The Assembly-Activating Protein Promotes Stability and Interactions between AAV’s Viral Proteins to Nucleate Capsid Assembly
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanis...
Saved in:
Published in | Cell reports (Cambridge) Vol. 23; no. 6; pp. 1817 - 1830 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.05.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2018.04.026 |
Cover
Abstract | The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.
[Display omitted]
•Dependence on AAP for capsid assembly varies widely across 21 AAV variants•AAP-dependent capsid proteins are subject to multiple rapid degradation pathways•AAP promotes interactions between capsid proteins•Specific capsid residues at trimer interface influence dependence on AAP
Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. |
---|---|
AbstractList | The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. : Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. Keywords: AAV, AAP, adeno-associated virus, capsid assembly, manufacturing, capsid, vector engineering, structure-function, gene therapy The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. In Brief: Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral cofactor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. [Display omitted] •Dependence on AAP for capsid assembly varies widely across 21 AAV variants•AAP-dependent capsid proteins are subject to multiple rapid degradation pathways•AAP promotes interactions between capsid proteins•Specific capsid residues at trimer interface influence dependence on AAP Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. |
Author | Cepeda Diaz, Ana Karla Vandenberghe, Luk H. Blake, Jessica Maurer, Anna C. Pacouret, Simon Andres-Mateos, Eva |
AuthorAffiliation | 1 Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA 2 Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA 3 INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France 4 Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA 5 The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA |
AuthorAffiliation_xml | – name: 5 The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA – name: 4 Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA – name: 3 INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France – name: 1 Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA – name: 2 Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA |
Author_xml | – sequence: 1 givenname: Anna C. surname: Maurer fullname: Maurer, Anna C. organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA – sequence: 2 givenname: Simon surname: Pacouret fullname: Pacouret, Simon organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA – sequence: 3 givenname: Ana Karla surname: Cepeda Diaz fullname: Cepeda Diaz, Ana Karla organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA – sequence: 4 givenname: Jessica surname: Blake fullname: Blake, Jessica organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA – sequence: 5 givenname: Eva surname: Andres-Mateos fullname: Andres-Mateos, Eva organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA – sequence: 6 givenname: Luk H. surname: Vandenberghe fullname: Vandenberghe, Luk H. email: luk_vandenberghe@meei.harvard.edu organization: Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29742436$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-01847150$$DView record in HAL |
BookMark | eNqFks1uEzEQx1eoiH7QN0DIRw4k2F6vd5cD0iqiNFIESJReLa89mzjatYPtBOWCeA1ejyfBIUnV9gC-jGXP_ObjP-fZiXUWsuwFwWOCCX-zHCvoPazGFJNqjNkYU_4kO6OUkBGhrDy5dz_NLkNY4nQ4JqRmz7JTWpeMspyfZT9uFoCaEGBo--2oUdFsZDR2jj57F8HYnR3SLaAvUbamN3GLpNVoaiN4mdydDaiF-B3Aoqa5_f3zV0C3xsv-SAgoOvRxrXqQEdBEroLRdxmfZ0872Qe4PNiL7OvV-5vJ9Wj26cN00sxGquA8jggnAK0krcKd5IyXHc-7lqm2KCrSKVwR4LkmstBtmXqjmpZFrnTRsbbsgNX5RTbdc7WTS7HyZpB-K5w04u-D83MhfTSpSKFrLnOMVYd5zaBSUvOupYolm8uKsMR6t2et1u0AWoGNqd0H0Ic_1izE3G1EUVd5XlUJ8HoPWDwKu25mIg0M_CCSrKwkBd6Q5P7qkM-7b2sIUQwmJPl7acGtg6A4LzEnpNy1-fJ-aXfwo97J4e3eQXkXgodOKBPlTsVUqekFwWK3X2Ip9vsldvslMBNpv1IwexR85P8n7DAvSAJvDHgRlAGrQBsPKiYFzL8BfwC9pO7t |
CitedBy_id | crossref_primary_10_1128_jvi_00633_24 crossref_primary_10_3390_v12060662 crossref_primary_10_1016_j_ymthe_2023_10_001 crossref_primary_10_1089_hum_2020_069 crossref_primary_10_1002_bit_28562 crossref_primary_10_1177_1535676019899502 crossref_primary_10_1186_s43141_023_00518_5 crossref_primary_10_1016_j_ymthe_2023_12_015 crossref_primary_10_1016_j_omtm_2019_11_014 crossref_primary_10_1038_s41598_019_54928_y crossref_primary_10_1089_hum_2022_119 crossref_primary_10_1016_j_pep_2024_106502 crossref_primary_10_1016_j_bpj_2020_12_018 crossref_primary_10_3390_v13071336 crossref_primary_10_1016_j_drudis_2023_103610 crossref_primary_10_3390_v16081215 crossref_primary_10_1016_j_biotechadv_2024_108322 crossref_primary_10_1016_j_xcrm_2022_100803 crossref_primary_10_1128_JVI_02013_18 crossref_primary_10_3389_fcvm_2022_952755 crossref_primary_10_1002_biot_202200450 crossref_primary_10_1002_med_22036 crossref_primary_10_14336_AD_2021_0517 crossref_primary_10_1089_hum_2019_041 crossref_primary_10_1016_j_heliyon_2023_e15071 crossref_primary_10_1089_hum_2018_085 crossref_primary_10_1111_brv_12718 crossref_primary_10_3390_microorganisms12020384 crossref_primary_10_1016_j_biotechadv_2021_107764 crossref_primary_10_1021_acsnano_5c01498 crossref_primary_10_1007_s00335_024_10099_4 crossref_primary_10_1016_j_omtm_2019_08_015 crossref_primary_10_1038_s41598_021_01220_7 crossref_primary_10_3390_v16010051 crossref_primary_10_3390_v15051174 crossref_primary_10_1038_s41467_021_21935_5 crossref_primary_10_1016_j_biotechadv_2024_108370 crossref_primary_10_1128_mbio_03528_22 crossref_primary_10_1128_jvi_00093_23 crossref_primary_10_3390_ijms252212081 |
Cites_doi | 10.1016/j.ymthe.2017.04.001 10.1099/0022-1317-83-5-973 10.1038/gt.2008.170 10.1016/j.virol.2008.08.027 10.1128/JVI.74.18.8635-8647.2000 10.1038/nrg3742 10.1099/0022-1317-78-6-1453 10.1128/JVI.07232-11 10.1089/hgtb.2012.195 10.1038/mt.2015.173 10.1128/JVI.78.6.3110-3122.2004 10.1038/nbt.1515 10.1128/JVI.01304-07 10.1128/JVI.02660-13 10.1128/jvi.76.5.2043-2053.2002 10.2174/1566523054065057 10.1073/pnas.1001673107 10.1128/JVI.00448-12 10.1128/JVI.01675-12 10.1038/nature16465 10.1128/JVI.01198-17 10.1128/JVI.77.20.11072-11081.2003 10.1128/JVI.05359-11 10.1128/JVI.78.12.6381-6388.2004 10.1128/JVI.01980-16 10.1128/JVI.71.2.1341-1352.1997 10.1016/j.celrep.2015.07.019 10.1128/JVI.80.2.810-820.2006 10.1128/JVI.03125-14 10.1128/JVI.02723-05 10.1128/JVI.80.2.821-834.2006 10.1128/JVI.69.9.5311-5319.1995 10.1128/JVI.00282-12 10.1038/nbt.3781 10.1089/hgtb.2012.194 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.celrep.2018.04.026 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 1830 |
ExternalDocumentID | oai_doaj_org_article_d96a300cf0694e8cad6fb2c4ad63a814 PMC5983388 oai_HAL_inserm_01847150v1 29742436 10_1016_j_celrep_2018_04_026 S2211124718305552 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: P30 EY003790 – fundername: NIH HHS grantid: DP1 OD008267 – fundername: NEI NIH HHS grantid: DP1 EY023177 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c566t-161eeba1bc0fa6467f63fb4cb5581fc081e63d1a5db72972d2753cd5f4b7fe493 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:29:22 EDT 2025 Tue Sep 30 16:53:27 EDT 2025 Fri Sep 12 12:48:57 EDT 2025 Fri Sep 05 13:55:21 EDT 2025 Thu Apr 03 07:02:29 EDT 2025 Tue Jul 01 02:58:55 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Wed May 17 01:19:28 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | AAP AAV capsid assembly capsid manufacturing structure-function gene therapy adeno-associated virus vector engineering vector engineering |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-161eeba1bc0fa6467f63fb4cb5581fc081e63d1a5db72972d2753cd5f4b7fe493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC5983388 Lead Contact |
ORCID | 0000-0002-3508-4924 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124718305552 |
PMID | 29742436 |
PQID | 2037061179 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d96a300cf0694e8cad6fb2c4ad63a814 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5983388 hal_primary_oai_HAL_inserm_01847150v1 proquest_miscellaneous_2037061179 pubmed_primary_29742436 crossref_citationtrail_10_1016_j_celrep_2018_04_026 crossref_primary_10_1016_j_celrep_2018_04_026 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_04_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-08 |
PublicationDateYYYYMMDD | 2018-05-08 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Naumer, Sonntag, Schmidt, Nieto, Panke, Davey, Popa-Wagner, Kleinschmidt (bib19) 2012; 86 Grieger, Snowdy, Samulski (bib11) 2006; 80 Popa-Wagner, Porwal, Kann, Reuss, Weimer, Florin, Kleinschmidt (bib23) 2012; 86 Grosse, Penaud-Budloo, Herrmann, Börner, Fakhiri, Laketa, Krämer, Wiedtke, Gunkel, Ménard (bib13) 2017; 91 Wistuba, Weger, Kern, Kleinschmidt (bib30) 1995; 69 Kotterman, Schaffer (bib15) 2014; 15 Sonntag, Köther, Schmidt, Weghofer, Raupp, Nieto, Kuck, Gerlach, Böttcher, Müller (bib26) 2011; 85 Wu, Xiao, Conlon, Hughes, Agbandje-McKenna, Ferkol, Flotte, Muzyczka (bib32) 2000; 74 Wistuba, Kern, Weger, Grimm, Kleinschmidt (bib31) 1997; 71 Kern, Schmidt, Leder, Müller, Wobus, Bettinger, Von der Lieth, King, Kleinschmidt (bib14) 2003; 77 Lochrie, Tatsuno, Christie, McDonnell, Zhou, Surosky, Pierce, Colosi (bib17) 2006; 80 DiMattia, Nam, Van Vliet, Mitchell, Bennett, Gurda, McKenna, Olson, Sinkovits, Potter (bib3) 2012; 86 Nicolson, Samulski (bib20) 2014; 88 Girod, Wobus, Zádori, Ried, Leike, Tijssen, Kleinschmidt, Hallek (bib10) 2002; 83 Foust, Nurre, Montgomery, Hernandez, Chan, Kaspar (bib6) 2009; 27 Sen, Gadkari, Sudha, Gabriel, Kumar, Selot, Samuel, Rajalingam, Ramya, Nair (bib24) 2013; 24 Bell, Gurda, Van Vliet, Agbandje-McKenna, Wilson (bib1) 2012; 86 Earley, Powers, Adachi, Baumgart, Meyer, Xie, Chapman, Nakai (bib5) 2017; 91 Zhong, Li, Jayandharan, Mah, Govindasamy, Agbandje-McKenna, Herzog, Weigel-Van Aken, Hobbs, Zolotukhin (bib34) 2008; 381 Pillay, Meyer, Puschnik, Davulcu, Diep, Ishikawa, Jae, Wosen, Nagamine, Chapman, Carette (bib22) 2016; 530 Landegger, Pan, Askew, Wassmer, Gluck, Galvin, Taylor, Forge, Stankovic, Holt, Vandenberghe (bib16) 2017; 35 Zinn, Pacouret, Khaychuk, Turunen, Carvalho, Andres-Mateos, Shah, Shelke, Maurer, Plovie (bib35) 2015; 12 Earley, Kawano, Adachi, Sun, Dai, Nakai (bib4) 2015; 89 Gao, Vandenberghe, Wilson (bib9) 2005; 5 Yan, Zak, Luxton, Ritchie, Bantel-Schaal, Engelhardt (bib33) 2002; 76 Bleker, Pawlita, Kleinschmidt (bib2) 2006; 80 Pacouret, Bouzelha, Shelke, Andres-Mateos, Xiao, Maurer, Mevel, Turunen, Barungi, Penaud-Budloo (bib21) 2017; 25 Thomas, Storm, Huang, Kay (bib28) 2004; 78 Vandenberghe, Wilson, Gao (bib29) 2009; 16 Grimm, Zolotukhin (bib12) 2015; 23 Nam, Lane, Padron, Gurda, McKenna, Kohlbrenner, Aslanidi, Byrne, Muzyczka, Zolotukhin, Agbandje-McKenna (bib18) 2007; 81 Gabriel, Hareendran, Sen, Gadkari, Sudha, Selot, Hussain, Dhaksnamoorthy, Samuel, Srinivasan (bib7) 2013; 24 Steinbach, Wistuba, Bock, Kleinschmidt (bib27) 1997; 78 Sonntag, Schmidt, Kleinschmidt (bib25) 2010; 107 Gao, Vandenberghe, Alvira, Lu, Calcedo, Zhou, Wilson (bib8) 2004; 78 Nam (10.1016/j.celrep.2018.04.026_bib18) 2007; 81 Gabriel (10.1016/j.celrep.2018.04.026_bib7) 2013; 24 Sonntag (10.1016/j.celrep.2018.04.026_bib25) 2010; 107 Wu (10.1016/j.celrep.2018.04.026_bib32) 2000; 74 Landegger (10.1016/j.celrep.2018.04.026_bib16) 2017; 35 Bell (10.1016/j.celrep.2018.04.026_bib1) 2012; 86 Naumer (10.1016/j.celrep.2018.04.026_bib19) 2012; 86 Wistuba (10.1016/j.celrep.2018.04.026_bib31) 1997; 71 Kotterman (10.1016/j.celrep.2018.04.026_bib15) 2014; 15 Thomas (10.1016/j.celrep.2018.04.026_bib28) 2004; 78 Earley (10.1016/j.celrep.2018.04.026_bib4) 2015; 89 Steinbach (10.1016/j.celrep.2018.04.026_bib27) 1997; 78 Foust (10.1016/j.celrep.2018.04.026_bib6) 2009; 27 Sen (10.1016/j.celrep.2018.04.026_bib24) 2013; 24 Grieger (10.1016/j.celrep.2018.04.026_bib11) 2006; 80 Yan (10.1016/j.celrep.2018.04.026_bib33) 2002; 76 Pillay (10.1016/j.celrep.2018.04.026_bib22) 2016; 530 Gao (10.1016/j.celrep.2018.04.026_bib8) 2004; 78 Wistuba (10.1016/j.celrep.2018.04.026_bib30) 1995; 69 Zhong (10.1016/j.celrep.2018.04.026_bib34) 2008; 381 Vandenberghe (10.1016/j.celrep.2018.04.026_bib29) 2009; 16 Gao (10.1016/j.celrep.2018.04.026_bib9) 2005; 5 Grimm (10.1016/j.celrep.2018.04.026_bib12) 2015; 23 Grosse (10.1016/j.celrep.2018.04.026_bib13) 2017; 91 Pacouret (10.1016/j.celrep.2018.04.026_bib21) 2017; 25 DiMattia (10.1016/j.celrep.2018.04.026_bib3) 2012; 86 Girod (10.1016/j.celrep.2018.04.026_bib10) 2002; 83 Lochrie (10.1016/j.celrep.2018.04.026_bib17) 2006; 80 Popa-Wagner (10.1016/j.celrep.2018.04.026_bib23) 2012; 86 Kern (10.1016/j.celrep.2018.04.026_bib14) 2003; 77 Sonntag (10.1016/j.celrep.2018.04.026_bib26) 2011; 85 Earley (10.1016/j.celrep.2018.04.026_bib5) 2017; 91 Bleker (10.1016/j.celrep.2018.04.026_bib2) 2006; 80 Zinn (10.1016/j.celrep.2018.04.026_bib35) 2015; 12 Nicolson (10.1016/j.celrep.2018.04.026_bib20) 2014; 88 |
References_xml | – volume: 91 year: 2017 ident: bib13 article-title: Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells publication-title: J. Virol. – volume: 85 start-page: 12686 year: 2011 end-page: 12697 ident: bib26 article-title: The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes publication-title: J. Virol. – volume: 69 start-page: 5311 year: 1995 end-page: 5319 ident: bib30 article-title: Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins publication-title: J. Virol. – volume: 35 start-page: 280 year: 2017 end-page: 284 ident: bib16 article-title: A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear publication-title: Nat. Biotechnol. – volume: 24 start-page: 104 year: 2013 end-page: 116 ident: bib24 article-title: Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo publication-title: Hum. Gene Ther. Methods – volume: 86 start-page: 6947 year: 2012 end-page: 6958 ident: bib3 article-title: Structural insight into the unique properties of adeno-associated virus serotype 9 publication-title: J. Virol. – volume: 80 start-page: 810 year: 2006 end-page: 820 ident: bib2 article-title: Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging publication-title: J. Virol. – volume: 78 start-page: 1453 year: 1997 end-page: 1462 ident: bib27 article-title: Assembly of adeno-associated virus type 2 capsids in vitro publication-title: J. Gen. Virol. – volume: 76 start-page: 2043 year: 2002 end-page: 2053 ident: bib33 article-title: Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors publication-title: J. Virol. – volume: 78 start-page: 6381 year: 2004 end-page: 6388 ident: bib8 article-title: Clades of Adeno-associated viruses are widely disseminated in human tissues publication-title: J. Virol. – volume: 86 start-page: 9163 year: 2012 end-page: 9174 ident: bib23 article-title: Impact of VP1-specific protein sequence motifs on adeno-associated virus type 2 intracellular trafficking and nuclear entry publication-title: J. Virol. – volume: 88 start-page: 4132 year: 2014 end-page: 4144 ident: bib20 article-title: Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus publication-title: J. Virol. – volume: 74 start-page: 8635 year: 2000 end-page: 8647 ident: bib32 article-title: Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism publication-title: J. Virol. – volume: 86 start-page: 13038 year: 2012 end-page: 13048 ident: bib19 article-title: Properties of the adeno-associated virus assembly-activating protein publication-title: J. Virol. – volume: 24 start-page: 80 year: 2013 end-page: 93 ident: bib7 article-title: Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo publication-title: Hum. Gene Ther. Methods – volume: 107 start-page: 10220 year: 2010 end-page: 10225 ident: bib25 article-title: A viral assembly factor promotes AAV2 capsid formation in the nucleolus publication-title: Proc. Natl. Acad. Sci. USA – volume: 77 start-page: 11072 year: 2003 end-page: 11081 ident: bib14 article-title: Identification of a heparin-binding motif on adeno-associated virus type 2 capsids publication-title: J. Virol. – volume: 83 start-page: 973 year: 2002 end-page: 978 ident: bib10 article-title: The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity publication-title: J. Gen. Virol. – volume: 23 start-page: 1819 year: 2015 end-page: 1831 ident: bib12 article-title: E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution publication-title: Mol. Ther. – volume: 16 start-page: 311 year: 2009 end-page: 319 ident: bib29 article-title: Tailoring the AAV vector capsid for gene therapy publication-title: Gene Ther. – volume: 25 start-page: 1375 year: 2017 end-page: 1386 ident: bib21 article-title: AAV-ID: A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations publication-title: Mol. Ther. – volume: 80 start-page: 821 year: 2006 end-page: 834 ident: bib17 article-title: Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization publication-title: J. Virol. – volume: 80 start-page: 5199 year: 2006 end-page: 5210 ident: bib11 article-title: Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly publication-title: J. Virol. – volume: 12 start-page: 1056 year: 2015 end-page: 1068 ident: bib35 article-title: In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector publication-title: Cell Rep. – volume: 530 start-page: 108 year: 2016 end-page: 112 ident: bib22 article-title: An essential receptor for adeno-associated virus infection publication-title: Nature – volume: 89 start-page: 3038 year: 2015 end-page: 3048 ident: bib4 article-title: Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein publication-title: J. Virol. – volume: 27 start-page: 59 year: 2009 end-page: 65 ident: bib6 article-title: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes publication-title: Nat. Biotechnol. – volume: 78 start-page: 3110 year: 2004 end-page: 3122 ident: bib28 article-title: Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors publication-title: J. Virol. – volume: 71 start-page: 1341 year: 1997 end-page: 1352 ident: bib31 article-title: Subcellular compartmentalization of adeno-associated virus type 2 assembly publication-title: J. Virol. – volume: 15 start-page: 445 year: 2014 end-page: 451 ident: bib15 article-title: Engineering adeno-associated viruses for clinical gene therapy publication-title: Nat. Rev. Genet. – volume: 5 start-page: 285 year: 2005 end-page: 297 ident: bib9 article-title: New recombinant serotypes of AAV vectors publication-title: Curr. Gene Ther. – volume: 381 start-page: 194 year: 2008 end-page: 202 ident: bib34 article-title: Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression publication-title: Virology – volume: 86 start-page: 7326 year: 2012 end-page: 7333 ident: bib1 article-title: Identification of the galactose binding domain of the adeno-associated virus serotype 9 capsid publication-title: J. Virol. – volume: 91 year: 2017 ident: bib5 article-title: Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11 publication-title: J. Virol. – volume: 81 start-page: 12260 year: 2007 end-page: 12271 ident: bib18 article-title: Structure of adeno-associated virus serotype 8, a gene therapy vector publication-title: J. Virol. – volume: 25 start-page: 1375 year: 2017 ident: 10.1016/j.celrep.2018.04.026_bib21 article-title: AAV-ID: A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.04.001 – volume: 83 start-page: 973 year: 2002 ident: 10.1016/j.celrep.2018.04.026_bib10 article-title: The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-83-5-973 – volume: 16 start-page: 311 year: 2009 ident: 10.1016/j.celrep.2018.04.026_bib29 article-title: Tailoring the AAV vector capsid for gene therapy publication-title: Gene Ther. doi: 10.1038/gt.2008.170 – volume: 381 start-page: 194 year: 2008 ident: 10.1016/j.celrep.2018.04.026_bib34 article-title: Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression publication-title: Virology doi: 10.1016/j.virol.2008.08.027 – volume: 74 start-page: 8635 year: 2000 ident: 10.1016/j.celrep.2018.04.026_bib32 article-title: Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism publication-title: J. Virol. doi: 10.1128/JVI.74.18.8635-8647.2000 – volume: 15 start-page: 445 year: 2014 ident: 10.1016/j.celrep.2018.04.026_bib15 article-title: Engineering adeno-associated viruses for clinical gene therapy publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3742 – volume: 78 start-page: 1453 year: 1997 ident: 10.1016/j.celrep.2018.04.026_bib27 article-title: Assembly of adeno-associated virus type 2 capsids in vitro publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-78-6-1453 – volume: 86 start-page: 6947 year: 2012 ident: 10.1016/j.celrep.2018.04.026_bib3 article-title: Structural insight into the unique properties of adeno-associated virus serotype 9 publication-title: J. Virol. doi: 10.1128/JVI.07232-11 – volume: 24 start-page: 104 year: 2013 ident: 10.1016/j.celrep.2018.04.026_bib24 article-title: Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo publication-title: Hum. Gene Ther. Methods doi: 10.1089/hgtb.2012.195 – volume: 23 start-page: 1819 year: 2015 ident: 10.1016/j.celrep.2018.04.026_bib12 article-title: E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution publication-title: Mol. Ther. doi: 10.1038/mt.2015.173 – volume: 78 start-page: 3110 year: 2004 ident: 10.1016/j.celrep.2018.04.026_bib28 article-title: Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors publication-title: J. Virol. doi: 10.1128/JVI.78.6.3110-3122.2004 – volume: 27 start-page: 59 year: 2009 ident: 10.1016/j.celrep.2018.04.026_bib6 article-title: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1515 – volume: 81 start-page: 12260 year: 2007 ident: 10.1016/j.celrep.2018.04.026_bib18 article-title: Structure of adeno-associated virus serotype 8, a gene therapy vector publication-title: J. Virol. doi: 10.1128/JVI.01304-07 – volume: 88 start-page: 4132 year: 2014 ident: 10.1016/j.celrep.2018.04.026_bib20 article-title: Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus publication-title: J. Virol. doi: 10.1128/JVI.02660-13 – volume: 76 start-page: 2043 year: 2002 ident: 10.1016/j.celrep.2018.04.026_bib33 article-title: Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors publication-title: J. Virol. doi: 10.1128/jvi.76.5.2043-2053.2002 – volume: 5 start-page: 285 year: 2005 ident: 10.1016/j.celrep.2018.04.026_bib9 article-title: New recombinant serotypes of AAV vectors publication-title: Curr. Gene Ther. doi: 10.2174/1566523054065057 – volume: 107 start-page: 10220 year: 2010 ident: 10.1016/j.celrep.2018.04.026_bib25 article-title: A viral assembly factor promotes AAV2 capsid formation in the nucleolus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1001673107 – volume: 86 start-page: 7326 year: 2012 ident: 10.1016/j.celrep.2018.04.026_bib1 article-title: Identification of the galactose binding domain of the adeno-associated virus serotype 9 capsid publication-title: J. Virol. doi: 10.1128/JVI.00448-12 – volume: 86 start-page: 13038 year: 2012 ident: 10.1016/j.celrep.2018.04.026_bib19 article-title: Properties of the adeno-associated virus assembly-activating protein publication-title: J. Virol. doi: 10.1128/JVI.01675-12 – volume: 530 start-page: 108 year: 2016 ident: 10.1016/j.celrep.2018.04.026_bib22 article-title: An essential receptor for adeno-associated virus infection publication-title: Nature doi: 10.1038/nature16465 – volume: 91 year: 2017 ident: 10.1016/j.celrep.2018.04.026_bib13 article-title: Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells publication-title: J. Virol. doi: 10.1128/JVI.01198-17 – volume: 77 start-page: 11072 year: 2003 ident: 10.1016/j.celrep.2018.04.026_bib14 article-title: Identification of a heparin-binding motif on adeno-associated virus type 2 capsids publication-title: J. Virol. doi: 10.1128/JVI.77.20.11072-11081.2003 – volume: 85 start-page: 12686 year: 2011 ident: 10.1016/j.celrep.2018.04.026_bib26 article-title: The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes publication-title: J. Virol. doi: 10.1128/JVI.05359-11 – volume: 78 start-page: 6381 year: 2004 ident: 10.1016/j.celrep.2018.04.026_bib8 article-title: Clades of Adeno-associated viruses are widely disseminated in human tissues publication-title: J. Virol. doi: 10.1128/JVI.78.12.6381-6388.2004 – volume: 91 year: 2017 ident: 10.1016/j.celrep.2018.04.026_bib5 article-title: Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11 publication-title: J. Virol. doi: 10.1128/JVI.01980-16 – volume: 71 start-page: 1341 year: 1997 ident: 10.1016/j.celrep.2018.04.026_bib31 article-title: Subcellular compartmentalization of adeno-associated virus type 2 assembly publication-title: J. Virol. doi: 10.1128/JVI.71.2.1341-1352.1997 – volume: 12 start-page: 1056 year: 2015 ident: 10.1016/j.celrep.2018.04.026_bib35 article-title: In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.07.019 – volume: 80 start-page: 810 year: 2006 ident: 10.1016/j.celrep.2018.04.026_bib2 article-title: Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging publication-title: J. Virol. doi: 10.1128/JVI.80.2.810-820.2006 – volume: 89 start-page: 3038 year: 2015 ident: 10.1016/j.celrep.2018.04.026_bib4 article-title: Identification and characterization of nuclear and nucleolar localization signals in the adeno-associated virus serotype 2 assembly-activating protein publication-title: J. Virol. doi: 10.1128/JVI.03125-14 – volume: 80 start-page: 5199 year: 2006 ident: 10.1016/j.celrep.2018.04.026_bib11 article-title: Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly publication-title: J. Virol. doi: 10.1128/JVI.02723-05 – volume: 80 start-page: 821 year: 2006 ident: 10.1016/j.celrep.2018.04.026_bib17 article-title: Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization publication-title: J. Virol. doi: 10.1128/JVI.80.2.821-834.2006 – volume: 69 start-page: 5311 year: 1995 ident: 10.1016/j.celrep.2018.04.026_bib30 article-title: Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins publication-title: J. Virol. doi: 10.1128/JVI.69.9.5311-5319.1995 – volume: 86 start-page: 9163 year: 2012 ident: 10.1016/j.celrep.2018.04.026_bib23 article-title: Impact of VP1-specific protein sequence motifs on adeno-associated virus type 2 intracellular trafficking and nuclear entry publication-title: J. Virol. doi: 10.1128/JVI.00282-12 – volume: 35 start-page: 280 year: 2017 ident: 10.1016/j.celrep.2018.04.026_bib16 article-title: A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3781 – volume: 24 start-page: 80 year: 2013 ident: 10.1016/j.celrep.2018.04.026_bib7 article-title: Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo publication-title: Hum. Gene Ther. Methods doi: 10.1089/hgtb.2012.194 |
SSID | ssj0000601194 |
Score | 2.4050765 |
Snippet | The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a... The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1817 |
SubjectTerms | AAP AAV adeno-associated virus Amino Acid Motifs capsid capsid assembly Capsid Proteins - chemistry Capsid Proteins - metabolism Dependovirus - pathogenicity Dependovirus - physiology Dependovirus - ultrastructure Gain of Function Mutation gene therapy HEK293 Cells Human health and pathology Humans Life Sciences manufacturing Models, Molecular Phenotype Phylogeny Protein Binding Protein Multimerization Protein Stability Serotyping structure-function vector engineering Virion - pathogenicity Virion - ultrastructure Virus Assembly |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgJSQuiG_Cl4wEx4gktuPkGFasKgQrDuxqb5bjjNmibrradJF6QfwN_h6_hBk7qVo49MIpUuvYjefZ81LPvGHstbXo80Qu0jrzLpVa69RCDamXEjqVg6o0JTh_Oi5nJ_LDmTrbKvVFMWFRHjhO3NuuLq3IMucpQxMqZ7vSt4WTeBW2CiWsC3RjWy9TcQ8mLTM6Ui4KitkqpJ7y5kJwl4PFFZBcZV4FpVPSVtjyS0G-f8c93TynOMl_SejfsZRbzunoLrszskrexKe5x25Af5_dinUm1w_YDwQDp-Pdi3axThsXS5r1X_lnUmmY93RFk8HAkXuGaNk1t33Hw9-FMfNh4GNEF2-a098_fw38dI4_ZOph4KslPyZtZOSu_NBeIsg3Iz5kJ0fvvxzO0rHwQuqQ3a1SZIEArc1bl3lb4lbqS-Fb6Vqlqtw7ZBFQii63qmuRm-uiK_Clx3XKy1Z7kLV4xA76ZQ9PGKdEXOUBnESuoPF-h4S0w7XuQItauoSJadqNG1XJqTjGwkzhZ99MNJYhY5lMGjRWwtLNXZdRlWNP-3dk0U1b0tQOHyDSzIg0sw9pCdMTHsxITyLtwK7me4Z_g_DZGX3WfDRoHPS-BtshQ1DZ9zxhryaAGVzldHRje1heD9iZ0Mi8cPdM2OMIuE13aAFZSIGj6B0o7oy3-00_Pw9K4qquhKiqp_9jep6x2_TIIRi0es4OVlfX8AIJ26p9GdbmH-kCQFs priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIiQuqLxTKDISHIM2sR0nB4TSimqFaMWBrXqzHGfcLlqy7WaL2EvF3-Dv8UuYyWMhPFSJU7S7zkw2M_Z8iWe-Yey5tRjzRCTCbORdKLXWoYUMQi8llCoClWoqcD48SsYT-fZEnWywvmdrdwPrvz7aUT-pyWL28svF6jVO-Fc_c7UczBZA7JNR2hCXxskmu4GxKSY_P-wAf7s2E8cZbTXHMeVyxVL39XT_EDSIVw2t_yBsbZ5R_uSf4PT3HMtfgtbBNrvdoU2et-5xh21AdZfdbPtPru6xK3QSTtu-n4rZKsxd2-qsOuXvib1hWtERTQk1R0zaZNGuuK1K3rxGbCsiat5levE8P_7-9VvNj6d4Ib2Emi_n_Ig4kxHT8n17js6_1nifTQ7efNgfh11DhtAh6luGiA4BChsVbuRtgkusT4QvpCuUSiPvEF1AIsrIqrJAzK7jMsaHIVcqLwvtQWbiAduq5hU8YpwKdJUHcBIxhMbzHQLVEtcAB1pk0gVM9LfduI6tnJpmzEyflvbRtMYyZCwzkgaNFbBwfdZ5y9Zxzfg9suh6LHFtN1_MF6emm7qmzBIr8MI81QhD6myZ-CJ2Eo_CppEMmO79wXSwpYUjKGp6jfoX6D4D7eP8nUHjYFQ2OA6Rgxp9jgL2rHcwg7OftnRsBfPLGoUJjYgMV9WAPWwdbi0OLSBjKVCLHrjiQN_wl2p61jCMqywVIk13_vufPWa36FOTGZo-YVvLxSXsInpbFk-bCfkDPxFFUw priority: 102 providerName: Scholars Portal |
Title | The Assembly-Activating Protein Promotes Stability and Interactions between AAV’s Viral Proteins to Nucleate Capsid Assembly |
URI | https://dx.doi.org/10.1016/j.celrep.2018.04.026 https://www.ncbi.nlm.nih.gov/pubmed/29742436 https://www.proquest.com/docview/2037061179 https://inserm.hal.science/inserm-01847150 https://pubmed.ncbi.nlm.nih.gov/PMC5983388 https://doaj.org/article/d96a300cf0694e8cad6fb2c4ad63a814 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: KQ8 dateStart: 20120126 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: IXB dateStart: 20120126 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: AKRWK dateStart: 20120126 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2211-1247 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: M48 dateStart: 20120101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpoNBL6bvuI6jQHsWuV7IlH52lYSlNKLQJexOyLCUuW--y3hT2Uvo3-vf6SzojP4jbQ6AXG9t62J7RzGd55hMhb40Bn8djzrKpt0xIKZlxmWNeCFcmsUuUxATn07N0cS4-LJPlAZn3uTAYVtnZ_tamB2vdnZl0b3OyqarJ5xl8u4B3AuMaWKvQDnMhQxLf8niYZ0G-kTish4jlGVboM-hCmJd1q61D4spYBc5TZFm44aECkf_IUd25wojJf-Ho31GVN9zUyQNyv8OXNG8f4SE5cPUjcrddcXL_mPwAtaD4o_dbsdqz3LaLm9WX9BPyNVQ17kF4rqGAQkPc7J6auqRh4rDNgWhoF9tF8_zi989fDb2o4Eb6Fhq6W9MzZEkGFEvnZgPqPvT4hJyfvP8yX7BuCQZmAeftGOBB5woTF3bqTQpG1afcF8IWSaJibwFPuJSXsUnKAlC6nJUz-PyxZeJFIb0TGX9KDut17Z4Tiim5iXfOCkANEupbgKYljHrrJM-EjQjvX7u2HT85LpOx0n0g2lfdCkujsPRUaBBWRNhQa9Pyc9xS_hglOpRFdu1wYr291J166TJLDYcb85gV7JQ1ZeqLmRWw50bFIiKy1wc9UlZoqrql-3egPqPeF_lHDcIBP6yhHKhzMv0eR-RNr2Aaxjv-xDG1W1830BiXgMHAjkbkWatwQ3MgATETHHqRI1Uc9Te-UldXgVM8yRTnSr347yd7Se7hUYgFVa_I4W577V4DXtsVR2Ge4ygMS9ieCvUH-6VCkg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4lnC00hwjHYTO3FyTFdUW9iukGirvVmOY7dBS3a12SLtBfE3-Hv8Emachxo4VOIUKfEjyYxnPicz3xDyTinweSxgfjq22udCCF-Z1PiWc1NEgYkSgQnOJ_N4esY_LqLFHpl0uTAYVtna_samO2vdnhm1b3O0LsvRlxD2LuCdwLg61iqww7cBDYwxrut4cdh_aEHCkcAVRMQOPvboUuhcnJc2y41B5sogcaSnSLNwzUU5Jv-Bp7p1iSGT_-LRv8Mqr_mpowfkfgswadY8w0OyZ6pH5E5TcnL3mPwAvaD4p_dbvtz5mW6qm1UX9DMSNpQVHkF6pqYAQ13g7I6qqqDuy2GTBFHTNriLZtn575-_anpewo10I9R0u6JzpEkGGEsnag363s_4hJwdfTidTP22BoOvAehtfQCExuQqyPXYqhisqo2ZzbnOoygJrAZAYWJWBCoqcoDpIixC2P_oIrI8F9bwlD0l-9WqMs8IxZzcyBqjOcAGAf01YNMClr02gqVce4R1r13qlqAc62QsZReJ9lU2wpIoLDnmEoTlEb_vtW4IOm5of4gS7dsivbY7sdpcyFa_ZJHGisGNWUwLNolWRWzzUHM4MpUE3COi0wc50FYYqrxh-vegPoPZp9lMgnDAEUtoB_ocjb8HHnnbKZiEBY9_cVRlVlc1DMYEgDAwpB45aBSuHw4kwEPOYBYxUMXBfMMrVXnpSMWjNGEsSZ7_95O9IXenpyczOTuef3pB7uEVFxiavCT7282VeQXgbZu_dovzD_4IQ-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Assembly-Activating+Protein+Promotes+Stability+and+Interactions+between+AAV%E2%80%99s+Viral+Proteins+to+Nucleate+Capsid+Assembly&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Maurer%2C+Anna+C.&rft.au=Pacouret%2C+Simon&rft.au=Cepeda+Diaz%2C+Ana+Karla&rft.au=Blake%2C+Jessica&rft.date=2018-05-08&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=23&rft.issue=6&rft.spage=1817&rft.epage=1830&rft_id=info:doi/10.1016%2Fj.celrep.2018.04.026&rft.externalDocID=S2211124718305552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |