ident: 10.1016/j.celrep.2018.04.026_bib1
  article-title: Identification of the galactose binding domain of the adeno-associated virus serotype 9 capsid
  publication-title: J. Virol.
  doi: 10.1128/JVI.00448-12
– volume: 86
  start-page: 13038
  year: 2012
  ident: 10.1016/j.celrep.2018.04.026_bib19
  article-title: Properties of the adeno-associated virus assembly-activating protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.01675-12
– volume: 530
  start-page: 108
  year: 2016
  ident: 10.1016/j.celrep.2018.04.026_bib22
  article-title: An essential receptor for adeno-associated virus infection
  publication-title: Nature
  doi: 10.1038/nature16465
– volume: 91
  year: 2017
  ident: 10.1016/j.celrep.2018.04.026_bib13
  article-title: Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.01198-17
– volume: 77
  start-page: 11072
  year: 2003
  ident: 10.1016/j.celrep.2018.04.026_bib14
  article-title: Identification of a heparin-binding motif on adeno-associated virus type 2 capsids
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.20.11072-11081.2003
– volume: 85
  start-page: 12686
  year: 2011
  ident: 10.1016/j.celrep.2018.04.026_bib26
  article-title: The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes
  publication-title: J. Virol.
  doi: 10.1128/JVI.05359-11
– volume: 78
  start-page: 6381
  year: 2004
  ident: 10.1016/j.celrep.2018.04.026_bib8
  article-title: Clades of Adeno-associated viruses are widely disseminated in human tissues
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.12.6381-6388.2004
– volume: 91
  year: 2017
  ident: 10.1016/j.celrep.2018.04.026_bib5
  article-title: Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11
  publication-title: J. Virol.
  doi: 10.1128/JVI.01980-16
– volume: 71
  start-page: 1341
  year: 1997
  ident: 10.1016/j.celrep.2018.04.026_bib31
  article-title: Subcellular compartmentalization of adeno-associated virus type 2 assembly
  publication-title: J. Virol.
  doi: 10.1128/JVI.71.2.1341-1352.1997
– volume: 12
  start-page: 1056
  year: 2015
  ident: 10.1016/j.celrep.2018.04.026_bib35
  article-title: In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.07.019
– volume: 80
  start-page: 810
  year: 2006
  ident: 10.1016/j.celrep.2018.04.026_bib2
  article-title: Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging
  publication-title: J. Virol.
  doi: 10.1128/JVI.80.2.810-820.2006
– volume: 89
  start-page: 3038
  year: 2015
  ident: 10.1016/j.celrep.2018.04.026_bib4
  article-title: Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.03125-14
– volume: 80
  start-page: 5199
  year: 2006
  ident: 10.1016/j.celrep.2018.04.026_bib11
  article-title: Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly
  publication-title: J. Virol.
  doi: 10.1128/JVI.02723-05
– volume: 80
  start-page: 821
  year: 2006
  ident: 10.1016/j.celrep.2018.04.026_bib17
  article-title: Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization
  publication-title: J. Virol.
  doi: 10.1128/JVI.80.2.821-834.2006
– volume: 69
  start-page: 5311
  year: 1995
  ident: 10.1016/j.celrep.2018.04.026_bib30
  article-title: Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins
  publication-title: J. Virol.
  doi: 10.1128/JVI.69.9.5311-5319.1995
– volume: 86
  start-page: 9163
  year: 2012
  ident: 10.1016/j.celrep.2018.04.026_bib23
  article-title: Impact of VP1-specific protein sequence motifs on adeno-associated virus type 2 intracellular trafficking and nuclear entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.00282-12
– volume: 35
  start-page: 280
  year: 2017
  ident: 10.1016/j.celrep.2018.04.026_bib16
  article-title: A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3781
– volume: 24
  start-page: 80
  year: 2013
  ident: 10.1016/j.celrep.2018.04.026_bib7
  article-title: Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo
  publication-title: Hum. Gene Ther. Methods
  doi: 10.1089/hgtb.2012.194
SSID ssj0000601194
Score 2.4050765
Snippet The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a...
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1817
SubjectTerms AAP
AAV
adeno-associated virus
Amino Acid Motifs
capsid
capsid assembly
Capsid Proteins - chemistry
Capsid Proteins - metabolism
Dependovirus - pathogenicity
Dependovirus - physiology
Dependovirus - ultrastructure
Gain of Function Mutation
gene therapy
HEK293 Cells
Human health and pathology
Humans
Life Sciences
manufacturing
Models, Molecular
Phenotype
Phylogeny
Protein Binding
Protein Multimerization
Protein Stability
Serotyping
structure-function
vector engineering
Virion - pathogenicity
Virion - ultrastructure
Virus Assembly
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgJSQuiG_Cl4wEx4gktuPkGFasKgQrDuxqb5bjjNmibrradJF6QfwN_h6_hBk7qVo49MIpUuvYjefZ81LPvGHstbXo80Qu0jrzLpVa69RCDamXEjqVg6o0JTh_Oi5nJ_LDmTrbKvVFMWFRHjhO3NuuLq3IMucpQxMqZ7vSt4WTeBW2CiWsC3RjWy9TcQ8mLTM6Ui4KitkqpJ7y5kJwl4PFFZBcZV4FpVPSVtjyS0G-f8c93TynOMl_SejfsZRbzunoLrszskrexKe5x25Af5_dinUm1w_YDwQDp-Pdi3axThsXS5r1X_lnUmmY93RFk8HAkXuGaNk1t33Hw9-FMfNh4GNEF2-a098_fw38dI4_ZOph4KslPyZtZOSu_NBeIsg3Iz5kJ0fvvxzO0rHwQuqQ3a1SZIEArc1bl3lb4lbqS-Fb6Vqlqtw7ZBFQii63qmuRm-uiK_Clx3XKy1Z7kLV4xA76ZQ9PGKdEXOUBnESuoPF-h4S0w7XuQItauoSJadqNG1XJqTjGwkzhZ99MNJYhY5lMGjRWwtLNXZdRlWNP-3dk0U1b0tQOHyDSzIg0sw9pCdMTHsxITyLtwK7me4Z_g_DZGX3WfDRoHPS-BtshQ1DZ9zxhryaAGVzldHRje1heD9iZ0Mi8cPdM2OMIuE13aAFZSIGj6B0o7oy3-00_Pw9K4qquhKiqp_9jep6x2_TIIRi0es4OVlfX8AIJ26p9GdbmH-kCQFs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIiQuqLxTKDISHIM2sR0nB4TSimqFaMWBrXqzHGfcLlqy7WaL2EvF3-Dv8UuYyWMhPFSJU7S7zkw2M_Z8iWe-Yey5tRjzRCTCbORdKLXWoYUMQi8llCoClWoqcD48SsYT-fZEnWywvmdrdwPrvz7aUT-pyWL28svF6jVO-Fc_c7UczBZA7JNR2hCXxskmu4GxKSY_P-wAf7s2E8cZbTXHMeVyxVL39XT_EDSIVw2t_yBsbZ5R_uSf4PT3HMtfgtbBNrvdoU2et-5xh21AdZfdbPtPru6xK3QSTtu-n4rZKsxd2-qsOuXvib1hWtERTQk1R0zaZNGuuK1K3rxGbCsiat5levE8P_7-9VvNj6d4Ib2Emi_n_Ig4kxHT8n17js6_1nifTQ7efNgfh11DhtAh6luGiA4BChsVbuRtgkusT4QvpCuUSiPvEF1AIsrIqrJAzK7jMsaHIVcqLwvtQWbiAduq5hU8YpwKdJUHcBIxhMbzHQLVEtcAB1pk0gVM9LfduI6tnJpmzEyflvbRtMYyZCwzkgaNFbBwfdZ5y9Zxzfg9suh6LHFtN1_MF6emm7qmzBIr8MI81QhD6myZ-CJ2Eo_CppEMmO79wXSwpYUjKGp6jfoX6D4D7eP8nUHjYFQ2OA6Rgxp9jgL2rHcwg7OftnRsBfPLGoUJjYgMV9WAPWwdbi0OLSBjKVCLHrjiQN_wl2p61jCMqywVIk13_vufPWa36FOTGZo-YVvLxSXsInpbFk-bCfkDPxFFUw
  priority: 102
  providerName: Scholars Portal
Title The Assembly-Activating Protein Promotes Stability and Interactions between AAV’s Viral Proteins to Nucleate Capsid Assembly
URI https://dx.doi.org/10.1016/j.celrep.2018.04.026
https://www.ncbi.nlm.nih.gov/pubmed/29742436
https://www.proquest.com/docview/2037061179
https://inserm.hal.science/inserm-01847150
https://pubmed.ncbi.nlm.nih.gov/PMC5983388
https://doaj.org/article/d96a300cf0694e8cad6fb2c4ad63a814
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: KQ8
  dateStart: 20120126
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: IXB
  dateStart: 20120126
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: AKRWK
  dateStart: 20120126
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: M48
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpoNBL6bvuI6jQHsWuV7IlH52lYSlNKLQJexOyLCUuW--y3hT2Uvo3-vf6SzojP4jbQ6AXG9t62J7RzGd55hMhb40Bn8djzrKpt0xIKZlxmWNeCFcmsUuUxATn07N0cS4-LJPlAZn3uTAYVtnZ_tamB2vdnZl0b3OyqarJ5xl8u4B3AuMaWKvQDnMhQxLf8niYZ0G-kTish4jlGVboM-hCmJd1q61D4spYBc5TZFm44aECkf_IUd25wojJf-Ho31GVN9zUyQNyv8OXNG8f4SE5cPUjcrddcXL_mPwAtaD4o_dbsdqz3LaLm9WX9BPyNVQ17kF4rqGAQkPc7J6auqRh4rDNgWhoF9tF8_zi989fDb2o4Eb6Fhq6W9MzZEkGFEvnZgPqPvT4hJyfvP8yX7BuCQZmAeftGOBB5woTF3bqTQpG1afcF8IWSaJibwFPuJSXsUnKAlC6nJUz-PyxZeJFIb0TGX9KDut17Z4Tiim5iXfOCkANEupbgKYljHrrJM-EjQjvX7u2HT85LpOx0n0g2lfdCkujsPRUaBBWRNhQa9Pyc9xS_hglOpRFdu1wYr291J166TJLDYcb85gV7JQ1ZeqLmRWw50bFIiKy1wc9UlZoqrql-3egPqPeF_lHDcIBP6yhHKhzMv0eR-RNr2Aaxjv-xDG1W1830BiXgMHAjkbkWatwQ3MgATETHHqRI1Uc9Te-UldXgVM8yRTnSr347yd7Se7hUYgFVa_I4W577V4DXtsVR2Ge4ygMS9ieCvUH-6VCkg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4lnC00hwjHYTO3FyTFdUW9iukGirvVmOY7dBS3a12SLtBfE3-Hv8Emachxo4VOIUKfEjyYxnPicz3xDyTinweSxgfjq22udCCF-Z1PiWc1NEgYkSgQnOJ_N4esY_LqLFHpl0uTAYVtna_samO2vdnhm1b3O0LsvRlxD2LuCdwLg61iqww7cBDYwxrut4cdh_aEHCkcAVRMQOPvboUuhcnJc2y41B5sogcaSnSLNwzUU5Jv-Bp7p1iSGT_-LRv8Mqr_mpowfkfgswadY8w0OyZ6pH5E5TcnL3mPwAvaD4p_dbvtz5mW6qm1UX9DMSNpQVHkF6pqYAQ13g7I6qqqDuy2GTBFHTNriLZtn575-_anpewo10I9R0u6JzpEkGGEsnag363s_4hJwdfTidTP22BoOvAehtfQCExuQqyPXYqhisqo2ZzbnOoygJrAZAYWJWBCoqcoDpIixC2P_oIrI8F9bwlD0l-9WqMs8IxZzcyBqjOcAGAf01YNMClr02gqVce4R1r13qlqAc62QsZReJ9lU2wpIoLDnmEoTlEb_vtW4IOm5of4gS7dsivbY7sdpcyFa_ZJHGisGNWUwLNolWRWzzUHM4MpUE3COi0wc50FYYqrxh-vegPoPZp9lMgnDAEUtoB_ocjb8HHnnbKZiEBY9_cVRlVlc1DMYEgDAwpB45aBSuHw4kwEPOYBYxUMXBfMMrVXnpSMWjNGEsSZ7_95O9IXenpyczOTuef3pB7uEVFxiavCT7282VeQXgbZu_dovzD_4IQ-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Assembly-Activating+Protein+Promotes+Stability+and+Interactions+between+AAV%E2%80%99s+Viral+Proteins+to+Nucleate+Capsid+Assembly&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Maurer%2C+Anna+C.&rft.au=Pacouret%2C+Simon&rft.au=Cepeda+Diaz%2C+Ana+Karla&rft.au=Blake%2C+Jessica&rft.date=2018-05-08&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=23&rft.issue=6&rft.spage=1817&rft.epage=1830&rft_id=info:doi/10.1016%2Fj.celrep.2018.04.026&rft.externalDocID=S2211124718305552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon